不等式基本性质及解法(课堂PPT)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
• P30例4 、p31练习
4
例题1 求下列不等式组的解集:
x 2,
(1
)
x
4,
x 6 .
x 4,
(
2
)
x
1,
x 2 .5 .
5
例题2:如何利用不等式组解应用题?
用若干辆载重量为8吨的汽车运送一批货物, 若每辆汽车只装4吨,则剩下20吨货物,若每辆 汽车装满8吨,则最后一辆汽车不满也不空,请 问:有多少辆汽车?
R
(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c 或 ax+b≤-c.
7
3. 不 等 式 1<|x + 1|<3 的 解 集 为 {x| - 4<x< - 2 或 0<x<2} .
8
|x+1|>1 【 解 析 】 原 不 等 式 ⇔ |x+1|<3 ⇔ x+1<-1或x+1>1 -3<x+1<3 ⇔0<x<2 或-4<x<-2. 故 原 不 等 式 的 解 集 为 {x| - 4<x< - 2 或 0<x<2}.
9
Leabharlann Baidu
2
(3)可加性:如果 a>b,那么 a+c>b+c. (4)可乘性:如果 a>b,c>0,那么 ac>bc ;如果 a>b,c<0, 那么 ac<bc . (5)乘方:如果 a>b>0,那么 an > bn(n∈N,n>1). (6)开方:如果 a>b>0,那么n a > n b(n∈N,n>1). 3.绝对值三角不等式 (1)性质 1:|a+b|≤ |a|+|b| . (2)性质 2:|a|-|b|≤ |a+b| . 性质 3:|a|-|b| ≤|a-b|≤ |a|+|b| .
解:设有 x 辆汽车,根据题意,得:
8(x1)4x2 08x
想一想:
列不等式组解应用题的一般步骤有哪些?6
4.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解集
不等式
a>0
a=0
a<0
|x|<a {x|-a<x<a}
∅
∅
|x|>a {x|x>a 或 x<-a} {x|x∈R 且 x≠0}
不等式的基本性质
1
1.两个实数大小关系的基本事实 a>b⇔ a-b>0 a=b⇔ a-b=0 a<b⇔ a-b<0
2.不等式的基本性质 (1)对称性:如果 a>b,那么 b<a ;如果 b<a ,那么 a>b. 即 a>b⇔ b<a . (2)传递性:如果 a>b,b>c,那么a>c .即 a>b,b>c⇒ a>c .
• P30例4 、p31练习
4
例题1 求下列不等式组的解集:
x 2,
(1
)
x
4,
x 6 .
x 4,
(
2
)
x
1,
x 2 .5 .
5
例题2:如何利用不等式组解应用题?
用若干辆载重量为8吨的汽车运送一批货物, 若每辆汽车只装4吨,则剩下20吨货物,若每辆 汽车装满8吨,则最后一辆汽车不满也不空,请 问:有多少辆汽车?
R
(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c 或 ax+b≤-c.
7
3. 不 等 式 1<|x + 1|<3 的 解 集 为 {x| - 4<x< - 2 或 0<x<2} .
8
|x+1|>1 【 解 析 】 原 不 等 式 ⇔ |x+1|<3 ⇔ x+1<-1或x+1>1 -3<x+1<3 ⇔0<x<2 或-4<x<-2. 故 原 不 等 式 的 解 集 为 {x| - 4<x< - 2 或 0<x<2}.
9
Leabharlann Baidu
2
(3)可加性:如果 a>b,那么 a+c>b+c. (4)可乘性:如果 a>b,c>0,那么 ac>bc ;如果 a>b,c<0, 那么 ac<bc . (5)乘方:如果 a>b>0,那么 an > bn(n∈N,n>1). (6)开方:如果 a>b>0,那么n a > n b(n∈N,n>1). 3.绝对值三角不等式 (1)性质 1:|a+b|≤ |a|+|b| . (2)性质 2:|a|-|b|≤ |a+b| . 性质 3:|a|-|b| ≤|a-b|≤ |a|+|b| .
解:设有 x 辆汽车,根据题意,得:
8(x1)4x2 08x
想一想:
列不等式组解应用题的一般步骤有哪些?6
4.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解集
不等式
a>0
a=0
a<0
|x|<a {x|-a<x<a}
∅
∅
|x|>a {x|x>a 或 x<-a} {x|x∈R 且 x≠0}
不等式的基本性质
1
1.两个实数大小关系的基本事实 a>b⇔ a-b>0 a=b⇔ a-b=0 a<b⇔ a-b<0
2.不等式的基本性质 (1)对称性:如果 a>b,那么 b<a ;如果 b<a ,那么 a>b. 即 a>b⇔ b<a . (2)传递性:如果 a>b,b>c,那么a>c .即 a>b,b>c⇒ a>c .