高一数学必修一、必修二期末考试试卷
高一数学期末考试试题及答案doc
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
人教版高一数学必修1测试题(含答案)
数学必修1期末复习试题 本试卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分150分 一、选择题选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B ⋂=( ) A 、{}2 B 、{}2,3 C 、{}3 D 、{}1,3 2、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N ⋂= ( ) A 、{}0 B 、{}0,1 C 、{}1,2 D 、{}0,2 3、函数()21log ,4y x x =+≥的值域是 ( ) A 、[)2,+∞ B 、()3,+∞ C 、[)3,+∞ D 、(),-∞+∞ 4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同 ③ B 中每个元素都有原像 ④ 像的集合就是集合B A 、①② B 、①②③ C 、②③④ D 、①②③④ 5、在221,2,,y y x y x x y x ===+= ( ) A 、1个 B 、2个 C 、3个 D 、4个 6、已知函数()223f x x x =-+,那么()1f x +的表达式是 ( ) A 、259x x -+ B 、223x x -- C 、259x x +- D 、22x + 7、若函数()x f x a x a =--有两零点,则a 的取值范围是 ( ) A 、()0,+∞ B 、()1,+∞ C 、()0,1 D 、∅ 8、若21025x =,则10x -等于 ( ) A 、15- B 、15 C 、150 D 、1625绝密★启用前9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a << D 、1a > 10、设 1.50.90.4814,8,2abc -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( ) A 、3a ≤- B 、3a ≥- C 、3a =- D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103二、填空题:本大题共4小题,每小题5分,共20分。
高一期末数学试卷及答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。
2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。
高一数学必修1期末试卷及答案
高中数学必修一期末试卷一、选择题。
(共12小题,每题5分)1、设集合A={xQ|x>—1},则()A、 B、 C、 D、2.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)= B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=·,g(x)=3、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}4、函数的定义域为( )A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)5、设集合M={x|—2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()6、三个数70。
3,0.37,㏑0.3,的大小顺序是()A、 70。
3,0.37,㏑0.3,B、70.3,,㏑0.3, 0。
37C、 0.37, , 70。
3,,㏑0.3,D、㏑0.3, 70。
3,0.377、若函数f(x)=x3+x2—2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程x3+x2-2x—2=0的一个近似根(精确到0。
1)为( )A、1.2B、1。
3C、1.4D、1。
5 8.函数y=的值域是( )。
9、函数的图像为()10、设(a〉0,a≠1),对于任意的正实数x,y,都有( )A、f(xy)=f(x)f(y)B、f(xy)=f(x)+f(y)C、f(x+y)=f(x)f(y)D、f(x+y)=f(x)+f(y)11、函数y=ax2+bx+3在(—∞,-1]上是增函数,在[—1,+∞)上是减函数,则()A、b〉0且a〈0B、b=2a<0C、b=2a〉0D、a,b的符号不定12、设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b (b为常数),则f(—1)等于( ).A。
济南市高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
绝密★启用并使用完毕前济南市高一数学第一学期期末考试试卷(必修1与必修2)(2018.1.10)说明:本试卷为发展卷,采用长卷出题、自主选择、分层计分的方式,试卷满分150分,考生每一大题的题目都要有所选择,至少选作120分的题目,多选不限。
试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
考试时间120分钟。
温馨提示:生命的意义在于不断迎接挑战,做完120分基础题再挑战一下发展题吧,你一定能够成功!第I卷(选择题,共60分)一、选择题(本题包括15个小题,每题4分,其中基础题48分,发展题12分。
每题只有一个选项符合题意)1.若全集{}1,2,3,4U=,集合{}{}Μ=1,2,Ν=2,3,则()UC M N =()A.{}1,2,3B.{}2C.{}1,3,4D.{}42.有以下六个关系式:①{}a⊆φ②{}aa⊆③{}{}aa⊆④{}{}b aa,∈⑤{}c b aa,,∈⑥{}b a,∈φ,其中正确的是()A.①②③④B.③⑤⑥C.①④⑤D.①③⑤3.下列函数中,定义域为R的是()A.y B.2logy x=C.3y x= D.1yx=4.,下列各组函数中表示同一个函数的是()A.1,y y x== B.2,xy x yx==C.,ln xy x y e==D.2,y x y==5.下列函数中,既是奇函数又是增函数的是()A.3y x= B.1yx=C.3logy x=D.1()2xy=6.函数()23f x x =-的零点为 ( )A.3(,0)2B.3(0,)2 C.32 D.23 7.在同一坐标系中,函数1()f x ax a =+与2()g x ax =的图象可能是 ( )A. B. C. D.8.2132)),a a a +-<11若((则实数的取值范围是22( )A.12a <B. 12a >C. 1a <D.1a >9.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34x e + 10.设20.320.3,2,log 0.3a b c ===,则,,a b c 的大小关系为( )A .c a b << B..c b a << C .a b c << D .a c b << 11.已知平面α和直线,,a b c ,具备下列哪一个条件时//a b ( ) A.//,//a b αα B.,a c b c ⊥⊥ C. ,,//a c c b αα⊥⊥ D .,a b αα⊥⊥12.某长方体的主视图、左视图如图所示,则该长方体的俯视图的面积是( ) A.6 B.8C. 12D .1613.若过原点的直线l 的倾斜角为3π,则直线l 的方程是( )0y +=B. 0x =0y -= D.0x =14.若一个棱长为a 的正方体的各顶点都在半径为R 的球面上,则a 与R 的关系是( )A.R a =B.2R a=C. 2R a = D.R =15.某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB 的长度为( )A.B.主视图 左视图第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
(2021年整理)高一上数学期末必修一二考试卷(含答案)
高一上数学期末必修一二考试卷(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一上数学期末必修一二考试卷(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一上数学期末必修一二考试卷(含答案)的全部内容。
人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面α内可记为( ) A 、P ∈a ,a ⊂α B 、P ⊂a ,a ⊂αC 、P ⊂a ,a ∈αD 、P ∈a ,a ∈α2、直线l 是平面α外的一条直线,下列条件中可推出l ∥α的是( ) A 、l 与α内的一条直线不相交 B 、l 与α内的两条直线不相交C 、l 与α内的无数条直线不相交D 、l 与α内的任意一条直线不相交 3的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥n C 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α5、函数y=log 2(x 2-2x —3)的递增区间是( )(A)(-∞,—1) (B )(—∞,1) (C )(1,+∞) (D )(3,+∞)6.设函数11232221,,log ,333a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( )A. a b c << B 。
a c b << C. c a b << D 。
高一必修一、二数学期末试卷及答案
高一数学期末考试一、选择题(每题只有一个答案正确,每题 5 分,共 50分)1.已知会合 M={ y y x 22x3, x R },会合N={ y y23},则M N()。
A.{ y y 4 }B.{ y 1 y 5 }C.{ y4y 1 }D.2.如图, U 是全集, M 、P、 S 是 U 的三个子集,则暗影部分所表示的会合是()A.( M P)SB.( M P)SC.( M P)( C U S)D.( M P)( C U S)3.若函数y f x 的定义域是[2,4], y f log 1x 的定义域是()2A.[1,1] B.[4, 16] C.[1 , 1] D.[2, 4] 21644.以下函数中,值域是 R+的是()A. y x23x 1B. y2x3, x(0,)C. y x2x1D. y13x5.设 P 是△ ABC 所在平面α外一点, H 是 P 在α内的射影,且PA, PB, PC与α所成的角相等,则 H 是△ ABC的()A.心里B.外心C.垂心D.重心6.已知二面角α- l-β的大小为 60°,m, n 为异面直线,且m⊥ α,n ⊥β,则 m,n 所成的角为 ()°.60 °C°°7.函数f ( x)ln x 2()的零点所在的大概区间是xA. (1,2)B. (e,3)C.(2, e)D.(e,)8.已知a0.3blog0.23 c log0.2 4)0.2 ,,,则(A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD-A1B1C1D1中, AB= BC= 2, A A1= 1,则 BC1与平面 BB1D1 D 所成的角的正弦值为 ()10.如图,平行四边形ABCD中, AB⊥ BD,沿 BD 将△ ABD 折起,使平面ABD⊥平面 BCD,连结 AC,则在四周体ABCD的四个面中,相互垂直的平面的对数为() A.1B. 2C.3D.4二、填空题:本大题共 4 小题,每题 5 分,满分20 分11.已知函数f x log 2 x x0. x,,则 f f 03x 012.函数y a x b ( a >0且 a1)的图象经过点(1, 7),其反函数的图象经过点(4,0),则 a b=13.函数y log 1 log 1 x 的定义域为2314.α、β是两个不一样的平面, m、n 是平面α及β以外的两条不一样直线,给出四个结论:① m⊥ n;②α⊥ β;③ n⊥ β;④ m⊥ α,以此中三个论断作为条件,余下一个作为结论,写出你以为正确的一个命题是 __________ .三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤.15、( 12分)已知 f ( x)a xa x1( a11)(1)判断函数y f (x) 的奇偶性;(2)商讨y f ( x) 在区间(,) 上的单一性16.(12 分 )如图,在四棱锥P- ABCD中,平面 PAD⊥平面 ABCD,AB= AD,∠ BAD=60°,E,F 分别是 AP, AD 的中点.求证:(1)直线 EF∥平面 PCD;(2)平面 BEF⊥平面 PAD.17、( 14 分)如图,正方形ABCD和四边形ACEF所在的平面相互垂直,EF∥ AC, AB=2,CE= EF= 1.(1)求证: AF∥平面 BDE;(2)求证: CF⊥平面 BDE.、18、( 14分)已知函数 f ( x)ax22x2a,( a0)(1)若a1, 求函数y f ( x) 的零点;a 的取值范围;(2)若函数在区间(0,1]上恰有一个零点,求19、( 14 分)北京市的一家报刊摊点,从报社买进《北京日报》的价钱是每份元,卖出的价格是每份元,卖不掉的报纸能够以每份元的价钱退回报社。
高一数学必修1_必修2测试卷(附答案)
高一数学测试题(必修1,必修2)第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{0,1,2,4,5,7},{1,3,6,8,9},{3,7,8}X Y Z ===,那么集合()X Y Z 是( ) A. {0,1,2,6,8} B. {3,7,8} C. {1,3,7,8} D. {1,3,6,7,8}2. 设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,像20的原像是( )A. 2B. 3C. 4D. 5 3. 与函数y x =有相同的图像的函数是( )A. y =2x y x=C. log a xy a = 01)a a >≠(且 D.log x a y a = 01)a a >≠(且 4. 方程lg 3x x =-的解所在区间为( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)5. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于 ( )A. 0.5B. 0.5-C. 1.5D. 1.5- 6. 下面直线中,与直线230x y --=相交的直线是( )A. 4260x y --=B. 2y x =C. 25y x =+D.23y x =-+ 7. 如果方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,那么必有( )A. D E =B. D F =C. E F =D. D E F == 8. 如果直线//,//a b a α直线且平面,那么b α与的位置关系是( )A. 相交B. //b αC. b α⊂D. //b α或b α⊂ 9. 在空间直角坐标系中,点(3,2,1)P -关于x 轴的对称点坐标为( )A. (3,2,1)-B. (3,2,1)--C. (3,2,1)--D. (3,2,1)10. 一个封闭的立方体,它的六个表面各标出ABCDEF 这六个字母.现放成下面三中不同的位置,所看见的表面上字母已标明,则字母A 、B 、C 对面的字母分别为( )A. D 、E 、FB. E 、D 、FC. E 、F 、DD. F 、D 、E第二部分 非选择题(共100分)二、填空题:本大题共4小题, 每小题5分,满分20分.11. 幂函数()y f x =的图象过点(2,2,则()f x 的解析式为_______________12. 直线过点(5,6)P ,它在x 轴上的截距是在y 轴上的截距的2倍,则此直线方程为__________________________.13.集合22222{(,)|4},{(,)|(1)(1),0}M x y x y N x y x y r r =+≤=-+-≤>,若M N N =,则实数r 的取值范围为_____________14. 已知函数(),()f x g x 分别由下表给出,则[(2)]f g =_______,[(3)]g f =________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.(其中15题和18题每题12分,其他每题14分)15. 已知函数2()2||1f x x x =--,作出函数的图象,并判断函数的奇偶性.16. 已知函数()log (1)(0,1)x a f x a a a =->≠. (1)求函数()f x 的定义域;(2)讨论函数()f x 的单调性.17. 正方体1111ABCD A BC D -中,求证:(1)11AC B D DB ⊥平面; (2)11BD ACB ⊥平面.18. 一个圆锥的底面半径为2cm ,高为6cm ,在其中有一个高为x cm 的内接圆柱. (1)试用x 表示圆柱的侧面积;(2)当x 为何值时,圆柱的侧面积最大?19. 求二次函数22()2(21)542f x x a x a a =--+-+在[0,1]上的最小值()g a 的解析式.20. 已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点;(2)判断直线l 被圆C 截得的弦何时最长,何时最短?并求截得的弦长最短时m 的值以及最短弦长.高一上学期期末复习题参考答案及评分标准11. 12()f x x -= 12. 650x y -=或2170x y +-= 13. (0,2 14. 2; 3 三、解答题:15. 本小题主要考查分段函数的图象,考查函数奇偶性的判断. 满分12分.解:2221,(0)()21,(0)x x x f x x x x ⎧--≥=⎨+-<⎩ ……2分函数()f x 的图象如右图 ……6分 函数()f x 的定义域为R ……8分 2()2||1f x x x =--22()2||12||1()f x x x x x f x -=----=--=()所以()f x 为偶函数. ……12分16. 本小题主要考查指数函数和对数函数的性质,考查函数的单调性. 满分14分. 解:(1)函数()f x 有意义,则10xa -> ……2分当1a >时,由10xa ->解得0x >;当01a <<时,由10xa ->解得0x <. 所以当1a >时,函数的定义域为(0,)+∞; ……4分当01a <<时,函数的定义域为(,0)-∞. ……6分 (2)当1a >时,任取12,(0,)x x ∈+∞,且12x x >,则12xxa a >1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a ->∴-=+>=-,即12()()f x f x >由函数单调性定义知:当1a >时,()f x 在(0,)+∞上是单调递增的. ……10分当01a <<时,任取12,(,0)x x ∈-∞,且12x x >,则12x xa a <1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a -<∴-=+>=-,即12()()f x f x >由函数单调性定义知:当01a <<时,()f x 在(,0)-∞上是单调递增的. ……14分17. 本小题主要考查空间线面关系,考查空间想象能力和推理证明能力. 满分14分. 证明:(1)正方体1111ABCD A BC D -中,1B B ⊥平面ABCD ,AC ⊂平面ABCD ,1AC B B ∴⊥ ……3分 又AC BD ⊥,1BD B B B =,∴11AC B D DB ⊥平面 ……7分(2)连接11,AD BC ,11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,111B C DC ∴⊥,又11B C BC ⊥,1111BC D C C =,∴111B C ABC D ⊥平面 1BD ⊂ 11ABC D 平面,11BD B C ∴⊥ ……10分由(1)知11AC B D DB ⊥平面,1BD ⊂平面ABCD ,1BD AC ∴⊥ 1,AC B C C =∴11BD ACB ⊥平面 ……14分18. 本小题主要考查空间想象能力,运算能力与函数知识的综合运用. 满分12分.解:(1)如图:POB 中,1DB OBD D PO=,即26DB x = ……2分 13D B x ∴=,123OD OB DB x =-=- ……4分 圆柱的侧面积1122(2)3S OD D D x x ππ=⋅⋅=-⋅∴2(6)3S x x π=-⋅ (06x <<) ……8分 (2)222(6)(3)633S x x x πππ=-⋅=--+ 3x ∴=时,圆柱的侧面积最大,最大侧面积为26cm π ……12分19. 本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想. 满分14分.解:22()2(21)542f x x a x a a =--+-+=22[(21)]1x a a --++ 所以二次函数的对称轴21x a =- ……3分当210a -≤,即12a ≤时,()f x 在[0,1]上单调递增, 2()(0)542g a f a a ∴==-+ ……6分 当211a -≥,即1a ≥时,()f x 在[0,1]上单调递减,2()(1)585g a f a a ∴==-+ ……9分当0211a <-<,即112a <<时,2()(21)1g a f a a =-=+ ……12分综上所述2221542,()21()1,(1)2542,(1)a a a g a a a a a a ⎧-+≤⎪⎪⎪=+<<⎨⎪-+≥⎪⎪⎩……14分 20. 本小题主要考查直线和圆的位置关系,考查综合运用数学知识分析和解决问题能力. 满分14分.(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=. ……2分联立27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩所以直线l 恒过定点(3,1)P . ……4分 (2)当直线l 过圆心C 时,直线l 被圆C 截得的弦何时最长. ……5分当直线l 与CP 垂直时,直线l 被圆C 截得的弦何时最短. ……6分 设此时直线与圆交与,A B 两点.直线l 的斜率211m k m +=-+,121312CP k -==--. 由 211()112m m +-⋅-=-+ 解得 34m =-. ……8分 此时直线l 的方程为 250x y --=.圆心(1,2)C 到250x y --=的距离d ==. ……10分||||AP BP ===所以最短弦长 ||2||AB AP == ……14分。
高一数学必修1、2期末考试试题及答案
俯视图高一期末考试试题一、选择题(本大题共10小题,每小题5分,共50分,)1.已知集合{}/8,M x N x m m N =∈=-∈,则集合M 中的元素的个数为( ) A.7 B.8 C.9 D.102.已知点(,1,2)A x 和点(2,3,4)B,且AB =,则实数x 的值是( ) A.3-或4 B.6或2 C.3或4- D.6或2- 3.已知两个球的表面积之比为1:9,则这两个球的半径之比为( ) A.1:3B. C.1:9 D.1:814.圆221x y +=上的动点P 到直线34100x y --=的距离的最小值为( ) A.2 B.1 C.3 D.45.直线40x y -+=被圆224460x y x y ++-+=截得的弦长等于( )A.B.C.D.6.已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则a 的值是( ) A.0 B.1 C.0或1 D.0或1- 7.下列函数中,在其定义域内既是奇函数又是减函数的是( )A.()y x x R =-∈B.3()y x x x R =--∈C.1()()2xy x R =∈ D.1(,0)y x R x x=-∈≠且 8.如图,一个空间几何体的主视图和左视图都是边长为1的正方形, 主视图 左视图 俯视图是一个圆,那么这个几何体的侧面积为( )A.4πB.54πC.πD.32π9.设,m n 是不同的直线,,,αβγ是不同的平面,有以下四个命题:①//////αββγαγ⎫⇒⎬⎭②//m m αββα⊥⎫⇒⊥⎬⎭ ③//m m ααββ⊥⎫⇒⊥⎬⎭ ④////m n m n αα⎫⇒⎬⊂⎭ 其中,真命题是 ( ) A.①④ B.②③ C.①③ D.②④ 10.函数2()ln f x x x=-的零点所在的大致区间是( ) A.()1,2 B.()2,3 C.11,e ⎛⎫ ⎪⎝⎭D.(),e +∞ 二、填空题(本大题共4小题,每题5分,共20分)11.设映射3:1f x x x →-+,则在f 下,象1的原象所成的集合为12.已知2()41f x x mx =-+在(],2-∞-上递减,在[)2,-+∞上递增,则(1)f =13.过点(3,2)A 且垂直于直线4580x y +-=的直线方程为14.已知12,9x y xy +==,且x y <,则12112212x y x y-=+三、解答题。
完整word高一数学必修一、必修二期末考试试卷.docx
高一数学必修一、必修二期末考试试卷高一数学必修一、必修二期末考试试卷一、选择题:(本大题共 8 小题,每小题 3 分)1.已知不同直线 m 、 n 和不同平面、,给出下列命题://m //m // nn //①②mm //③m, 异面④mnm nm //其中错误的命题有()个A . 0B . 1C . 2D .32.直线 l 过点 A(3,0) 和点 B(0,2) ,则直线 l 的方程是()A . 2x 3 y 6 0B . 3x 2 y 6 0C . 2x 3 y 1 0D . 3x 2y 1 03.两条平行线 l 1 : 4 x 3 y 2 0 与 l 2 : 4 x 3 y 1 0 之间的距离是()A . 3B . 3C . 1D .1554.直线 l 的方程为 Ax By C 0,当 A0 , B 0 , C 0 时,直线 l 必经过()A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限5. e O 1 : x 2y 2 4 x 6 y 12 0 与 e O 2 : x 2y 2 8 x 6y16 0 的位置关系是()A .相交B .外离C .内含D .内切 6.长方体的长、宽、高分别为 5、 4、3,则它的外接球表面积为( ) A .25B . 50C . 1252D .502337.点 P(7, 4) 关于直线 l : 6 x 5 y 1 0 的对称点 Q 的坐标是()A . (5,6)B . (2,3)C . ( 5,6)D . ( 2,3)8.已知 e C : x 2y 2 4 x 2y15 0 上有四个不同的点到直线 l : yk(x 7) 6的距离等于5 ,则 k 的取值范围是( )A . ( ,2)B .( 2, )C . (1,2)D . (,1)U(2, )27 小题,每小题 3 分) 2二、填空题(本大题共 9.如图的空间直角坐标系中,正方体棱长为 2,| PQ | 3| PR |,则点 R 的空间直角坐标为 .10. 过点 (5,2) 且在 x 轴上的截距是在 y 轴上的截距的 2 倍 的直线方程是 .11. 过 三 点( 2,0),(6,0),(0,6)的 圆 的 方 程是.12. 棱长为 a 的正方体中,把相邻面的中心连结起来,以这些线段为棱的八面体的体积为 . 13. 222 x 8y 8 0 与 2 2的公共弦长e O 1 : x ye O 2 : xy 4x 4 y 2 0为.14. 曲线y2 3 2 x x2与直线 y k( x 1) 5 有两个不同交点时,实数k 的取值范围是.15.将半径都为 2 的 4 个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为.三、解答题(本大题共7 小题,第16、 18、 19、 20 题每小题8 分,第17、 21 题每小题9分,第 22 题 5分)16.在四面体ABCD 中,已知棱 AC 的长为 2 ,其余各棱长都为1,求二面角B AC D 的大小 .17.( 1)过点 P(2,4) 向圆 O : x2y2 4 作切线,求切线的方程;( 2)点P在圆 x2y24x 6 y 12 0 上,点 Q 在直线 4x 3 y 21 上,求 | PQ |的最小值 .18.在四面体ABCD 中, CB CD , AD BD ,且 E 、 F 分别是 AB 、 BD 的中点.求证:( 1)直线EF //面ACD;( 2)面EFC面BCD.第二卷19 .已知圆 C : (x2)2( y 3)225,直线l : (42) x (3 5 ) y 212 0.( 1)求证:直线l与圆C恒相交;( 2)求直线l被圆C截得的弦长最短时的值以及最短弦长 .20.如图,在五面体ABCDEF中,FA平面 ABCD,AD//BC// FE , AB AD ,M为EC的中点,AF AB BC1AD . FE2( 1)求异面直线BF与DE所成角的大小;( 2)证明:平面AMD平面 CDE ;( 3)求MD与平面ABCD所成角的正弦值 .21 .在平面直角坐标系 xOy中,已知圆C1 :( x 3) 2( y 1)24和圆C2 : ( x 4) 2( y 5)2 4 .(1)若直线l过点 A(4,0) ,且被圆 C1截得的弦长为2 3 ,求直线l的方程;( 2)设P为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l1和 l 2,它们分别与圆 C1和圆 C2相交,且直线 l1被圆 C1截得的弦长与直线 l 2被圆 C2截得的弦长相等,试求所有满足条件的点P的坐标.22.已知a 0,b 0且 a3b 2ab ,求 a ba 2 b 2的最大值 .高一数学期末考试参考答案一、选择题:题号 1 2 3 4 5 6 7 8答案DABADBCC二、填空题:9. ( 4 ,2, 4 )10. 2 x 5 y0 或 x 2 y9 0 ;11. x 2 y 2 4 x4 y 12 0 ;3 3 35,3]U[ 3 , 5) ;12.a13. 2 514. (15.622 2246 .83 16.略解: 9017.( 1) x2 或 3x 4 y 10 0 ;( 2) | PQ | 的最小值为 3.18.证略 19.( 1)直线 l 过定点 (3,2) ,而 (3,2) 在圆 C 内部,故 l 与圆 C 恒相交;( 2)弦长最短时,弦心距最长, 设 P(3,2) ,则当 lCP 时,弦长最短,此时4 23 5 1得5,弦长最短2 23.20(. 1) ;( 2)略;( 3)3 6 M ABCD1sin6 60 到面 的距离是 ,故2 2, 2621.( 1)直线 l : y 0 或 7 x 24 y 28 0 ;( 2)设 P( a, b) , l 1 : y bk( xa) , l 2 : yb 1 ( x a )(k0) ,因为两圆半径相等,故k1(4|1 k ( 3 a) b || 5a)b |k整 理 得 |1 3k ak b | | 5k 4 a bk |, 故1 k 211k 213k ak b 5k 4 a bk 或 13k ak b5k 4a bk ,即 (ab 2)kb a 3 或 ( ab 8)ka b 5 ,因为 k 的取值有无穷多个,故a b 2 0 或 a b 8 0,得b a3 0 ab5 0P 1(5,1)或 P 2(3 ,13) . 2 22 23 1 x y 3122. a3b 2 ab2 2 1ab 直线b1过点 P(, ) ,a2 2如图可知 a b a 2b 2 即为 Rt AOB 的内切圆直径,由直观易 知,当内切圆恰与动直线 AB 相切于定点 P 时,内切圆直径最大设所 示 圆 圆 心 (r , r ), 则 r(r3 )2 (r 1) 2 得22r2( 31)r 1 0 ,取较小根 r3 123(较大根是AOB 的旁切圆半径) ,故所求2最大值 3 1 2 3。
(完整版)山东省高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
山东省高一数学第一学期期末考试试卷(必修1、必修2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I 卷(选择题 共60分)一、选择题(本大题共12题,每小题5分,共60分)1、若集合}22|{-<>=x x x M 或,}|{m x x N >= ,R N M =Y ,则m 的取值范围是( )A .2-≤mB .2-<mC .2->mD .2-≥m2、幂函数)(x f 的图象过点)21,4(,那么)8(f 的值为( ) A.42 B. 64 C. 22 D. 641 3、已知直线l 、m 、n 与平面α、β给出下列四个命题:①若m ∥l ,n ∥l ,则m∥n ; ②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,n ∥α,则m∥n ;④若m ⊥β,α⊥β,则m ∥α其中,假命题的个数是( )A 1B 2C 3D 44、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值05、若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D. 1或3-6、如图所示,四边形ABCD 中,AD//BC ,AD=AB ,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A —BCD ,则在三棱锥A —BCD 中,下列命题正确的是( )A 、平面ABD ⊥平面ABCB 、平面ADC ⊥平面BDCC 、平面ABC ⊥平面BDCD 、平面ADC ⊥平面ABC7、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( ) A. 6+3 B. 24+3C. 24+23D. 328、点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°9、已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]81([f f 的值为( ) A . 27 B .271 C .27- D .271- 10、函数 54x x )(2+-=x f 在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( )A . ),2[+∞B .[2,4]C .(]2,∞- D.[0,2]11、已知函数y=f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=2x -2x 则f(x)是( )(A)f(x)=x(x-2) (B)f(x)=|x|(x-2)(C)f(x)= |x|(|x|-2)(D)f(x)=x(|x|-2) 12、如图,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是( )A .以下四个图形都是正确的B .只有(1)(4)是正确的C .只有(1)(2)(4)是正确的D .只有(2)(3)是正确的一、选择题(本大题共12题,每小题5分,共60分)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题, 每小题5分,共20分,把答案填在题中横线上).13、函数y =-(x -2)x 的递增区间是_______________________________.14、函数12-=x y 的定义域是_______________________________.15、若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________________________.16、经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是_______________________________.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分14分)已知△ABC 的三个顶点分别为A (2,3),B (-1,-2),C (-3,4),求(Ⅰ)BC 边上的中线AD 所在的直线方程;(Ⅱ)△ABC 的面积。
(必修一必修二)高一数学期末试卷及答案新人教A版
新泰一中北区2012数学必修一,二自测试卷第Ⅰ卷选择题(5 分×12=60分)1.已知U 为全集,集合M 、N 是U 的子集,若M ∩N=N ,则( ) A 、u u C MC N B 、u MC N C 、u u C MC ND 、u MC N2、.函数f(x)=x 2+2(a -1)x+2在区间(-∞,4]上递减,则a 的取值范围是A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)3、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( ).4、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有( ). A 、1 B 、2 C 、3 D 、45、已知函数f(x)=12mx mx的定义域是一切实数,则m 的取值范围是A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤46、若33)2lg()2lg(,lg lg y xa yx则()A .a3B .a23C .aD .2a 7、木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的()倍.A、60 B、120 C、3060D、301208、若函数12233a x a xa xa xf 是奇函数,则222aa()A. 0B. 1C. 2D. 4 9、在正方体1111ABCD A B C D 中,下列几种说法正确的是()A 、11AC ADB 、11D C ABC 、1AC 与DC 成45o角D 、11AC 与1B C成60o角10下列函数中,在0,2上为增函数的是()A 、12log (1)yx B 、22log 1yxC 、21log yxD 、212log(45)y xx 11、如果定义在),0()0,(上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则0)(x f x 的解集为()A.{x|-3<x<0或x>3}B. {x|x<-3或0<x<3}C. {x|-3<x<0或0<x<3}D. {x|x<-3或x>3}12、如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E是BC 中点,则下列叙述正确的是().A .CC 1与B 1E 是异面直线B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E第Ⅱ卷二、填空题(每小题4分,共16分;请将答案填在答卷纸的横线上)13、函数)1(log 2120x xxy的定义域14、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如右图所示是此正方体的两种不同放置,则与D面相对的面上的字母是。
高一数学必修1期末试卷及答案
高一数学必修1期末试卷及答案高中数学必修一期末试卷一、选择题。
(共12小题,每题5分)1、设集合A={x| x>-1},则()A、XXXB、2 ∉AC、2∈AD、2 ∈ { }改写:集合A由所有大于-1的实数x组成。
2.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)=x-1/x-1B.f(x)=log2(x+1),g(x)=2log2(x-1)C.f(x)=x2-1/x2-1,g(x)=x-1D.f(x)=g(x)改写:哪一组函数表示同一个函数?3、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}改写:如果A和B的交集是{2},那么A和B的并集是什么?4、函数f(x)=(x-1)/(x-2)的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)改写:函数f(x)=(x-1)/(x-2)的x的取值范围是什么?5、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()删除:题目中的图形6、三个数7.3,0.3,㏑0.3,的大小顺序是()A、7>0.3>㏑0.3B、7>0.3>㏑0.3C、0.3>7>㏑0.3D、㏑0.3>7>0.3>3改写:将三个数按照从大到小的顺序排列。
7、若函数f(x)=x+x-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.25)=-0.984f(1.438)=0.165f(1.5)=0.625f(1.375)=-0.260f(1.4065)=-0.052那么方程x+x-2x-2=0的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5改写:使用二分法逐次计算函数f(x)=x+x-2x-2的一个正数零点附近的函数值,给出下表:x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一、必修二期末考试试卷
时量:115分钟
一、
选择题:(本大题共8小题,每小题3分)
1.已知不同直线m 、n 和不同平面α、β,给出下列命题: ①
////m m αββα⎫
⇒⎬⊂⎭
ﻩ ﻩ②
//////m n n m ββ⎫
⇒⎬⎭
③
,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ﻩﻩﻩﻩ④//m m αββα⊥⎫
⇒⊥⎬⎭
其中错误的命题有( )个 A .0ﻩﻩ ﻩ
B.1 ﻩ
C.2ﻩﻩ
ﻩD .3
2.直线l 过点(3,0)A 和点(0,2)B ,则直线l 的方程是( ) A.2360x y +-=
ﻩﻩﻩ ﻩB.3260x y +-=ﻩﻩ
C.2310x y +-=ﻩ ﻩﻩ ﻩ
D .3210x y +-=
3.两条平行线1:4320l x y -+=与2:4310l x y --=之间的距离是( ) A .3
ﻩﻩ
B.3
5
ﻩ
C .1
5
ﻩ ﻩﻩD .1
4.直线l 的方程为0Ax By C ++=,当0A >,0B <,0C >时,直线l 必经过( ) A.第一、二、三象限 ﻩﻩ ﻩﻩB.第二、三、四象限 C.第一、三、四象限ﻩ
ﻩD .第一、二、四象限
5.221:46120O x y x y +--+=与222:86160O x y x y +--+=的位置关系是( ) A.相交ﻩﻩﻩﻩB.外离ﻩﻩ ﻩC .内含ﻩﻩ
D.内切
6.长方体的长、宽、高分别为5、4、3,则它的外接球表面积为( )
A .
252
π ﻩﻩB.50π ﻩﻩ C .
3
ﻩD.
503
π 7.点(7,4)P -关于直线:6510l x y --=的对称点Q 的坐标是( )
A.(5,6)ﻩﻩB.(2,3)ﻩC.(5,6)
-D.(2,3)
-
8.已知22
:42150
C x y x y
+---=上有四个不同的点到直线:(7)6
l y k x
=-+的距离等,则k的取值范围是( )
A.(,2)
-∞ﻩﻩﻩﻩB.(2,)
-+∞
C.1(,2)
2ﻩﻩﻩD.1
(,)(2,)
2
-∞+∞
二、填空题(本大题共7小题,每小题3分)
9.如图的空间直角坐标系中,正方体棱长为2,
||3||PQ PR =,则点
R 的空间直角坐标
为 .
10.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是 .
11.过三点(2,0),(6,0),(0,6)--的圆的方程是 .
12.棱长为a 的正方体中,把相邻面的中心连结起来,以这些线段为棱的八面体的体积为 . 13.
221:2880O x y x y +++-=与
222:4420O x y x y +---=的公共弦长
为 .
14.曲线2232y x x =++-与直线(1)5y k x =-+有两个不同交点时,实数k 的取值范围是 .
15.将半径都为2的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 .
ﻬ
高一数学期末考试答卷
第一卷
二、填空题:
9. 10ﻩﻩ ﻩ.
11. ﻩ 12.
13.
ﻩ ﻩﻩ14.
15.
三、解答题(本大题共7小题,第16、18、19、20题每小题8分,第17、21题每小题9分,
第22题5分) 16.在四面体ABCD 中,已知棱AC 1,求二面角B AC D --的
大小.
ﻬ17.(1)过点(2,4)P 向圆22:4O x y +=作切线,求切线的方程;
(2)点
P 在圆2246120x y x y ++-+=上,点
Q 在直线4321x y +=上,求||PQ 的最小值.
18.在四面体ABCD 中,CB CD =,AD BD ⊥,且E 、F 分别是AB 、BD 的中点. 求证:(1)直线//EF 面ACD ;(2)面EFC ⊥面BCD .
ﻬ第二卷
19.已知圆22:(2)(3)25C x y -+-=,直线:(42)(35)2120l x y λλλ++---=.
(1)求证:直线l 与圆C 恒相交;
(2)求直线l 被圆C 截得的弦长最短时λ的值以及最短弦长.
20.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,////AD BC FE ,AB AD ⊥,M 为EC
的中点,1
2
AF AB BC FE AD ====
. (1)求异面直线BF 与DE 所成角的大小; ﻩ(2)证明:平面AMD ⊥平面CDE ; ﻩ(3)求MD 与平面ABCD 所成角的正弦值.
21.在平面直角坐标系xOy 中,已知圆221:(3)(1)4C x y ++-=和圆
222:(4)(5)4C x y -+-=.
(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为3,求直线l 的方程;
(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与
圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.
22.已知0a >,0b >且32a b ab =,求22a b a b ++.
ﻬ高一数学期末考试参考答案
题号
1 2 3 4 5 6 7 8 答案
D
A
B
A
D
B
C
C
9.44
(,2,)33ﻩ 10. 250x y -=或290x y +-=; ﻩ11. 2244120x y x y +-+-=;
12.36a ﻩﻩﻩ13. 25 14. 5335(][,222--;15ﻩﻩ. 4
863
.
三、解答题 16.略解:90︒
17.(1)2x =或34100x y -+=;(2)||PQ 的最小值为3.
18.证略
19.(1)直线l 过定点(3,2),而(3,2)在圆C 内部,故l 与圆C 恒相交;
(2)弦长最短时,弦心距最长,设(3,2)P ,则当l CP ⊥时,弦长最短,此时42
135λλ
+-
=-得
5λ=,弦长最短223.
20.(1)60︒;(2)略;(3)3622MD ED AF =
=,M 到面ABCD 的距离是1
2
AF ,故6sin 6θ=
. 21.(1)直线:0l y =或724280x y +-=;
(2)设(,)P a b ,1:()l y b k x a -=-,21
:()(0)l y b x a k k
-=--≠,因为两圆半径相等,故
2
21
|5(4)|
|1(3)|111a b k a b k k k
+------=++整理得|13||54|k ak b k a bk ++-=+--,故
1354k ak b k a bk ++-=+--或1354k ak b k a bk ++-=--++,即(2)3a b k b a +-=-+或
(8)5a b k a b -+=+-,因为k 的取值有无穷多个,故2030a b b a +-=⎧⎨
-+=⎩或80
50a b a b -+=⎧⎨+-=⎩
,得151(,)22P -或2
313
(,)22
P -. 22.31
22321a b ab a b +=⇔+=⇔直线1x y
a b
+=过点31(,)22P ,
如图可知22a b a b +-+即为Rt AOB ∆的内切圆直径,由直观易知,
当内切圆恰与动直线AB 相切于定点P 时,内切圆直径最大设所示圆圆心(,)r r ,则2231
()()22
r r r =-+-得2(31)10r r -++=,取较小根3123
2
r +-=
(较大根是AOB ∆的旁切圆半径),故所求最大值3123+-。