二次函数结合定值及等面积问题

合集下载

2023年中考数学总复习专题5二次函数与面积最值定值问题(学生版)

2023年中考数学总复习专题5二次函数与面积最值定值问题(学生版)

专题5二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。

有时也要根据题目的动点问题产生解的不确定性或多样性。

解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【例1】(2022•青海)如图1,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△P AB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.(请在图2中探讨)【例2】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.【例3】(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【例4】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.1.(2022•金坛区二模)如图,在平面直角坐标系xOy中,二次函数y=x2+bx﹣2的图象与x轴交于点A (3,0),B(点B在点A左侧),与y轴交于点C,点D与点C关于x轴对称,作直线AD.(1)填空:b=;(2)将△AOC平移到△EFG(点E,F,G依次与A,O,C对应),若点E落在抛物线上且点G落在直线AD上,求点E的坐标;(3)设点P是第四象限抛物线上一点,过点P作x轴的垂线,垂足为H,交AC于点T.若∠CPT+∠DAC=180°,求△AHT与△CPT的面积之比.2.(2022•罗城县模拟)如图,已知抛物线y=ax2+b经过点A(2,6),B(﹣4,0),其中E、F(m,n)为抛物线上的两个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)若C(x,y)是抛物线上的一点,当﹣4<x<2且S△ABC最大时,求点C的坐标;(3)若EF∥x轴,点A到EF的距离大于8个单位长度,求m的取值范围.3.(2022•老河口市模拟)在平面直角坐标系中,抛物线y=﹣x2+2mx的顶点为A,直线l:y=x﹣1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析式及点C的坐标;②点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;(2)过点A作AP⊥l于点P,作AQ∥l交抛物线于点Q,连接PQ,设△APQ的面积为S.直接写出①S 关于m的函数关系式;②S的最小值及S取最小值时m的值.4.(2022•新吴区二模)如图,已知抛物线y=+bx过点A(﹣4,0)、顶点为B,一次函数y=x+2的图象交y轴于M,对称轴与x轴交于点H.(1)求抛物线的表达式;(2)已知P是抛物线上一动点,点M关于AP的对称点为N.①若点N恰好落在抛物线的对称轴上,求点N的坐标;②请直接写出△MHN面积的最大值.5.(2022•开福区校级二模)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)如图①,若a=2,点D在抛物线的对称轴上,DB=DC,求△BCD与△ACO的周长之比;(3)如图②,若a=3,动点P在线段OA上,过点P作x轴的垂线分别与AC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△BPM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.6.(2022•官渡区二模)抛物线交x轴于A、B两点,交y轴正半轴于点C,对称轴为直线.(1)如图1,若点C坐标为(0,2),则b=,c=;(2)若点P为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP面积最大时,点P坐标和四边形ABCP的最大面积;(3)如图2,点D为抛物线的顶点,过点O作MN∥CD别交抛物线于点M,N,当MN=3CD时,求c 的值.7.(2022•徐州二模)如图,四边形ABCD中,已知AB∥CD,动点P从A点出发,沿边AB运动到点B,动点Q同时由A点出发,沿折线AD﹣DC﹣CB运动点B停止,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,已知y与x之间函数关系如图②,其中MN为线段,曲线OM,NK为抛物线的一部分,根据图中信息,解答下列问题:(1)图①AB=,BC=;(2)分别求线段MN,曲线NK所对应的函数表达式;(3)当x为何值,△APQ的面积为6?8.(2022•茌平区一模)如图,已知二次函数的图象交x轴于点B(﹣8,0),C(2,0),交y轴点A.(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PD∥AC,交AB于点D,试猜想△P AD的面积有最大值还是最小值,并求出此时点P的坐标.(3)连接OD,在(2)的条件下,求出的值.9.(2022•碑林区校级模拟)抛物线W1:y=a(x+)2﹣与x轴交于A(﹣5,0)和点B.(1)求抛物线W1的函数表达式;(2)将抛物线W1关于点M(﹣1,0)对称后得到抛物线W2,点A、B的对应点分别为A',B',抛物线W2与y轴交于点C,在抛物线W2上是否存在一点P,使得S△P A′B′=S△P A'C,若存在,求出P点坐标,若不存在,请说明理由.10.(2021秋•钦北区期末)如图,抛物线y=ax2+bx+6与直线y=x+2相交于A(,)、B(4,6)两点,点P是线段AB上的动点(不与A、B两点重合),过点P作PC⊥x轴于点D,交抛物线于点C,点E是直线AB与x轴的交点.(1)求抛物线的解析式;(2)当点C是抛物线的顶点时,求△BCE的面积;(3)是否存在点P,使得△BCE的面积最大?若存在,求出这个最大值;若不存在,请说明理由.11.(2022•保定一模)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B (1,﹣5),D(4,0).(1)求c,b(含t的代数式表示);(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式.并求t为何值时,△MPN的面积为.12.(2022•黄石模拟)如图,已知抛物线与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣4),直线与x轴交于点D,点P是抛物线上的一动点,过点P作PE⊥x 轴,垂足为E,交直线l于点F.(1)求该抛物线的表达式;(2)点P是抛物线上位于第三象限的一动点,设点P的横坐标是m,四边形PCOB的面积是S.①求S 关于m的函数解析式及S的最大值;②点Q是直线PE上一动点,当S取最大值时,求△QOC周长的最小值及FQ的长.13.(2022•哈尔滨模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+3与x轴的负半轴交于点A,与x的正半轴交于点B,与y轴正半轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)点D是第四象限内抛物线上一点,连接AD交y轴于点E,过C作CF⊥y轴交抛物线于点F,连接DF,设四边形DECF的面积为S,点D的横坐标的t,求S与t的函数解析式;(3)在(2)的条件下,过F作FM∥y轴交AD于点M,连接CD交FM于点G,点N是CE上一点,连接MN、EG,当∠BAD+2∠AMN=90°,MN:EG=,求点D的坐标.14.(2022•利川市模拟)如图,等腰直角三角形OAB的直角顶点O在坐标原点,直角边OA,OB分别在y 轴和x轴上,点C的坐标为(3,4),且AC平行于x轴.(1)求直线AB的解析式;(2)求过B,C两点的抛物线y=﹣x2+bx+c的解析式;(3)抛物线y=﹣x2+bx+c与x轴的另一个交点为D,试判定OC与BD的大小关系;(4)若点M是抛物线上的动点,当△ABM的面积与△ABC的面积相等时,求点M的坐标.15.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)求出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.①直接写出S关于a的函数关系式及a的取值范围;②结合S与a的函数图象,直接写出S>时a的取值范围.16.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.17.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).18.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD 的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.19.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.20.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.21.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.22.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.(1)求该抛物线的解析式;(2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;(3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.。

重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。

二次函数中的面积问题

二次函数中的面积问题
二次函数中的面积问题
二次函数中的面积问题是一个广泛应用的数学概念。通过深入研究二次函数, 我们可以探索其标准式、图像、交点、对称轴以及顶点等属性,进而应用面 积公式解决各种实际问题。
什么是二次函数
二次函数是一个以x的二次项为特征的函数。它的标准形式为y=ax^2+bx+c,其中a、b、c是常数。二次函数的 图像通常呈现开口向上或向下的抛物线形状。
二次函数的变形及面积问题的 应用
通过对二次函数进行平移、缩放和翻转等变形操作,可以解决更加复杂的面 积问题,例如计算部分面积的问题。
二次函数的导数是代表函数斜率的函数,可以通过求导得到。导函数即为二 次函数的一阶导数。
求二次函数的最小值及最大值
二次函数的最小值或最大值是函数的极值点。可以通过求导数和解方程得到 最小值或最大值的坐标。
二次函数与勾股定理
二次函数与勾股定理有一定的联系。通过勾股定理,我们可以计算二次函数 的斜边长度或直角边长。
要计算二次函数与坐标轴的交点,可以将函数等于零得到二次方程,然后使 用求根公式解方程。交点包括x轴与y轴的交点。
二次函数的对称轴
对称轴是二次函数的一个重要属性,通过对称轴可以找到抛物线的对称中心。对称轴的公式为x=-b/2a。
求二次函数的顶点及最值
顶点是二次函数的极值点,可以通过求导数或通过对称轴的坐标计算得出。最值可以是极大值或极小值,具体 取决于抛物线的开口方向。
二次函数与坐标系围成的面积
二次函数与坐标系围成的面积可以通过计算二次函数与x轴、y轴围成的矩形 面积和差值的方式得到。
求二次函数与x轴围成的面积
要求二次函数与x轴围成的面积,可以将函数转化为标准形式,计算定积分, 或通过求解二次方程得到交点坐标进而计算面积。

专题09 二次函数中的面积定值与等值问题(学生版)

专题09 二次函数中的面积定值与等值问题(学生版)

专题09 二次函数中的面积定值与等值问题【典型例题】母题:如图,已知抛物线过A (4,0)、B (0,4)、C (-2,0)三点,P 是抛物线上一点(1)若S △PAB =S △BCO ,求P 点坐标(2)(☆)若△PAB 面积为4,求P 点坐标(3)点D 坐标为(-1,1),P在第一象限,若△PCD 面积为4,求P 点坐标54x【模型解读】二次函数中的等值问题或定值问题【问题描述】如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC,若△PBC面积为3,求点P坐标.思路1:铅垂法列方程解.根据B、C两点坐标得直线BC解析式:y=-x+3,设点P坐标为,过点P作PQ⊥x轴交BC于点Q,则点Q坐标为(m,-m+3),,,分类讨论去绝对值解方程即可得m的值.思路2:构造等积变形同底等高三角形面积相等.取BC作水平宽可知水平宽为3,根据△PBC面积为3,可知铅垂高为2,在y轴上取点Q使得CQ=2,过点Q作BC的平行线,交点即为满足条件的P点.当点Q坐标为(0,5)时,PQ解析式为:y=-x+5,联立方程:,解之即可.当点Q坐标为(0,1)时,PQ解析式为:y=-x+1,联立方程:,解之即可.P QA B C223y x x=-++()2,23m m m-++()()222333PQ m m m m m=-++--+=-+213332PBCS m m=⨯⨯-+=V2235x x x-++=-+2231x x x-++=-+【模型实例】1.定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;2.如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.(1)求抛物线的关系式及点M的坐标;(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;3.抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;如图,若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.4.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知B(3,0),C (0,﹣3),连接BC,点P是抛物线上的一个动点,点N是对称轴上的一个动点.(1)求该抛物线的函数解析式.(2)当△PAB的面积为8时,求点P的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;6.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.7.如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.(1)求抛物线的函数表达式;(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;8.如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.9.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;10.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;11.如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;。

二次函数解析式求法及图形面积问题

二次函数解析式求法及图形面积问题

注:任何求抛物线解析式的问题,都可以使用一般式.
练习1: 二次函数 的图象经过点(4,3), (3,0),求二次函数的解析式
二次函数解析式特点: +k 2、顶点式:y=a(x-h)²
(a≠0), 这种形式易得顶点坐标和对称轴,顶 点坐标是 (h,k) ,对称轴是直 线 x=h .
注:一般情况下,已知抛物线的顶点坐标求其解析 式时,选用顶点式比较方便。
中考链接
(2017济南 )如图1,矩形OABC的顶点A,C的坐标 分别为(4,0),(0,6),直线AD交B C于点D, tan∠OAD=2,抛物线M1:y=ax² +bx(a≠0)过A, D两点. (1)求点D的坐标和抛物线M1的表达式;
y D C B C E
O 图1
A
xห้องสมุดไป่ตู้
O
二、二次函数中面积问题常见解决方法: 一、直接计算法
水平宽 铅锤高 二、运用 S 2
三、割补法
例1. 如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0), 另一个交点为B,且与y轴交于点C. (1)求m的值; (2)求点B的坐标; (3)该二次函数图象上有一点D,使S△ABD =S△ABC,求点D的坐标.
铅垂高法; 如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两 条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内 部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积 的新方法:S△ABC=ah/2,即三角形面积等于水平宽与铅垂高乘积的一半 一
例2.如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴 上,并且OA=OC=4OB,动点P在过A、B、C三点的抛物线上. (1)求抛物线的函数表达式; (2)在直线AC上方的抛物线上,是否存在点P,使得Δ PAC的面积最大? 若存在,求出P点坐标及Δ PAC面积的最大值;若不存在,请说明理 由. (3)在x轴上是否存在点Q,使得Δ ACQ是等腰三角形?若存在,请直 接写出点Q的坐标;若不存在,请说明理由.

二次函数三角形面积定值问题

二次函数三角形面积定值问题

二次函数三角形面积定值问题二次函数三角形面积定值问题是高中数学中的一个重要概念,也是考试中常考的难点之一。

本文将从三个方面进行探讨,分别是二次函数的定义和性质、三角形面积公式以及如何利用二次函数求解三角形面积定值问题。

一、二次函数的定义和性质二次函数是一种以 x 的平方为自变量的函数,通常的表达式为y=ax²+bx+c。

其中,a、b、c 分别是常数,a 不等于零。

二次函数的图像是一个开口朝上或朝下的抛物线,其中顶点坐标为(-b/2a, c-b²/4a)。

二次函数具有以下性质:1. 对称轴:二次函数的对称轴是过顶点的直线,方程为 x=-b/2a。

2. 零点:二次函数的零点是函数图像与 x 轴交点的横坐标,方程为 ax²+bx+c=0。

3. 单调性:当 a 大于零时,二次函数开口朝上,图像在顶点处取得最小值;当 a 小于零时,二次函数开口朝下,图像在顶点处取得最大值。

4. 范围:当 a 大于零时,二次函数的值域为 [c-b²/4a, +∞);当a 小于零时,二次函数的值域为 (-∞, c-b²/4a]。

二、三角形面积公式三角形面积公式是计算三角形面积的基本公式,其表达式为S=1/2bh,其中S 表示三角形面积,b 和h 分别表示底边和高。

此外,还有两个重要的推论:1. 海伦公式:当已知三角形的三边长 a、b、c 时,可以利用海伦公式求出三角形面积 S=sqrt[s(s-a)(s-b)(s-c)],其中s=(a+b+c)/2。

2. 正弦定理:当已知三角形的一个角度和两边长时,可以利用正弦定理求出第三边长,从而进一步计算出三角形面积。

正弦定理的表达式为 a/sinA=b/sinB=c/sinC。

三、利用二次函数求解三角形面积定值问题在高中数学中,经常会遇到给定三角形底边和两条高的长度,求解三角形面积的问题。

此类问题通常可以通过构建二次函数来解决。

以一个例子来说明:已知三角形底边长为 8,两条高分别为 6 和 10,求解该三角形的面积。

二次函数中面积问题

二次函数中面积问题

专题10 二次函数中面积问题方法1 割补法求面积1.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线()2240y ax ax a a =-++<经过点B .(1)求该抛物线的函数表达式:(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.【答案】(1)2y x 2x 3=-++;(2)21252528S m ⎛⎫=--+ ⎪⎝⎭;当52m =时,S 取得最大值258.【解析】 【分析】(1)根据题意先求出点B 的坐标,然后代入二次函数解析式求解即可;(2)由题意可求点A 坐标,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则有03m <<,然后根据割补法求面积即可.【详解】解:(1)把0x =代入33y x =-+得3y =, △(0,3)B .把(0,3)B 代入224y ax ax a =-++, 得34a =+,△1a =-.△抛物线的解析式为2y x 2x 3=-++;(2)令0y =,则2230x x -++=,解得1x =-或3, △抛物线与x 轴的交点横坐标分别为1-和3. △点M 在抛物线上,且在第一象限内, △03m <<.将0y =代入33y x =-+,得033x =-+,解得1x =, △(1,0)A .如解图,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则2111(31)2223132AOBOBMOAMAOBOAMB S S SSSSm m m =-=+-=⨯⨯+⨯-⨯-++⨯⨯四边形 2215122522528m m m ⎛⎫=-+=--+⎪⎝⎭, △102-<,且03m <<, △当52m =时,S 取得最大值258. 【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.方法2 铅锤高水平宽求面积2.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x 轴的另一交点为E,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;解:(1)由题意得:4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,△抛物线解析式为y=﹣x2+2x+3;(2)△A(0,3),D(2,3),△抛物线对称轴为x=1,△E(3,0),设直线AE的解析式为y=kx+3,△3k+3=0,解得,k=﹣1,△直线AE的解析式为y=﹣x+3,如图1,作PM△y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),△PM=﹣t2+2t+3+t﹣3=﹣t2+3t,△12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,△t=32时,△PAE的面积最大,最大值是278.方法3 △=0时求面积最大3.如图,二次函数的图象与轴交于、两点,与轴交于点,已知点(-1,0),点C(0,-2).(1)求抛物线的函数解析式; (2)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.(1)将A (-1,0)、点C(0,-2).代入232y ax x c =-+ 求得:213222y x x =-- (2)已求得:B (4,0)、C (0,-2),可得直线BC 的解析式为:y=12x -2; 设直线l△BC ,则该直线的解析式可表示为:y=12x+b , 当直线l 与抛物线只有一个交点时,可列方程:12x+b=12x 2-32x -2,即:12x 2-2x -2-b=0,且△=0; △4-4×12(-2-b )=0,即b=-4; △直线l :y=12x -4.所以点M 即直线l 和抛物线的唯一交点,有: 213222{142y x x y x =--=-,解得:2{3x y ==-即 M (2,-3).过M 点作MN△x 轴于N ,S△BMC=S 梯形OCMN+S△MNB -S△OCB=12×2×(2+3)+12×2×3-12×2×4=4. △点M (2,﹣3),△MBC 面积最大值是4. 考点:二次函数综合题.类型拓展1 求四边形面积4.如图1,在平面直角坐标系中,一次函数y =12x ﹣2的图象与x 轴交于点B ,与y 轴交于点C ,抛物线y =12x 2+bx +c 的图象经过B 、C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的表达式;(2)若点D 在直线BC 下方的抛物线上,如图1,连接DC 、DB ,设四边形OCDB 的面积为S ,求S 的最大值;解:(1)对于y =12x ﹣2,令y =12x ﹣2=0, 解得:x =4; 令x =0,则y =﹣2,故点B 、C 的坐标分别为(4,0)、(0,﹣2);将点B 、C 的坐标代入抛物线表达式得2116402c b c =-⎧⎪⎨⨯++=⎪⎩,解得:322b c ⎧=-⎪⎨⎪=-⎩, 故抛物线的表达式为213222y x x =--①; (2)连接OD ,点D 的坐标为(x ,213222x x --),则S =S △ODC +S △ODB =12×OC ×D x +12×BO ×(﹣D y )=12×2×x +12×4×(213222x x -++)=﹣x 2+4x +4,△﹣1<0,故S 有最大值, 当x =2时,S 有最大值8;5.如图,抛物线2y x bx c =-++与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,直线3y x =-+经过B ,C 两点,连接AC .(1)求抛物线的表达式;(2)点E 为直线BC 上方的抛物线上的一动点(点E 不与点B ,C 重合),连接BE ,CE ,设四边形BECA 的面积为S ,求S 的最大值; (1)解:(1)将(1A -,0)(3B ,0)代入2y x bx c =-++,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,223y x x ∴=-++;(2)(2)过E 作EF x ⊥轴于点F ,与BC 交于点H ,(1A -,0)(3B ,0),4AB ∴=当0x =时,3y =,(0,3)C ∴,3OC ∴=,设2(,23)F a a a -++,则(,3)H a a -+,222333EH a a a a a ∴=-+++-=-+,ABC BCE BECA S S S ∆∆=+四边形,21143(3)322S a a ∴=⨯⨯+-+⨯ 236(3)2a a =+-+23375()228a =--+,∴当32a =时,S 的最大值为758;类型拓展2 抛物线上有且只有三个点6.如图1,已知抛物线y =ax 2+2x +c (a ≠0),与y 轴交于点A (0,6),与x 轴交于点B (6,0).(1)求这条抛物线的表达式及其顶点坐标;(2)设点P 是抛物线上的动点,若在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,求这三个点的坐标及定值S .解:(1)△抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).△603612ca c=⎧⎨=++⎩△126 ac⎧=-⎪⎨⎪=⎩△抛物线解析式为:y=﹣12x2+2x+6,△y=﹣12x2+2x+6=﹣12(x﹣2)2+8,△顶点坐标为(2,8)(2)△点A(0,6),点B(6,0),△直线AB解析式y=﹣x+6,当x=2时,y=4,△点D(2,4)如图1,设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,设直线PC解析式为y=﹣x+b,△﹣12x2+2x+6=﹣x+b,且只有一个交点,△△=9﹣4×12×(b﹣6)=0△b =212, △直线PC 解析式为y =﹣x +212, △当x =2,y =172, △点C 坐标(2,172), △CD =92,△﹣12x 2+2x +6=﹣x +92,△x =3, △点P (3,152) △在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,△另两个点所在直线与AB ,PC 都平行,且与AB 的距离等于PC 与AB 的距离, △DE =CD =92,△点E (2,﹣12),设P 'E 的解析式为y =﹣x +m , △﹣12=﹣2+m , △m =32△P 'E 的解析式为y =﹣x +32,△﹣12x 2+2x +6=﹣x +32,△x =△点P '(,﹣32﹣,P ''(3﹣,﹣32,△S =12×6×(152﹣3)=272.7.如图,直线334y x =-+与 x 轴交于点 C ,与 y 轴交于点 B ,抛物线 234y ax x c =++经过 B 、C 两点.(1)求抛物线的解析式;(2)如图,点 E 是抛物线上的一动点(不与 B ,C 两点重合),△BEC 面积记为 S ,当 S 取何值时,对应的点 E 有且只有三个?【答案】(1)233384y x x =-++;(2)3【解析】 【分析】(1)先利用一次函数解析式确定B (0,3),C (4,0),然后利用待定系数法求抛物线解析式;(2)由于E 点在直线BC 的下方的抛物线上时,存在两个对应的E 点满足△BEC 面积为S ,则当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S ,所以过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+,利用方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解求出b 得到E 点坐标,然后计算此时S △BEC . 【详解】(1)当x=0时,y=-34x+3=3,则B (0,3),当y=0时,-34x+3=0,解得x=4,则C (4,0),把B (0,3),C (4,0)代入y=ax 2+34x+c 得383a c ⎧=-⎪⎨⎪=⎩, 所以抛物线解析式为233384y x x =-++;(2)当E 点在直线BC 的下方的抛物线上时,一定有两个对应的E 点满足△BEC 面积为S , 所以当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S , 即此时过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+, 方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解, 方程23333844x x x b -++=-+有两个相等的实数解, 则△=122-4×3×(-24+8b )=0,解得b=92,解方程得x 1=x 2=2, E 点坐标为(2,3), 此时1343322BEC S ⎛⎫=⨯⨯-= ⎪⎝⎭, 所以当S=1时,对应的点E 有且只有三个.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.8.如图,直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线223y x bx c =-++经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是抛物线上的一动点(不与B ,C 两点重合),当14BEC BOC S S =△时,求点E 的坐标;(3)若点F 是抛物线上的一动点,当BFC S △为什么取值范围时,对应的点F 有且只有两个?【答案】(1)225433y x x =-++;(2)1E ⎝⎭,2E ⎝⎭,34222E ⎛-+ ⎝⎭,44222E ⎛+- ⎝⎭;(3)当163BFC S >△时,对应的点F 有且只有两个.【解析】【分析】(1)根据待定系数法,即可求解;(2)过点E 作x 轴的垂线交BC 于点N ,设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,点(,4)N a a -+,根据12BEC B C S EN x x =-△,14BEC BOC S S =△,列出方程,即可求解; (3)当F 点在直线BC 的下方的抛物线上时,一定有两个对应的F 点满足BCF △面积为S ,当F 点在直线BC 的上方的抛物线上时,无F 点满足BCF △面积为S 才符合题意,故只需要求出当点F 在直线BC 的上方时,BFC S △的最大值,即可得到结论 .【详解】(1)△直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,△(0,4)B ,(4,0)C ,将(0,4)B ,(4,0)C 代入223y x bx c =-++, 可得2424403c b c =⎧⎪⎨-⨯++=⎪⎩,解得534b c ⎧=⎪⎨⎪=⎩, △225433y x x =-++; (2)如图,过点E 作x 轴的垂线交BC 于点N , 设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,则点(,4)N a a -+, △2212541624423333BEC B C S EN x x a a a a a =-=-+++-=-+△, △182BOC S BO OC =⋅=△,14BEC BOC S S =△, △2416233a a -+=,解得:1x =2x =3x =4x = 将1x ,2x ,3x ,4x代入抛物线解析式,可得:1y =,2y =3y =4y =△1E ⎝⎭,2E ⎝⎭,34222E ⎛ ⎝⎭,44222E ⎛ ⎝⎭; (3)当点F 在直线BC 上方的抛物线上时,设点225,433F m m m ⎛⎫-++ ⎪⎝⎭, 由(2)同理可得:22416416(2)3333BFC S m m m =-+=--+△, △当2m =时,BFC S △的最大值为163, △当BFC S △>163时,在直线BC 的上方的抛物线上无法找到F 点, 综上所述:当163BFC S >△时,对应的点F 有且只有两个.【点睛】本题主要考查二次函数与一次函数的综合,掌握待定系数法,函数图像上的点的坐标特征以及三角形的面积=铅垂高×水平宽,是解题的关键.类型拓展3 综合运用9.综合与实践 如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是()4,0,与y 轴交于点()0,3C -,点D 在抛物线上运动.(1)求抛物线的表达式;(2)如图2,当点D 在第四象限的抛物线上运动时,连接BD ,CD ,BC ,当BCD △的面积最大时,求点D 的坐标及BCD △的最大面积;(1)解:点B ()4,0和点()0,3C -代入二次函数234y x bx c =++, 得:01243b c c=++⎧⎨-=⎩ 解得943b c ⎧=-⎪⎨⎪=-⎩. △抛物线的表达式是239344y x x =--. (2) 解:如图,连接OD ,过点D 作DM x ⊥轴,作DN y ⊥轴.设点D 的坐标是239,344m m m ⎛⎫-- ⎪⎝⎭.△239344DM m m =-++,DN m =. △()4,0B ,()0,3C -,△4OB =,3OC =.△BCD OCD OBD OBC S S S S =+-△△△△111222OC DN OB DM OB OC =⋅+⋅-⋅ 2113913434322442m m m ⎛⎫=⨯+⨯-++-⨯⨯ ⎪⎝⎭ 2362m m =-+ 23(2)62m =--+. △302-<, △当2m =时,BCD △的面积最大且为6.当2m =时,2239399322344442m m --=⨯-⨯-=-. △点D 的坐标是92,2⎛⎫- ⎪⎝⎭,BCD △的最大面积是6. 10.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()()3,0,0,3B C ,点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D ,若OD m =,PCD 的面积为S ,求S 与m 的函数关系式,并求当S 取得最大值时,点P 的坐标;(1)解:将点B (3,0),C (0,3)代入y =-x 2+bx +c ,得09333b c =-++⎧⎨=⎩;解得23b c =⎧⎨=⎩, △二次函数的解析式为y =-x 2+2x +3;(2)△y =-x 2+2x +3=-(x -1)2+4,△顶点M (1,4),设直线BM 的解析式为y =kx +b ,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, △直线BM 的解析式为y =-2x +6,△PD △x 轴且OD =m ,△P (m ,-2m +6),△S =S △PCD =12PD •OD =12m (-2m +6)=-m 2+3m ,即S =-m 2+3m ,△当点P 与点B 重合时,不存在以P 、C 、D 为顶点的三角形,△1≤m <3,△S =-m 2+3m =-(m -32)2+94, △-1>0,△当m =32时,S 取最大值94;此时点P 的坐标为332⎛⎫ ⎪⎝⎭,. 11.如图,在平面直角坐标系中,抛物线2y ax bx c =++的对称轴为2x =,与y 轴交于点A 与x 轴交于点E 、B ,且点(0,5)A ,(5,0)B ,过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的点,且在AC 的上方,作PD 平行于y 轴交AB 于点D .(1)求二次函数的解析式;(2)当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(1) 解:抛物线2y ax bx c =++的对称轴为2x =, △22b a-=, 4b a ∴=-,∴抛物线解析式为24y ax ax c =-+,点(0,5)A ,(5,0)B ,∴52550c a b c =⎧⎨-+=⎩, ∴15a c =-⎧⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)解://AC x 轴,点(0,5)A ,当5y =时,2455x x -++=,10x ∴=,24x =,(4,5)C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,(0,5)A ,(5,0)B ,由点A 、B 的坐标得,直线AB 的解析式为5y x =-+;设2(,45)P m m m -++,,5()D m m ∴-+,224555PD m m m m m ∴=-+++-=-+,4AC =, △()221525252222APCD S AC PD m m m ⎛⎫=⋅=-+=--+ ⎪⎝⎭四边形 ∴当52m =时,四边形APCD 的面积最大, ∴即点5(2P ,35)4时,四边形APCD 的面积最大为252; 12.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点B 的坐标为(1,0),点C 的坐标为(0,4),点D 的坐标为(0,2),点P 为二次函数图象上的动点.(1)求二次函数的解析式和直线AD 的解析式;(2)当点P 位于第二象限内二次函数的图象上时,连接AD ,AP ,以AD ,AP 为邻边作平行四边形APED ,设平行四边形APED 的面积为S ,求S 的最大值.【答案】(1)y =-x 2-3x +4,122y x =+;(2)814【解析】【分析】 (1)利用待定系数法将B (1,0),C (0,4)代入二次函数y =﹣x 2+bx +c 即可求出二次函数的解析式,令y =0,可求出A 点坐标,然后设直线AD 的解析式为y =kx +b ,利用待定系数法将A 点坐标和D 点坐标代入y =kx +b 即可求出直线AD 的解析式;(2)连接PD ,作PG y 轴交AD 于点G ,根据题意设出点P 和点G 的坐标,然后表示出线段PG 的长度,进而根据2APD S S ∆=表示出平行四边形APED 的面积,最后根据二次函数的性质求解即可.【详解】解:(1)将B (1,0),C (0,4)代入y =-x 2+bx +c 中,得014b c c =-++⎧⎨=⎩,解得34b c =-⎧⎨=⎩, △二次函数的解析式为y =-x 2-3x +4在y =-x 2-3x +4中,令y =0,即2340x x --+=,解得x 1=-4,x 2=1,△A (-4,0).设直线AD 的解析式为y =kx +b'.△D (0,2),△04'2'k b b =-+⎧⎨=⎩, 解得:12'2k b ⎧=⎪⎨⎪=⎩ △直线AD 的解析式为122y x =+. (2)连接PD ,作PG y 轴交AD 于点G ,如图所示.设P (t ,-t 2-3t +4)(-4<t <0),则G (t ,122t +), △2217342222PG t t t t t =--+--=--+, △2122||41482APD D A S S PG x x t t ∆==⨯⋅-=--+, 27814()44t =-++. △-4<0,-4<t <0,△当74t =-时,S 有最大值814.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数中有关面积的综合题,解题的关键是熟练掌握待定系数法求函数表达式,根据题意设出点的坐标表示出平行四边形APED的面积.。

初中数学 上海中考压轴题中二次函数与几何面积问题的方法和题型总结

初中数学 上海中考压轴题中二次函数与几何面积问题的方法和题型总结

24题-- 二次函数与面积问题求解方法总结刘国杰前言:关于二次函数与几何图形面积问题,上海中考一模或者二模24题压轴题,每年都会有1-2个区(郊区为主)会考察。

所占比例不高,主要原因就是这类问题难度不大,玩不出高深的技巧。

我们用神的视角来看,首先从考察的图形来分析,要么是求三角形面积,要么求四边形面积,都是不规则的图形,当然三角形会更多一点;其次从图形的形成特点来分,有这么几种:固定形状的、由动点产生的面积、由动线产生的面积、由动图形产生的面积。

虽然看似不同,变化多端,但不管如何变化,归纳总结之后,大多考察的形式就分为以下3点:1、求面积最大值问题;2、已知面积大小求其它条件;3、已知面积比求其它条件。

那么我们只要牢牢掌握这三类问题的解决方法,顺应题型和条件灵活调整,就可视它为蝼蚁,轻松碾压。

牛逼吹过了,来看看解决的方法,两大主要思想是:直接根据面积公式代入求值和割补法。

【题型一】:求面积最大值问题【典型例题】如图,已知抛物线经过点(1,0)C三点.A-,(3,0)B,(0,3)(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作//MN y轴交抛物线于N点,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,当m为何值时,BNC∆的面积最大.【典型例题】如图,抛物线2y ax bx c =++经过(1,0)A -、(3,0)B 、(0,3)C 三点,对称轴与抛物线相交 于点P 、与直线BC 相交于点M ,连接PB . (1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使QMB ∆与PMB ∆的面积相等?若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使RPM ∆与RMB ∆的面积相等?若存在,直接写出点R 的坐标;若不存在,说明理由.【典型例题】1.已知抛物线23y ax bx =++经过点(1,0)A 和点(3,0)B -,与y 轴交于点C ,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为 ,抛物线的顶点坐标为 ; (2)如图,连接OP 交BC 于点D ,当:1:2CPD BPD S S ∆∆=时,请求出点D 的坐标;2.在平面直角坐标系中,过点(3,4)A 的抛物线24y ax bx =++与x 轴交于点(1,0)B -,与y 轴交于点C ,过点A 作AD x ⊥轴于点D . (1)求抛物线的解析式.(2)如图,点P 是直线AB 上方抛物线上的一个动点,连接PD 交AB 于点Q ,连接AP ,当2AQD APQ S S ∆∆=时,求点P 的坐标.3.在平面直角坐标系中,抛物线2y ax bx c =++过点(1,0)A -,(3,0)B ,与y 轴交于点C ,连接AC ,BC ,将OBC ∆沿BC 所在的直线翻折,得到DBC ∆,连接OD . (1)用含a 的代数式表示点C 的坐标.(2)设OBD ∆的面积为1S ,OAC ∆的面积为2S ,若1223S S =,求a 的值.。

中考数学专题之二次函数与图形面积的最值及定值压轴问题

中考数学专题之二次函数与图形面积的最值及定值压轴问题

2020年中考数学必考经典专题2二次函数与图形面积的最值及定值压轴问题【方法指导】面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。

有时也要根据题目的动点问题产生解的不确定性或多样性。

解决动点产生的面积问题,常用到的知识和方法有:(1)如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.(2)三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.(3)同底等高三角形的面积相等.平行线间的距离处处相等.(4)同底三角形的面积比等于高的比.(5)同高三角形的面积比等于底的比.【题型剖析】【类型1】二次函数与面积最值问题【例1】如图,抛物线2(1)y x k =-+与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点(0,3)C -.P 为抛物线上一点,横坐标为m ,且0m >.(1)求此抛物线的解析式;(2)当点P 位于x 轴下方时,求ABP ∆面积的最大值;(3)设此抛物线在点C 与点P 之间部分(含点C 和点)P 最高点与最低点的纵坐标之差为h .①求h 关于m 的函数解析式,并写出自变量m 的取值范围;②当9h =时,直接写出BCP ∆的面积.【变式训练】如图,抛物线22(0)y ax ax c a =-+≠与y 轴交于点(0,4)C ,与x 轴交于点A 、B ,点A 坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK KN +最小,并求出点K 的坐标;(3)点Q 是线段AB 上的动点,过点Q 作//QE AC ,交BC 于点E ,连接CQ .当CQE ∆的面积最大时,求点Q 的坐标;【类型2】二次函数与面积定值问题【例2】抛物线229y x bx c =-++与x 轴交于(1,0)A -,(5,0)B 两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F .(1)求抛物线的解析式;(2)当PCF ∆的面积为5时,求点P 的坐标;(3)当PCF ∆为等腰三角形时,请直接写出点P 的坐标.【变式训练】已知抛物线23y ax bx =++经过点(1,0)A 和点(3,0)B -,与y 轴交于点C ,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为____,抛物线的顶点坐标为____;(2)如图1,连接OP 交BC 于点D ,当:1:2CPD BPD S S ∆∆=时,请求出点D 的坐标;(3)如图2,点E 的坐标为(0,1)-,点G 为x 轴负半轴上的一点,15OGE ∠=︒,连接PE ,若2PEG OGE ∠=∠,请求出点P 的坐标;(4)如图3,是否存在点P ,使四边形BOCP 的面积为8?若存在,请求出点P 的坐标;若不存在,请说明理由.【类型3】二次函数与等面积问题【例3】如图,二次函数23y x bx =-++的图象与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为(1,0)-,点D 为OC 的中点,点P 在抛物线上.(1)b =______;(2)若点P 在第一象限,过点P 作PH x ⊥轴,垂足为H ,PH 与BC 、BD 分别交于点M 、N .是否存在这样的点P ,使得PM MN NH ==?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点P 的横坐标小于3,过点P 作PQ BD ⊥,垂足为Q ,直线PQ 与x 轴交于点R ,且2PQB QRB S S ∆∆=,求点P 的坐标.【变式训练】如图,抛物线2y ax bx c =++的图象过点(1,0)A -、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC ∆的周长最小,若存在,请求出点P 的坐标及PAC ∆的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【类型4】二次函数与面积数量关系【例4】如图,已知二次函数的图象与x 轴交于A 、B 两点,D 为顶点,其中点B 的坐标为(5,0),点D 的坐标为(1,3).(1)求该二次函数的表达式;(2)点E 是线段BD 上的一点,过点E 作x 轴的垂线,垂足为F ,且ED EF =,求点E 的坐标.(3)试问在该二次函数图象上是否存在点G ,使得ADG ∆的面积是BDG ∆的面积的35?若存在,求出点G 的坐标;若不存在,请说明理由.【变式训练】如图抛物线2y ax bx c =++经过点(1,0)A -,点(0,3)C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.【达标检测】1.如图,已知抛物线23y ax bx =+-与x 轴交于点(3,0)A -和点(1,0)B ,交y 轴于点C ,过点C 作//CD x 轴,交抛物线于点D .(1)求抛物线的解析式;(2)若直线(30)y m m =-<<与线段AD 、BD 分别交于G 、H 两点,过G 点作EG x ⊥轴于点E ,过点H 作HF x ⊥轴于点F ,求矩形GEFH 的最大面积;(3)若直线1y kx =+将四边形ABCD 分成左、右两个部分,面积分别为1S ,2S ,且12:4:5S S =,求k 的值.2.如图,抛物线2(0)y ax bx a =+<过点(10,0)E ,矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设(,0)A t ,当2t =时,4AD =.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.3.已知:如图,抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,该抛物线的顶点为M .(1)求点A 、B 、C 的坐标.(2)求直线BM 的函数解析式.(3)试说明:90CBM CMB ∠+∠=︒.(4)在抛物线上是否存在点P ,使直线CP 把BCM ∆分成面积相等的两部分?若存在,请求出点P 的坐标;若不存在,请说明理由.4.如图1,抛物线21:C y x ax =+与22:C y x bx =-+相交于点O 、C ,1C 与2C 分别交x 轴于点B 、A ,且B 为线段AO 的中点.(1)求a b的值;(2)若OC AC ⊥,求OAC ∆的面积;(3)抛物线2C 的对称轴为l ,顶点为M ,在(2)的条件下:①点P 为抛物线2C 对称轴l 上一动点,当PAC ∆的周长最小时,求点P 的坐标;②如图2,点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,已知抛物线232y x bx c =++与x 轴交于(1,0)A -,(2,0)B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线y x n =-+与该抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且4BE EC =.①求n 的值;②连接AC ,CD ,线段AC 与线段DF 交于点G ,AGF ∆与CGD ∆是否全等?请说明理由;(3)直线(0)y m m =>与该抛物线的交点为M ,N (点M 在点N 的左侧),点M 关于y 轴的对称点为点M ',点H 的坐标为(1,0).若四边形OM NH '的面积为53.求点H 到OM '的距离d 的值.6.如图,已知二次函数23(2)34y ax a x =--+的图象经过点(4,0)A ,与y 轴交于点B .在x 轴上有一动点(C m ,0)(04)m <<,过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D .(1)求a 的值和直线AB 的解析式;(2)过点D 作DF AB ⊥于点F ,设ACE ∆,DEF ∆的面积分别为1S ,2S ,若124S S =,求m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且DEGH 周长取最大值时,求点G 的坐标.7.如图①,在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点(1,0)A -、(3,0)B 两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为12-,求DPQ ∆面积的最大值,并求此时点D 的坐标;(Ⅱ)直尺在平移过程中,DPQ ∆面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.8.已知抛物线2(1)y a x =-过点(3,1),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点1(0,)4B ,且90BDC ∠=︒,求点C 的坐标;(3)如图,直线4y kx k =+-与抛物线交于P 、Q 两点.①求证:90PDQ ∠=︒;②求PDQ ∆面积的最小值.9.如图,在平面直角坐标系中,抛物线222433y x x =--与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)点P 从A 点出发,在线段AB 上以每秒2个单位长度的速度向B 点运动,同时,点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t 秒,求运动时间t 为多少秒时,PBQ ∆的面积S 最大,并求出其最大面积;(3)在(2)的条件下,当PBQ ∆面积最大时,在BC 下方的抛物线上是否存在点M ,使BMC ∆的面积是PBQ ∆面积的1.6倍?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,已知抛物线2342y ax x =++的对称轴是直线3x =,且与x 轴相交于A ,B 两点(B 点在A 点右侧)与y 轴交于C 点.(1)求抛物线的解析式和A 、B 两点的坐标;(2)若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),则是否存在一点P ,使PBC ∆的面积最大.若存在,请求出PBC ∆的最大面积;若不存在,试说明理由;(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当3MN =时,求M 点的坐标.。

二次函数背景下的面积问题

二次函数背景下的面积问题

二次函数背景下的面积问题教学环节教学活动教学策略设计意图(一)微课引入,温故知新播放微课视频,让学生再次回顾二次函数的相关知识点以及一次函数、反比例函数的面积问题。

学生观看微课视频通过微课回忆相关知识点,做到“脑中有图,心中有数”,为本节课顺利开展提供了充足的知识储备。

(二)分类讲解,变式提升1.类型一:抛物线与坐标轴交点构成的三角形面积问题例 1 如图 1 ,抛物线y = ax2 + bx + c经过点 A(-1,0),B(4,0),交 y 轴于点 C(0,2);图 1(1)求抛物线的解析式(用一般式表示);(2)求△ABC 的面积。

解题分析:这里学生只需要用交点式法求出抛物线的表达式,进而求出AB,CO,即可求出△ABC 的面积。

解:(1)设抛物线表达式为:y=a(x+1)(x-4)把(0,y)代入,得:2=a×1×(-4)a=12,则:y=- 12(x-1)(x-4)(2)S△ABC=AB·CO2= [4−(−1)]×22=5变式 1:在例 1 中,点 D 为 y 轴右侧抛物线( 1 )让学生独立做例1,总结出类型一的题型特点和所运用的方法。

(1)二次函数类的压轴题第一问通常为求点坐标、解析式,要求学生能够熟练地掌握用待定系数法、顶点式、交点式法求函数解析式。

由简单题入手,从而消除学生的畏难情绪,让学生有兴趣和信心参与本节课的数学学习。

2.类型二:抛物线顶点与坐标轴交点构成的三角形面积问题(二)分类讲解,变式提升例2 如图2 ,抛物线y = x2 − 2x− 3的顶点为A,交 x 轴于 B,D 两点,与 y 轴交于点 C.图 2(1)求线段 BD 的长;(2)求△ABC 的面积。

解题分析:第 1 问相对简单,只需求出抛物线与 x 轴的交点即可。

在第二问中,学生可以通过“补”的方法,把△ABC 补成梯形 BCMN,SΔABC= S梯形BCMN−SΔAMC−SΔABN(图3)。

二次函数中面积问题

二次函数中面积问题

二次函数中面积问题在数学中,二次函数是一种定义域和值域都是实数的函数。

它的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数,且a ≠ 0。

二次函数在数学中有着广泛的应用,而与其相关的面积问题也是数学教学中常见的一个重要内容。

二次函数的图像是一个抛物线,它可以是开口向上的,也可以是开口向下的。

对于二次函数而言,面积问题主要涉及到两个方面:一是求解图形所围成的面积,二是求解函数与坐标轴所围成的图形面积。

下面将从这两个方面结合实际问题进行详细说明。

首先,我们来看第一个问题:求解图形所围成的面积。

对于给定的二次函数f(x) = ax^2 + bx + c,我们可以通过计算抛物线与坐标轴交点的横纵坐标,来确定被图形所围成的区域。

一般情况下,图形围成的区域可以是一个三角形、一个梯形或一个扇形。

以一个具体例子来说明:假设有一个二次函数f(x) = 3x^2 - 2x + 1,我们希望求出图形所围成的面积。

首先,要确定函数与坐标轴交点的横纵坐标。

当f(x) = 0时,即3x^2 - 2x + 1 = 0,则可以使用求根公式得到x的值。

求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。

带入a = 3,b = -2,c = 1,则x的值为(-(-2) ± √((-2)^2 - 4*3*1)) / (2*3),化简得到x = 1/3 和 x = 1然后,我们计算函数在两个交点处的纵坐标。

带入x=1/3和x=1,可以得到对应的y值。

令x=1/3,则f(1/3)=3*(1/3)^2-2*(1/3)+1,计算得到f(1/3)=10/9;令x=1,则f(1)=3*1^2-2*1+1,计算得到f(1)=2接下来,我们要确定图形所围成的区域。

由于二次函数是一个抛物线,且a为正值,所以图形是开口向上的。

因此,图形所围成的区域为一个梯形。

梯形上底为x=1/3,下底为x=1,高为f(1/3)和f(1)之间的差值。

二次函数综合(一)——面积问题

二次函数综合(一)——面积问题

二次函数综合(一) ——面积问题
一、解决函数综合题中面积问题的常用方法:
1. 割补法
当所求图形的面积没有办法直接求出时,我们采取间接(分割或补全图形再分割)的方法来表示所求图形的面积,如图1:
4. 相似法
利用相似三角形面积比等于相似比的平方进行转化.
二、基本题型
1.如图,在平面直角坐标系中,△AOB的顶点O为原点,已知点A(3,6),B(5,2),求△AOB的面积.
2.已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。

求△ACD的面积。

3已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。

求△BCD的面积。

二次函数中的面积计算问题

二次函数中的面积计算问题

二次函数中的面积计算问题[典型例题]例. 如图,二次函数2y x bx c =++图象与x 轴交于A,B 两点(A 在B 的左边),与y 轴交于点C ,顶点为M ,MAB ∆为直角三角形, 图象的对称轴为直线2-=x ,点P 是抛物线上位于,A C 两点之间的一个动点,则PAC ∆的面积的最大值为(C ) A .274 B .112 C . 278D .3二次函数中面积问题常见类型: 一、选择填空中简单应用 二、不规则三角形面积运用S= 三、运用四、运用相似三角形五、运用分割方法将不规则图形转化为规则图形例1. 如图1,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是 ( B )xy ABCOM例2. 解答下列问题:如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.思路分析此题是二次函数中常见的面积问题,方法不唯一,可以用割补法,但有些繁琐,如图2我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形面积等于水平宽与铅垂高乘积的一半.掌握这个公式后,思路直接,过程较为简单,计算量相对也少许多,答案:(1)由已知,可设抛物线的解析式为y 1=a (x -1)2+4(a ≠0).把A (3,0)代入解析式求得a =-1,∴抛物线的解析式为y 1=-(x -1)2+4,即y 1=-x 2+2x +3.图2图1设直线AB 的解析式为y 2=kx +b ,由y 1=-x 2+2x +3求得B 点的坐标为(0,3).把A (3,0),B (0,3)代入y 2=kx +b ,解得k =-1,b =3.∴直线AB 的解析式为y 2=-x +3.(2)∵C (1,4),∴当x =1时,y 1=4,y 2=2.∴△CAB 的铅垂高CD =4-2=2.S △CAB =21×3×2=3(平方单位).(3)解:存在.设P 点的横坐标为x ,△PAB 的铅垂高为h则h =y 1-y 2=(-x 2+2x +3)-(-x +由S △PAB =89S △CAB 得:21×3×(-x 2+3x )整理得4x 2-12x +9=0,解得x =23.把x =23代入y 1=-x 2+2x +3,得y 1=415.∴P 点的坐标为(23,415).例3. (贵州省遵义市)如图,在平面直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕点O 逆时针方向旋转90°得到△COD (点A 转到点C 的位置),抛物线y =ax 2+bx +c (a ≠0)经过C 、D 、B 三点.(1)求抛物线的解析式;(2)若抛物线的顶点为P ,求△PAB 的面积;(3)抛物线上是否存在点M ,使△MBC 的面积等于△PAB 的面积若存在,请求出点M图2思路分析:根据题目所给信息,函数关系式和△PAB 的面积很容易求出。

二次函数中的最值及面积问题

二次函数中的最值及面积问题

二次函数中的最值及面积问题一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可二、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长三、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)利用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、不规则图形面积最值问题1)分割。

《二次函数专题提优》:二次函数有关面积问题

《二次函数专题提优》:二次函数有关面积问题

《二次函数提优专题》:二次函数有关面积问题2、如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.(1)、求抛物线的解析式.(2)、设点P为抛物线对称轴上的一个动点.①、如图①,若点P为抛物线的顶点,求△PBC的面积.②、是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.(二)、三角形面积最值:3、如图,已知抛物线c bx x y ++=2-与x 轴交于A(−1,0)、B(3,0)两点,与y 轴交于点C ,抛物线的对称轴与抛物线交于点P 、与直线BC 相交于点M ,连接PB 。

(1)、求该抛物线的解析式;(2)、在(1)中位于第一象限内的抛物线上是否存在点D ,使得BCD △的面积最大?若存在,求出D 点坐标及BCD △面积的最大值;若不存在,请说明理由。

(3)、在(1)中的抛物线上是否存在点Q ,使得QMB △与PMB △的面积相等?若存在,直接写出满足条件的所有点Q 的坐标;若不存在,请说明理由。

(三)、有关三角形面积倍数关系:4、如图,已知:m 、n 是方程x 2-6x+5=0的两个实数根,且m<n ,•抛物线y=-x 2+bx+c 的图象经过点A (m ,0),B (0,n ). (1)、求这个抛物线的解析式;(2)、设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和△BCD 的面积; (3)、P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标。

5、如图,在平面直角坐标系中,二次函数5-x 6-x y 2+=的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l 。

二次函数与面积最值定值问题(六大类型)-2023年中考数学压轴题(解析版)

二次函数与面积最值定值问题(六大类型)-2023年中考数学压轴题(解析版)

二次函数与面积最值定值问题(六大类型)1.考向分析题型一:二次函数与三角形面积最值问题1如图,已知抛物线y =12x 2+bx 过点A (-4,0)、顶点为B ,一次函数y =12x +2的图象交y 轴于M ,对称轴与x 轴交于点H .(1)求抛物线的表达式;(2)已知P 是抛物线上一动点,点M 关于AP 的对称点为N .①若点N 恰好落在抛物线的对称轴上,求点N 的坐标;②请直接写出△MHN 面积的最大值.【解析】解:(1)∵抛物线y =12x 2+bx 过点A (-4,0),∴12×(-4)2-4b =0,解得:b =2,∴该抛物线的表达式为y =12x 2+2x ;(2)①∵y =12x 2+2x ,∴抛物线对称轴为直线x =-22×12=-2,∵对称轴与x 轴交于点H ,∴H (-2,0),∵A (-4,0),∴AH =2,∵直线y =12x +2交y 轴于M ,∴M (0,2),∴AM 2=OA 2+OM 2=42+22=20,设N (-2,n ),则NH =|n |,如图1、图2,∵M 、N 关于直线AP 对称,∴AN =AM ,即AN 2=AM 2,∴22+n 2=20,∴n =±4,∴点N 的坐标为(-2,-4)或(-2,4);②如图,连接MH ,以点A 为圆心,AM 为半径作⊙A ,过点A 作AN ⊥MH 于点F ,交⊙A 于点N ,则AN =AM ,在Rt △AMO 中,OM =2,OA =4,∴AM =OA 2+OM 2=42+22=25,∴AN =25,∵OH =OM =2,∠HOM =90°,∴△HOM 是等腰直角三角形,∠MHO =45°,MH =22,∴∠AHF =∠MHO =45°,在Rt △AFH 中,AH =OA -OH =4-2=2,∴AF =AH ×sin45°=2×22=2,∴NF =AN +AF =25+2,∴S △MHN =12MH •NF =12×22×(25+2)=210+2,故△MHN 面积的最大值为210+2.题型二:二次函数与三角形面积等积问题2如图,等腰直角三角形OAB 的直角顶点O 在坐标原点,直角边OA ,OB 分别在y 轴和x 轴上,点C 的坐标为(3,4),且AC 平行于x 轴.(1)求直线AB 的解析式;(2)求过B ,C 两点的抛物线y =-x 2+bx +c 的解析式;(3)抛物线y =-x 2+bx +c 与x 轴的另一个交点为D ,试判定OC 与BD 的大小关系;(4)若点M 是抛物线上的动点,当△ABM 的面积与△ABC 的面积相等时,求点M 的坐标.【解析】解:(1)∵点C 的坐标为(3,4),且AC 平行于x 轴,∴点A 的坐标为(0,4)且OA =4,∵△OAB 是等腰直角三角形,∠AOB =90°,∴OB =OA =4,∵点B 的坐标为(4,0),设直线AB的解析式为:y=mx+n,由题意得4m+n=0n=4,解得:m=-1n=4,∴直线AB的解析式为:y=-x+4;(2)∵抛物线y=-x2+bx+c过B,C两点,∴-16+4b+c=0-9+3b+c=4,解得:b=3c=4,∴抛物线的解析式为:y=-x2+3x+4;(3)BD=OC;理由:∵抛物线的解析式为y=-x2+3x+4=-x-322+52,∴抛物线的对称轴直线为x=32,∵点B的坐标为(4,0),点B与点D关于对称轴对称,∴点D的坐标为(-1,0),∴BD=4-(-1)=5,∵点C的坐标为(3,4),∴OC=32+42=5,∴BD=OC;(4)∵点C的坐标为(3,4),且AC平行于x轴,∴AC=3,∴S△ABC=12AC•y C=12×3×4=6,当点M在直线AB的上方时,如图所示,过点M作MN∥y轴,交直线AB于点N,设M的坐标为(t,-t2+3t+4),则N的坐标为(t,-t+4),∴MN=-t2+3t+4-(-t+4)=-t2+4t,∴S△AMB=12MN•x B=12×(-t2+4t)×4=-2t2+8t,∵△ABM的面积与△ABC的面积相等,∴-2t2+8t=6,解得:t=1或t=3(舍,该点为点C),此时M的坐标为(1,6)或(3,4);当点M在直线AB的下方时,如图所示,过点M作MN∥x轴,交直线AB于点N,设M的坐标为(t,-t2+3t+4),则N的坐标为(t2-3t,-t2+3t+4),∴MN=t2-3t-t=t2-4t,∴S△ABM=12MN•y A=12×(t2-4t)×4=2t2-8t,∵△ABM的面积与△ABC的面积相等,∴2t2-8t=6,解得:t=2±7,此时M的坐标为(2+7,-1-7)或(2-7,7-1);综上可得,M的坐标为(2+7,-1-7)或(2-7,7-1)或(1,6).题型三:二次函数与四边形面积最值问题3如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.已知A(3,0),该抛物线的对称轴为直线x=1.(1)求该抛物线的函数表达式;(2)求点B、C的坐标;(3)将线段BC平移,使得平移后线段的一个端点在这条抛物线上,另一个端点在x轴上,若将点B、C平移后的对应点分别记为点D、E,求以B、C、D、E为顶点的四边形面积的最大值.【解析】解:(1)∵抛物线对称轴为直线x=-b-2=1,∴b=2,∴y=-x2+2x+c,将(3,0)代入y=-x2+2x+c得0=-9+6+c,解得c=3,∴y=-x2+2x+3.(2)∵抛物线对称轴为直线x=1,点A坐标为(3,0),∴由抛物线对称性可得点B坐标为(-1,0),将x=0代入y=-x2+2x+3得y=3,∴点C坐标为(0,3).(3)如图,可得图2中四边形面积最大,∵BC∥DE且BC=DE,图1图2图3∵y C-y B=y E-y D,∴y D=-3,将y=-3代入y=-x2+2x+3得-3=-x2+2x+3,解得x1=1-7(舍),x2=1+7,∴点E横坐标为1+7+1=2+7,∴BE=2+7+1=3+7,∴S四边形BDEC =12BE•y C+12BE•|y D|=12×(3+7)×3+12×(3+7)×3=9+37.题型四:二次函数与面积分割问题4已知抛物线y=x2+4mx+4m2-4m-3的顶点C在定直线l上.(1)求C点的坐标(用含m的式子表示);(2)求证:不论m为何值,抛物线与定直线l的两交点间的距离d恒为定值;(3)当抛物线的顶点C在y轴上,且与x轴交于A,B两点(点A在点B的左侧)时,是否存在直线n满足以下三个条件:①n与抛物线相交于点M,N(点M在点N的左侧),且与线段AC交于点P;②∠APN=2∠ACO;③n将△ABC的面积分成1:2的两部分.若存在,求出直线n的解析式;若不存在,请说明理由.【解析】(1)解:∵y=x2+4mx+4m2-4m-3=(x+2m)2-4m-3,∴顶点C(-2m,-4m-3);(2)证明:∵C(-2m,-4m-3),∴C点在直线y=2x-3上,∴定直线l为y=2x-3,联立方程组y=2x-3y=x2+4mx+4m2-4m-3 ,解得x=-2my=-4m-3或x=2-2my=-4m+1,∴两个交点分别为(-2m,-4m-3),(2-2m,-4m+1),∴d=(2-2m+2m)2+(-4m+1+4m+3)2=25,∴抛物线与定直线l的两交点间的距离d恒为定值;(3)解:存在直线n,理由如下:∵顶点C在y轴上,∴m=0,∴y=x2-3,令y=0,则x2-3=0,解得x=3或x=-3,∴A(-3,0),B(3,0),∴AB=23,∵抛物线关于y轴对称,∴∠ACO=∠BCO,∵∠APN=2∠ACO,∴∠APN=∠ACB,∴MN ∥BC ,设直线BC 的解析式为y =kx +b ,∴b =-33k +b =0 ,解得k =3b =-3 ,∴y =3x -3,设直线MN 的解析式为y =3x +t ,直线MN 与x 轴的交点为H ,∵直线MN 将△ABC 的面积分成1:2,∴S △PAH =13S △ACB 或S △PAH =23S △ACB ,∴AH AB2=13或AH AB 2=23,∴AH 23=33或AH 23=63,解得AH =2或AH =22,∴H (2-3,0)或(22-3,0),∴直线MN 的解析式为y =3x +3-23或y =3x +3-26.题型五:二次函数与面积比问题5如图,在平面直角坐标系xOy 中,二次函数y =23x 2+bx -2的图象与x 轴交于点A (3,0),B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b = -43 ;(2)将△AOC 平移到△EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若∠CPT +∠DAC =180°,求△AHT 与△CPT 的面积之比.【解析】解:(1)把A (3,0)代入y =23x 2+bx -2,得23×9+3b -2=0,解得b =-43;故答案为:-43;(2)如图所示:由(1)得y =23x 2-43x -2,令x =0,y =-2,∴C (0,-2),∵点D 与点C 关于x 轴对称,∴D (0,2),设直线AD :y =kx +2,把A (3,0)代入y =kx +2,得3k +2=0,解得k =-23,∴直线AD 解析式:y =-23x +2,∵将△AOC 平移到△EFG ,∴OA =EF =3,FG =OC =2,设E m ,23m 2-43m -2 ,则G m -3,-23(m -3)+2 ,F m -3,-23(m -3)+4 ,∵EF ∥x 轴,∴23m 2-43m -2=-23(m -3)2+4,解得m =-3或m =4,∴E (-3,8)或4,103;(3)如图所示:过C 作CK ⊥AD ,CQ ⊥HP ,∵OD =2,OA =3∴AD =13,∵CK ⊥AD∴CD •AO =AD •CK ,∴CK =121313,DK =81313,AK =51313,∴tan ∠CAK =CK AK=125,∵CQ ⊥HP ,∴∠CPQ +∠CPT =180°,∵∠CPT +∠DAC =180°,∴∠CPQ =∠CAK ,∴tan ∠CPQ =tan ∠CAK =125,∴CQ PQ =125,设P n ,23n 2-43n -2 ,∴PQ =23n 2-43n ,CQ =n ,∴n 23n 2-43n =125,解得n =218,∴P 218,-2932,∴CQ =218,AH =3-218=38,∵tan ∠OAC =TH AH =OC OA =23,∴TH =23AH =23×38=14,∴TP =2132,∴S △ATH S △CPT =12×AH ×TH 12×TP ×CQ =8147,即△AHT 与△CPT 的面积之比为8:147.题型六:函数关系与面积问题6平面直角坐标系中,已知抛物线y =-x 2+(1+m )x -m (m 为常数,m ≠±1)与轴交于定点A 及另一点B ,与y 轴交于点C .(1)当点(2,2)在抛物线上时,求抛物线解析式及点A ,B ,C 的坐标;(2)如图1,在(1)的条件下,D 为抛物线x 轴上方一点,连接BD ,若∠DBA +∠ACB =90°,求点D 的坐标;(3)若点P 是抛物线的顶点,令△ACP 的面积为S ,①直接写出S 关于m 的解析式及m 的取值范围;②当58≤S ≤158时,直接写出m 的取值范围.【解析】(1)将点(2,2)代入y =-x 2+(1+m )x -m ,求出m 即可确定函数的解析式;(2)过D 点作DE ⊥x 轴交于E ,过A 点作AF ⊥BC 交于F ,由题意可知∠ACB =∠BDE ,求出tan ∠ACF =tan ∠BDE =BE DE=35,设D (t ,-t 2+5t -4)(0<t <4),求出t 的值即可求D 点坐标;(3)①求出P 1+m 2,(1-m )24,C (0,-m ),定点A (1,0),B (m ,0),AC 的解析式为y =kx +b ,y =mx -m ,再画出函数图象结合函数图象分类讨即可;②对①中求出的解析式分别进行求解即可.【解答】解:(1)将点(2,2)代入y =-x 2+(1+m )x -m ,∴m =4,∴y =-x 2+5x -4,令x =0,则y =-4,∴C (0,-4),令y =0,则-x 2+5x -4=0,∴x =1或x =4,∴A (1,0),B (4,0);(2)如图1,过D 点作DE ⊥x 轴交于E ,过A 点作AF ⊥BC 交于F ,∵∠DBA +∠ACB =90°,∠DBA +∠BDE =90°,∴∠ACB =∠BDE ,∵B (4,0),C (0,-4),∴OB =OC =4,∴∠OBC =45°,∵BA =3,∴AF =322,∵A (1,0),∴AC =17,∴CF =522,∴tan ∠ACF =AF CF =35,∴tan ∠BDE =BE DE=35,设D (t ,-t 2+5t -4)(0<t <4),∴4-t -t 2+5t -4=35,解得x =4(舍)或x =83,∴D 83,209;(3)①∵y =-x 2+(1+m )x -m =-x -1+m 2 2+(1-m )24,∴P 1+m 2,(1-m )24,令x =0,则y =-m ,∴C (0,-m ),令y =0,则-x 2+(1+m )x -m =0,解得x =1或x =m ,∴定点A (1,0),B (m ,0),设AC 的解析式为y =kx +b ,∴k +b =0b =-m,解得k =m b =-m ,∴y =mx -m ,如图2,当m <-1时,S =S 梯形PNOC +S △OCA -S △PAN =12×(1-m )24-m×1+m 2+12×1×(-m )-12×1-1+m 2 ×(1-m )24=18m 2-18;如图3,当-1<m <0时,S =S 梯形PNOC +S △PNA -S △AOC =12×(1-m )24-m ×1+m 2+12×1-1+m 2 ×(1-m )24-12×1×(-m )=-18m 2+18;如图4,当0≤m <1时,设对称轴与直线AC 交于点M ,∴M 1+m 2,m 2-m 2,∴PM =-14m 2+14,∴S =12×-14m 2+14 ×1=-18m 2+18;如图5,当m >1时,过点C 作CM ⊥PN 交于点M ,∴M 1+m 2,-m ,∴S =S 矩形OCMN +S △APN -S △OCA -S △CMP =1+m 2×m +12×1+m 2-1 ×(1-m )24-12×1×m -12×1+m 2×(1-m )24+m =18m 2-18;综上所述:当m <-1时,S =18m 2-18;当-1<m <1,S =-18m 2+18;当m >1时,S =18m 2-18;②当m <-1时,58≤18m 2-18≤158,解得-4≤m ≤-6;当-1<m <0,58≤-18m 2+18≤158,此时m 无解;当0≤m <1时,58≤-18m 2+18≤158,此时m 无解;当m >1时,58≤18m 2-18≤158,解得6≤m ≤4;综上所述:当58≤S ≤158时,-4≤m ≤-6或6≤m ≤4.2.压轴题速练1一、解答题1(2023春·全国·九年级专题练习)已知:如图,抛物线y =ax 2+bx +c (a ≠0)与坐标轴分别交于点A (0,6),B (6,0),C (-2,0),点P 是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值,面积最大值是多少?【答案】(1)y =-12x 2+2x +6(2)当P 3,152 时,△PAB 的面积有最大值,最大值是272.【解析】(1)由题意得:36a +6b +c =04a -2b +c =0c =6,解得:a =-12b =2c =6,∴抛物线的表达式为:y =-12x 2+2x +6;(2)∵A (0,6)∴直线AB 的表达式为:y =kx +6,将点B 的坐标代入上式得:0=6k +6,解得:k =-1,∴直线AB 的表达式为:y =-x +6,点P 的横坐标为m ,则P m ,-12m 2+2m +6 ,过点P 作x 轴的垂线,交线段AB 于点D ,则D (m ,-m +6),∴S =12×OB ×PD =12×6×-12m 2+2m +6+m -6 =-32(m -3)2+272,∴当m =3时,S 的值取最大,此时P 3,152;2(2023春·全国·九年级专题练习)如图,抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A (-1,0),B (6,0),与y 轴交于点C ,点P 为第一象限内抛物线上一动点,过点P 作x 轴的垂线,交直线BC 于点D ,交x 轴于点E ,连接 PB .(1)求该抛物线的解析式;(2)当△PBD 与△BDE 的面积之比为1:2时,求点P 的坐标;【答案】【答案】(1)y =-x 2+5x +6(2)P 12,334【解析】(1)∵抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A -1,0 ,B 6,0∴a -b +6=036a +6b +6=0,∴a =-1b =5 ,∴抛物线的解析式为y =-x 2+5x +6;(2)∵抛物线y =-x 2+5x +6过点C ,∴C (0,6),设直线BC 的解析式为 y =kx +n ,∴6k +n =0n =6,∴k =-1n =6 ,∴直线BC 的解析式为y =-x +6,设P m ,-m 2+5m +6 ,则D m ,-m +6 ,∴PE =-m 2+5m +6,DE =-m +6,∵△PBD 与△BDE 的面积之比为1:2,∴PD :DE =1:2,∴PE :DE =3:2,∴3-m +6 =2-m 2+5m +6 ,解得m 1=12,m 2=6(舍去),∴P 12,334;3(2023春·全国·九年级专题练习)如图,抛物线y =-x 2+bx +c 过点A 、B ,抛物线的对称轴交x 轴于点D ,直线y =-x +3与x 轴交于点B ,与y 轴交于点C ,且OA =13OB .(1)求抛物线的解析式;(2)点M t ,0 是x 轴上的一个动点,点N 是抛物线对称轴上的一个动点,当DN =2t ,△MNB 的面积为154时,求出点M 与点N 的坐标;【答案】【答案】(1)y =-x 2+2x +3(2)3+262,0 ,1,3+26 【解析】(1)解:对于直线y =-x +3,令y =0,即-x +3=0,解得:x =3,令x =0,得y =3,∴B 3,0 ,C 0,3 ,∵A 为x 轴负半轴上一点,且OA =13OB ,∴A -1,0 .将点A 、B 的坐标分别代入y =-x 2+bx +c 中,得-1-b +c =0-9+3b +c =0 ,解得b =2c =3 ,∴抛物线的解析式为y =-x 2+2x +3;(2)解:由(1)知:A -1,0 ,B 3,0 ,抛物线解析式为y =-x 2+2x +3,∴对称轴x =-b 2a =-22×-1=1,∴D 点坐标为D 1,0 ,∵M t ,0∴BM =3-t ,∵S △MNB =12×BM ×DN =154,即12×3-t ×2t =154,当t <3时,12×3-t ×2t =154,化简得:4t 2-12t +15=0,∵Δ=b 2-4ac <0,∴方程无解;当t >3时,12×t -3 ×2t =154,解得t1=3+262,t2=3-262(舍),∴DN=2t=3+26,∴点M的坐标为3+262,0,点N的坐标为1,3+262;4(2023·广西贵港·统考一模)在平面直角坐标系中,已知抛物线y=ax2+bx经过A(4,0),B(1,3)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的表达式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CPB,△BCO的面积分别为S1,S2,判断S1S2是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【答案】【答案】(1)y=-x2+4x(2)P(2,4)或(3,3)(3)见解析【解析】(1)解:将A(4,0),B(1,3)代入y=ax2+bx得16a+4b=0a+b=3,解得:a=-1b=4,∴抛物线的解析式为:y=-x2+4x;(2)解:设直线AB的解析式为:y=kx+t,将A4,0,B1,3代入y=kx+t得4k+t=0 k+t=3 ,解得:k=-1 t=4,∴直线AB的解析式为:y=-x+4,∵A4,0,B1,3,∴S△OAB=12×4×3=6,∴S△OAB=2S△PAB=6,即S△PAB=3,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△PAB=S△PNB+S△PNA=12PN×BE+12PN×AM=32PN=3,∴PN=2,设点P 的横坐标为m ,∴P (m ,-m 2+4m )(1<m <4),N (m ,-m +4),∴PN =-m 2+4m -(-m +4)=2,解得:m =2或m =3;∴P (2,4)或(3,3);(3)解:S 1S 2存在最大值.理由如下:∵PD ∥OB ,∴∠DPC =∠BOC ,∠PDC =∠OBC ,∴△DPC ∽△BOC ,∴CP :CO =CD :CB =PD :OB ,∵S 1S 2=CD CB =PD OB,设直线AB 交y 轴于点F ,则F (0,4),过点P 作PH ⊥x 轴,垂足为H ,PH 交AB 于点G ,如图,∵∠PDC =∠OBC ,∴∠PDG =∠OBF ,∵PG ∥OF ,∴∠PGD =∠OFB ,∴PD :OB =PG :OF ,∴△PDG ∽△OBF ,∴PD :OB =PG :OF ,设P (n ,-n 2+4n )1<n <4 由(2)可知,PG =-n 2+4n --n +4 =-n 2+5n -4,∴S 1S 2=PD BO =PG OF=14PG =-14n -52 2+916,∵1<n <4,∴当n =52时,S 1S 2的最大值为916.5(2023·新疆克孜勒苏·统考一模)如图所示,抛物线y =-x 2+2x +3的图像与x 轴交于A ,B 两点,与y 轴交于点C ,连结BC .(1)求抛物线顶点D 的坐标;(2)在直线BC 上方的抛物线上有一点M ,使得四边形ABMC 的面积最大,求点M 的坐标及四边形ABMC 面积的最大值;(3)点E 在抛物线上,当∠EBC =∠ACO 时,直接写出点E 的坐标.【答案】【答案】(1)(1,4)(2)当点M 32,154 时,四边形ABMC 面积最大,最大值为758(3)(1,4)或-12,74【解析】(1)∵y =-x 2+2x +3=-x -1 2+4.∴抛物线顶点D 的坐标为(1,4);(2)令y =0,则x 2-2x -3=0,解得x 1=-1,x 2=3,∴点A -1,0 ,B 3,0 ,令x =0,则y =-3,∴点C 的坐标为(0,3)∴AB =3--1 =4,OC =3,∴S ΔABC =12AB ⋅OC =6∴△BCM 的面积最大时四边形ABMC 面积最大.设直线BC 的解析式为y =kx +b ,则3k +b =0b =3,∴b =3k =-1 ,∴y =-x +3.设过点M 与y 轴平行的直线交BC 于点N ,M x ,-x 2+2x +3 ,N x ,-x +3 ,则MN =-x 2+2x +3 --x +3 =-x 2+3x ,S △BCM =12-x 2+3x ×3=-12x -32 2+278,∴当x =32时,△BCM 的面积最大,最大值为278,此时,y =-32 2+2×32+3=154,所以,当点M 32,154 时,四边形ABMC 面积最大,最大值为6+278=758(3)①连接CD ,BD ,作DM ⊥OC 于点M .∵C (0,3),D (1,4),∴CM =DM =1,∴△CDM 是等腰直角三角形,∴∠DCE =45°.∵B (3,0),C (0,3),∴△BOC 是等腰直角三角形,∴∠BCO =45°,∴∠BCD =90°,∵BC =32+32=32,CD =12+(-3+4)2=2,∴.tan ∠CBD =232=13,∴∠DBC =∠ACO ,∴点E 与点D 重合,∴点E 的坐标为(1,-4),②作点D 关于BC 的对称点D ,作DN ⊥OC 于点N ,∵∠DMC =∠D NC =90°,∠DCM =D CN ,DC =D C ,∴△DCM ≌△D CN ,∴D N =DM =1,CM =CN =1,∴ON =3-1=2,∴D (-1,2),设直线BD 的解析式为y =mx +n ,,则3m +n =0-m +n =2,解得m =-12n =32,所以,直线BD ′的解析式为y =-12x +32,联立y =-x 2+2x +3y =-12x +32,解得x 1=3y 1=0 (为点B 坐标,舍去),x 2=-12y 2=74,所以,点H 的坐标为-12,74 ,综上所述,点E 的坐标为1,4 或-12,74时,∠EBC =∠ACO .6(2023·广东珠海·统考一模)如图,抛物线与x 轴交于点A -1,0 、B 4,0 ,与y 轴交于点C 0,2 .点D 为抛物线第四象限一动点,连接AC 、BC 、BD 、AD .(1)求抛物线的解析式;(2)当S △BCD =S △ABC 时,求此时点D 的坐标;(3)在第(2)问的条件下,延长线段AC 、DB 交于点E .请判断△ADE 的形状,并说明理由.【答案】(1)y =-x 2+32x +2(2)D 5,-3(3)△ADE 是等腰直角三角形,理由见详解【解析】(1)设抛物线的解析式为y =ax 2+bx +c ,∵抛物线与x 轴交于点A -1,0 、B 4,0 ,与y 轴交于点C 0,2 ,∴a -b +c =016a +4b +c =0c =2,解得:a =-12b =32c =2 ,∴抛物线的解析式为y =-x 2+32x +2;(2)连接OD ,,∵A -1,0 ,B 4,0 ,C 0,2 ,∴AB =5,OC =2,∴S △ABC =12AB ⋅OC =5,设D m ,-12m 2+32m +2 m >4 ,∵S △BCD =S △OBD +S △OBC -S △OCD =S △ABC ,∴12×4×12m 2-32m -2 +12×4×2-12×2×m =5,整理,得m 2-4m -5=0,解得:m 1=5,m 2=-1(舍去),∴D 5,-3 ;(3)△ADE 是等腰直角三角形,理由如下:设直线AC 的解析式为y =k 1x +b 1,把A -1,0 ,C 0,2 代入,得-k 1+b 1=0b 1=2 ,解得:k 1=2b 1=2∴y =2x +2,设直线BD 的解析式为y =k 2x +b 2,把B 4,0 ,D 5,-3 代入,得4k 2+b 2=05k 2+b 2=-3 ,解得:k 2=-3b 2=12∴y =-3x +12,联立y =2x +2和y =-3x +12得,y =2x +2y =-3x +12 ,解得:x =2y =6 ,∴E 2,6 ,又∵A -1,0 ,D 5,-3 ,∴AE =-1-2 2+0-6 2=35,AD =-1-5 2+0+3 2=35,DE =5-2 2+-3-6 2=310,∴AE =AD ,AE 2+AD 2=DE 2,∴△ADE 是等腰直角三角形.7(2023春·上海·八年级专题练习)在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设PA =x ,S △PCE =y .(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出PA 的长;如果不能,请简单说明理由.【答案】(1)证明见解析(2)y =12x 2-32x +8,0≤x ≤22 (3)能使△PEC 为等腰三角形,PA =0或PA =4【解析】(1)证明:延长FP 交AB 于点G ,∵正方形ABCD 中,PF ⊥CD 于点F ,∴四边形AGFD 是矩形,∴DF =AG ,∠AGF =90°,∵正方形ABCD ,∴∠BAC =45°,∵∠AGF =90°,∴AG =GP ,∴DF =GP ,同理可得:CF =PF =BG ,∵PE ⊥PB ,∠AGF =90°,∴∠GBP +∠GPB =∠FPE +∠GPB =90°,∴∠GBP =∠FPE ,在△GBP 和△FPE 中,∵∠GBP =∠FPEPF =BG ∠BGP =∠PFE,∴△GBP ≌△FPE (ASA ),∴GP =EF ,∵DF =GP ,∴DF =EF ;(2)∵PA =x ,∴AG =GP =22x ,DF =EF =22x ,则DE =2x ,∴CE =4-2x ,∵PF =4-22x ,∴y =124-2x 4-22x =12x 2-32x +80≤x ≤22 ;(3)点P 在运动过程中能使△PEC 为等腰三角形;当点E 在CD 边上时,∵∠CEP ≥90°,若△PEC 为等腰三角形,只能是∠CPE =∠ECP =45°,则PE ⊥CE ,∵PE ⊥PB ,∴PB ∥CD ,∴PB ∥AB ,于是点P 在AB 上,又∵点P 在AC 上,∴A 与P 重合,此时PA =0;当点E 在DC 延长线上时,如图,若△PEC 为等腰三角形,只能是PC =CE ,设PA =x ,则PC =42-x ,EF =DF =AG =GP =22x ,PF =CF =BG =4-22x ,∴CE =EF -CF =22x -4-22x=2x -4,∵PC =CE ,∴42-x =2x -4,∴x =4,∴即PA =4;综上所述,当PA =0或PA =4时,△PEC 为等腰三角形.【点睛】本题主要考查正方形的性质的综合运用,等腰三角形的性质和判定,全等三角形的判定和性质,三角形的面积等知识,综合运用这些性质进行推理,同时注意对等腰的分类讨论是解题的关键.8(2023春·江苏无锡·九年级统考期中)在平面直角坐标系中xOy 中,二次函数y =ax 2+bx +2a <0 的图像与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C .(1)求二次函数的表达式;(2)若点P 是二次函数图像上位于线段BC 上方的一个动点.①如图,连接AC ,CP ,AP ,AP 交BC 于点E ,过点P 作AC 的平行线交BC 于点Q ,将△PEQ 与△PCE的面积比S △PEQ S △PCE 记为a ,将△PCE 与△ACE 的面积比S △PCE S △ACE记为b ,当a +22b 有最大值时,求点P 的坐标;②已知点N 是y 轴上一点,若点N 、P 关于直线AC 对称,求CN 的长.【答案】(1)y =-x 2+x +2(2)①当点P 的坐标为1,1 时,a +22b 有最大值;②CN =516【解析】(1)解:将A (-1,0)、B (2,0),代入y =ax 2+bx +2中可得:a -b +2=04a +2b +2=0 ,解得:a =-1b =1 ,∴二次函数的表达式为:y =-x 2+x +2;(2)①当x =0时,y =2,则C 0,2 ,设BC 的解析式为:y =kx +b ,将B (2,0),C 0,2 ,代入可得:2k +b =0b =2 ,解得:k =-1b =2 ,∴BC 的解析式为:y =-x +2,由题意可知,OB =OC =2,则△BOC 是等腰直角三角形,∴∠BCO =45°,∵A (-1,0),则OA =1,∴AC =OA 2+OC 2=5,∴sin ∠ACO =55,cos ∠ACO =255,过点P 作PN ∥y 轴,QM ⊥PN ,设AP 与y 轴交于点D ,则∠ADO =∠APN ,∠QNM =∠BCO =45°,即:△MQN 为等腰直角三角形,∴QM =MN ,∵AC ∥PQ ,∴∠CAP =∠APQ ,△AEC ∽△PEQ ,则EQ CE =EP AE =PQ AC,又∵∠ADO =∠ACP +∠ACO ,∠APN =∠APQ +∠QPM ,∴∠ACO =∠QPM ,则:PM =PQ ⋅cos ∠QPN =PQ ⋅cos ∠ACO =255PQ ,QM =MN =PQ ⋅sin ∠QPN =PQ ⋅sin ∠ACO =55PQ ,则PN =PM +MN =355PQ ,即:PQ =53PN ,∵S △PEQ S △PCE =EQ CE ,S △PCE S △ACE =EP AE ,EQ CE =EP AE =PQ AC,∴a =b =EQ CE =EP AE =PQ AC =PQ 5=13PN ,∴a +22b =1+22 ×13PN ,则当PN 取最大值时,a +22b 有最大值,设P t ,-t 2+t +2 ,0<t <2,则N t ,-t +2 ,∴PN =-t 2+t +2 --t +2 =-t 2+2t =-t -1 2+1,即:当t =1时,PN 取最大值,此时点P 的纵坐标为1,即:当点P 的坐标为1,1 时,a +22b 有最大值;②由题意可知,点N 在点C 下方时,点N 关于直线AC 的对称点在AC 的左侧,不符合题意,点N 在点C 上方时,连接PN ,交AC 于H ,作PF ⊥y 轴,由对称可知,NH =PH =12PN ,CH ⊥PN ,则∠NHC =∠PFN =90°,∴∠NCH +∠CNP =∠CNP +∠FPN ,∴∠NCH =∠FPN∵∠ACO =∠NCH ,sin ∠ACO =55,cos ∠ACO =255,∴∠ACO =∠NCH =∠FPN ,设CN =m ,则NH =CN ⋅sin ∠NCH =55m ,∴PN =2NH =255m ,则PF =PN ⋅cos ∠FPN =45m ,NF =PN ⋅sin ∠FPN =25m ∴CF =CN -NF =35m ,则OF =OC +CF =2+35m ,∴点P 的坐标为:45m ,2+35m ,0<45m <2,即0<m <52,∵点P 在二次函数图象上,∴-45m 2+45m +2=2+35m ,解得:m 1=0(舍去),m 2=516,∴CN =516.9(2023·黑龙江哈尔滨·统考一模)如图,在平面直角坐标系中,直线BC 的解析式为y =-x +6,直线BC 交x 轴和y 轴分别于点B 和点C ,抛物线y =-29x 2+bx +c 交x 轴于点A 和点B ,交y 轴于点C .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的点,连接PB 、PC ,设点P 的横坐标为t ,△PBC 的面积为S .求S 与t 的函数关系式(不要求写出t 的取值范围);(3)在(2)的条件下,点D 在线段OB 上,连接PD 、CD ,∠PDC =45°,点F 在线段BC 上,EF ⊥BC ,FE 的延长线交x 轴于点G ,交PD 于点E ,连接CE ,若∠GED +∠DCE =180°,DC >DE ,S △CDE =15,求点P 的横出标.【答案】(1)y =-29x 2+13x +6(2)S =23t 2-4t (3)3-3112【解析】(1)解:直线y=-x+6交x轴和y轴于点B和点C 令x=0时,y=6,即C0,6,令y=0时,x=6,即B6,0,∵点B、C在抛物线上,∴代入解析式可得:c=6-29×62+13×6+6=0,解得:c=6b=-13,∴解析式为y=-29x2+13x+6;(2)过点P作x轴的垂线交BC延长线于点M,交x轴于点N,过点C作CR⊥MN于R ∵P在抛物线上,P横坐标为t∴P t,-29t2+13t+6,∵M在直线BC上,∴M t,-t+6,∴MP=-t+6--29t2+13t+6=29t2-43t,S△PBC=S△MPB-S△MPC=12MP⋅OB=1229t2-43t×6=23t2-4t,即S=23t2-4t;(3)由(1)得,OB=OC=6,∴∠OBC=∠OCB=45°又EF⊥BC交x轴于点G,∴∠GFB=90°∴∠FGB=90°-∠FBG=45°即∠FGB=∠FBG=45°∴FG=FB又∠PDC=45°设∠PDA=α,∴∠CDA=45°+α=∠CBD+∠BCD=45°+∠BCD∴∠BCD=α=∠PDA又∠GED+∠DCE=180°(已知)∠GED+∠FED=180°(平角定义)∴∠DCE=∠FED,又∠FED=∠FGE+∠PDG=45°+a∴∠FED=∠CDA,∴∠DCE=∠CDA,过点D作DR⊥CE于R,如图所示∴在Rt△CRD中,∠CDR=90°-∠RCD=45°-α,∴∠RDE=∠CDE-∠CDR=α,,∴∠RDE=∠EDA=α,∵∠CRD=∠DOC=90°,∠DCE=∠CDA,CD=CD,∴△RCD≌△ODC(AAS),∴RD=CO=6,CR=OD,∠CDR=∠DCO,又∵S△DCE=15,∴12CE×DR=15∴CE=5作EM⊥x轴于M,CN⊥EM于N,DT⊥CN于T,如图所示∵∠RDE=∠EDA,∠ERD=∠EMD=90°,DE=DE,∴△RED ≌△MED (AAS ),∴RE =EM ,RD =MD ,∵EM ⊥x ,CN ⊥EM ,DT ⊥CN ,∴四边形NTDM 为矩形,∴∠MDT =90°,∴∠CDT =∠MDT -∠CDE -∠EDA =45°-α=∠CDR ,∴△DCR ≌△DCT (AAS ),∴DR =DT ,∴DM =DT ,∴四边形NMDT 是正方形∴DM =MN =NT =DT =OC =6,设EM =ER =m ,则CR =5-m =CT ,如图所示:∴NE =6-m ,NC =NT -TC =m +1在Rt △NEC 中,6-m 2+m +1 2=52解得:m 1=2,m 2=3,∵CD >DE ,∴m <5-m ,即m <2.5,∴m =3不符合题意,应舍去;当m =2时,CT =OD =3=MO ,∴E -3,2 ,又点D 3,0 ,设直线ED 的解析式为y =kx +b ,则-3k +b =23k +b =0 ,解得:k =-13b =1 ,∴直线ED 的解析式为:y =-13x +1,y =-13x +1y =-29x 2+13x +6 ,∴x =3-3112或3+3112(舍),∴P 的横坐标是3-311210(2023春·江苏宿迁·九年级统考阶段练习)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c a <0 与x 轴交于A -2,0 、B 4,0 两点,与y 轴交于点C ,且OC =2OA .(1)试求抛物线的解析式;(2)直线y =kx +1k >0 与y 轴交于点D ,与抛物线在第一象限交于点P ,与直线BC 交于点M ,记m =S △CPM S △CDM,试求m 的最大值及此时点P 的坐标;(3)在(2)的条件下,m 取最大值时,点Q 是x 轴上的一个动点,点N 是坐标平面内的一点,是否存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形?请直接写出满足条件的N 点的坐标.【答案】(1)y =-12x 2+x +4(2)m 取得最大值23,此时点P 的坐标为2,4 (3)存在,满足条件的N 的坐标为72,3 或6,-3 【解析】(1)解:∵A -2,0 ,∴OA =2,∵OC =2OA ,∴OC =4,∴C 0,4 ,∵抛物线y =ax 2+bx +c 经过点A -2,0 ,B 4,0 ,C 0,4 ,∴4a -2b +c =016a +4b +c =0c =4,解得:a =-12b =1c =4,∴该抛物线的解析式为y =-12x 2+x +4;(2)解:如图1,过点P 作PE ∥y 轴交直线BC 于E ,连接CP ,设直线BC 的解析式为y =kx +d ,∵B 4,0 ,C 0,4 ,∴4k +d =0d =4 ,解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,设P t ,-12t 2+t +4 ,则E t ,-t +4 ,∴PE =-12t 2+t +4-(-t +4)=-12t 2+2t ,∵直线y =kx +1k >0 与y 轴交于点D ,∴D 0,1 ,∴CD =4-1=3,∵PE ∥y 轴,即PE ∥CD ,∴△EMP ∽△CMD ,∴PM DM =PE CD =-12t 2+2t 3=-16t 2+23t ,∵m =S △CPM S △CDM =PM DM,∴m =-16t 2+23t =-16t -2 2+23,∵-16<0,∴当t =2时,m 取得最大值23,此时点P 的坐标为2,4 ;(3)解:存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形.①当DP 是矩形的边时,有两种情形,a 、如图2-1中,四边形DQNP 是矩形时,由(2)可知P 2,4 ,代入y =kx +1中,得到k =32,∴直线DP 的解析式为y =32x +1,可得D 0,1 ,E -23,0 ,由△DOE ∽△QOD 可得OD OQ =OE OD,∴OD 2=OE ⋅OQ ,∴1=23⋅OQ ,∴OQ =32,∴Q 32,0 .根据矩形的性质,将点P 向右平移32个单位,向下平移1个单位得到点N ,∴N 2+32,4-1 ,即N 72,3 ,b 、如图2-2中,四边形PDNQ 是矩形时,∵直线PD 的解析式为y =32x +1,PQ ⊥PD ,∴直线PQ 的解析式为y =-23x +163,∴Q 8,0 ,根据矩形的性质可知,将点D 向右平移6个单位,向下平移4个单位得到点N ,∴N 0+6,1-4 ,即N 6,-3 .②当DP 是对角线时,设Q x ,0 ,则QD 2=x 2+1,QP 2=x -2 2+42,PD 2=13,∵Q 是直角顶点,∴QD 2+QP 2=PD 2,∴x 2+1+x -2 2+42=13,整理得x 2-2x +4=0,方程无解,此种情形不存在,综上所述,满足条件的N 的坐标为72,3 或6,-3 .11(2023·山东济宁·统考一模)如图,抛物线y =ax 2+bx +3与坐标轴分别交于A ,B ,C 三点,其中A (-4,0)、B (1,0),M 是第二象限内抛物线上的一动点且横坐标为m ,(1)求抛物线的解析式;(2)连接BM ,交线段AC 于点D ,求S ΔADM S ΔADB的最大值(其中符号S 表示面积);(3)连接CM ,是否存在点M ,使得∠ACO +2∠ACM =90°,若存在,求m 的值,若不存在,请说明理由.【答案】(1)y =-34x 2-94x +3(2)S ΔADM S ΔADB 的最大值为45(3)存在,m =-319【解析】(1)解:(1)分别代入A (-4,0)、B (1,0)到抛物线解析式,解得:y =-34x 2-94x +3;故答案为:y =-34x 2-94x +3.(2)设直线AC 的解析式为y =kx +b ,将点A (-4,0)和点C (0,3)代入y =kx +b 中,-4k +b =0b =3 ,解得:k =34b =3,∴直线AC 的解析式为y =34x +3,如图所示,过点M 作MG ∥x 轴交于AC 于点G ,过点A 作AF ⊥MB 交MB 与点F ,∴G 点的纵坐标与M 点的纵坐标相同,∵M 为抛物线y =-34x 2-94x +3上的一点,设M m ,-34m 2-94m +3 ,又∵G 点在直线AC 上,直线AC 的解析式为y =34x +3,∴G -m 2-3m ,-34m 2-94m +3 ,∴MG =-m 2-4m ,又∵MG ∥AB ,∴MD DB =MG AB =-m 2-4m 5,∵S ΔADM =12MD ⋅AF ,S ΔADB =12DB ⋅AF ,∴S ΔADM S ΔADB =DM DB,∴S ΔADB S ΔADB =DM DB =MG AB=-m 2-4m 5=-m 2+4m 5=-15m +2 2+45,∴S ΔADM S ΔADB 的最大值为45.故答案为:45.(3)过点C 作CP ∥x 轴,延长CM 交x 轴于点T .∴∠MCO =90°,∠MCP =∠MTA ,∵∠ACO +2∠ACM =90°∠ACO +∠PCM +∠MCA =90°,∴∠MCP =∠MCA ,∴∠MCA =∠MTA ,∴△ACT 为等腰三角形,∴AC =AT .在Rt △ACO 中,AC =AO 2+OC 2=42+32=5,∴AC =AT =5,∴OT =AT +OA =5+4=9,∴T (-9,0),设直线CT 的解析式为y =kx +b ,将点T (-9,0)和点C (0,3)代入y =kx +b 中,解得:k =13b =3 ,∴直线CT 的解析式为y =13x +3,∵M 是直线CT 和抛物线y =-34x 2-94x +3的交点,-4<m <0,∴令-34m 2-94m +3=13m +3,∴9m 2+27m +4m =0,∴9m 2+31m =0,∴m 9m +31 =0,解得m =0(舍去)或m =-319故答案为:m =-319.12(2023·海南海口·海口市第九中学校考二模)如图①,已知抛物线L :y =x 2+bx +c 的图象经过点A 0,3 ,B 1,0 .过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,连结OE .(1)求抛物线的关系式并写出点E的坐标;(2)若动点P在x轴下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出此时P点横坐标;(3)若将抛物线向上平移h个单位,且其顶点始终落在△OAE的内部或边上,写出h的取值范围;(4)如图②,F是抛物线的对称轴上l的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3;E(3,3)(2)P的横坐标为52;(3)3≤h≤4;(4)存在,点P的坐标是:5-52,1-52或3-52,5+12或3+52,1-52或5+5 2,5+12【解析】(1)解:∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),∴1+b+c=0c=3,解得b=-4c=3,∴抛物线的解析式为:y=x2-4x+3;∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),(2)如图1,过P作PG∥y轴,交OE于点G,设P(m,m2-4m+3),设直线OE的解析式为y=kx,把点E(3,3)代入得,3=3k,解得k=1,∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S△OPE=S△OPG+S△EPG=12PG×AE=12×3×(-m 2+5m -3)=-32(m 2-5m +3)=-32m -52 2+398,∵-32<0,∴当m =52时,△OPE 面积最大,∴P 的横坐标为52(3)由y =x 2-4x +3=(x -2)2-1,得抛物线l 的对称轴为直线x =2,顶点为(2,-1),抛物线L 向上平移h 个单位长度后顶点为F (2,-1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则N (2,3),如图2,∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤-1+h ≤3,解得3≤h ≤4;(4)设P (m ,m 2-4m +3),分四种情况:①当P 在对称轴的左边,且在x 轴下方时,如图3,过P 作MN ⊥y 轴,交y轴于M ,交l 于N ,∴∠OMP =∠PNF =90°,∵△OPF 是等腰直角三角形,∴OP =PF ,∠OPF =90°,∴∠OPM +∠NPF =∠PFN +∠NPF =90°,∴∠OPM =∠PFN ,∴△OMP ≌△PNF (AAS ),∴OM =PN ,∵P (m ,m 2-4m +3),则-m 2+4m -3=2-m ,解得:m =5+52或5-52,∵m =5+52>2,不合题意,舍去,∴m =5-52,此时m 2-4m +3=1-52,∴P 的坐标为5-52,1-52;②当P 在对称轴的左边,且在x 轴上方时,同理得:2-m =m 2-4m +3,解得:m 1=3+52或m 2=3-52,∵3+52>2,不合题意,舍去,∴m =3-52,此时m 2-4m +3=5+12,∴P 的坐标为3-52,5+12;③当P 在对称轴的右边,且在x 轴下方时,如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN =FM ,则-m 2+4m -3=m -2,解得:m 1=3+52或m 2=3-52,∵3-52<2,不合题意,舍去,∴m =3+52,此时m 2-4m +3=1-52,P 的坐标为3+52,1-52;④当P 在对称轴的右边,且在x 轴上方时,如图5,同理得m 2-4m +3=m -2,解得:m =5+52或5-52(舍),P 的坐标为:5+52,5+12;综上所述,点P 的坐标是:5-52,1-52 或3-52,5+12或3+52,1-52 或5+52,5+12.13(2023·广东珠海·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,其中点B 的坐标为(4,0),与y 轴交于点C (0,2).(1)求抛物线y =-12x 2+bx +c 和直线BC 的函数表达式;(2)点P 是直线BC 上方的抛物线上一个动点,当△PBC 面积最大时,求点P 的坐标;(3)连接B 和(2)中求出点P ,点Q 为抛物线上的一点,直线BP 下方是否存在点Q 使得∠PBQ =45°?若存在,求出点Q 的坐标.【答案】(1)y =-12x 2+32x +2,y =-12x +2(2)(2,3)(3)存在,-35,2325【解析】(1)把B (4,0),C (0,2)代入y =-12x 2+bx +c 得:-8+4b +c =0c =2 ,解得b =32c =2,∴抛物线的函数表达式为y =-12x 2+32x +2;设直线BC 的函数表达式为y =mx +2,把B (4,0)代入得:4m +2=0,解得m =-12,∴直线BC 的函数表达式为y =-12x +2;(2)过P 作PH ∥y 轴交BC 于H ,如图:设P t ,-12t 2+32t +2 ,则H t ,-12t +2 ,∴PH =-12t 2+32t +2--12t +2 =-12t 2+2t ,∴S ΔPBC =12PH ⋅OB =12×-12t 2+2t ×4=-t 2+4t =-(t -2)2+4,∵-1<0,∴当t =2时,S ΔPBC 取最大值4,此时P 的坐标为(2,3);(3)直线BP 下方存在点Q ,使得∠PBQ =45°,理由如下:过P 作PM ⊥PB 交BQ 的延长线于M ,过P 作TK ∥x 轴,过B 作BK ⊥TK 于K ,过M 作MT ⊥TK 于T ,如图:由(2)知P (2,3),∵B (4,0),∴PK =2,BK =3,∵∠PBQ =45°,∴ΔPBM 是等腰直角三角形,∴∠MPB =90°,PB =PM ,∴∠KPB =90°-∠TPM =∠TMP ,∵∠K =∠T =90°,∴ΔBPK ≅ΔPMT (AAS ),∴PK =MT =2,BK =PT =3,∴M (-1,1),由M (-1,1),B (4,0)得直线BM 函数表达式为y =-15x +45,联立y =-15x +45y =-12x 2+32x +2 ,解得x =4y =0 或x =-35y =2325,∴Q 的坐标为-35,2325 .14(2023·广西梧州·统考一模)如图1,在平面直角坐标系中,△ABC 的顶点A -6,0 ,B 0,8 ,C 8,0,点P 为线段AC 上的一动点(点P 与点A ,C 不重合),过点P 作PQ ∥BC 交AB 于点Q ,将△APQ 沿PQ 翻折,点A 的对应点为点D ,连接PD ,QD ,BD .设点P 的坐标为t ,0(1)当点D 恰好落在BC 上时,求点P 的坐标;(2)若△PDQ 与△ABC 重叠部分面积S 与点P 横坐标t 之间的函数解析式为S =a (t +6)2(-6<t ≤1)-67t 2+bt +647(1<t <8) ,其图象如图2所示,求a 、b 的值;(3)是否存在点P ,使得∠BDQ 为直角?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)1,0(2)a =27,b =247(3)67,0【解析】(1)解:∵A -6,0 ,B 0,8 ,C 8,0 ,∴OB =OC =8,∴∠C =45°.∵PQ ∥BC ,∴∠APQ =∠C =45°.由折叠的性质可得AP =PD ,∠APQ =∠DPQ =45°,∴∠DPA =90°.∵B 0,8 ,C 8,0 ,∴直线BC 的解析式为y =-x +8,∵P t ,0 ,∴PA =t --6 =t +6.∵点D 恰好落在BC 上,∴D (t ,-t +8),∴PD =-t +8,∴t +6=-t +8,解得:t =1,∴点P 的坐标为1,0 ;(2)解:∵PQ ∥BC ,∴可设直线PQ 的解析式为y =-x +m ,∴0=-t +m ,解得:t =m ,直线PQ 的解析式为y =-x +t .∵A -6,0 ,B 0,8 ,∴直线AB 的解析式为:y =43x +8. 联立y =-x +t y =43x +8 ,解得:x =3t -247y =4t +247,∴Q 3t -247,4t +247.当-6<t ≤1时,点D 在△ABC 内部,此时重叠部分面积为△PDQ 的面积,由折叠可知S △PDQ =S △APQ =12AP ⋅y Q =12×t +6 ×4t +247=27t +6 2,∴a =27;当1<t <8时,点D 在△ABC 外部,由图象可得当t =4时,S =1287,∴-67×42+4b +647=1287,解得:b =247;(3)解:如图,过点Q 和点B 分别作PD 的垂线,交PD 于点M 和PD 延长线于点N ,∵∠BDQ 为直角,∴∠BDN +∠MDQ =90°∵∠BDN +∠DBN =90°,∴∠MDQ =∠DBN ,∴tan ∠MDQ =tan ∠DBN ,即QM DM =DN BN .∵Q 3t -247,4t +247 ,M t ,4t +247,D t ,t +6 ,N t ,8 ,B 0,8 ,∴QM =t -3t -247=4t +247,DM =t +6-4t +247=3t +187,DN =8-(t +6)=2-t ,BN =t ,∴4t +2473t +187=2-t t,解得:t 1=67,t 2=-6(舍).∴存在,点P 的坐标为67,0 .15(2023·吉林长春·统考一模)在平面直角坐标系中,抛物线y =-x 2+ax +1(a 为常数),经过点P 2,-7 ,点Q 在抛物线上,其横坐标为m ,将此抛物线上P 、Q 两点间的部分(包括P 、Q 两点)记为图像G .。

二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)

二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)

二次函数中求线段,线段和,面积等最值问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。

2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =−++++交x 轴于点()10A −,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.【答案】(1)234y x x =−++;(2)PM 的最大值为(3)点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【分析】(1)将点()10A −,代入()22131y x n x n =−++++,求得1n =,即可得解;(2)求得点B 和C 的坐标,推出45OAB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,得到PEM △是等腰直角三角形,2PM PE =,设()234P m m m −++,,求得PM 关于m 的二次函数,利用二次函数的性质求解即可;(3)作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,求得BC =ACO GCB ∠=∠,利用正切函数的定义求得BG ,证明HBG 是等腰直角三角形,求得()31G −,,再求得直线CG 的解析式,据此求解即可.【详解】(1)解:∵抛物线()22131y x n x n =−++++交x 轴于点()10A −,, ∴()121310n n −−+++=,解得1n =,∴抛物线的函数解析式为234y x x =−++; (2)解:当0x =时,4y =;当0y =时,2340x x −++=,解得4x =或=1x −;∴()40B ,,()04C ,,∴4OA OB ==,∴45OCB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,∴9045PEM BEF OBC ∠=∠=︒−∠=︒,∴PEM △是等腰直角三角形,∴PM =,设直线BC 的解析式为4y kx =+,把()40B ,代入得044k =+,解得1k =−,∴直线BC 的解析式为4y x =−+,设()234P m m m −++,,则()4E m m −+,,∴))223442PM PE m m m m ==−+++−=−+∵0>,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,∵()10A −,,()40B ,,()04C ,,∴1OA =,4OB OC ==,BC =∵45ACQ ∠=︒,45OCB ∠=︒,∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠,即OA BG OC BC =,∴14=∴BG ,∵45OBC ∠=︒,∴45HBG ∠=︒,∴HBG 是等腰直角三角形,∴1BH GH ==,∴413OH =−=,∴()31G −,,同理直线CG 的解析式为543y x =−+, 联立得235434x x x =−+++−,解得0x =或143x =; 当143x =时,514344339y =−⨯+=−, ∴点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)()20A ,,(B ;(2)①EDA ∠的大小不变,理由见解析;②线段BF 的长度存在最大值为12【分析】(1)0y =得20+=,解方程即可求得A 的坐标,把2y =+化为顶点式即可求得点B 的坐标;(2)①在AB 上取点M ,使得BM BE =,连接EM ,证明AED △是等边三角形即可得出结论;②证BDF OAD ∽,利用相似三角形的性质得BD BF OA OD =即22x BF x −=,解得()211122BF x =−−+进而利用二次函数的性质即可得解.【详解】(1)解:∵)221y x =+=−+∴顶点为(B ,令0y =,20+=,解得0x =或2x =,∴()20A ,;(2)解:①EDA ∠的大小不变,理由如下:在AB 上取点M ,使得BM BE =,连接EM ,∵)21y x =−∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,∴AB AC BC ==,60C ∠=︒,∵()20A ,,(B ,()00O ,,1ON =,∴2OA =,OB =2,AB =2=,∴OA OB AB ==,∴OAB 是等边三角形,2OA OB AC BC ====,∴60∠=∠=∠=︒OAB OBA AOB ,∵60MBE ∠=︒,BM BE =,∴BME 是等边三角形,∴60BME ABE ∠∠=︒=,ME BE BM ==,∴180120AME BME ∠∠=︒−=︒,BD EM ∥,∵120DBE ABO ABC ∠∠∠=+=︒,∴DBE AME ∠∠=,∵BD EM ∥,∴18012060FEM BED AEF MEA FEM ∠∠∠∠∠+=︒−︒=︒==+,∴BED MEA ∠∠=,∴BED MEA ≌,∴DE EA =,又60AED ∠=︒,∴AED △是等边三角形,∴60ADE ∠=︒,即ADE ∠的大小不变;②设OD x =,则2BD x =−,∵OAB 是等边三角形,60ADE ∠=︒,∴60DOA FBD ADE ∠∠∠===︒,∵BDA BDF ADE DOA OAD ∠∠∠∠∠=+=+,∴BDF OAD ∠∠=,∴BDF OAD ∽,∴BD BF OA OD =即22x BF x −=, ∴()211122BF x =−−+,∴当1x =时,BF 有最大值为12.【点睛】本题主要考查了二次函数的图像及性质,全等三角形的判定及性质,相似三角形的判定及性质以及等边三角形的判定及性质,题目综合性较强,熟练掌握各知识点是解题的关键.1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)−.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−(2)当32m =时,PD取得最大值为.此时315,24P ⎛⎫− ⎪⎝⎭ (3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c −+=⎧⎨=−⎩,解得:23b c =−⎧⎨=−⎩.则抛物线的解析式为:223y x x =−−;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x −−=,解得=1x −或3,∴(3,0)B设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=−⎩,解得:113k b =⎧⎨=−⎩∴3y x =−设点()2,23P m m m −−(03m <<),则3G m m −(,), ∴()()223233PG m m m m m =−−−−=−, ∵OB OC =,∴45OBC OCB ∠=∠=︒,∴45BGH ∠=︒∴45PGD BGH ∠=∠=︒,∴PD =.)22332228PD m m m ⎫=−+=−−+⎪⎝⎭ ∴当32m =时,PD取得最大值为8.此时315,24P ⎛⎫− ⎪⎝⎭. (3)在EB 上存在点M ,使CMN 为直角三角形.抛物线顶点(1,4)E −,设直线BE 的解析式为:22y k x b =+,则2222430k b k b +=−⎧⎨+=⎩,解得:2226k b =⎧⎨=−⎩,∴26y x =−.设26M n n −(,)13n ≤<(),①∵90CNM ONC ∠=︒−∠,∴90CNM ∠<︒,不可能为直角;②当90CMN ∠=︒时,则90CMN MNB ∠=∠=︒ ∴//MC x 轴,则263n −=−,∴32n =,∴3,32M ⎛⎫− ⎪⎝⎭. ③当90MCN ∠=︒时,过点M 作MF y ⊥轴于点F .∵90MCF NCO ∠+∠=︒,90CNO NCO ∠+∠=︒,∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽, ∴CF MF NO CO =, ∴()3263n nn −−−=,∴2690n n +−=,解得:123,3n n ==−.∵13n ≤<,∴23n =−不合题意,应舍去,∴3n =∴()12M综上所述,CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12.【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.【答案】(1)211344y x x =+−;(2)PD 的最大值为45,此时点52,2P ⎛⎫−− ⎪⎝⎭; (3)Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭,()0,2F ,勾股定理分别表示出2EF ,2QE ,2QF 进而分类讨论即可求解. 【详解】(1)解:将点()3,0B ,()0,3C −,代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=−⎩,解得:143b c ⎧=⎪⎨⎪=−⎩,∴抛物线解析式为:211344y x x =+−; (2)∵211344y x x =+−与x 轴交于点A ,B ,当0y =时,2113044x x +−=,解得:124,3x x =−=, ∴()4,0A −, ∵()0,3C −, 设直线AC 的解析式为3y kx =−,∴430k −−=, 解得:34k =−,∴直线AC 的解析式为334y x =−−,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭, ∴223111334444PQ t t t t t ⎛⎫=−−−+−=−− ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ⎛⎫==−−=−−=−++ ⎪⎝⎭, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=⨯−+⨯−−=−, ∴52,2P ⎛⎫−− ⎪⎝⎭; (3)∵抛物线211344y x x =+−211494216x ⎛⎫=+− ⎪⎝⎭, 将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =, 点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭, ∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯−= ⎪⎝⎭, ∴()0,2F , ∴22251173224EF ⎛⎫=++= ⎪⎝⎭, ∵Q 为平移后的抛物线的对称轴上任意一点,则Q 点的横坐标为92, 设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+− ⎪⎝⎭, 当QF EF =时,()229117224m ⎛⎫+−= ⎪⎝⎭, 解得:1m =−或5m =,当QE QF =时,()222295932222m m ⎛⎫⎛⎫⎛⎫−++=+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得:74m =, 综上所述,Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.3.(2024·山西阳泉·一模)综合与探究 如图,二次函数213442y x x =−−的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A −,,()80B ,,()04C −,,直线BC 的表达式为1y x 42=−;(2)线段MN长的最大值为(3)点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得MN ,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x −−=,解得12x =−,28x =,令0x =,则4y =−,∴()20A −,,()80B ,,()04C −,,设直线BC 的表达式为4y kx =−,代入()80B ,得084k =−,解得12k =, ∴直线BC 的表达式为1y x 42=−; (2)解:∵()20A −,,()80B ,,()04C −,,∴2OA =,8OB =,4OC =, 设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,2211314422424PM m m m m m ⎛⎫=−−−−=−+ ⎪⎝⎭,∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠, ∴41tan tan 82OC PNM OBC OB ∠=∠===,∴2PN PM =,MN ,∴)221244MN m m m ⎫=−+=−+⎪⎭∵0<,∴当4m =时,线段MN 长的最大值为 (3)解:∵()20A −,,()80B ,,()04C −,, ∴对称轴为直线2832x −+==, ∴()30D ,,∴()325AD =−−=,5CD ==,AC == ∴5AD DC ==,作DG AC ⊥于点G ,∴12AG CG AC ===∴DG == ∴tan 2DG DCA CG ∠==, ∵tan 2OB BCO OC ∠==,∴DCA BCH ∠=∠,以H ,C ,B 为顶点的三角形与ACD 相似,则分BC BH =和BH CH =两种情况讨论,①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =−+, 联立得241234412x x x −−−+=,解得14x =−,28x =(舍去),()14462y =−⨯−+=,∴点Q 的坐标为()46−,;①当BH CH =时,设()0H t ,,则2264BH t =+,()2224816CH t t t =+=++,∴2264816t t t +=++,解得6t =,∴()06H ,,同理求得直线BH 的表达式为364y x =−+, 联立得261434432x x x −−−+=,解得15x =−,28x =(舍去),()3395644y =−⨯−+=,∴点Q 的坐标为3954⎛⎫− ⎪⎝⎭,; 综上,点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二 将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =−++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为 ,MA MC ''+的最小值为 .【答案】(1)()0,2M −,2722y x x =−++ (2)()2,5P(3)1181,1216⎛⎫− ⎪⎝⎭,【分析】(1)根据点M 在y 轴负半轴且2OM =可得点M 的坐标为()0,2M −,利用待定系数法可得抛物线的解析式为2722y x x =−++;(2)过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,用待定系数法求得直线AC 的解析式为122y x =−+,设点P 的横坐标为()04p p <<,则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭,故24(04)PE p p p =−+<<,先求得8ACM S =△,从而得到212882PAC S PE OC p p =⋅=−+=△,解出p 的值,从而得出点P 的坐标;(3)设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 右平移m 个单位长度得到点M ',由平移的性质可知,,MA M A MC M C ''''==,MA MC ''+的值最小就是M A M C ''+最小值,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,利用两点间的距离公式求这个长度,用待定系数法求出直线AC ''的解析式,从而确定M '的坐标,继而确定平移距离,将原抛物线的解析式化为顶点式,从而得到其顶点,继而确定新抛物线的顶点.【详解】(1)解:∵点M 在y 轴负半轴且2OM =,∴()0,2M −将()0,2A ,()4,0C 代入2y x bx c =−++,得:21640c b c =⎧⎨−++=⎩,解得722b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为2722y x x =−++(2)解:过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,设直线AC 的解析式为()0y kx m k =+≠,将()0,2A ,()4,0C 代入y kx m =+,得:240m k m =⎧⎨+=⎩,解得122k m ⎧=−⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =−+ 设点P 的横坐标为()04p p << 则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭, ∴2271224(04)22PE p p p p p p ⎛⎫=−++−−+=−+<< ⎪⎝⎭∵8ACM S =△,∴212882PAC S PE OC p p =⋅=−+=△,解得122p p ==, ∴()2,5P ;(3)1181,1216⎛⎫− ⎪⎝⎭,补充求解过程如下:设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 向右平移m 个单位长度得到点M ',作出图形如下:由平移的性质可知,,MA M A MC M C ''''==,∴MA MC ''+的值最小就是M A M C ''+最小值, 显然点M '在直线=2y −上运用,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,∵点C 关于直线=2y −C '',()4,0C ∴()4,4C ''−,∴()()min min MA MC M A M C AC ''''''+=+== 设直线AC ''的解析式是:11y k x b =+将点()0,2A ,()4,4C ''−代入得:111244b k b =⎧⎨+=−⎩,解得:11322k b ⎧=−⎪⎨⎪=⎩直线AC ''的解析式是:322y x =−+令3222y x =−+=−,解得:83x =, ∴8,23M ⎛⎫'− ⎪⎝⎭,∴平移的距离是83m = 又∵22778122416y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∴平移前的抛物线的坐标是781416,⎛⎫ ⎪⎝⎭∴新抛物线的顶点坐标为7881,4316⎛⎫− ⎪⎝⎭即1181,1216⎛⎫− ⎪⎝⎭ 故答案是:1181,1216⎛⎫− ⎪⎝⎭,【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点()4,4B −,点()0,4C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值.【答案】(1)抛物线的表达式为23y x x =−+ (2)平行四边形,见解析(3)【分析】(1)利用待定系数法将B 点坐标代入抛物线2y x bx =−+中,即可求解.(2)作辅助线,根据题意,求出PD 的长,PD OC =,PD OC ∥,利用一组对边平行且相等的四边形是平行四边形即可得证.(3)作出图,证明()SAS CBP MOQ ≌,CP BQ +的最小值为MB ,根据勾股定理求出MB 即可解答. 【详解】(1)解: 抛物线2y x bx =−+过点(4,4)B −,1644b ∴−+=−,3b ∴=,23y x x ∴=−+.即抛物线的表达式为23y x x =−+. (2)解:四边形OCPD 是平行四边形,理由如下:如图1,作PD OA ⊥交x 轴于点H ,连接PC 、OD ,点P 在y x =−上,OH PH ∴=,45POH ∠=︒,连接BC ,4OC BC ==,OB ∴= 2BP =OP OB BP ∴=−=2OH PH ∴===,当2D x =时,4322D DH y ==−+⨯=,224PD DH PH ∴=+=+=, (0,4)C −,4OC ∴=,PD OC ∴=,OC x ⊥Q 轴,PD x ⊥轴,PD OC ∴∥,∴四边形OCPD 是平行四边形.(3)如图2,由题意得,BP OQ =,连接BC ,在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,4OC BC ==,BC OC ⊥,45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ =,CBP MOQ ∠=∠,BC OM ,(SAS)CBP MOQ ∴△≌△,CP MQ ∴=,CP BQ MQ BQ MB ∴+=+≥(当M ,Q ,B 三点共线时最短),CP BQ ∴+的最小值为MB ,454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,MB ∴即CP BQ +的最小值为答:CP BQ +的最小值为【点睛】本题主要考查待定系数法,二次函数图象与性质,平等四边形的判定,全等三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答醒的关键.1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB −的最大值.【答案】(1)24.y x x =- (2)()2,8B (3)()2,12,P - PA PB −的最大值为【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可; (2)设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx = 解得:1,k = 可得直线OA 为:,y x = 则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯−列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a +=⎧⎪∴⎨−=⎪⎩ 解得:1,4a b =⎧⎨=−⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =55,k \= 解得:1,k =∴ 直线OA 为:,y x =()2,2,Q ∴ ()12OAB BOQ ABQ A O SS S BQ x x ∴=+=⨯⨯− 12515,2y =−⨯=解得:8y =或4,y =−∵0,y > 则8,y =()2,8.B ∴(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,()()5,5,2,8,A BAB ∴=设AB 为:,y k x b ''=+ 代入A 、B 两点坐标,55,28k b k b '''+=⎧∴⎨+=⎩' ,解得:1,10k b =−⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =−+⎧∴⎨=−⎩ 解得:52,,512x x y y ==−⎧⎧⎨⎨==⎩⎩()2,12.P ∴−【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB −最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.【答案】(1)245y x x =−++,对称轴为直线2x =,顶点D 的坐标为()29,;(2)QAC △(3)直线MN 恒过定点,定点坐标为()28,.【分析】(1)求得点B 的坐标为()50,,点C 的坐标为()05,,利用待定系数法求解,再配成顶点式,即可得解;(2)先求得直线BC 的解析式,再求直线BC 与对称轴交点Q ,将AQ CQ +转化为BC ,在Rt AOC 中求AC ,在Rt BOC 中求BC 即可求解;(3)如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,证明MDH DNG ∽△△,求得()250mn m n −++=,再利用待定系数法求得直线MN 的解析式为()45y m n x mn =−−+++,据此求解即可. 【详解】(1)解:∵5OB OC ==,∴点B 的坐标为()50,,点C 的坐标为()05,,∴25505b c c −++=⎧⎨=⎩,解得4b =,∴抛物线的解析式为245y x x =−++, ∵()224529y x x x =−++=−−+,∴对称轴为直线2x =,顶点D 的坐标为()29,; (2)解:∵点A 与点()50B ,关于直线2x =对称,∴直线BC 与对称轴的交点为Q ,则Q 为QA QC +最小时位置,设直线BC 的解析式为5y kx =+,代入点()50B ,得055k =+,解得1k =−,∴直线BC 的解析式为5y x =−+,当2x =,253y =−+=,∴()23Q ,,∵点()10A −,,∵ACAQ CQ CB +===∴QAC △(3)解:如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,垂足分别为H ,G ,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,∵顶点D 的坐标为()29,, ∴()()222945442MH m m m m m =−−++=−+=−,2DH m =−,()()222945442GN n n n n n =−−++=−+=−,2DG n =−,由题意得90H G MDN ∠=∠=∠=︒,∴90MDH NDG DNG ∠=︒−∠=∠, ∴MDH DNG ∽△△, ∴MH HD DG NG =,即()()222222m mn n −−=−−,∴()()221m n −−=−, ∴()250mn m n −++=,∵点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,设直线MN 的解析式为11y k x b =+,∴2112114545mk b m m nk b n n ⎧+=−++⎨+=−++⎩①②,−①②得()()()2214m n k m n m n −=−−+−, ∵m n ≠,∴14k m n =−−+,将14k m n =−−+代入①得()21445m m n b m m −−++=−++,求得15b mn =+;∴直线MN 的解析式为()45y m n x mn =−−+++, ∵()250mn m n −++=,即()25m n mn +=+, ∴()()428y m n x =−−+−+, ∴当20x −=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,, ∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2Ly ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.【答案】(1)3y x =−+,223y x x =−++;(2)点P 的横坐标为时,PD AD +有最大值; (3)2154y x x =−−+.【分析】(1)利用待定系数法解答即可求解;(2)设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+,先证明ACD 为等腰直角三角形,得到)AD t =−,进而得到2PD AD t ⎛+=−+ ⎝⎭,根据二次函数的性质即可求解;(3)设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得23()4x x m −+=−−+,整理得,22(21)10x m x m −++−=,设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,由B 为MN 的中点可得210m +=,求出m 即可求解;本题考查了二次函数与一次函数的交点问题,待定系数法求函数解析式,二次函数的性质,二次函数图象的平移,掌握二次函数的图象和性质是解题的关键.【详解】(1)解:抛物线2L y ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =,930312a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪−=⎩,解得123a b c =−⎧⎪=⎨⎪=⎩,∴抛物线L 的解析式为223y x x =−++;设直线AB 的解析式为3(0)y kx k =+≠,把(3,0)A 代入得,330k +=,解得1k =−,∴直线AB 的解析式为3y x =−+;(2)解:设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+, 3AC t ∴=−,23PD t t =−+,(3,0)A ,(0,3)B −,3OA OB ∴==,AOB ∴为等腰直角三角形,45OAB ∴∠=︒,PC x ⊥轴, ACD ∴为等腰直角三角形,)AD t ∴==−,∴223PD AD t t t ⎛+=−++=− ⎝⎭,∴当t =时,PD AD +有最大值,即点P的横坐标为32时,PD AD +有最大值;(3)解:由(1)可知,直线AB 的解析式为3y x =−+,抛物线L 为:2223(1)4y x x x =−++=−−+,∴设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得,()234y x y x m =−+⎧⎪⎨=−−+⎪⎩,23()4x x m ∴−+=−−+,整理得,22(21)10x m x m −++−=, 设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,1221x x m ∴+=+,∵B 为MN 的中点,∴120x x +=,∴210m +=, 解得12m =−,∴抛物线L '的解析式22115424y x x x ⎛⎫=−++=−−+ ⎪⎝⎭.题型三 胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A −、点B 两点,与y 轴交于点()0,2C,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N,求AN 的最大值.【答案】(1)22y x =−+(2)496【分析】(1)用待定系数法求解即可;(2)过点M 作MF y ∥轴,交AC 于点E ,先求出一次函数AC 的解析式,用解直角三角形的方法求出30OAC ∠=︒,表示出MN =,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,分别表示出EF ME AE MN ,,,,最后得到249=26AN m ⎛−+ ⎝⎭,求出最后结果即可.【详解】(1)解:点()A −,对称轴为x =(2a c ∴−−+=,2c =,2b a −=解得:1a =−,b = ∴抛物线的表达式为:22y x =−+;(2)如图,过点M 作MF y ∥轴,交AC 于点E ,设AC 的解析式为y kx b =+,02b b ⎧−+=⎪∴⎨=⎪⎩,2k b ⎧=⎪⎨⎪=⎩,∴AC的解析式为2y =+,2AO =2CO =,tan CO OAC AO ∴∠==,30OAC ∴∠=︒,90AFE MNE ∠=︒=∠,AEF MEN ∠=∠, 30M OAC ∴∠=∠=︒,2AE EF ∴=,12EN ME =,sin MN ME ACO ∴=⋅∠=,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,2EF ∴=+,2222ME m m ∴=−+−=−−,24AE EF ∴==+,21122EN ME m ==−,23MN m==−,AN ∴,AE EN=+2213422m m =+−−−224m =−+24926m ⎛=−++ ⎝⎭,20−<,∴当m =时,AN 的最大值为496.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值. 【答案】(1)214433y x x =−−+(2)①()2,2E −−;②【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后代入计算即可.【详解】(1)解:①抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C , ∴366404240a b a b −+=⎧⎨++=⎩,解得:1343a b ⎧=−⎪⎪⎨⎪=−⎪⎩ ∴214433y x x =−−+;(2)解:214433y x x =−−+4∴=OA ,设直线BQ 的解析式为1y kx b =+, ()6,0B −,713Q ⎛⎫ ⎪⎝⎭,∴117360k b k b ⎧+=⎪⎨⎪−+=⎩,解得1132k b ⎧=⎪⎨⎪=⎩,∴直线BQ 的解析式为123=+y x ,N Q 为BQ 与y 轴交点, ()0,2N ∴,2AN ∴=,四边形ANEM 是平行四边形,∴AN EM ∥且2EM AN ==,且点E 在点M 下方, 点M 在x 轴上,点E 在平面内,BME AOM ≌,4BM OA ∴==, ()6,0B −, ()2,0M ∴−或()10,0−,若M 为()2,0−,90BME AOM ∠=∠=︒,故()2,2E −−, 若M 为()10,0−,2OM ME ==,此时10OM =,(矛盾,舍去),综上,点E 的坐标为()2,2−−;②如图,设AM 的解析式为,y kx b =+抛物线24y ax bx =++交y 轴于点A ,∴点A 的坐标为(0,4),将点()0,4A 、()2,0M −的坐标代入y kx b =+得:420b k b =⎧⎨−+=⎩,解得24k b =⎧⎨=⎩,AM ∴的解析式为24y x =+,AM 与BQ 相交于点P ,∴24123y x y x =+⎧⎪⎨=+⎪⎩,解得6585x y ⎧=−⎪⎪⎨⎪=⎪⎩, 所以点P 的坐标为68,55⎛⎫− ⎪⎝⎭,设直线BE 的解析式为y mx n =+,将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=−⎧⎨−+=⎩,解得123m n ⎧=−⎪⎨⎪=−⎩, 所以直线BE 的解析式为132y x =−−,BE 与AM 相交于点H ,∴24132y x y x =+⎧⎪⎨=−−⎪⎩,解得14585x y ⎧=−⎪⎪⎨⎪=−⎪⎩, ∴点H 的坐标为148,55⎛⎫−− ⎪⎝⎭,BP ∴==BH ==1BP ∴当H 旋转到x 轴上时,此时1OH 最短,∴16OH BO BH =−=116BP ∴==⎭∴11BP的最小值为1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =−++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标; (3)将该抛物线沿射线CA方向平移1y ,请直接写出新抛物线1y 的表达式______.【答案】(1)1b =,4c =(2)PE 取得最大值为254,此时335,28P ⎛⎫ ⎪⎝⎭.(3)()2115322y x =−−+【分析】本题考查了二次函数的综合,待定系数法求函数解析式: (1)利用待定系数法即可求解;(2)延长PE 交x 轴于H ,根据题意求得直线AC 的解析式为4y x =−+,OC OA =,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p ,证得PHF是等腰直角三角形,从而求得232524PE PE PH p ⎛⎫=+=−−+⎪⎝⎭,即可求解; (3)先求得CA =,根据1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到,进而可求解;掌握待定系数法求函数解析式及利用数学结合是解题的关键.【详解】(1)解:抛物线212y x bx c =−++交于()4,0A 和()0,4C ,8404b c c −++=⎧∴⎨=⎩,解得:14b c =⎧⎨=⎩. (2)延长PE 交x 轴于H()4,0A ,()0,4C ,∴直线AC 的解析式为4y x =−+,OC OA =, PE y ∥Q 轴,PE x ∴⊥轴, 90AOC ∴∠=︒,45OAC ∴∠=︒,PFAC ,45OFP ∴∠=︒,2PH PF ∴=,PE PE PH ∴+=+,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p , ()221144222PE p p p p p ∴=−++−−+=−+,2142PH p p =−++,222211325243422224PE PF PE PH p p p p p p p ⎛⎫∴+=+=−+−++=−++=−−+⎪⎝⎭,PE ∴+的最大值为254,此时点P 的坐标为325,24⎛⎫ ⎪⎝⎭.(3)()4,0A ,()0,4C ,CA ∴=将抛物线y 沿射线CA 方向平移1y ,∴1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到, ()2115322y x ∴=−−+,故答案为:()2115322y x =−−+.2.(2024·海南海口·一模)如图,抛物线2y ax bx c =++过点()1,0A −,()3,0B ,()0,3C .(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点, ①当P 为抛物线的顶点时,求证:PBC 直角三角形; ②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E.当PE 的值最大时,求点P 的坐标.【答案】(1)223y x x =−++(2)①PBC 是直角三角形;②315,24P ⎛⎫ ⎪⎝⎭;③57,24P ⎛⎫ ⎪⎝⎭【分析】(1)把A 、B 、C 三点坐标代入2y ax bx c =++求解即可; (2)①作PH y ⊥轴于点H ,易证PCH △和BOC 是等腰直角三角形,即可求出90PCB ∠=︒; ②先求出直线BC 的解析式,过点P 作PD x ⊥轴于点D ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,23922PBC S x x ∆=−+,然后根据二次函数的性质求解即可; ③过点P 作PN x ⊥轴于点N ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,判断BEN是等腰直角三角形得出BE =,即可求出25PE x x =−+,然后根据二次函数的性质求解即可. 【详解】(1)解:将点()1,0A −,()3,0B ,()0,3C 代入解析式得:09303a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得:123a b c =−⎧⎪=⎨⎪=⎩,∵抛物线的解析式为223y x x =−++;(2)解:①配方得()222314y x x x =−++−−+∴点P 的坐标为()1,4,作PH y ⊥轴于点H ,则1PH CH ==,∴45HCP ∠=︒又∵在Rt BOC 中,3OB OC ==, ∴45OCB ∠=︒, ∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为y kx b =+,将点B 、C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =−⎧⎨=⎩, ∴直线BC 的解析式为3y x =−+, ∵()3,0B ,∴3OB =, 设点()2,23P x x x −++(03x <<),过点P 作PD x ⊥轴于点D ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x=−++−−+=−+,∴()22211393327332222228PBCSPE OB x x x x x ⎛⎫=⨯⨯=⨯−+⨯=−+=−−+ ⎪⎝⎭,当32x =时,PBC 的最大面积为278,2915233344x x −++=−++=,∴315,24P ⎛⎫⎪⎝⎭③设点()2,23P x x x −++(03x <<),过点P 作PN x ⊥轴于点N ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x =−++−−+=−+, ∵()0,3C ,()3,0B ,∴3OC OB ==,3BN x =−,∴45OBC OCB ∠=∠=︒,∴45NEB OBC ∠=∠=︒,∴BE ==,∴()CE BC BE =−==,∴22525524PE x x x ⎛⎫=−+=−−+ ⎪⎝⎭, ∴当52x =时,PE 有最大值,此时57,24P ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,面积问题,线段问题,掌握二次函数的性质是解题的关键.3.(2023·山东济南·一模)抛物线()21122y x a x a =−+−+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标; (3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值. 【答案】(1)2a =,2b =−,4c = (2)53,2P ⎛⎫ ⎪⎝⎭(3)【分析】(1)利用待定系数法求解即可;(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得BC l 的解析式,设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+,利用相似三角形的判定与性质可得答案; (3)在y 轴上取一点F ,使得94OF =,连接BF ,由相似三角形的判定与性质可得34FE CE ''=,可得34E B E C BE E F '''+'+=,即可解答.【详解】(1)解:将()4,0B 代入()21122y x a x a =−+−+,得()84120a a −+−+=,2a ∴=,∴抛物线的解析式为2142y x x =−++,令0x =,则4y =,4c ∴=,令0y =,则21042x x =−++,14x ∴=,22x =−,()2,0A ∴−,即2b =−; ∴2a =,2b =−,4c =(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设BC l :y kx b =+,将()0,4,()4,0代入得440b k b =⎧⎨+=⎩解得:4b =,1k =−,BC l ∴:4y x =−+, 设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+, ()221144222P D PD y y m m m m m =−=−++−−+=−+,PD HA ∥,AMH PMD ∴∽,PM PD MA HA ∴=,将2x =−代入4y x =−+,6HA ∴=,112142PMB AMBPM h S PM S AM AM h ⋅===⋅, 164PD PD HA ∴==,32PD ∴=, 231222m m ∴=−+,11(m ∴=舍),23m =,53,2P ⎛⎫∴ ⎪⎝⎭;(3)在y 轴上取一点F ,使得94OF =,连接BF ,根据旋转得性质得出:3OE OE '==,∵9494OF OC ⋅=⨯=, 2OE OFOC '∴=⋅,∴OE OC OF OE '=',COE FOE ''∠=∠,∴FOE E OC ''∽,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数结合定值及等面积问题
1. 已知二次函数23
8
-322+=
x x y 的图像与x 轴交于A 、B 两点,A 在B 点的左边,与y 交于点C ,点P 在第一象限的抛物线上,且在对称轴右边,4=ΔPAC S ,求点P 的坐标。

y
x
2.抛物线y=-x 2
+bx+c 经过点A 、B 、C ,已知A (-1,0),C (0,3).
(1)求抛物线的解析式;
(2)若P 为抛物线上一点,且PBC S =3,请求出此时点P 的坐标。

3.如图,已知直线AB :42++=k kx y 与抛物线2
2
1x y =
交于A 、B 两点. (1)直线AB 总经过一个定点C ,请直接写出点C 的坐标 (2)当2
1
-=k 时,在直线AB 下方的抛物线上求点P ,使5=ΔABP S
4.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。

(1)求A 、B 两点的坐标及直线AC 的函数表达式;
(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求△EAC 面积的最大值。

5.如图,抛物线的顶点为A(-3,-3),此抛物线交X轴于O,B两点
(1)求此抛物线的解析式
(2)求△AOB的面积
(3)若抛物线上另有一点P满足S∆POB=S∆AOB,请求出P点的坐标
6.已知二次函数c bx x y ++=2,其图像抛物线交x 轴的于点A (1,0)、B (3,0),交y 轴于点C.
(1)求此二次函数关系式;
(2)试问抛物线上是否存在点P(不与点B 重合),使得2BCP ABC S S ∆∆=?若存在,求出P 点坐标;若不存在,请通过计算说明理由.
(第26题图)。

相关文档
最新文档