圆锥曲线大题计算的小技巧(超适用)

合集下载

高考数学专项突破圆锥曲线专题

高考数学专项突破圆锥曲线专题

高考数学专项突破:圆锥曲线专题目录一、知识考点讲解 (2)第一部分了解基本题型 (3)第二部分掌握基本知识 (6)第三部分掌握基本方法 (8)二、知识考点深入透析 (15)三、圆锥曲线之高考链接 (18)四、基础知识专项训练 (22)五、解答题专项训练 (30)附录:圆锥曲线之高考链接参考答案 (35)附录:基础知识专项训练参考答案 (39)附录:解答题专项训练参考答案 (41)一、知识考点讲解一、圆锥曲线的考查重点:高考试卷对圆锥曲线的考查主要是:给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(或求)其轨迹;或给出直线及曲线、曲线及曲线的位置关系,讨论及其有联系的有关问题(如直线的方程、直线的条数、弦长、曲线中参数的取值范围等);或讨论直线及曲线、曲线及曲线的关系;或考查圆锥曲线及其它知识的综合(如及函数、数列、不等式、向量、导数等)等。

二、圆锥曲线试题的特点:1、突出重点知识的考查。

直线及圆的方程、圆锥曲线的定义、标准方程、几何性质等是圆锥曲线命题的根本,在对圆锥曲线的考查中,直线及圆锥曲线的位置关系仍然是重点。

2、注重数学思想及方法的考查。

3、融合代数、三角、不等式、排列组合、向量和几何等知识,在知识网络的交汇点处设计问题是高考的一大特点,由于向量具有代数和几何的双重身份,使得圆锥曲线及平面向量的整合交汇成为高考命题的热点,导数知识的引入为我们解决圆锥曲线的最值问题和切线问题提供了新的视角和方法。

三、命题重点趋势:直线及圆锥曲线或圆及圆锥曲线1、高考圆锥曲线内容重点仍然是直线及圆锥曲线或圆及圆锥曲线,直线及圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现。

2、热点主要体现在:直线及圆锥曲线的基础题;涉及位置关系的判定;轨迹问题;范围及位置问题;最值问题;存在性问题;弦长问题;对称问题;及平面向量或导数相结合的问题。

3、直线及圆锥曲线的题型涉及函数的及方程,数形结合,分类讨论,化归及转化等重要的数学思想方法,是高考必考内容之一,这类题型运算量比较大,思维层次较高,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能,对学生的能力要求也相对较高,是每年高考中平面几何部分出题的重点内容第一部分了解基本题型一、高考中常见的圆锥曲线题型1、直线及圆锥曲线结合的题型(1)求圆锥曲线的轨迹方程:这类题主要考查学生对圆锥曲线的标准方程及其相关性质,要求较低,一是出现在选择题,填空题或者解答题的第一问,较容易。

平移齐次化解决圆锥曲线中斜率和积问题与定点问题(解析版)

平移齐次化解决圆锥曲线中斜率和积问题与定点问题(解析版)

圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)【平移+齐次化处理】Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理将椭圆向下平移一个单位,(为了将P 2(0,1)平移到原点)椭圆方程化为C :x 24+(y +1)2=1,(左加右减,上减下加为曲线平移)设直线l 对应的直线l ′为mx +ny =1,椭圆方程化简为14x 2+y 2+2y =0,把一次项化成二次结构,将2y 乘上mx +ny 即可此时椭圆方程变成:14x 2+y 2+2y mx +ny =0⇒2n +1 y 2+2mxy +14x 2=0Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系由于平移不会改变直线倾斜角,即斜率和仍然为-1,而P 2点此时为原点,设平移后的A (x A ,y A ),B (x B ,y B ),即y A -0x A -0+y B -0x B -0=-1,将椭圆方程两边同除以x 2,令k =y x ,得2n +1 k 2+2mk +14=0,结合两直线斜率之和为-1,即k 1+k 2=-2m2n +1=-1,得2m =2n +1,∴m -2n =1,Step 3:得出定点,此时别忘了,还要平移回去!∴直线l ′恒过点Q ′(2,-2),向上平移一个单位进行还原在原坐标系中,直线l 过点Q (2,-1).【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,k AP+k BPk=定值.【坐标平移+齐次化处理】(左加右减,上减下加为曲线平移)Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系,Step 3:得出定点,此时别忘了,还要平移回去!【补充】椭圆E :x 2a 2+y 2b2=1(a >b >0),P (x 0,y 0)是椭圆上一点,A ,B 为随圆E 上两个动点,PA 与PB 的斜率分别为k 1,k 2.(1)k 1+k 2=0,证明AB 斜率为定值:x 0y 0⋅b 2a2(y ≠0);(2)k 1+k 2=t (t ≠0),证明AB 过定点:x 0-2y 0t ,-y 0-2x 0t ⋅b 2a2;(3)k 1⋅k 2==b2a2,证明AB 的斜率为定值-y 0x 0(x 0≠0);(4)k 1⋅k 2=λλ≠b 2a 2 ,证明AB 过定点:x 0λa 2+b 2λa 2-b 2,-y 0λa 2+b 2λa 2-b2.以上称为手电筒模型,注意点P 不在椭圆上时,上式并不适用,常数也需要齐次化乘“12”2020·新高考1卷·221已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【详解】(1)由题意可得:c a=224a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)[方法一]:通性通法设点M x 1,y 1 ,N x 2,y 2 ,若直线MN 斜率存在时,设直线MN 的方程为:y =kx +m ,代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0,可得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,因为AM ⊥AN ,所以AM ·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,根据y 1=kx 1+m ,y 2=kx 2+m ,代入整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0,所以k 2+1 2m 2-61+2k 2+km -k -2 -4km 1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13k ≠1 ,所以直线过定点直线过定点P 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,由AM ·AN=0得:x 1-2 x 1-2 +y 1-1 -y 1-1 =0,得x 1-2 2+1-y 21=0,结合x 216+y 213=1可得:3x 12-8x 1+4=0,解得:x 1=23或x 2=2(舍).此时直线MN 过点P 23,-13 .令Q 为AP 的中点,即Q 43,13,[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为(x +2)26+(y +1)23=1,设直线MN 的方程为mx +ny =4.将直线MN 方程与椭圆方程联立得x 2+4x +2y 2+4y =0,即x 2+(mx +ny )x +2y 2+(mx +ny )y =0,化简得(n +2)y 2+(m +n )xy +(1+m )x 2=0,即(n +2)y x 2+(m +n )yx +(1+m )=0.设M x 1 ,y 1 ,N x 2,y 2 ,因为AM ⊥AN 则k AM ⋅k AN =y 1x 1⋅y 2x 2=m +1n +2=-1,即m =-n -3.代入直线MN 方程中得n (y -x )-3x -4=0.则在新坐标系下直线MN 过定点-43,-43,则在原坐标系下直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 的中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法三]:建立曲线系A 点处的切线方程为2×x6+1×y 3=1,即x +y -3=0.设直线MA 的方程为k 1x -y -2k 1+1=0,直线MB 的方程为k 2x -y -2k 2+1=0,直线MN 的方程为kx -y +m =0.由题意得k 1⋅k 2=-1.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线MA ,MB 可表示为x 26+y 23-1+λk 1x -y - 2k 1+1 k 2x -y -2k 2+1 =0(其中λ为系数).用直线MN 及点A 处的切线可表示为μ(kx -y +m )⋅(x +y -3)=0(其中μ为系数).即x 26+y 23-1+λk 1x -y -2k 1+1 k 2x - y -2k 2+1 =μ(kx -y +m )(x +y -3).对比xy 项、x 项及y 项系数得λk 1+k 2 =μ(1-k ),①λ4+k 1+k 2 =μ(m -3k ),②2λk 1+k 2-1 =μ(m +3).③将①代入②③,消去λ,μ并化简得3m +2k +1=0,即m =-23k -13.故直线MN 的方程为y =k x -23 -13,直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法四]:设M x 1,y 1 ,N x 2,y 2 .若直线MN 的斜率不存在,则M x 1,y 1 ,N x 1,-y 1 .因为AM ⊥AN ,则AM ⋅AN=0,即x 1-2 2+1-y 21=0.由x 216+y 213=1,解得x 1=23或x 1=2(舍).所以直线MN 的方程为x =23.若直线MN 的斜率存在,设直线MN 的方程为y =kx +m ,则x 2+2(kx +m )2-6=1+2k 2x -x 1 x -x 2 =0.令x =2,则x 1-2 x 2-2 =2(2k +m -1)(2k +m +1)1+2k 2.又y -m k 2+2y 2-6=2+1k 2y -y 1 y -y 2 ,令y =1,则y 1-1 y 2-1 =(2k +m -1)(-2k +m -1)1+2k 2.因为AM ⊥AN ,所以AM ⋅AN =x 1-2 x 2-2 +y 1-1 y 2-1 =(2k +m -1)(2k +3m +1)1+2k 2=0,即m =-2k +1或m =-23k -13.当m =-2k +1时,直线MN 的方程为y =kx -2k +1=k (x -2)+1.所以直线MN 恒过A (2,1),不合题意;当m =-23k -13时,直线MN 的方程为y =kx -23k -13=k x -23-13,所以直线MN 恒过P 23,-13.综上,直线MN 恒过P 23,-13,所以|AP |=423.又因为AD ⊥MN ,即AD ⊥AP ,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为Q 43,13 ,则|DQ |=12|AP |=223.所以存在定点Q ,使得|DQ |为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为mx +ny =4,再通过与椭圆方程联立,构建齐次式,由韦达定理求出m ,n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线MN :y =kx +m ,再利用过点A ,M ,N 的曲线系,根据比较对应项系数可求出m ,k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解x 1-2 x 2-2 以及y 1-1 y 2-1 的计算.题型一已知定点求定值1已知抛物线C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.【解析】直线PQ :x =my +4,P x 1,y 1 ,Q x 2,y 2由x =my +4,得1=x -my4则由x =my +4y 2=4x ,得:y 2=4x ⋅x -my 4,整理得:y x 2+m y x -1=0,即:y 1x 1⋅y 2x 2=-1.所以k OP ⋅k OQ =y 1y 2x 1x 2=-1,则OP ⊥OQ ,即:∠POQ =90°2如图,椭圆E :x 22+y 2=1,经过点M (1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A (0,-1),证明:直线AP 与AQ 的斜率之和为2.【解析】设直线PQ :mx +n (y +1)=1,P x 1,y 1 ,Q x 2,y 2 则m +2n =1.由mx +n (y +1)=1x 22+y 2=1,得:x 22+[(y +1)-1]2=1.则x 22+(y +1)2-2(y +1)[mx +n (y +1)]=0,故(1-2n )y +1x 2-2m y +1x +12=0.所以y 1+1x 1+y 2+1x 2=2m 2n -1=2.即k AP +k AQ =y 1+1x 1+y 2+1x 2=2.3已知点A 1,32 ,O 为坐标原点,E ,F 是椭圆C :x 24=y 23=1上的两个动点,满足直线AE 与直线AF 关于直线x =1对称.证明直线EF 的斜率为定值,并求出这个定值;【答案】(提示:k 1+k 2=0答案:12)4如图,点F (1,0)为椭圆x 24+y 23=1的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足∠ACD =∠BCD ,试问直线AB 的斜率是否为定值,请说明理由.解法1常规解法依题意知直线AB 的斜率存在,设AB 方程:y =kx +m A x 1,y 1 ,B x 2,y 2代入椭圆方程x 24+y 23=1得:4k 2+3 x 2+8kmx +4m 2-12=0(*)∴x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3由∠ACD =∠BCD 得k AC +k BC =0∵C 1,32 ,∴y 1-32x 1-1+y 2-32x 2-1=kx 1+m -32x 1-1+kx 2+m -32x 2-1=0∴2kx 1x 2+m -32-k x 1+x 2 -2m +3=0∴2k ⋅4m 2-124k 2+3+m -32-k -8km 4k 2+3-2m +3=0整理得:(6k -3)(2k +2m -3)=0∴2k +2m -3=0或6k -3=0当2k +2m -3=0时,直线AB 过定点C 1,32,不合题意∴6k -3=0,k =12,∴直线AB 的斜率是定值12解法2齐次化:设直线AB 的方程为m (x -1)+n y -32 =1椭圆E 的方程即:3[(x -1)+1]2+4y -32 +322=12即:4y -32 2+12y -32+6(x -1)+3(x -1)2=0联立得:(4+12n )y -32 2+(12m +6n )y -32 (x -1)+(6m +3)(x -1)2=0即(4+12n )y -32x -1 2+(12m +6n )y -32x -1+(6m +3)=0∴由∠ACD =∠BCD 得k AC +k BC =y 1-32x 1-1+y 2-32x 2-1=-(12m +6n )(4+12n )=0即:n =-2m∴直线AB 的斜率为-m n =12,是定值.5椭圆E :x 22+y 2=1,A 0,-1 ,经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.解法1常规解法:证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2=2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和2.解法2齐次化:上移一个单位,椭圆E和直线L:x 22+y -1 2=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.6已知椭圆C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+kk 2为定值,并求出定值.将椭圆沿着AO 方向平移,平移后的椭圆方程为(x −2)24+y 23=1⇒x 24+y 23+x =0设直线MN 方程为mx +ny =1,代入椭圆方程得x 24+y 23+x (mx +ny )=0,两侧同时除以x 2得13y x 2−n y x +1−4m 4=0,k 1+k 2=3n ,k 1k 2=34−3m ,k =k MN=−mn,因为mx +ny =1过定点F (3,0)⇒m =13,所以k k 1+kk 2=4题型二已知定值求定点1(2017·全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32 ,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2):解法1常规解法:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A+k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .解法2齐次化:下移1个单位得E :x 24+y +1 2=1⇒x 24+y 2+2y =0,设平移后的直线:A B :mx +ny =1,齐次化:x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .2已知椭圆C :x 24+y 2=1,设直线l 不经过点P 2(0,1)且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:直线l 过定点.不平移齐次化【解析】设直线l :mx +n (y -1)=1......(1)由C :x 24+y 2=1,得x 24+[(y -1)+1]2=1即:x 24+(y -1)2+2(y -1)=0......(2)由(1)(2)得:x 24+(y -1)2+2(y -1)[mx +n (y -1)]=0整理得:(1+2n )y -1x2+2m ⋅y -1x +14=0则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=-2m1+2n =-1,则2m =2n +1,代入直线l :mx +n (y -1)=1,得:l :(2n +1)x +2n (y -1)=2显然,直线过定点(2,-1).3已知抛物线C :y 2=2px (p >0)上的点P (1,y 0)(y 0>0)到其焦点的距离为2.(1)求点P 的坐标及抛物线C 的方程;(2)若点M 、N 在抛物线C 上,且k PM •k PN =-12,证明:直线MN 过定点.答案:(2)(9,-2)4已知椭圆C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.解法1齐次化:公共点P 1,32 ,左移1个单位,下移32个单位,C :x +124+y +3223=1A B:mx +ny =1,3x 2+6x +4y 2+3y =0,4y 2+3x 2+6x +2y mx +ny =0,12n +4 y 2+62m +n xy +6m +3 x 2=0,等式两边同时除以x 2,12n +4 y x2+62m +n yx+6m +3 =0,k PA ⋅k PB =-94,6m +312n +4=-94,-12m -94n =1,mx +ny =1过-12,-94 ,右移1个单位,上移32个单位,过Q 12,-34,∴P 到直线l 的距离的最大值为PQ 的值为1-12 2+32--34 2=854,由于854>12,∴点P 到直线l 距离的最大值8545已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.(1)求椭圆E 的标准方程;x 26+y 24=1(2)设A 0,-1 ,B 0,2 ,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+y -1 2=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值; ②求证:直线PQ 过定点.答案:(2)-2;(3)0,23 【小问1详解】由题意2b =4c a =33b 2+c 2=a 2解得b =2a =6c =2所以椭圆的标准方程为:x 26+y 24=1;【小问2详解】①设MN 的方程为y =k 1x -1,与x 26+y 24=1联立得:3k 21+2 x 2-6k 1x -9=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=6k 13k 21+2x 1x 2=-93k 21+2Δ1=722k 21+1 >0,∴k 3⋅k 4=y 1-2x 1⋅y 2-2x 2=k 1x 1-3 k 2x 2-3 x 1x 2=k 21x 1x 2-3k 1(x 1+x 2)+9x 1x 2=-2【法二】平移坐标系+齐次化处理将坐标系中的图像整体向下平移2个单位,平移后的椭圆方程为:x 26+y +2 24=1,整理得:2x 2+3y 2+12y =0,设平移后的直线MN 的方程为:mx +ny =1,代入点0,-3 得mx -y3=1,则有2x 2+3y 2+12y mx -y3=0,整理得:-y 2+12mxy +2x 2=0令k =yx,将-y 2+12mxy +2x 2=0两边同除x 2,得-k 2+12mk +2=0,故k 3⋅k 4=-2说明:因为平移后k 3=y m 'x m ',k 4=y n 'x n ',而式子-y 2+12mxy +2x 2=0中x ,y 的值对应平移后的m '和n '所以同除x 2后得到的就是一个以k 3和k 4为根一个关于k 的一元二次方程.②设PQ 的方程为y =k 2x +t ,与x 2+y -1 2=1联立k 22+1 x 2+2k 2t -1 x +t t -2 =0,设P (x 3,y 3),Q (x 4,y 4)则x 3+x 4=-2k 2t -1k 22+1x 3x 4=t t -2k 22+1Δ2=4k 22-t 2+2t >0∴k BP ⋅k BQ =y 3-2x 3⋅y 4-2x 4=k 2x 3+t -2 k 2x 4+t -2 x 3x 4=k 22x 3x 4+k 2t -2 x 3+x 4 +t -22x 1x 2=k 22t t -2 -2k 22t -2 t -1 +k 22+1 t -2 2t t -2=k 22t -2k 22t -1 +k 22+1 t -2 t =t -2t11由k 3⋅k 4=k BP ⋅k BQ ,即t -2t =-2,∴t =23,此时Δ2=4k 22+89 >0,∴PQ 的方程为y =k 2x +23,故直线PQ 恒过定点0,23 .。

高中数学圆锥曲线知识点总结5篇

高中数学圆锥曲线知识点总结5篇

高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。

科学科研的公正性和透明度是科研活动的重要保障。

下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x ,y+y )。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

普通高中生学习“圆锥曲线与方程”的常见问题与对策

普通高中生学习“圆锥曲线与方程”的常见问题与对策

普通高中生学习“圆锥曲线与方程”的常见问题与对策摘要:圆锥曲线是高考的必考内容,在高考的考题中,以大题的形式出现,近年来都处于压轴题的地位。

同学们在学习这一内容时,普遍感到困难。

常会出现不会恰当运用圆锥曲线的定义来解题;直线与圆锥曲线的问题的解题模式不够熟练;不习惯结合几何性质解题;对圆锥曲线与方程的一些综合问题求解的“整体”意识不强;不会用特殊化解定值问题“等五方面的问题。

关键词:圆锥曲线;整体;特殊化;定义;几何性质中图分类号:g633.6 文献标志码:b 文章编号:1674-9324(2013)18-0090-03普通高中的学生在学习高中数学选修2-1“圆锥曲线与方程”这一章时,常会有以下几点常见问题。

一、不会恰当运用圆锥曲线的定义来解题例如,人教a版《高中数学选修2-1》教材中的习题2.2a组的第1题:“如果点m(x,y)在运动的过程中,总满足关系式■+■=10,点m的轨迹是什么曲线?为什么?请写出它的方程。

”(一)常见的存在问题在解该题的时候,绝大多数的同学都是从方程入手,对所给的方程两边平方、简化、整理,最后花了大量的时间,经过大量的运算,才能得出曲线方程。

而用这种方法时,又常常会因为计算能力的问题做不下去。

其实,只要利用所给方程式子右边所反映的几何意义,再结合椭圆的定义,很快就能求解。

由题意可知,由于点m(x,y)是到两个定点f1(0,-3)与f2(0,3)的距离之和等于定值10,且定值10大于两定点的距离6,所以点m的轨迹是以f1(0,-3)与f2(0,3)为焦点,长轴长为的椭圆,因此它的轨迹方程为:■+■=1。

(二)存在问题的分析由此可见,圆锥曲线的定义在这一章中的重要位置。

可是很多同学对定义不够重视。

再如,课本教材的习题2.2a组的第7题、课本习题2.3a组的第5题等,都是运用定义就可以简化运算的题目,可以很多同学都不会恰当结合定义来解题。

这种现象可能与教师在教学过程中过于重视讲完定义后如何推导标准方程,而对变式理解定义不够有关。

圆锥曲线中的定点问题及解决方法

圆锥曲线中的定点问题及解决方法

圆锥曲线中的定点问题及解决方法1. 引言1.1 背景介绍圆锥曲线是几何学中一个重要的概念,指的是由一个平面与一个圆锥体相交而得到的曲线。

在数学中,圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型。

这些曲线在几何学和代数学中有着广泛的应用,涉及到许多重要的定理和性质。

圆锥曲线中的定点问题是指关于曲线上或曲线与其他几何图形的交点位置和性质的问题。

这些问题在实际应用中具有重要意义,例如在天文学中描述行星轨道的形状,或在工程学中设计湖面上的浮标位置等。

研究圆锥曲线中的定点问题不仅可以加深对这些曲线的理解,更可以拓展数学知识的应用范围。

通过研究不同的解决方法,可以进一步提高解决问题的能力和技巧,为数学领域的发展贡献力量。

深入探讨圆锥曲线中的定点问题具有重要的研究意义和价值。

1.2 问题提出圆锥曲线中的定点问题是一个重要而复杂的数学问题,其研究有着深远的理论和应用意义。

在圆锥曲线中,定点问题是指在已知曲线的情况下,找到曲线上满足一定条件的点的位置。

这种问题涉及到几何、代数和分析等多个数学领域,需要综合运用不同的数学方法来求解。

定点问题在圆锥曲线中具有广泛的实际应用。

比如在工程领域中,定点问题可以帮助我们确定某个位置的几何特性,从而设计出更加精确的结构。

在物理学中,定点问题可以帮助我们分析物体的运动轨迹和速度方向。

在计算机图形学和机器人领域中,定点问题也有着重要的应用价值。

研究圆锥曲线中的定点问题不仅有助于深化数学理论,还能推动相关领域的发展和创新。

在本文中,我们将介绍不同的解决方法来解决圆锥曲线中的定点问题,探讨其适用场景和未来研究方向,以期为相关领域的研究工作提供一定的参考和启发。

1.3 研究意义在圆锥曲线中,定点问题具有重要的研究意义。

通过对定点问题的研究,我们可以深入理解圆锥曲线的性质和特点,进一步探索其数学规律和几何意义。

定点是曲线上的固定点,对于圆锥曲线而言,定点的位置和性质对曲线的形状和特征具有决定性影响。

高考数学偷分技巧

高考数学偷分技巧

高考数学偷分技巧高考说一千道一万,最重要的还是分数!大家平时辛辛苦苦听课做题,都为了考试得高分,没错,付出努力认真学是高分的前提,但到了考场,有些题目真的不会怎么办?跳过去假装没看到?既然不会做也不想丢分,就让我们来学一些小技巧吧,省时拿分~数学解题小技巧如果这道题你一点都不会,可以这样蒙1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

省时省力!4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!6.选择题中考线面关系的可以先从D项看起,前面都是来浪费你时间的7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案8.线性规划题目直接求交点带入比较大小即可9.遇到这样的选项A.1/2 B.1 C.3/2 D.5/2 这样的话答案一般是D因为B可以看作是2/2 前面三个都是出题者凑出来的,如果答案在前面3个的话D应该是2(4/2)数学解答题技巧上述部分只是一些小技巧,数学想在不会的情况下再多拿一些分,还需要在大题上多拿分。

三角函数题第一步一般都是需要将三角函数化简成标准形式y=Asin(ωx+φ),接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。

圆锥曲线硬解定理

圆锥曲线硬解定理

我国酒类商品广告文化内涵探究在当今社会,广告已成为我们生活的一部分,酒类商品广告也不例外。

然而,酒类商品广告并不仅仅是推销产品,更深层次的,它还反映了社会的文化内涵。

本文将深入探讨我国酒类商品广告的文化内涵,以期更好地理解广告背后的社会文化。

酒类商品广告的发展历程可谓源远流长。

早在古代,酒类商品广告便已存在。

从最早的口头宣传到现在的多媒体广告,酒类商品广告的形式和内容都发生了巨大变化。

然而,无论形式如何变化,酒类商品广告始终承担着传播酒文化、引导消费者购买的角色。

酒类商品广告的文化内涵表现在多个方面。

广告体现了酒文化的价值观。

在很多酒类商品广告中,我们都能看到对酒品质的强调和对酒品牌的崇尚,这反映了社会对酒类商品的品质追求和品牌认可。

广告还反映了消费者的消费心理。

通过精美的包装、诱人的口感描述和温馨的情感诉求,广告有效地激发了消费者的购买欲望。

广告也是传播媒介的一部分。

它通过图像、声音和文字等元素,将酒文化传播给更广泛的大众。

以我国某知名白酒品牌为例,其广告语“中国白酒,香飘世界”不仅表达了对产品品质的自信,也传递了中国白酒在世界范围的影响力。

该品牌的广告还通过展示传统酿造工艺和传承千年的酒文化,激发了消费者对传统工艺和历史的情感共鸣。

展望未来,我国酒类商品广告文化将有更大的发展空间。

随着全球化的推进和互联网的发展,酒类商品广告将有更多的传播渠道和更丰富的表现形式。

随着消费者需求的不断变化,酒类商品广告也将更加注重个性化和差异化,更加消费者的情感需求和文化诉求。

我国酒类商品广告文化内涵丰富,既反映了社会文化背景,又体现了消费者的心理需求。

通过对酒类商品广告的深入探究,我们可以更好地理解广告背后的文化意义和社会价值。

让我们期待我国酒类商品广告在未来展现出更加精彩的文化内涵和表现形式。

随着市场竞争的日益激烈,广告策略在白酒类企业的发展中变得越来越重要。

本文将从整合营销传播的视角下,以江小白广告为例,探讨白酒类企业广告策略的制定与实施。

圆锥曲线二级结论速算公式和结论系统梳理

圆锥曲线二级结论速算公式和结论系统梳理




三. 抛物线
(一) 方程、离心率的公式、结论
19. 切线方程、切点所在直线方程
过抛物线
2
0 上一点 , 的切线方程为

从抛物线
2


0 外一点 , 的切线,切点分别为, ,则直线
的方程为



(二) 焦点相关公式、结论
20. 过抛物线
3
交于, 两点,若⃗

|
0 ,则有|cos |




1
1
|
,若直线斜率存在,则有
1
(二) 焦点相关公式、结论
13. 焦半径倒数和(三大圆锥曲线均满足,双曲线需要在同一支)
1
过双曲线
0 的焦点 , 0 且不平行于坐标轴的弦,
0,
则两条焦半径的倒数和为
1

1

条焦半径的倒数和为
1

1

4

2
,

2


其中,为通径。
5.
焦点弦垂直平分线结论(三大圆锥曲线均适用)
1
过椭圆
0 的焦点 , 0 且不平行于坐标轴的弦,线段


的垂直平分线交轴于点,那么
6.

焦点三角形
1
椭圆
(1) cos
|
||

0 上一点 , ,∠
1,
|
,那么
∠ ;
(2) | || | ∈ , ;
(3) ⃗ ∙ ⃗ ∈ 2
(4) ⊿
, ;
tan
(三) 其它公式、结论

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。

在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。

适用条件需要注意。

例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。

例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。

对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。

例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。

PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。

例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。

例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。

题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。

在解题时需要注重数形结合思想和不等式解法。

例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。

题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。

例1:求椭圆x^2/4+y^2/9=1的参数方程。

例2:求双曲线x^2/9-y^2/4=1的参数方程。

题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。

圆锥曲线专题点差法

圆锥曲线专题点差法
优点:可以避免复杂的联立方程和消元过程,简化了解题过程。
点差法的应用技巧
定义:点差法是一种通过将两点坐标代入方程,然后相减来消元,简化计算的方法
应用场景:适用于求圆锥曲线中点坐标的问题
步骤:设两点坐标,代入圆锥曲线方程并相减,整理得到中点坐标的表达式
注意事项:需确保两点确实在圆锥曲线上,否则计算结果可能不准确
设两个点$P_1(x_1,y_1)$和 $P_2(x_2,y_2)$在圆锥曲线上
将两点代入圆锥曲线方程,得到两个等 式
将两个等式相减,消除$x_1, y_1, x_2, y_2$中的任意三个
整理得到一个关于$x_1, y_1, x_2, y_2$的二次方程
利用二次方程的性质,求出所求点的坐 标
点差法在圆锥曲线 中的应用
适用范围:点差法适 用于求两条平行直线 间的距离
解题步骤:利用点差法 求出两条平行直线间的 中点坐标,然后利用距 离公式求出距离
注意事项:在应用点差 法求距离时,需要注意 平行直线的斜率相等, 并且中点坐标的求解要 准确
实例解析:通过具体实 例解析点差法在求距离 中的应用,并给出相应 的解题步骤和答案
圆锥曲线专题点差法
汇报人:XX
目录
添加目录标题
点差法的基本原理
点差法在圆锥曲线 中的应用
点差法的应用技巧
点差法的注意事项
添加章节标题
点差法的基本原理
点差法是一种通 过将两个相交曲 线的交点坐标代 入方程,然后相 减来消去变量, 简化计算的方法。
点差法适用于解 决与中点、斜率 等有关的圆锥曲 线问题ቤተ መጻሕፍቲ ባይዱ尤其在 处理弦的斜率和 中点问题时非常 方便。
点差法的核心思想 是利用点差法公式 将两个交点的坐标 代入方程后相减, 得到一个关于斜率 的等式,从而解决 问题。

【高考精品复习】第九篇 解析几何 方法技巧2 圆锥曲线的综合应用

【高考精品复习】第九篇 解析几何 方法技巧2 圆锥曲线的综合应用

方法技巧2圆锥曲线的综合应用一、圆锥曲线的最值问题【考情快递】最值问题是高考的热点,可能出选择题、填空题和解答题.方法1:定义转化法解题步骤①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.适用情况此法为求解最值问题的常用方法,多数题可以用.【例1】►已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.解析如图所示,根据双曲线定义|PF|-|PF′|=4,即|PF|-4=|PF′|.又|P A|+|PF′|≥|AF′|=5,将|PF|-4=|PF′|代入,得|P A|+|PF|-4≥5,即|P A|+|PF|≥9,等号当且仅当A,P,F′三点共线,即P为图中的点P0时成立,故|PF|+|P A|的最小值为9.故填9. 答案9方法2:切线法解题步骤①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.适用情况当所求的最值是圆锥曲线上的点到某条直线的距离的最值时用此法.【例2】►求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.解设椭圆的切线方程为y=x+b,代入椭圆方程,得3x 2+4bx +2b 2-2=0. 由Δ=(4b )2-4×3×(2b 2-2)=0,得b =±3.当b =3时,直线y =x +3与y =x +23的距离d 1=62,将b =3代入方程3x 2+4bx +2b 2-2=0,解得x =-233,此时y =33,即椭圆上的点⎝ ⎛⎭⎪⎫-233,33到直线y =x +23的距离最小,最小值是62; 当b =-3时,直线y =x -3到直线y =x +23的距离d 2=362,将b =-3代入方程3x 2+4bx +2b 2-2=0, 解得x =233,此时y =-33,即椭圆上的点⎝ ⎛⎭⎪⎫233,-33到直线y =x +23的距离最大,最大值是362. 方法3:参数法解题步骤① 选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值.适用情况可以用参数表示某个曲线并求得最值的问题.【例3】►在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 23+y 2=1上的一个动点,则S =x +y 的最大值为________. 解析 因为椭圆x 23+y 2=1的参数方程为 ⎩⎨⎧x =3cos φy =sin φ,(φ为参数). 故可设动点P 的坐标为(3cos φ,sin φ), 其中0≤φ<2π.因此S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝ ⎛⎭⎪⎫φ+π3,所以,当φ=π6时,S 取最大值2.故填2.答案 2方法4:基本不等式法解题步骤①将最值用变量表示.②利用基本不等式求得表达式的最值.适用情况最值问题中的多数问题可用此法.【例4】►设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与椭圆相交于E ,F 两点,求四边形AEBF 面积的最大值. 解 依题设得椭圆的方程为x 24+y 2=1.直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0). 设E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.① 根据点到直线的距离公式和①式, 得点E ,F 到AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2),又|AB |=22+1=5,所以四边形AEBF 的面积为 S =12|AB |(h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k 2≤22,当2k =1,即k =12时,取等号. 所以四边形AEBF 面积的最大值为2 2. 二、圆锥曲线的范围问题【考情快递】 圆锥曲线中的范围问题是高考中的常见考点,一般出选择题、填空题.方法1:曲线几何性质法解题步骤 ①由几何性质建立关系式;②化简关系式求解.适用情况利用定义求解圆锥曲线的问题.【例1】►已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的取值范围是________.解析 根据双曲线定义|PF 1|-|PF 2|=2a ,设|PF 2|=r , 则|PF 1|=4r ,故3r =2a ,即r =2a 3,|PF 2|=2a3. 根据双曲线的几何性质,|PF 2|≥c -a ,即2a3≥c -a , 即c a ≤53,即e ≤53.又e >1,故双曲线的离心率e 的取值范围是⎝ ⎛⎦⎥⎤1,53.故填⎝ ⎛⎦⎥⎤1,53.答案 ⎝ ⎛⎦⎥⎤1,53方法2:判别式法解题步骤① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.适用情况当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零.此类问题可用判别式法求解.【例2】►(2011·浏阳一中月考)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP→+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由.解 (1)由已知条件,知直线l 的方程为y =kx +2, 代入椭圆方程,得x 22+(kx +2)2=1, 整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0.①由直线l 与椭圆有两个不同的交点P 和Q , 得Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.(2)设P (x 1,y 1),Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2).由方程①,知x 1+x 2=-42k 1+2k 2.②又y 1+y 2=k (x 1+x 2)+22=221+2k 2.③由A (2,0),B (0,1),得AB→=(-2,1).所以OP →+OQ →与AB →共线等价于x 1+x 2=-2(y 1+y 2), 将②③代入,解得k =22. 由(1)知k <-22或k >22, 故不存在符合题意的常数k . 三、圆锥曲线的定值、定点问题【考情快递】 此类问题也是高考的热点,圆锥曲线中的定值问题是指某些几何量不受运动变化的点的影响而有固定取值的一类问题,定点问题一般是指运动变化中的直线或曲线恒过平面内的某个或某几个定点而不受直线和曲线的变化影响的一类问题. 方法1:特殊到一般法解题步骤① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行证明.适用情况根据特殊情况能找到定值(或定点)的问题.【例1】►已知双曲线C :x 2-y 22=1,过圆O :x 2+y 2=2上任意一点作圆的切线l ,若l 交双曲线于A ,B 两点,证明:∠AOB 的大小为定值. 证明 当切线的斜率不存在时,切线方程为x =±2. 当x =2时,代入双曲线方程,得y =±2, 即A (2,2),B (2,-2),此时∠AOB =90°, 同理,当x =-2时,∠AOB =90°.当切线的斜率存在时,设切线方程为y =kx +b , 则|b |1+k2=2,即b 2=2(1+k 2). 由直线方程和双曲线方程消掉y , 得(2-k 2)x 2-2kbx -(b 2+2)=0, 由直线l 与双曲线交于A ,B 两点. 故2-k 2≠0.设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=2kb2-k 2,x 1x 2=-(b 2+2)2-k 2,y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2 =-k 2b 2-2k 22-k 2+2k 2b 22-k 2+2b 2-k 2b 22-k 2=2b 2-2k 22-k 2,故x 1x 2+y 1y 2=-b 2-22-k 2+2b 2-2k 22-k 2=b 2-2(1+k 2)2-k 2,由于b 2=2(1+k 2),故x 1x 2+y 1y 2=0,即OA →·OB →=0,∠AOB =90°. 综上可知,若l 交双曲线于A ,B 两点, 则∠AOB 的大小为定值90°. 方法2:引进参数法解题步骤① 引进参数表示变化量;②研究变化的量与参数何时没有关系,找到定值或定点.适用情况定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值).【例2】►如图所示,曲线C 1:x 29+y 28=1,曲线C 2:y 2=4x ,过曲线C 1的右焦点F 2作一条与x 轴不垂直的直线,分别与曲线C 1,C 2依次交于B ,C ,D ,E 四点.若G 为CD 的中点、H 为BE 的中点,证明|BE |·|GF 2||CD |·|HF 2|为定值.证明 由题意,知F 1(-1,0),F 2(1,0),设B (x 1,y 1),E (x 2,y 2),C (x 3,y 3),D (x 4,y 4),直线y =k (x -1),代入x 29+y 28=1,得8⎝ ⎛⎭⎪⎫y k +12+9y 2-72=0,即(8+9k 2)y 2+16ky -64k 2=0,则y 1+y 2=-16k 8+9k 2,y 1y 2=-64k 28+9k 2.同理,将y =k (x -1)代入y 2=4x ,得ky 2-4y -4k =0, 则y 3+y 4=4k ,y 3y 4=-4, 所以|BE |·|GF 2||CD |·|HF 2|=|y 1-y 2||y 3-y 4|·12|y 3+y 4|12|y 1+y 2|=(y 1-y 2)2(y 1+y 2)2·(y 3+y 4)2(y 3-y 4)2=(y 1+y 2)2-4y 1y 2(y 1+y 2)2·(y 3+y 4)2(y 3+y 4)2-4y 3y 4=(-16k )2(8+9k 2)2+4×64k 28+9k 2(-16k )2(8+9k 2)2·⎝ ⎛⎭⎪⎫4k 2⎝ ⎛⎭⎪⎫4k 2+16=3为定值.方法运用训练21.设P 是曲线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到x =-1直线的距离之和的最小值为( ). A. 2 B. 3 C. 5 D. 6解析 如图,易知抛物线的焦点为F (1,0), 准线是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离; 于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小;显然,连AF 交曲线于P 点.故最小值为22+1,即为 5. 答案 C2.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2有四个交点,其中c 为椭圆的半焦距,则椭圆离心率e 的范围为( ). A.55<e <35 B .0<e <25 C.25<e <35D.35<e <55解析 此题的本质是椭圆的两个顶点(a,0)与(0,b )一个在圆外、一个在圆内即: ⎩⎪⎨⎪⎧a 2>⎝ ⎛⎭⎪⎫b 2+c 2b 2<⎝ ⎛⎭⎪⎫b 2+c 2⇒⎩⎪⎨⎪⎧a >b2+cb <b 2+c⇒⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2)a 2-c 2<2c⇒55<e <35. 答案 A3.(2011·长郡中学1次月考)设F 是椭圆x 27+y 26=1的右焦点,且椭圆上至少有21个不同的点P i (i =1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为________.解析 若公差d >0,则|FP 1|最小,|FP 1|=7-1; 数列中的最大项为7+1,并设为第n 项, 则7+1=7-1+(n -1)d ⇒n =2d +1≥21⇒d ≤110, 注意到d >0,得0<d ≤110;若d <0,易得-110≤d <0. 那么,d 的取值范围为⎣⎢⎡⎭⎪⎫-110,0∪⎝ ⎛⎦⎥⎤0,110.答案 ⎣⎢⎡⎭⎪⎫-110,0∪⎝ ⎛⎦⎥⎤0,110 4.过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0)作两直线分别交抛物线于A (x 1,y 1),B (x 2,y 2),当P A 与PB 的斜率存在且倾斜角互补时,则y 1+y 2y 0的值为________.解析 设直线P A 的斜率为k P A ,PB 的斜率为k PB , 由y 21=2px 1,y 20=2px 0,得k P A=y 1-y 0x 1-x 0=2p y 1+y 0, 同理k PB =2py 2+y 0, 由于P A 与PB 的斜率存在且倾斜角互补, 因此2p y 1+y 0=-2p y 2+y 0,即y 1+y 2=-2y 0(y 0>0),那么y 1+y 2y 0=-2.答案 -25.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的左焦点为F ,过F 点的直线l 交椭圆于A ,B 两点,P 为线段AB 的中点,当△PFO 的面积最大时,求直线l 的方程. 解 求直线方程,由于F (-c,0)为已知,仅需求斜率k , 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则y 0=y 1+y 22,由于S △PFO =12|OF |·|y 0|=c2|y 0|只需保证|y 0|最大即可,由⎩⎨⎧y =k (x +c )b 2x 2+a 2y 2=a 2b2⇒(b 2+a 2k 2)y 2-2b 2cky -b 4k 2=0, |y 0|=⎪⎪⎪⎪⎪⎪y 1+y 22=⎪⎪⎪⎪⎪⎪b 2ck b 2+a 2k 2=b 2c b 2|k |+a 2|k |≤bc 2a得:S △PFO ≤bc 24a ,此时b 2|k |=a 2|k |⇒k =±ba , 故直线方程为:y =±ba (x +c ).6.(长沙雅礼中学最新月考)已知⊙O ′过定点A (0,p )(p >0),圆心O ′在抛物线C :x 2=2py (p >0)上运动,MN 为圆O ′在轴上所截得的弦. (1)当O ′点运动时,|MN |是否有变化?并证明你的结论;(2)当|OA |是|OM |与|ON |的等差中项时,试判断抛物线C 的准线与圆O ′的位置关系,并说明理由.解 (1)设O ′(x 0,y 0),则x 20=2py 0(y 0≥0), 则⊙O ′的半径|O ′A |=x 20+(y 0-p )2, ⊙O ′的方程为(x -x 0)2+(y -y 0)2=x 20+(y 0-p )2, 令y =0,并把x 20=2py 0,代入得x 2-2x 0x +x 20-p 2=0,解得x 1=x 0-p ,x 2=x 0+p ,所以|MN |=|x 1-x 2|=2p , 这说明|MN |是不变化,其为定值2p . (2)不妨设M (x 0-p,0),N (x 0+p,0).由题2|OA |=|OM |+|ON |,得2p =|x 0-p |+|x 0+p |, 所以-p ≤x 0≤p .O ′到抛物线准线y =-p 2的距离d =y 0+p 2=x 20+p22p ,⊙O ′的半径|O ′A |=x 20+(y 0-p )2=x 20+⎝ ⎛⎭⎪⎫x 22p -p 2=12p x 40+4p 4.因为r >d ⇔x 40+4p 4>()x 20+p 22⇔x 20<32p 2, 又x 20≤p 2<32p 2(p >0),所以r >d , 即⊙O ′与抛物线的准线总相交.。

圆锥曲线面积最值秒杀解法_概述及解释说明

圆锥曲线面积最值秒杀解法_概述及解释说明

圆锥曲线面积最值秒杀解法概述及解释说明1. 引言1.1 概述在数学中,圆锥曲线是一类由一个平面和一个点来确定的曲线。

它包括了圆、椭圆、双曲线和抛物线等不同的类型。

这些曲线在科学、工程和经济等领域中广泛应用。

本文将重点讨论圆锥曲线面积最值问题的解法。

通过寻找圆锥曲线在特定条件下的最大或最小面积,我们可以得到很多有用的结论和应用。

1.2 文章结构本文分为五个主要部分。

首先是引言部分,简要介绍了文章的背景和目标。

接下来,我们将概述并说明解决圆锥曲线面积最值问题的传统方法,包括定义和性质以及最值问题的背景和意义。

然后,我们将详细介绍一种名为“秒杀解法”的新方法,该方法可以快速有效地求解圆锥曲线面积最值问题。

我们将阐述其基本思路、原理,并提供完整演算步骤及示例证明。

在第四部分中,我们将通过实际应用案例研究来验证该秒杀解法的可行性和效果。

这些案例包括工程设计领域的成功实践、经济学模型中的应用和地理信息系统中的空间分析优化。

最后,在结论与展望部分,我们将对整篇文章进行总结,并提出未来研究的方向和展望。

1.3 目的本文的主要目的是介绍一种针对圆锥曲线面积最值问题的新方法——秒杀解法。

通过探讨传统方法和秒杀解法,我们可以深入了解圆锥曲线在不同领域中的应用和意义。

通过具体案例研究,我们将证明秒杀解法在实际问题中的可行性和有效性。

同时,本文也希望能够激发更多关于圆锥曲线面积最值问题求解方法的研究,为相关学科提供更多应用价值和理论支持。

2. 圆锥曲线面积最值秒杀解法概述和说明2.1 圆锥曲线的定义和性质圆锥曲线是指在三维空间中,由一个点(焦点)和一条直线(准线)决定的一类曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

每种圆锥曲线有其独特的性质,如焦点与准线之间的距离关系、离心率等。

2.2 最值问题的背景和意义在数学中,最值问题是指求解函数在某个区间内取得最大或最小值的问题。

对于圆锥曲线而言,我们希望找到使其面积达到最大或最小值的条件和方法。

高中数学论圆锥曲线的解题思路与技巧

高中数学论圆锥曲线的解题思路与技巧

高中数学论圆锥曲线的解题思路与技巧在高中数学学习过程中,对于圆锥曲线方面的内容是十分重要的,是基础知识。

需要进行深刻掌握,圆锥曲线将代数与几何进行完美融合,是高中学习过程中的重要内容之一,在解决方案上也十分丰富,各种解体思路在解决问题的过程中能够不断予以扩充,对于解析几何与平面向量相互融合的问题,往往题目较为多变且灵活性较强,能够进一步考查同学们的解题思维,体现同学们在数学学习过程中对于数学的综合运用能力。

一、圆锥曲线的的重要价值圆锥曲线是高中学习过程中平面解析几何的核心,就其本身而言,是高中数学与初中数学的桥梁,只有进一步掌握好所以出现了相关知识与内容,才能够为之后的数学学习打下坚定的基础,曲线圆锥方面的知识内容很多,对于同学们的身体要求也非常大,在高考中关于圆锥曲线方面的考点需要同学们在技能知识及思维方面进行灵活运用。

然而近些年来,对于解体状况方面的统计结果却显得不太乐观,对于这部分的知识点,大多数东西都会觉得非常凌乱且变化多端,因此会造成丢分,其实,只要找出其中的内在规律,就会觉得圆锥曲线方面的题并不是十分的困难,需要我们进一步将数形结合的理念进行灵活运用,通过换元法,待定系数法等一系列方式进行方程式的求解,最终达到解决问题的目的。

圆锥曲线和直线相结合的问题是解决集合中考察的经典问题,也是近些年来高考的一个热点,在涉及这类问题时,需要结合直线与圆锥曲线的相关基本知识,以及垂直线段中点,等一系列内容进行综合分析,并运用数形结合的方式进行求解,在此过程中还要注重韦达定理等的灵活运用,通过这些内容的考查,能够进一步加深同学们对数学运用能力的掌握程度。

二、高中数学圆锥曲线的具体解题思路首先,这个问題需要进一步掌握圆锥曲线以及直线的本质。

做到灵活运用直线,圆锥曲线,这是一个十分重要的主题。

根据相关内容会涉及到弦长的求法,此外,根据圆锥曲线与直线的交点以及关于焦点的一系列问题和坐标问题,都是高考的重要考点,在与原点焦点等特殊点构成一系列关系,还会涉及到角度问题,解析几何问题。

齐次化妙解圆锥曲线(学生版)

齐次化妙解圆锥曲线(学生版)

齐次化妙解圆锥曲线题型1定点在原点的斜率问题题型2定点在原点转化成斜率问题题型3定点不在原点之齐次化基础运用题型4定点不在原点的斜率问题题型5定点不在原点转化为斜率问题题型6定点不在原点之二级结论第三定义的使用题型7齐次化妙解之等角问题题型8点乘双根法的基础运用题型9点乘双根法在解答题中的运用题型1定点在原点的斜率问题圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y=kx+b,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x1+x2和x1⋅x2代入,得到关于k、b的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax2+bxy+cy2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x、y的二次项.如果公共点在原点,不需要平移.1直线mx+ny=1与抛物线y2=4x交于A x1 , y1,求k OA+k OB , k OA⋅k OB.(用m , n表 , B x2 , y2示)1直线mx+ny=1与椭圆x24+y23=1交于A x1 , y1 , B x2 , y2,求k OA⋅k OB(用m , n表示).2抛物线y2=4x,直线l交抛物线于A、B两点,且OA⊥OB,求证:直线l过定点.3不过原点的动直线交椭圆x24+y23=1于A、B两点,直线OA、AB、OB的斜率成等比数列,求证:直线l的斜率为定值.4已知直线y=kx+4交椭圆x24+y2=1于A,B两点,O为坐标原点,若k OA+k OB=2,求该直线方程.5设Q1,Q2为椭圆x22b2+y2b2=1上两个动点,且OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,求D的轨迹方程.题型2定点在原点转化成斜率问题圆锥曲线齐次化原理是:过程中为了式子整齐好记,所以将它齐次化。

浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法【摘要】圆锥曲线问题是数学中重要的课题之一,本文将深入探讨解决这一问题的几种方法。

首先介绍了圆锥曲线的概念和问题的重要性。

接着分别从几何法、代数法、参数法、向量法和微积分法五个方面展开讨论各种解决问题的方法。

在对各种方法进行了综合比较,并指出它们在不同场景下的适用性。

最后展望未来,提出了关于圆锥曲线问题研究的一些新的思路和方向。

通过本文的阐述,读者将对解决圆锥曲线问题有更深入的认识,同时也对未来的研究方向有了一定的启发。

【关键词】圆锥曲线, 解决问题, 方法, 几何法, 代数法, 参数法, 向量法, 微积分法, 综合比较, 适用场景, 未来展望, 引言, 正文, 结论.1. 引言1.1 圆锥曲线概述圆锥曲线是平面上具有特定几何性质的曲线。

根据圆锥曲线的定义,可以将它们分为椭圆、双曲线、抛物线和圆。

它们在几何学和代数学中具有广泛的应用,例如在物理学、工程学和计算机图形学中都有着重要的作用。

椭圆是一个闭合的曲线,其定义是所有到两个固定点的距离之和等于常数的点的集合。

双曲线是一个开放的曲线,其定义是到两个固定点的距离之差的绝对值等于常数的点的集合。

抛物线是一个开放的曲线,其定义是到一个固定点的距离等于到一个固定直线的距离的点的集合。

圆是一个闭合的曲线,其定义是到一个固定点的距离等于常数的点的集合。

圆锥曲线的研究对于理解几何及代数概念具有重要意义。

掌握不同方法解决圆锥曲线问题将有助于我们更深入地理解这些曲线的性质和特点,从而在实际问题中应用这些知识。

在接下来的内容中,我们将介绍几种不同的方法来解决圆锥曲线问题,希望读者能从中受益。

1.2 问题的重要性圆锥曲线在几何学和数学中具有重要的地位,它们是平面上特殊的曲线,包括圆、椭圆、双曲线和抛物线。

解决圆锥曲线问题的方法不仅仅是为了解题,更重要的是培养数学思维和逻辑推理能力。

圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用,掌握解决圆锥曲线问题的方法可以帮助我们更好地理解这些领域的知识和解决实际问题。

圆锥曲线技巧--点差法

圆锥曲线技巧--点差法

x12 4 x22
4
y12 2 y22 2
1 1
两式相减得
x12
x22 4

y2
2
y2
,即
y1 y2 x1 x2
1

2
×
x1 y1
x2 y2
.
又线段
AB
的中点坐标是
1 2
,
1
,因此
x1+x2=1,y1+y2=(-1)×2=-2,
所以
y1 x1
y2 x2
=-
1 4
,即直线
AB
技巧 1 点差法在椭圆在的应用
【例 1】(1)(2020·全国高三专题练习)直线 y kx 1与椭圆 x2 y2 1相交于 A, B 两点,若 AB 中 4
点的横坐标为1,则 k =( )
A. 2
B. 1
C. 1 2
D.1
(2)2.(2020·高密市教育科学研究院高三其他模拟)已知椭圆
G
则 x1 x2 2x0 , y1 y2 2 y0 .
因为 A , B 两点在椭圆上,所以 x12
y12 4
1, x22
y22 4
1.
两式相减得:
x12
x22
1 4
y12 y22
0,
x1
x2
x1
x2
1 4
y1
y2
y1
y2
0

2 x0
x1
x2
1 2
y0
y1
y2
0,2
1 2
y0 y1 x0 x1
(3).(2020·黑龙江哈尔滨市·哈九中高三三模(文))已知斜率为 k1
k1 0

圆锥曲线二级结论速算公式和结论系统梳理 word版

圆锥曲线二级结论速算公式和结论系统梳理 word版

圆锥曲线速算公式和结论一.椭圆(一)方程、离心率的公式、结论1.切线方程、切点所在直线方程过椭圆上一点的切线方程为从椭圆外一点的切线,切点分别为,则直线的方程为2.离心率范围若椭圆的焦点分别为,且椭圆上存在点使得1,则离心率的范围是例题1若椭圆的焦点分别为,且椭圆上存在点使得,则离心率的范围是_____________________例题2若椭圆的焦点分别为,且椭圆上存在点(异于长轴的端点)使得,则离心率的范围是_____________________3.过焦点直线的倾斜角与离心率(三大圆锥曲线都适用)过椭圆的焦点且倾斜角为的直线与椭圆交于两点,若,则有,若直线斜率存在,则有(二)焦点相关公式、结论4.焦半径倒数和(三大圆锥曲线均满足,双曲线需要在同一支)过椭圆的焦点且不平行于坐标轴的弦,则两条焦半径的倒数和为其中,为通径。

5.焦点弦垂直平分线结论(三大圆锥曲线均适用)过椭圆的焦点且不平行于坐标轴的弦,线段的垂直平分线交轴于点,那么6.焦点三角形过椭圆上一点,,那么(1);(2);(3);(4)(三)其它公式、结论7.中心三角形椭圆与直线交于,在中,边上的高是,则有(1);(2);(3).8.顶点三角形椭圆与直线交于,且以为直径的圆过椭圆的右顶点,则直线必过定点9.中点弦椭圆与直线交于,线段的中点为,则有二.双曲线(一)方程、离心率的公式、结论10.切线方程过双曲线,上一点的切线方程为11.若双曲线的焦点分别为,且双曲线上存在点使得,则离心率的范围是12.焦点到渐近线的距离双曲线的一个焦点到其渐近线的距离为。

(二)焦点相关公式、结论13.焦点三角形双曲线上一点,,那么(1);(2)(3)(4)14.顶点三角形双曲线与直线交于,且以为直径的圆过椭圆的右顶点,则直线必过定点15.焦半径倒数和(三大圆锥曲线均满足,双曲线需要在同一支)过椭圆的焦点且不平行于坐标轴的弦,则两条焦半径的倒数和为其中,为通径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线大题计算的小技巧(超适用)
这里只对第二问进行分析:
(Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程
22132x y +=,并化简得2222(32)6360k x k x k +++-=. (a) 设11()B x y ,,22()D x y ,,则
2122632k x x k +=-+,21223632
k x x k -=+ 22
22122212243(1)1(1)()432k BD k x x k x x x x k +⎡⎤=+-=++-=⎣⎦+; (b) 因为AC 与BC 相交于点P ,且AC 的斜率为1k
-, 所以,2222143143(1)12332k k AC k k
⎛⎫+ ⎪+⎝⎭==+⨯+. 四边形ABCD 的面积
222222222124(1)(1)962(32)(23)25
(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦
≥. (c)
当21k =时,上式取等号.
(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.
(d)
[析]
这道题目从总体上来看,中等难度,题型经典,对大多数同学来讲想到怎么做是不难的,但是要真正做对(包括结果正确,分类完整)是很有难度的,这点从多次课堂试验可以看得出来。

在此对以上这道真题中所涉及的几个小小计算技巧做一个简单的分析,总共有四个点: (a) 整理化简技巧
做数学大题,必定会遇到整理化简的时候,许多同学在化简的时候经常出现这样那样的失误,原因很简单,计算量一大,一个方程就占了两三行,这样最容易出错。

(a)式中,要把直线方程(1)y k x =+代入椭圆方程22
132
x y +=中,容代入后易得到 22223(1)60x k x ++-=到了这一步许同学们会开始打草稿,其实不必要,打草稿太费时间。

我们可以这样想,这个方程化简后肯定是一个关于x 一元二次方程,必定有二次项、一次项、常数项,二次项系数显然是232k +,一次项系数容易看出是2
6k ,而常数项同样也可得到236k -,因此扫描一眼就可以快速地在试卷上写上:“整理得:2222(32)6360k x k x k +++-=”
(b) 省时省力的弦长公式
现在市面上最流行的弦长公式当然是||PQ =,但是,这个公式中12x x +、12x x 两块东西是可以由方程22223(1)60x k x ++-=不用计算顺
手写出的,这一步固然简单。

但是代入弦长公式后的计算将会是很恐怖的。

为此,我给大家引进另一个简洁好用的弦长公式,就是||PQ =,
这个公式一写出来,总能让同学们眼前一亮!同学们理解起来也很简单,这里只不过是做了一个小小的改变,用韦达定理把12x x +换成b a -
,把12x x 换成c a ,整理即可。

这个公式好在哪?
计算错误无非就是化简整理(通分合并)过程出错,其实对比一下两个弦长公式就可以看出,第二个弦长公式恰好省去了通分化简合并的过程。

实践证明,这个公式大大提高了计算精度。

另外,我们都知道,做解几大题常常需要判定∆的正负性,因此,我们就可以借用这个∆直接代入弦长公式,这一个小小技巧即充分地提高了计算精度也大大地减少计算量与计算时间。

这个公式可以直接用吗?
这是同学们最关心的问题,这个公式当然可以用,但是这个公式最好不要出现在试卷上。

我们应该这样处理:
试卷上还是用原来的弦长公式写||PQ ==,但是等号后
面的结果是用||PQ =计算的,这样两全其美了! (c) 不等式的选取
解几大题难逃最值问题、求参数范围问题,而这两种问题可归结为不等式问题。

而不等式问题又常常归结为二元均值不等式问题。

二元均值不等式是简单而复杂的,简单在于小巧易记,复杂在于形式太多。

比如常
见的就有以下几种:22
2a b ab +≥、2()2a b ab +≤、22
2()22a b a b ++≥.以上这些不等式形式相似,易记混,难用对。

很多同学好不容易算到了四边形ABCD 的面积这一步:
22
22124(1)2(32)(23)
k S BD AC k k +==++ 却被表达式的繁杂而吓倒,只好望而却步,其实如果能够正确地全面地理解二元均值不等式的话,接下来的求最小值问题是非常容易的。

这里地有个锦囊要送给大家:
2112a b a b
+≥≥≥+ 记忆法:(平方平均≥代数平均≥几何平均≥调和平均)
特点: 平方和 和 积 倒数和
其实,这个不等式相信很多同学都见过,但是很少能够真正学会怎样运用。

其实要
灵活运用只要明白两点就行:一是我们总是希望把不等式向常数发展;二是清晰了解四个平均数的特点(即平方和、和、积、倒数和)。

有这两点做起来就太容易了!
观察22
22124(1)2(32)(23)
k S BD AC k k +==++,可以发现,如果如果能把2(32)k +和2(23)k +加(“和”)起来,也可以使方程变为常数,而当前2(32)
k +和2(23)k +处于
相“乘”的状态,因此同样采用第二和第三部分,也就是
2a b +≥,即2()2a b ab +≤, 因此,有 2222222222222124(1)24(1)24(1)963223552(32)(23)25()()22
k k k S BD AC k k k k k +++==≥≥=++++++ (d) 分类讨论中的特殊情况
我们从标准答案“(ⅱ)当BD 的斜率0k =或斜率不存在时,易得,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625.”可以看出,对于分类讨论中的边缘情况不需要做太详细的分析,只需简单地表示一下,写出结果即可。

标准答案中有两个字特别显眼,就是“易得”,而同学们自己去亲自具体计算的时候即不是像答案中“易得”来得那么容易,两个边缘情况“0k =或斜率不存在”考虑起来还挺吃力的。

但正如刚才分析所得“边缘情况不需要做太详细的分析,只需简单地表示一下,写出结果即可。

”因此,我们怎么做出结果,批卷老师是看不到的,这个时候“不管黑猫白猫,抓到老鼠就是好猫”。

在此针对这道题结出一个处理的技巧:
当0k =时,虽然直线AC 斜率不存在,但是BD 和AC 的弦长是有意义的,也就是面积12
S BD AC =有意义,即我们可以把0k =代入S 的表达式中,也就是可以直接得到2222124(1)24142(32)(23)23
k S BD AC k k +•====++• 以上是半年多来在解几教学中,我对于解几大题计算部分的几个小小心得,跟大家分享,不当之处忘指正!。

相关文档
最新文档