智能交通系统综述

合集下载

国外智能交通系统建设机制研究综述

国外智能交通系统建设机制研究综述

国外智能交通系统建设机制研究综述智能交通系统是目前交通管理技术发展的重要方向之一。

随着时代的发展,智能交通系统的建设越来越受到重视,并在全球范围内实施。

该系统是以信息技术、软件和处理器等先进技术为基础,在交通管理、监控和信息系统中采用智能化技术完成自动操作,使复杂的交通系统能够更好地服务于交通参与者。

因此,国外智能交通系统的研究具有重要的理论与实践意义。

首先,国外智能交通系统的研究主要集中在技术发展和应用上。

美国研究者认为,智能交通系统的整体建设依赖于多次启动、建立规划、建设结构和运行机制等步骤。

根据各自的要求,智能交通系统需要整合四个关键因素,即技术、制度、资源和组织,实现系统数据的共享和信息传输,并利用特定的资源和技术实现自动操作,促进智能交通的研究和应用。

其次,智能交通系统的建设必须通过政策立法和系统平台的建设等手段来实施,这是一项复杂的系统工程,需要综合考虑和控制多种因素。

英国研究者认为,政策立法是智能交通系统建设的基础,可以通过清晰的法规和条例对系统建设进行指导,为整个智能交通系统的发展提供合理的环境;在技术体系方面,美国政府已制定了一套建设原则,在此基础上,研究者可以根据具体情况开发适用于不同任务的技术系统,有效地运用现有技术实现系统功能的强化和升级;此外,针对不同的智能化技术应用,智能交通系统还需要建立适当的运行平台和通信技术支撑,同时也要重视社会信用建设,强化公民信息保护要求,以确保系统的安全性和客观性。

最后,智能交通系统在建设过程中需要充分发挥多方位的政府、行业和学术机构协作作用,在技术研究、政策制定和经济道路规划方面,多方力量做出了巨大的贡献。

一方面,可以有效地集中行业和学术机构的力量,不断创新技术和推动技术的发展,更好地满足智能交通系统安全性及其他特征;另一方面,政府可以通过公共性和弱私有性的政策制定,规范整个智能交通系统建设,使建设达到最优状态。

国外智能交通系统的建设机制研究表明,国外智能交通系统的建设需要集中技术、制度、资源以及组织协作的推动力,以使系统有效、安全地服务于交通参与者,促进智能交通的发展。

智能交通系统

智能交通系统

智能交通系统智能交通系统(Intelligent Transportation System,ITS)是利用现代信息和通信技术来提高交通效率、安全和环境可持续性的一种综合性交通管理系统。

它将传感器、通信、信息处理和控制等多种技术相结合,实现了智能化的交通运输管理和服务。

智能交通系统在城市交通管理、交通运输安全、交通信息服务、交通设施维护等方面发挥了重要作用。

本文将从智能交通系统的定义、应用领域和技术组成三个方面论述智能交通系统的重要性和未来发展趋势。

一、智能交通系统的定义智能交通系统是指通过集成不同技术和资源,建立智能化的交通管理和服务系统,提高交通流畅性、安全性和环境保护性的一种综合性系统。

它利用传感器、通信设备和计算机等技术,实现交通数据的采集、处理和应用,能够实时进行交通监测、交通预测和交通控制,为交通参与者提供准确的交通信息和优化的交通服务。

二、智能交通系统的应用领域1. 城市交通管理:智能交通系统可以对城市内的交通流进行智能控制,减少交通拥堵,提高通行效率。

例如,通过智能信号灯控制、智能车辆检测等技术手段,可以实现交通信号的自适应调节,根据实时交通情况进行灵活地调整信号灯的时序,以达到最佳的交通流控制效果。

2. 交通运输安全:智能交通系统可通过高精度定位、车辆通讯和道路监控等技术手段,实现对交通违法行为和事故的及时监测和处理。

例如,可通过车联网技术,实现车辆之间的信息交互,预警驾驶员的危险驾驶行为,减少交通事故的发生。

3. 交通信息服务:智能交通系统可以实时采集和处理交通数据,并为交通参与者提供准确的交通信息服务。

例如,通过智能导航系统,可以根据实时路况提供最佳路线推荐,减少交通时间和燃料消耗。

同时,通过移动应用程序和智能交通终端设备,可以将交通信息精确地传递给用户,提高用户的出行便利性。

4. 交通设施维护:智能交通系统可通过运用无线传感器网络等技术,实现对交通设施状态的实时监测和维护。

智能交通报告范文

智能交通报告范文

智能交通报告范文随着城市化进程的加速和人们生活水平的提高,交通拥堵、交通安全等问题日益凸显,给人们的出行带来了极大的不便。

智能交通作为解决这些问题的有效手段,近年来得到了快速发展。

本报告将对智能交通的概念、发展现状、关键技术、应用案例以及未来展望进行详细阐述。

一、智能交通的概念智能交通系统(Intelligent Transportation System,简称 ITS)是将先进的信息技术、数据通信传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。

二、智能交通的发展现状(一)全球发展现状在全球范围内,许多发达国家和地区已经在智能交通领域取得了显著的成果。

例如,美国通过建立智能交通系统,实现了交通信息的实时采集和发布,提高了交通运行效率;欧洲各国积极推广智能交通技术在公共交通领域的应用,提高了公交服务的质量和吸引力;日本则在智能驾驶技术方面处于领先地位,开展了一系列相关的研发和测试工作。

(二)国内发展现状我国智能交通的发展虽然起步较晚,但发展速度较快。

政府高度重视智能交通的发展,出台了一系列政策和规划,推动了智能交通产业的快速发展。

目前,我国在智能交通基础设施建设、交通管理信息化、公共交通智能化等方面取得了一定的成绩。

例如,许多城市建立了智能交通指挥中心,实现了对交通流量的实时监控和指挥调度;电子不停车收费系统(ETC)得到广泛应用,提高了高速公路的通行效率。

三、智能交通的关键技术(一)交通感知技术交通感知技术是智能交通系统的基础,包括传感器技术、视频监控技术、卫星定位技术等。

通过这些技术,可以实时获取交通流量、车速、车辆位置等信息,为交通管理和决策提供数据支持。

(二)通信技术通信技术是实现智能交通系统中信息传输的关键,包括有线通信技术和无线通信技术。

其中,5G 通信技术的发展为智能交通带来了新的机遇,能够实现低延迟、高可靠的数据传输,为智能驾驶、车路协同等应用提供保障。

交通运输行业智能交通系统

交通运输行业智能交通系统

交通运输行业智能交通系统智能交通系统(Intelligent Transportation System,简称ITS)是现代交通运输行业中的一项重要技术,通过应用先进的信息技术、通信技术、传感器技术和人工智能等手段,实现对交通管理的智能化和自动化,提高交通运输效率和安全性。

本文将从三个方面对交通运输行业智能交通系统进行介绍和分析。

一、智能交通系统的概念与特点智能交通系统是指通过计算机、通信和控制技术来管理交通和运输流程的一种系统。

它应用先进的信息和通信技术实现交通系统的智能化,包括交通管理、交通服务和交通控制等方面。

智能交通系统的特点主要体现在以下几个方面:1. 数据采集与监测:智能交通系统通过传感器、摄像头和无线通信设备等手段,实时采集交通运输相关数据,并通过高效的监测系统进行分析和处理。

2. 信息处理与分析:智能交通系统利用先进的数据处理和分析算法,将采集到的数据进行整合和分析,生成有价值的交通信息和决策支持。

3. 交通调度与优化:智能交通系统通过运用优化算法,实现对交通流量和交通资源的合理调度,最大限度地提高交通运输效率。

4. 安全管理与应急处理:智能交通系统通过实时监测和预测,及时发现交通事故和拥堵等问题,并做出应急处理和安全管理。

5. 环境保护与能耗优化:智能交通系统可通过智能化的信号控制、路况优化等手段,降低交通拥堵和排放,实现对环境资源的保护。

二、智能交通系统的应用领域智能交通系统广泛应用于交通管理、公共交通、交通信息服务、交通安全等领域。

以下是几个重要的应用领域:1. 交通流量管理:智能交通系统通过动态交通信号控制、智能交通监测和导航系统等手段,对交通流量进行实时调度和控制,提高道路通行效率。

2. 公共交通优化:智能交通系统可通过公共交通智能化调度、实时信息服务等手段,提高公共交通的运行效率和服务水平。

3. 多式联运管理:智能交通系统可实现不同交通方式(公路、铁路、航空等)之间的无缝衔接,提供便捷的多式联运服务。

智能交通系统与交通信息化

智能交通系统与交通信息化
大数据技术还可以通过分析历史数据,找出影响交通安全 的因素和规律,为制定交通安全措施提供依据。
云计算技术
云计算技术提供了一种灵活的资源共享方式,通过虚拟化技术将计算资源(如服务 器、存储设备、数据库等)集中管理,按需分配给用户使用。
在智能交通系统中,云计算技术可以提供高效的数据存储和处理能力,支持大规模 的交通数据分析和处理。
通运行效率。
公共交通优化
通过智能公共交通系统 ,实现公交车辆的实时 调度,提高公共交通服
务水平。
物流配送智能化
通过智能物流系统,实 现物流信息的实时更新 和配送路线的优化,提
高物流效率。
自动驾驶汽车
通过智能车辆系统,实 现自动驾驶汽车的安全
行驶和高效运行。
REPORT
CATALOG
DATE
ANALYSIS
交通信息化为智能交通系统提供 了全面、准确的数据支持,包括 车辆位置、道路状况、交通流量 等,为系统实现智能化提供了必
要条件。
促进技术创新
交通信息化的发展推动了相关技 术的不断创新和进步,为智能交 通系统的完善和发展提供了技术
支持。
提升管理效率
交通信息化实现了对交通管理的 数字化、网络化和智能化,提高 了管理效率,为智能交通系统的
ANAL
定义与特点
定义
智能交通系统(Intelligent Transportation System,简称ITS)是指通过应用 先进的信息技术、通信技术、控制技术等,提升交通运输效率、保障交通安全 、优化交通运行的一体化系统。
特点
智能化、信息化、自动化、网络化。
优化交通资源配置
智能交通系统通过对交通流量的实时监测和预测,能够更 加合理地分配道路资源,优化交通信号控制,提高道路通 行效率,缓解交通拥堵问题。

第节 智能交通系统体系结构和内容

第节 智能交通系统体系结构和内容

第节智能交通系统体系结构和内容智能交通系统的概述智能交通系统(Intelligent Transportation Systems, ITS)是以科技手段为手段,为交通运输提供全方位、智能化、安全、高效、节能的服务和管理系统。

它是交通运输领域的一种基于信息技术的新型综合性智能化系统。

智能交通系统可以实现交通信息收集、分析、处理和交通决策,涵盖了道路交通、城市公共交通、港口交通、机场交通和铁路交通。

智能交通系统凭借先进的信息技术和现代交通管理理念,在交通领域中为建设智能城市提供强有力支撑,也是提高社会整体综合素质的必要手段。

智能交通系统的体系结构智能交通系统主要由三个部分组成:车辆通信系统、交通流控制系统和交通信息服务系统。

1.车辆通信系统车辆通信系统是指车辆之间进行通信的系统,它采用无线通信的方式,通过车辆之间互相通信,可以实现多车之间的集群控制和协同,提高交通系统的安全性、效率性和环保性。

车辆通信系统的技术基础是车辆间通信技术(Vehicle-to-Vehicle Communication, V2V)和车辆到基础设施之间的通信技术(Vehicle-to-Infrastructure Communication,V2I)。

车辆间通信技术利用无线电频段,通过车辆之间互相通信,实现车辆之间的无线信息交换和集群控制协同,形成了车辆间的交通信息网络;车辆到基础设施之间的通信技术利用基站和路边传感器等设施,将道路设施信息传递给车辆,也可以将车辆信息传递给交通管理中心,实现了交通信息的高效传输和共享。

2.交通流控制系统交通流控制系统是指通过智能化手段对交通流进行控制的系统,它可以通过控制信号灯、控制车辆速度等方式,实现交通流的合理分配,从而提高交通效率。

交通流控制系统一般包括智能信号灯控制系统、智能路网规划系统、智能车道和收费系统、智能停车系统等。

其中,智能信号灯控制系统利用交通信息、车辆通信信息等,自适应地调整信号灯的时间和相位,提高道路使用率和通行效率;智能路网规划系统可以通过交通数据分析和道路的拥堵情况,对路网进行动态调整和自适应地规划,实现快速、高效、舒适和安全的出行。

智能交通系统技术综述

智能交通系统技术综述

智能交通系统技术综述随着全球城市化进程不断加快,城市交通问题越来越突出。

智能交通系统作为交通管理和运营领域的重要技术手段,以其快捷、高效、安全、环保的特点,逐渐得到各国政府和企业的广泛关注。

本文将对智能交通系统技术进行综述。

一、智能交通系统概述智能交通系统是指将现代信息技术与交通运输管理领域相结合的一种综合应用系统。

其核心是通过网络和信息技术来实现交通管理、控制、智能服务和信息化运营,提高交通系统的效率、安全和环保水平。

智能交通系统包括智能交通控制系统、智能交通信息服务系统、智能交通安全监控系统等模块。

其中,智能交通控制系统主要负责交通信号灯、路网调度等方面的智能控制;智能交通信息服务系统提供实时交通信息查询、导航、路况预测等服务;智能交通安全监控系统则通过视频监控、人脸识别等技术手段来确保交通安全。

二、智能交通系统技术综述1.智能交通感知技术智能交通感知技术是智能交通系统中最为核心的技术领域,主要包括车辆检测、车牌识别、人脸识别、视频监控等。

目前,智能交通感知技术已经逐渐发展成为一种包括网络视频、图像识别、机器学习等多种技术手段的综合应用技术。

2.智能交通模型与算法智能交通模型与算法在智能交通系统中起着至关重要的作用,主要包括流量模型、信号控制算法、路径规划算法等。

通过精细化的交通模型和智能化的交通控制算法,可以实现交通流量优化、路况预测、绿波带等功能,从而提高交通效率。

3.智能交通信息管理系统智能交通信息管理系统是对智能交通系统的信息管理、建模和分析的系统,主要包括数据采集、数据预处理、分析建模、可视化等。

通过智能交通信息管理系统,可以实现精准的路况分析、热点分析、数据挖掘等功能,从而更好地服务于交通管理决策。

4.智能交通应用系统智能交通应用系统是指将智能交通技术应用于日常出行和交通运营领域的所有系统,包括交通导航、车辆定位、电子收费等。

通过智能化的交通应用系统,可以实现更加便捷、高效、安全的交通出行。

AI辅助智能交通系统的研究综述

AI辅助智能交通系统的研究综述

AI辅助智能交通系统的研究综述智能交通系统(Intelligent Transportation System,ITS)是利用先进的信息和通信技术,通过对交通运行过程中产生的大量数据进行采集、处理和分析,实现交通管理、交通预测、交通控制以及交通信息服务等功能的一种交通管理系统。

随着人工智能技术的不断发展,人工智能被广泛应用于智能交通系统中,为交通运行提供了更精准的预测和更高效的管理。

一、智能交通系统的需求传统的交通管理方式面临诸多挑战,包括交通拥堵、交通事故、环境污染等问题。

而智能交通系统的引入可以为这些问题提供解决方案。

智能交通系统通过对交通数据进行实时监测和分析,能够提供交通拥堵状况的预测以及实时的交通指导,从而帮助车辆选择最佳的行驶路线,减少交通拥堵和行程时间。

此外,智能交通系统还可以利用人工智能技术实现交通事故的预测和预警功能,及时发现交通安全隐患,减少交通事故的发生。

同时,智能交通系统还可以优化交通信号灯的控制,分配交通资源,提高交通效率,减少能源消耗和环境污染。

二、人工智能在智能交通系统中的应用1. 交通预测与拥堵管理人工智能技术可以通过对交通数据进行实时分析,预测交通拥堵情况,并且提供最佳的交通指导。

通过深度学习等算法,智能交通系统能够识别和学习交通数据的模式,并根据历史数据和实时数据进行交通拥堵的预测和预警。

这样一来,车辆可以通过智能导航系统选择避开拥堵路段,减少行程时间和油耗。

2. 交通事故预测和预警智能交通系统可以通过机器学习等人工智能技术,对交通数据进行分析,提前发现潜在的交通事故隐患。

通过对历史交通数据和现场监控数据的比对和分析,系统可以识别交通事故发生的概率和可能性,并提供实时的交通事故预警信息,帮助驾驶员和交警采取相应措施,减少交通事故的发生率。

3. 交通信号灯优化控制利用人工智能技术,智能交通系统可以实现交通信号灯的智能化控制。

通过对交通数据的实时监控和分析,系统可以根据车流量和路况变化,动态调整信号灯的配时方案,以优化交通信号灯的控制效果。

智能交通控制系统文献综述

智能交通控制系统文献综述

智能交通控制系统文献综述智能交通控制系统发展概述随着城市的发展和车辆的增加,实行有效的交通控制以保证交通的通畅,已日益成为交通管理部门所面临的重要问题。

简单的控制方式如定时控制、感应控制、单路口的孤立控制等已不能满足城市交通控制的需要,为了提高交通网络的运行效率,必须要建立一个智能的交通控制系统,能够根据车流量的变化自动调节红绿灯的时间长度,最大限度地减少十字路口的车辆滞流现象,有效的缓解交通拥挤、实现交通控制系统的最优控制,大大的提高了交通控制系统的效率。

随着我国道路交通拥挤的问题日益突出,可以预见,智能交通控制系统将具有广大的应用前景。

1 国外智能交通控制系统的研究现状20世纪80年代以后,世界各国的交通控制出现了前所未有的发展热潮,随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论的不断提高,城市交通控制开始向信息化、智能化方向发展[1]。

在20世纪90年代,发达国家已开始出现智能交通控制系统,并将城市交通控制系统纳入智能交通运输系统中,成为先进交通管理系统的重要子系统[2]。

世界各国解决城市交通存在的问题,主要采用先进的交通控制方法。

当今世界各国广泛使用的最有代表性且有成效的交通控制系统有澳大利亚的SCAT系统、英国的TRANSYT系统和SCOOT系统[3-5]。

(1)TRANSYT(Traffic Network Study Tools)系统自1968年问世以来,经历不断的改进,已经发展成为先进的TRAN-SYT/9型。

该系统采用静态模式,以绿信比和相位差为控制参数,优化方法为爬山法。

作为最成功的静态智能交通控制系统,虽然已经被世界400多个城市所使用,但是由于其计算量较大,很难获得整体最优的配时方案,同时需要大量的路网几何尺寸和交通流数据。

(2)SCOOT(Split、Cyele and Offset Optimization Technique)系统采用联机实时控制的动态模式,对周期、绿信比和相位差进行控制,采用小步长寻优方法,相对TRANSYT 而言具有相当大的优势。

智能交通系统中多源数据融合方法

智能交通系统中多源数据融合方法

智能交通系统中多源数据融合方法一、智能交通系统概述智能交通系统(ITS)是现代城市交通管理的重要组成部分,它通过集成先进的信息技术、数据通信传输技术、电子感知技术、控制技术和计算机技术等,实现对整个交通环境的实时监控、管理和指导。

智能交通系统的发展,不仅能够提高交通管理的效率,还能有效缓解交通拥堵,减少交通事故,提高道路的通行能力,对提升城市交通的整体运行效率具有重要意义。

1.1 智能交通系统的核心功能智能交通系统的核心功能主要包括以下几个方面:- 实时交通信息采集:通过各种传感器和监控设备,实时收集交通流量、速度、事故等信息。

- 交通状态分析与预测:利用收集到的数据,分析当前的交通状态,并预测未来的交通趋势。

- 交通信号控制:根据交通状态,智能调整交通信号灯的配时,以优化交通流。

- 交通引导与信息服务:向驾驶员提供实时的交通信息,引导其选择最佳路线。

- 应急事件响应:在交通事故或拥堵发生时,快速响应并采取措施,减少影响。

1.2 智能交通系统的技术基础智能交通系统的技术基础涵盖了多个领域,包括:- 传感器技术:用于收集车辆、行人等交通参与者的状态信息。

- 数据通信技术:确保数据能够快速、准确地在系统各部分之间传输。

- 与机器学习:分析交通数据,实现智能决策和预测。

- 云计算与大数据:存储和处理海量交通数据,提供强大的计算支持。

二、多源数据融合技术在智能交通系统中的应用多源数据融合是智能交通系统中的关键技术之一,它通过整合来自不同来源的数据,提高交通信息的准确性和可靠性。

数据融合技术能够克服单一数据源的局限性,为交通管理和决策提供更加全面的支持。

2.1 多源数据的类型与特点在智能交通系统中,多源数据主要包括以下几种类型:- 交通监控视频:提供交通流量、车辆类型、行驶状态等视觉信息。

- 车辆GPS数据:记录车辆的位置、速度、行驶路线等信息。

- 交通感应器数据:如地磁感应器、红外感应器等,用于检测交通流量和速度。

智能交通系统文献综述和参考文献

智能交通系统文献综述和参考文献

智能交通系统文献综述和参考文献从当前情况和市场前景来看,基于视觉的车辆检测越来越受到人们的重视,不管是国内还是国外,都有大批的人参与到这方面的研究中来,并且,已经取得了许多含量高且实用的成果。

1 国外研究现状上世纪60年代开始[3],国外的一些发达国家就已经开始了智能交通系统(Itelligent Transport System, ITS)的相关研究,尤其是美国,在这方面的研究最为先进。

美国智能交通系统的研究开始于20世纪60年代末,1990年,美国运输部就成立了智能化的车辆道路系统(WHS)组织。

1995年,美国着手开发全国统一的ITS体系结构,到1997年一月份的时候就发布了美国国家ITS体系结构的第一个版本,经过一年多的试用和维护,于1998年又发布了全国ITS体系结构第二个版本。

XX年,美国召集了智能交通系统领域里面的260名专家来共同讨论智能交通的研究发展问题,同时制定了从XX年到XX年十年间的智能交通系统的发展总体规划,根据这个规划,美国政府携手私人公司共同投资XX亿美元来在全国范围内打造一个完整的ITS,其中包括两个方面,一个是智能交通的基础结构,一个是智能车辆系统,同时智能交通系统逐步融入交通规划中,各种成果逐步应用其中,从现在来看,已经取得了巨大的成果,大大地提高了美国的交通系统的智能程度。

目前,美国依然在大刀阔斧地进行ITS的发展,不仅加大研发力度,参加研发的公司就超过600家,其中包括国防工业和航空等行业的众多大公司,而且更加积极促进研发成果的应用,形成大规模的ITS产业。

28826除了美国外,其他的发达国家也不甘落后。

1986年[4],由19个欧洲国家和众多研究机构及汽车制造厂商联合制定了“尤里卡”(EUREKA)联合研究开发计划,并参与PROMETHEUS 项目,目的在于建立跨欧洲的智能道路网,开发智能道路以及驾驶系统,车辆智能导航和通讯系统,交通信息预测系统等,规划并且研究出了一些智能车辆模型和智能交通系统的整体解决方案。

智能交通系统技术综述

智能交通系统技术综述

智能交通系统技术综述智能交通系统是一种将智能化和信息化技术应用于交通运输系统的综合性系统。

它是一种完整的交通系统,包括车辆、驾驶员和道路等,可以使交通运输更智能、更安全、更高效,并对交通运输的全面管理起到很好的作用。

本文将从车辆、驾驶员和道路等角度给出智能交通系统技术的综述。

一、车辆智能交通系统技术车辆智能交通系统技术,是在汽车和交通工具上进行各种计算机网络技术的应用,以提高交通安全和运行效率。

主要技术包括:1.车载传感器技术车载传感器技术是一种针对车载环境进行实时监测的技术。

它可以监测车辆行驶的实时位置、速度、加速度和各种物理参数,并将这些信息及时传输到中央服务器,提供给道路管理和车辆监控等部门。

2.车载网络通信技术车载网络通信技术是指将车辆和交通系统进行联网通信,以实现实时通信和数据传输。

通过车辆内置的无线网络连接设备,在车辆内部建立一个局域网,通过Internet将车辆数据传输到云端服务器,并完成车辆命令下发和控制等功能。

3.自动驾驶技术自动驾驶技术是最近几年车载科技领域一个十分重要的一部分。

它可以实现车辆的自主导航,并对周围的环境、人员等进行全方位的监测和分析。

这个技术可以降低人为驾驶对安全驾驶的影响,提高交通安全系数。

二、驾驶员智能交通系统技术驾驶员智能交通系统技术是指运用各种科技手段帮助驾驶员提高驾驶水平、提高交通安全和缓解驾驶员的不适情绪。

主要技术包括:1.驾驶员状态监测技术驾驶员状态监测技术是一种通过身体传感器、摄像头和声音传感器等多种传感器分析监测驾驶员的状态、疲劳等情况,为驾驶员提供警示。

它不仅可以降低驾驶员的疲劳程度,保证驾驶员健康和安全,也可以提高道路安全系数。

2.驾驶辅助技术驾驶辅助技术是指帮助驾驶员更好地控制车辆、更好地识别周围环境。

常见的驾驶辅助技术包括自动泊车、车道偏离警告、盲区监控和周围环境监测等。

这些技术可以提高驾驶员的安全系数,保证道路安全,对于驾驶员不熟悉的道路,也尤为有用。

智能交通系统报告范文

智能交通系统报告范文

智能交通系统报告范文随着城市化进程的加速和人们生活水平的提高,交通拥堵、交通安全等问题日益凸显。

智能交通系统作为解决这些问题的有效手段,正逐渐受到广泛关注和应用。

一、智能交通系统的定义与构成智能交通系统(Intelligent Transportation System,简称 ITS)是将先进的信息技术、数据通讯传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。

智能交通系统主要由以下几个部分构成:1、交通信息采集系统:通过各种传感器、摄像头等设备收集道路、车辆和行人的信息。

2、交通信息传输系统:负责将采集到的信息快速、准确地传输到数据处理中心。

3、交通信息处理与控制系统:对收集到的信息进行分析和处理,并生成相应的控制指令。

4、交通信息发布系统:将处理后的信息及时向驾驶员、行人等交通参与者发布,以引导他们的出行行为。

二、智能交通系统的主要功能1、交通流量监测与管理智能交通系统能够实时监测道路上的交通流量,通过数据分析和算法预测交通拥堵的发生,从而提前采取措施进行疏导,如调整信号灯时间、发布路况信息等,提高道路的通行能力。

2、交通安全保障利用视频监控、车辆检测等技术,及时发现交通事故和交通违法行为,并快速响应和处理。

同时,通过车辆自动驾驶辅助系统等技术,提高车辆行驶的安全性。

3、公共交通优化对公共交通车辆进行实时定位和调度,优化公交线路和发车时间,提高公共交通的服务质量和吸引力,鼓励人们选择公共交通出行,减少私人车辆的使用。

4、智能停车管理通过传感器和互联网技术,实时掌握停车场的车位使用情况,为驾驶员提供停车引导,减少因寻找停车位而产生的无效交通流量。

5、出行信息服务通过手机应用、电子站牌等方式,为出行者提供实时的路况信息、公交信息、导航服务等,帮助他们规划最优的出行路线和出行方式。

三、智能交通系统的应用案例1、城市智能交通管理许多大城市已经建立了较为完善的智能交通管理系统。

智能交通系统综述

智能交通系统综述

四、结论
本次演示对智能交通系统的概念、发展历程、应用领域、研究现状及未来发 展趋势进行了综述。通过归纳整理和分析比较发现,当前智能交通系统的研究已 经取得了一定的成果,但仍存在诸多不足和需要进一步探讨的问题。未来智能交 通系统的发展将迎来更多的机遇和挑战,需要不断引入新技术、加强融合发展、 重视数据分析与利用、提高安全性和隐私保护等方面的研究,以适应日益复杂的 城市交通管理需求,推动城市可持续发展。
概述
近年来,美国对智能交通系统的研究和应用取得了显著进展。伴随着技术进 步和市场需求的变化,美国智能交通系统的覆盖范围已经从城市扩展到郊区,从 道路运输扩展到铁路、水路等多种运输方式。同时,政策法规的出台也极大地推 动了智能交通系统的发展。
技术综述
1、系统架构:美国智能交通系统的架构主要由感知层、通信层、数据处理 层和应用层组成。其中,感知层主要通过传感器、摄像头等设备获取交通系统的 运行状态信息;通信层负责数据的传输和共享;数据处理层对获取的数据进行清 洗、分析和存储;应用层则针对不同的应用场景,开发相应的软件工具和应用程 序。
研究主要集中在智能化调度、实时导航等方面;在慢行交通管理方面,研究 主要集中在智能化导航、安全预警等方面。
三、智能交通系统未来发展趋势 与挑战
随着科技的不断发展,智能交通系统将迎来更多的发展机遇和挑战。未来智 能交通系统的发展趋势主要体现在以下几个方面:
1、技术创新:未来智能交通系统将不断引入新的技术,如5G通信、物联网、 人工智能等,实现更加智能化、高效的交通管理。
2、城市管理:智能交通系统在城市管理中的应用主要体现在智慧城市建设、 公共安全监控、应急响应等方面。借助智能交通系统,城市管理者可以实时监测 城市交通运行状况,及时发现和解决交通问题。同时,公共安全监控和应急响应 系统也能够迅速响应突发情况,保障城市居民的生命财产安全。

智能交通系统的结论与未来创新发展方向

智能交通系统的结论与未来创新发展方向

智能交通系统的结论与未来创新发展方向智能交通系统(Intelligent Transportation System, ITS)是一种综合运用信息、通信、感知和控制技术,提高交通运输效率、安全性和环境友好性的系统。

经过对智能交通系统的研究和应用实践,可以得出以下结论,并展望未来的创新发展方向。

结论:1. 提升交通安全性:智能交通系统可以通过实时交通监控、事故预警和危险驾驶检测等手段,减少交通事故的发生。

智能车辆间的通信和自动驾驶技术,可以极大地提高道路的交通安全性。

2. 优化交通效率:智能交通系统通过智能信号灯控制、拥堵监测和路况预测等手段,可以有效地减少交通拥堵和交通延误,提高道路的通行效率。

智能导航和路线规划系统可以为司机提供最佳路径选择,避开拥堵路段。

3. 减少交通污染:智能交通系统可以通过电动车推广和智能交通管理系统的协同作用,减少燃油车的使用,从而减少交通污染的产生。

智能交通系统还可以实时监测车辆的排放情况,并采取相应的措施,减少尾气排放。

4. 方便出行服务:智能交通系统可以提供出行信息、票务预订和停车场导引等服务,为出行者提供便利。

智能支付系统和电子收费系统可以简化支付流程,提高用户体验。

未来创新发展方向:1. 多模态交通整合:未来智能交通系统需要整合不同的交通方式,如公共交通、共享单车、出租车等,为出行者提供无缝衔接的交通服务。

通过智能路线规划和票务整合,促进多模态交通的发展。

2. 数据驱动的交通管理:未来智能交通系统需要更加注重数据的收集和分析,通过大数据和人工智能技术,实现交通数据的实时监测和精确预测,从而优化交通管理和资源配置。

3. 人工智能与自动驾驶技术:未来智能交通系统的发展离不开人工智能和自动驾驶技术的支持。

智能交通系统可以利用深度学习和感知技术,实现自动驾驶车辆之间的通信和协同行驶,提高交通安全性和效率。

4. 5G与物联网技术的应用:随着5G和物联网技术的不断发展,未来智能交通系统可以实现更快速、更稳定的数据传输和通信。

车联网与智能交通系统技术综述

车联网与智能交通系统技术综述

车联网与智能交通系统技术综述近年来,随着科技的不断进步,车联网和智能交通系统逐渐成为热门话题。

车联网是一种基于互联网的智能交通系统,可以实现车辆之间、车辆和路网之间以及车辆和人之间的高效互动。

而智能交通系统则是一种基于大数据和物联网技术的现代典型交通管理和控制系统,旨在提供更加安全、便捷、高效的出行方式。

本文将探讨车联网和智能交通系统的相关技术及其发展前景。

一、车联网技术车联网技术主要包括车辆通信、定位、感知和控制四个方面。

其中,车辆通信是车联网的关键技术之一,是实现车辆之间互联互通的基础。

通信技术方面,车联网主要采用基于车辆自组网(VANET)的通信技术,将车辆直接连接成一个网络,形成一种点对点的通信方式。

基于车辆自组网的通信技术具有低成本、高效率、低时延和高可靠性等特点,是车联网的重要发展方向。

在定位技术方面,目前车联网主要采用全球定位系统(GPS)和卫星地图技术,通过GPS模块和软件将车辆的位置信息传输到云端,以实现远程监控和管理。

在感知技术方面,车联网利用车载传感器和视频设备等技术,对车辆周围环境进行实时监测和控制。

在控制技术方面,车联网通过车辆控制单元和智能软件系统等技术,对车辆实现远程控制和管理,并为驾驶员提供智能化的驾驶辅助服务。

二、智能交通系统技术智能交通系统技术主要包括道路信息采集、交通流量分析、智能路网控制、交通决策支持和人机交互等方面。

其中,道路信息采集主要采用车牌识别、雷达传感器、视频监控、GPS和车辆控制终端等技术,以实现对道路交通数据的实时采集和处理。

交通流量分析主要采用数据挖掘和机器学习等技术,对采集到的大量数据进行处理和分析,并预测未来交通流量的变化趋势。

在智能路网控制方面,智能交通系统通过交通信号灯、电子警察、车道指示器、路况提示器等技术,对交通系统进行实时控制和调度,并有效优化道路交通流量。

在交通决策支持方面,智能交通系统通过建立交通模型和模拟系统,为政府机构和交通管理部门提供决策支持和预测分析服务。

智能交通系统在城市交通管理中的应用

智能交通系统在城市交通管理中的应用

智能交通系统在城市交通管理中的应用第一章智能交通系统概述 (3)1.1 智能交通系统的定义与特点 (3)1.1.1 定义 (3)1.1.2 特点 (3)1.2 智能交通系统的发展历程 (3)1.2.1 起源 (3)1.2.2 发展阶段 (3)1.3 智能交通系统的关键技术 (4)1.3.1 信息技术 (4)1.3.2 通信技术 (4)1.3.3 控制技术 (4)1.3.4 计算机技术 (4)1.3.5 传感器技术 (4)1.3.6 云计算与大数据技术 (4)第二章城市交通现状与挑战 (4)2.1 城市交通拥堵问题 (4)2.2 城市交通污染问题 (5)2.3 城市交通安全问题 (5)第三章智能交通系统在城市交通管理中的应用 (6)3.1 智能交通信号控制 (6)3.1.1 概述 (6)3.1.2 基本原理 (6)3.1.3 技术特点 (6)3.1.4 应用实例 (6)3.2 智能交通诱导 (7)3.2.1 概述 (7)3.2.2 技术手段 (7)3.2.3 应用实例 (7)3.3 智能交通监控与调度 (7)3.3.1 概述 (7)3.3.2 监控技术 (7)3.3.3 调度策略 (7)3.3.4 应用实例 (7)第四章智能交通系统与城市公共交通 (8)4.1 公共交通优先策略 (8)4.2 公共交通信息发布 (8)4.3 公共交通调度与优化 (8)第五章智能交通系统与城市交通规划 (9)5.1 基于大数据的交通规划 (9)5.1.1 引言 (9)5.1.2 大数据在交通规划中的应用 (9)5.1.3 面临的挑战与展望 (9)5.2 交通需求预测与分析 (9)5.2.1 引言 (9)5.2.2 交通需求预测方法 (10)5.2.3 交通需求分析 (10)5.3 交通网络优化与布局 (10)5.3.1 引言 (10)5.3.2 交通网络优化方法 (10)5.3.3 交通网络布局策略 (10)第六章智能交通系统与城市交通设施 (10)6.1 智能交通基础设施建设 (10)6.1.1 基础设施智能化改造 (11)6.1.2 新型基础设施建设 (11)6.2 智能交通设施维护与管理 (11)6.2.1 设施维护 (11)6.2.2 设施管理 (11)6.3 智能交通设施技术创新 (12)6.3.1 5G技术 (12)6.3.2 人工智能 (12)6.3.3 车联网技术 (12)第七章智能交通系统与城市交通法规 (12)7.1 交通法规的制定与修订 (12)7.2 交通法规的实施与监管 (13)7.3 交通法规与智能交通系统的协同 (13)第八章智能交通系统与城市交通安全 (13)8.1 智能交通监控与预警 (13)8.1.1 监控系统概述 (13)8.1.2 监控技术及设备 (14)8.1.3 预警机制 (14)8.2 智能交通处理 (14)8.2.1 处理流程 (14)8.2.2 报警与定位 (14)8.2.4 善后与理赔 (14)8.3 智能交通系统的安全评估 (14)8.3.1 安全评估指标体系 (14)8.3.2 安全评估方法 (15)8.3.3 安全评估实施 (15)第九章智能交通系统与城市交通环境 (15)9.1 智能交通系统与节能减排 (15)9.1.1 节能减排的重要性 (15)9.1.2 智能交通系统在节能减排中的应用 (15)9.2 智能交通系统与环境保护 (15)9.2.1 环境保护在城市交通管理中的地位 (15)9.2.2 智能交通系统在环境保护中的应用 (15)9.3 智能交通系统与城市绿色发展 (16)9.3.1 城市绿色发展的重要性 (16)9.3.2 智能交通系统在城市绿色发展中的应用 (16)第十章智能交通系统的未来发展 (16)10.1 智能交通系统的发展趋势 (16)10.2 智能交通系统的挑战与对策 (17)10.3 智能交通系统的创新应用 (17)第一章智能交通系统概述1.1 智能交通系统的定义与特点1.1.1 定义智能交通系统(Intelligent Transportation Systems,简称ITS)是指运用现代信息技术、通信技术、控制技术、计算机技术等手段,对交通运输系统进行集成和优化,实现交通信息资源的有效共享和利用,提高交通系统运行效率和安全性的技术体系。

智能交通简介

智能交通简介

公共交通服务
智能公交调度
实时监测公交车辆的位置和运行 状态,优化公交车辆的调度方案 ,提高公共交通的准点率和舒适
度。
电子站牌与查询
为乘客提供实时的公交线路、车辆 到站时间等信息,方便乘客出行。
定制化公交服务
根据乘客需求,提供定制化的公交 服务,如学生专线、通勤专线等。
智能驾驶汽车
自动驾驶技术
通过传感器、雷达等设备,实现车辆的自主驾驶,提高行车安全 性。
通信技术
车联网通信
通过车载设备之间的无线通信,实现 车辆之间的信息共享和协同驾驶,提 高道路安全性和交通效率。
5G通信
利用5G高速、低延迟的通信特性,实 现车与车、车与基础设施、车与云端 之间的实时通信,为智能交通提供更 高效、更可靠的通信支持。
控制技术
智能信号控制
通过实时监测交通流量和路况信 息,智能调整交通信号灯的配时 方案,优化交通流,提高道路通 行效率。
现状
目前,全球范围内的许多国家和地区都在积极推广和应用智 能交通系统,取得了一定的成效。同时,随着技术的不断进 步和应用场景的不断扩展,智能交通系统的功能和应用范围 也在不断拓展。
智能交通的重要性
提高交通运行效率
保障交通安全
通过智能调度和优化交通信号控制,减少 交通拥堵和延误,提高道路通行能力和公 共交通运行效率。
特点
智能交通系统具有实时性、高效性、安全性、舒适性和环保性等特点,能够实 现交通信息的实时共享、车辆的智能调度、交通信号的智能控制、公共交通的 智能化管理等功能。
发展历程与现状
发展历程
智能交通系统的发展经历了多个阶段,从早期的交通信息采 集和发布,到后来的车辆导航和智能调度,再到现在的全面 智能化管理和控制。

综述智能交通系统的应用

综述智能交通系统的应用

综述智能交通系统的应用智能交通运输系统是发展交通运输业不可缺少的组成部分。

交通信息化已越来越受到人们的关注,多年来,国内外都投入了很多人力和资金来发展智能交通系统,我国的智能交通系统也取得了一定的成绩,其中先进的交通管理系统、先进的公共交通系统等在我国发展已经趋于成熟。

智能交通系统对缓解当前大中城市的交通压力起到了不可替代的作用。

标签智能运输系统;信息化;交通运输交通运输是人类社会生产、经济、生活中一个不可缺少的重要环节。

随着社会的发展传统的交通运输业越来越不能满足人们对交通运输的需求,交通信息化已成为发展现代交通的必然选择,智能运输系统(ITS)是交通信息化的重要组成部分。

借助于智能运输系统车辆可以在道路上安全行驶,靠智能化手段将车辆运行状态调整到最佳,保障人、车、路的和谐统一。

在极大地提高运输效率的同时充分保障交通安全、改善环境质量、提高能源效率,因此国内外对ITS的发展都很重视。

1、国外几个比较成熟的ITS1.1 交通效率与安全蜂窝式通信系统SOCRATES 这是一种有效发挥传统的蜂窝无线电话基础设施(地面站)的作用,使交通控制中心与行驶车辆进行双向通信系统,它构成了DRIVE项目的核心。

德国的黑森州、英国的伦敦、瑞典的哥德堡是试验项目的对象地区。

SOCRATES的下行线路可通过“广播方式”向行驶在各种地面站网路内的装有SOCRATES车辆装置的车辆,提供道路交通状况的详细数字信息。

这些信息可与存储在车载导航计算机中的数据连接,并可用于驾驶员最佳路线计算。

上行线路利用多频存取协议经过基地台向交通控制中心发送信息。

它主要用于通报行程时间、紧急事志信息等。

因此,多数车辆可利用SOCRATES,不会给蜂窝式移动电话系统的能力道路影响。

1.2 EURO SCOUT EURO SCOUT是以红外线信标为媒体的动态路线引导系统。

由于车辆和信标间的红外线通信是双向进行的,因此汽车则变为一个探头,可将行程时间、排队等待时间及O-D信息等交通信息数据传输给中央引导计算机,并将经常更新中央数据。

智能交通系统研究报告

智能交通系统研究报告

智能交通系统研究报告1. 引言智能交通系统是一种应用先进科技于交通运输领域的创新型解决方案,目的在于改善交通效率、提高交通安全性和减少环境污染。

本报告对智能交通系统的研究进行综述,旨在分析该系统的原理、应用以及未来发展趋势。

2. 智能交通系统的原理智能交通系统运用了人工智能、传感器、通信技术等多种技术手段,实现了交通信息的快速获取、准确分析和智能处理。

系统通过高精度的传感器设备,收集道路、车辆和交通参与者的实时数据。

利用数据处理技术,智能交通系统能够准确预测交通拥堵情况、优化交通配时和减少事故发生概率。

3. 智能交通系统的应用智能交通系统在城市交通管理、智能驾驶和物流配送等方面具有广泛的应用价值。

3.1 城市交通管理智能交通系统可以实时监测交通流量,并对道路进行交通信号优化调整。

通过智能交通系统,城市交通管理局可以快速响应交通异常情况,改善城市交通拥堵状况。

此外,智能交通系统还能够提供实时导航和交通信息查询服务,方便驾驶员和行人出行。

3.2 智能驾驶智能交通系统为智能驾驶提供了必要的基础设施和数据支持。

利用智能交通系统提供的道路信息、交通流量等数据,自动驾驶车辆可以根据实时情况进行路径规划和车速控制,提高驾驶安全性和效率。

3.3 物流配送智能交通系统可以对物流配送过程进行实时监控和调度。

通过智能交通系统,物流公司可以实现货物在运输过程中的实时跟踪和监管,提高物流效率和准时送达率。

4. 智能交通系统的发展趋势智能交通系统将在未来继续发展和完善,以下是一些可能的趋势:4.1 5G技术的应用随着5G技术的广泛应用,智能交通系统将能够实现更快速、更稳定的数据传输和处理能力。

这将进一步提高智能交通系统的准确性和响应速度。

4.2 人工智能的进一步应用人工智能技术的不断发展将使智能交通系统具备更强大的分析和预测能力。

通过智能交通系统收集的大数据,可以更精确地预测交通拥堵情况,并为城市交通管理提供更有效的决策支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能交通系统综述摘要:“智能交通系统”是20世纪80年代中期迅速发展起来的一门新学科,它研究21世纪的新型交通运输模式,是当前交通运输学科的一个前沿领域,因此了解智能交通的发展有重要意义。

本文主要介绍了智能交通的国内外发展历史,发展阶段,各阶段发展的成果与特点以及智能交通发展的现状,提出了国内外智能交通发展中出现的问题初步设想了解决方法。

另外还介绍了智能交通的组成及其应用领域,对智能交通的未来发展状况进行了预测。

总之智能交通是我国交通发展的必由之路。

关键词:智能交通发展阶段成果问题前景Summary of Intelligent Transportation SystemAbstract:"Intelligent transportation system" is a new discipline rapidly developed in the 1980 s, it is a new transportation mode studied the 21 st century, is currently the subject of transportation front field, so learning of intelligent transportation development is of great important meaning.This paper mainly introduces the history of development of the intelligent transportation at home and abroad, the development stage, the achievements and characteristics of the stage and the present situation of intelligent transportation development. Proposed the problems of the intelligent transportation during the development at home and abroad and the solution of the problems in the preliminary. Also introduces the composition of the intelligent transportation and its application in the field of intelligent transportation, the future of the development situation of the forecast. In short intelligent transportation is the only way for the development of China's transportation.Key words: Intelligent transportation system(ITS) Stage of development Results Problem Prospects引言:ITS的发展是现代社会经济发展的客观要求,交通运输是国民经济和现代社会发展的基础。

由于现代社会城市化速度越来越快、国民经济的高速增长、全球经济的一体化进程加快、个人旅行与休闲时间的不断增加以及人们对交通需求越来越高,ITS便成为现代社会经济发展的客观要求。

本文主要阐述智能交通的国内外发展,服务体系及出现的问题,整体的介绍了智能交通一、概念及概况所谓数字交通,就是充分利用现代化的通信、定位、遥感以及地理信息系统、电子地图和其它相关技术实现交通管理的数字化、网络化、一体化,以减少交通拥挤、提高交通流量、改善交通安全状况、充分利用路网资源并减少对环境的影响,从而改善交通运输条件,是一种全方位的交通智能化系统。

智能运输系统综合运用了现代通讯技术、信息技术和计算机技术、导航定位技术、图像分析技术等,将交通系统所设计到的人、车、道路和环境有机地结合在一起,使其发挥智能作用,从而使交通系统智能化,更好地实现安全、畅通、低公害和耗能少的目的。

智能运输系统的英文为Inteligent Transport System,简称ITS。

智能交通起源于上世纪60~70年代欧美国家交通管理计算机化的尝试,随后进行的道路功能和运输智能化研究则大大丰富了其内容。

随着信息技术的发展,数字交通越来越显示出巨大的应用潜能。

上世纪90年代中期,我国数字交通事业正式起步。

但在智能交通管理方面已经开展了一系列研究和工程实施,在城市交通管理、高速公路监控系统、收费系统、安全保障系统等方面取得多项科研成果。

二、国外发展状况及取得的成就(1)数字交通系统产生于上世纪 60 年代末、70 年代初。

随着科技应用领域的拓宽, 西方国家开始研究运用计算机、通讯、信息及控制技术来改善交通状况。

(2)80 年代中叶信息技术、数据通讯传输技术、电子控制技术以及计算机处理技术综合运用于整个运输管理体系。

使人、车、路及环境密切配合、和谐统一, 从而建立起一种在大范围内、全方位发挥作用的实时、准确、高效的综合管理系统, 这便是智能交通系统。

(3)进入90年代以后, 美国、欧洲、日本以及澳大利亚、韩国等国家,对智能交通系统的研究开发给予了更高的重视, 投入了大量的人力物力。

智能交通系统是近两三年来才在国际上统一的名称,过去30年中欧洲、日本和美国的叫法都不一样, 同时都有自己的一个特定发展过程。

在欧洲最早叫 RTI (Road Transport Informatics),即道路交通通信技术。

80年代中期, 由欧洲联盟及各国政府联合主持制定了一个欧洲车辆安全道路结构计划(Dedicated Road Infrastructure for VehicleSafety in Europe),简称DRIVE, 同时民间还联合搞了一个PROMETHEUS( Program for a European Traffic w ith H ig hest Efficiency and Unprecedented Safety) , 即欧洲高效安全交通系统计划。

到1991年,在完成这两个计划的基础上,为了推进智能交通系统的发展,在欧洲成立了一个叫 ERTICO (European Road Transport Telematics Implementation Coordination Org anization),即欧洲道路交通通信技术应用促进组织, 这是欧洲联盟与道路交通通信技术企业界之间用于推动ITS在欧洲的发展的一个联盟组织。

ITS 在日本的发展始于70年代。

从1973年到1978年, 日本成功地开展了一个叫动态路径诱导系统的实验。

在这个实验中,车上的驾驶员可以根据装在车上的显示器上所显示的道路交通堵塞状况及诱导方向, 选择自己到达目的地的最佳路线。

从80年代中期到90年代中期的10年间, 日本相继完成了道路与车辆之间通信系统、交通信息通信系统、宽区域旅行信息系统、超智能车辆系统、安全车辆系统以及新交通管理系统等方面的研究。

在此基础上, 1994 年1月,由日本警察厅、通产省、运输省、邮电省和建设省等五个部门联合成立了日本道路交通车辆智能化促进协会( VERTIS: Vehicle Roadand Traffic Intellig ent Society) , 用以推动 ITS在日本的发展。

美国交通系统的智能化研究是最早的, 始于本世纪 60 年代末, 那时叫做电子路径导向系统(ERGS: Electronic RouteGuidance System)。

中间暂停了十多年, 到80年代中期后以加州交通部门研究的驾驶员寻路系统获得了成功为契机, 在美国全国开展了被称为智能化车辆道路系统( Intelligent Vehicle - H ighway System, 简称IVHS) 的研究。

1991年,成立了美国智能交通系统协会(Intelligent TransportationSociety of America),这是一个非盈利性的社团组织, 主要宗旨是帮助并加速智能交通系统在政府和民间企业的发展, 协会成员来自民间企业、学术单位、环保团体及各级政府相关单位, 参与面十分广泛, 从而有力地促进了美国智能交通系统研究的发展。

1991年, 美国总统签署了综合提高陆上交通效率法案(即ISTEA, 又称冰茶法案),把开发研究智能化车辆道路系统作为国策并给予充足的财政支持。

1994年将美国IVHS改为美国ITS, 以表明这方面的研究开发不仅限于车辆和道路, 而可以推广到一切交通工具和交通中所组成的智能化系统。

当然, 就目前来讲, 主要还是以道路交通为对象。

目前已建立起相对完善的车队管理、公交出行信息、电子收费和交通需求管理等四大系统及多个子系统和技术规范标准。

三、国内发展状况及取得的成就(1)国内智能交通发展现状我国智能交通系统已从探索进入到实际开发和应用阶段。

从公路智能交通系统看,主要应用在城市内部交通和高速公路两方面。

在城市内部交通方面,北京实施了‘科技奥运’智能交通应用试点示范工程,广州、中山、深圳、上海、天津、重庆、济南、青岛、杭州等作为智能交通系统示范城市也各自进行了有益的尝试;在高速公路方面,2007年底,我国内地已有27个省区实现了省区内不同范围的收费系统联网。

京津冀,长三角地区正逐步展开跨省区的收费系统的建设,其中北京市已经基本完成了有关建设任务。

在民航和铁路方面,智能化建设已经形成完善的体系。

从产业规模看,目前国内从事智能交通行业的企业约有2000多家,主要集中在道路监控、高速公路收费、3S(GPS,GIS,RS)和系统集成环节。

近年来的平安城市建设,为道路监控提供了巨大的市场机遇,目前国内约有500家企业在从事监控产品的生产和销售。

高速公路收费系统是我国非常有特色的智能交通领域,国内约有200多家企业从事相关产品的生产,并且国内企业已取得了具有自主知识产权的高速公路不停车收费双界面CPU卡技术。

在3S领域,国内虽然有200多家企业,但能够实现系统功能的企业还比较少。

尽管国内从事智能交通的企业“鱼龙混杂”,一些专注于特定领域的企业,经过多年的发展,已在相关领域取得了不错的成绩。

一些龙头企业在高速公路机电系统、高速公路智能卡、地理信息系统和快速公交智能系统领域占据了重要的地位。

(2)发展阶段交通部从20世纪80年代初开始公路、水运信息系统的建设工作,成立了交通部经济信息领导小组,于1987年制定了《交通运输经济信息系统(TEIS)总体规划方案》,构筑了交通运输经济信息系统的三级体系结构。

相关文档
最新文档