细胞生物学 第四章

合集下载

细胞生物学课程第4章细胞膜和物质的跨膜运输(医学院) 厦门大学

细胞生物学课程第4章细胞膜和物质的跨膜运输(医学院) 厦门大学
膜脂分子的运动
1. 侧向扩散:同一平面上相邻的脂分子交换位置。 2. 旋转运动:膜脂分子围绕与膜平面垂直的轴进行快速旋转。 3. 摆动运动:膜脂分子围绕与膜平面垂直的轴进行左右摆动。 4. 伸缩震荡:脂肪酸链沿着与纵轴进行伸缩震荡运动。 5. 翻转运动:膜脂分子从脂双层的一层翻转到另一层。是在翻转酶
脑苷脂
神经节苷脂
(1)分布与定位
糖脂是含糖而不含磷 酸的脂类,普遍存在于原 核和真核细胞的质膜上 (含量5%以下),神经细 胞膜上含量较高(5-10 %)。
糖脂是两性分子。其 结构与鞘磷脂很相似,只 是由一个或多个糖残基代 替了磷脂酰胆碱而与鞘氨 醇的羟基结合。糖脂均位 于细胞膜的非细胞质面, 及外侧的脂质分子中。
❖ 糖脂是位于脂双层的外侧,——可能作为细胞外配体(ligand)的受体。 ❖ 磷脂酰丝氨基——集中在脂双层的内叶,在生理pH下带负电荷,这种带
电性使得它能够同带正电的物质结合,如同血型糖蛋白A跨膜α螺旋邻近 的赖氨酸、精氨酸结合。 ❖ 磷脂酰胆碱——在衰老的淋巴细胞外表面,作为让吞噬细胞吞噬的信号; 磷脂酰胆碱出现在血小板的外表面,作为血凝固的信号。 ❖ 磷脂酰肌醇——集中在内叶,它们在将细胞质膜的刺激向细胞质传递中 起关键作用。
质完成的 。如: • 载体蛋白——膜内外的物质运输 • 连接蛋白——细胞的相互作用 • 受体蛋白——信号转导 • 各类酶——相关的代谢反应
在不同细胞中膜蛋白的含量及类型有很大差异,依在膜上存在方式不 同可分为:
1.整合蛋白(integral protein) 2.外周蛋白(peripheral protein) 3.脂锚定蛋白(lipid-anchored protein)
➢ 通道蛋白
是一类跨膜蛋白,它们都是通过疏水的氨基酸链进行重排,形成水性通道,允许 适宜的分子通过。通道蛋白具有选择性,所以在细胞膜中有各种不同的通道蛋白。通 道蛋白参与的只是被动运输, 并且是从高浓度向低浓度运输,所以不消耗能量。 运输特点: ①蛋白不与溶质分子结合,形成跨膜通道介导离子顺浓度梯度通过; ②有些通道蛋白形成的通道通常处于开放状态,如钾泄漏通道,允许钾离子不断外流; ③有些通道蛋白具有选择性和门控性,平时处于关闭状态,仅在特定刺激下才打开,又 称为门通道。主要有:电压门通道、配体门通道、机械门通道。

细胞生物学第四章细胞质膜

细胞生物学第四章细胞质膜
(1)磷脂(phospholipids) 含有磷酸基团的脂称为磷脂,是细胞膜中含量
最丰富和最具特性的脂。它有一个极性的头部 和一个疏水的尾部。
(internal membrane), 习惯上把细胞所有膜 结构统称为 生物膜 (biomembrane)。
细胞生物学第四章细胞质膜
虽然细胞很早就在光镜下被发现,但其是否有明确的边界结构,尚 未可知,直到电镜发明发现质膜的超微结构,但人们并不惊奇,因 为在此之前已侦知。
1、关于膜的化学组成的早期研究: 18世纪90年代,Overton 用植物的根毛作实验,
第四章、细胞质膜
知识要点: 1 、掌握几种膜分子结构模型学说,并评价之。 2 、了解膜结构的组成成分和组成方式。 3 、理解质膜流动性和不对称性两大特点。 4、了解红细胞膜骨架的组成和功能。
细胞生物学第四章细胞质膜
第一节、细胞膜结构模型与成分 一、细胞膜结构
膜(membrane)是细胞 的重要结构, 包括细 胞质膜 (plasma membrane)、内膜
高尔基体膜)、细胞类型(肌细胞、肝细胞)、生物类型(动物、植物 和原核生物)的不同而不同。
一般而言ห้องสมุดไป่ตู้膜脂占50%,蛋白质占40%,碳水化合物约1-10%
细胞生物学第四章细胞质膜
1、膜脂
膜脂都具有双亲性,这种性质使生物膜具有屏 障作用,大多数水溶性物质不能自由通过,只 允许亲脂性物质通过。
膜脂是生物膜的基本组成成分, 主要有三大类 型:磷脂、糖脂、胆固醇。
质膜的片层结构模型
细胞生物学第四章细胞质膜
5、单位膜模型(unit membrane model)
1959年,J.D.Robertson在电子显微镜下发现细胞膜是类似 铁轨结构,两条暗线被一条明亮的带隔开,显示暗—明— 暗三层,总厚度为7.5nm,中间层为3.5nm,内外两层各为 2nm。并推测:暗层是蛋白质,透明层是脂,并建议将这种 结构称为单位膜。

细胞生物学第四章 细胞质膜及其表面

细胞生物学第四章 细胞质膜及其表面
① 磷脂酰胆碱phosphatidylcholine,PC,旧称卵磷 脂 ② 磷脂酰丝氨酸phosphatidylserine,PS ③ 磷脂酰乙醇胺phosphatidylethanolamine,PE, 旧称脑磷脂 ④ 磷脂酰肌醇phosphatidylinositol,PI ⑤ 双磷脂酰甘油Diphosphatidylglycerol, DPG,旧 称心磷脂
磷脂与糖脂分布的不对称性
2.复合糖 的不对称性
• 膜糖以糖 蛋白或糖脂 的形式存在, 无论是糖蛋 白还是糖脂 的糖基都是 位于膜的外 表面
膜糖分布的不对称性
3、膜蛋白的 不对称性:
每种膜蛋白分子在 细胞膜上都具有特 定的方向性和分布 的区域性。 膜蛋白的不对称性 包括外周蛋白分布 的不对称以及整合 蛋白内外两侧氨基 酸残基数目的不对 称。
①,② integral protein; ③,④ lipid-anchored protein; ⑤,⑥ peripheral protein
膜蛋白的功能
ቤተ መጻሕፍቲ ባይዱ
第二节 细胞膜的结构 一、细胞膜结构的研究历史
1. E. Overton 1895 发现凡是溶 于脂肪的物质很容易透过植物的 细胞膜,而不溶于脂肪的物质不 易透过细胞膜,因此推测细胞膜 由连续的脂类物质组成。
1. 具有一个极性头和两个非极性的尾(脂肪酸链), 线粒体内膜上的心磷脂具有4个非极性尾部。 2. 脂肪酸碳链为偶数,多数碳链由16,18或20个碳 原子组成。 3. 常含有不饱和脂肪酸(如油酸)。
1、甘油磷脂
• 以甘油为骨架的磷脂类,在骨架上结合两个脂
肪酸链,磷酸基团,胆碱、乙醇胺、丝氨酸或肌醇 等分子籍磷酸基团连接到脂分子上。主要类型有:
• 细胞膜、 细胞外被和表层胞质溶胶构成细胞表面。

(细胞生物学基础)第四章细胞质基质与细胞内膜系统

(细胞生物学基础)第四章细胞质基质与细胞内膜系统
三羧酸循环
在线粒体中,丙酮酸经过三羧酸 循环被彻底氧化分解,释放大量 能量并生成ATP。
03
内膜系统
内膜系统的组成
01
内质网
由扁平的膜囊和泡状的小管组成,分为粗面内质网和 光面内质网,是细胞内表面积最大的膜系统。
02 高尔基体 由扁平的囊和小泡组成,主要参与蛋白质的加工、分 类和运输。
03 溶酶体 含有多种水解酶,能够分解衰老的细胞器和外来微生 物等。
胞器的过程。这种转运方式在细胞内广泛存在,对于维持细胞的正常功
能至关重要。
03
跨膜运输
跨膜运输是指物质通过细胞膜的脂质双分子层进行运输的过程。细胞质
基质中的物质可以通过内膜系统中的膜蛋白进行跨膜运输,从而实现物
质在细胞内的定向流动。
信号转导
信号转导
细胞质基质和内膜系统中的各种分子和细胞器参与了信号转导过程。当细胞受到外界刺激 时,信号分子会与细胞表面的受体结合,引发一系列的生化反应,最终导致细胞反应的发 生。
氧化磷酸化
氧化磷酸化是能量代谢中的另一个重要过程,它涉及到线粒体中的电子传递和ATP合成。这个过程需要内 膜系统中各种酶和分子的参与和调控,以确保能量的正常产生和利用。
05
总结
本章重点回顾
细胞质基质的组成和功能
细胞质基质是由水、无机盐、 脂质、糖类、氨基酸、核苷酸 和多种酶等组成的复杂溶液, 具有维持细胞形态、提供能量 、参与物质合成和分解等作用 。
有机小分子
如氨基酸、核苷酸、糖类、脂 类等,参与细胞代谢和能量转 换。
酶类
参与细胞代谢和调节的酶类, 如蛋白质合成酶、分解酶等。
细胞质基质的功能
维持细胞的形态结构
细胞质基质提供了细胞骨架和膜结构的支撑,维 持细胞的形态和完整性。

细胞生物学第四章细胞外基质

细胞生物学第四章细胞外基质
02
01
第一节 细胞外基质的蛋白质种类、
02
结构和功能
03
第二节 细胞外基质的生物学作用
04
第三节 细胞外基质的受体
05
第四节 细胞外基质与医学
第一节 细胞外基质的蛋白质种类、结构和功能
01
胶原 非胶原糖蛋白 弹性蛋白 氨基聚糖和蛋白聚糖
02
细胞外基质成分
胶原(collagen) 是胶原蛋白的简称,约占人体蛋白质总量的30%以上。 是细胞外基质中特化的蛋白质,遍布于各种组织细胞间,构成细胞外基质的结构框架。
胶原的分子结构 胶原蛋白的基本结构单位是胶原分子:为三条α螺旋肽链盘绕成的三股螺旋结构。 胶原分子
胶原分子按相邻分子相交错四分之一长度、前后分子首尾相隔35nm的距离自我装配,成为明暗相间、直径约10nm~30nm的胶原原纤维。
若干胶原原纤维再经糖蛋白粘合成为粗细不等的胶原纤维。
胶原分子
胶原的结构(左模式图,右电镜照片)
01
α β γ
三条短臂:各由3条肽链的N-端序列构成,每一短臂包括2个球区及2个短杆区;
长臂:由3条肽链的近C-端序列共同构成杆区;而末端的分叶状大球区仅由α链C-端序列卷曲而成,是与硫酸肝素结合的部位。
LN分子中至少存在8个与细胞结合的位点。
现已确定的有11种LN分子,分别由10种亚单位(α1、α2、α3、α4、α5、β1、β2、β3、γ1、γ2)中的3种以不同的组合而构成。这10种亚单位分别由10个结构基因编码。
五、控制细胞的分化
在Ⅰ或Ⅲ型胶原上培养时,细胞增殖形成铺满基质的单层; 在人工基膜上培养时,细胞停止分裂形成有腔的毛细管样结构。
例如:脉管内皮细胞
细胞迁移在胚胎发育、形态发生及成体中组织再生与创伤修复时十分活跃。

细胞生物学-4第四章质膜

细胞生物学-4第四章质膜
膜的不对称性
七、细胞质膜的功能
为细胞的生命活动提供相对稳定的内环境; 选择性的物质运输,包括代谢底物的输入与代谢
产物的排除,其中伴随着能量的传递; 提供细胞识别位点,并完成细胞内外信息跨膜传递; 为多种酶提供结合位点,使酶促反应高效而有序地进行; 介导细胞与细胞、细胞与基质之间的连接; 质膜参与形成具有不同功能的细胞表面特化结构。
脂质体的应用
研究膜脂与膜蛋白及其生物学性质; 脂质体中裹入DNA可用于基因转移; 在临床治疗中,脂质体作为药物或酶等载体
三、膜蛋白
基本类型 内在膜蛋白与膜脂结合的方式 外在膜蛋白与膜脂结合的方式 去垢剂(detergent)
基本类型
外在(外周)膜蛋白(extrinsic/peripheral membrane proteins )
膜的不对称性
细胞质膜各部分的名称 膜脂与糖脂的不对称性
糖脂仅存在于质膜的ES面,是完成其生理功能的结构基础 膜蛋白与糖蛋白的不对称性
膜蛋白的不对称性是指每种膜蛋白分子在细胞膜上都 具有明确的方向性; 糖蛋白糖残基均分布在质膜的ES面(GO+3HBH4 labeling); 膜蛋白的不对称性是生物膜完成复杂的在时间与空间上 有序的各种生理功能的保证。
糖脂:糖脂普遍存在于原核和真核细胞的质膜上(5%以下),神经细 胞糖脂含量较高;
胆固醇:胆固醇存在于真核细胞膜上(30%以下),细菌质膜不含有 胆固醇,但某些细菌的膜脂中含有甘油脂等中性脂类。
运动方式
沿膜平面的侧向运动(基本运动方式),其扩散 系数为10-8cm2/s;相当于2μm/s
脂分子围绕轴心的自旋运动; 脂分子尾部的摆动; 双层脂分子之间的翻转运动,发生频率还不到
第四章 细胞质膜 (Cell membrance)

医学细胞生物学:第四章 细胞膜与物质的穿膜运输、信号转导

医学细胞生物学:第四章 细胞膜与物质的穿膜运输、信号转导
O PO O
神经 酰胺
半乳鞘磷脂




(GCalH) 3 CH3 糖N CH3
(GCalH) 2 糖CH2 (GaOl)
O 糖P O (GOal)
含量:约占脂总量 的5%以下
定位:膜的非胞质面 功能:作为某些分子
神经 酰胺
鞘糖 磷脂脂分

的受体,参与 细胞识别及信 号转导。
半乳糖脑苷脂
神经节 苷脂
•糖脂的分布为绝对不对称——在非胞质面
SM:鞘磷脂 PC:磷脂酰胆碱 PS:磷脂酰丝氨酸 PE:磷脂酰乙醇胺 PI:磷脂酰肌醇 CI:二磷脂酰甘油
2.膜蛋白分布的不对称性
• 穿膜蛋白跨越脂双层有一 定的方向性,亲水端长度、 氨基酸种类、顺序不同。
• 蛋白的数量在膜内外两侧 不同
细胞膜内层蛋白数量多于外层
生物膜的不对称性
3. 膜糖类分布的不对称——非胞质面
4.细胞膜内侧面分布有微管、微丝
不对称性的生物学意义: 决定了膜内外表面功能的不对称性。
(二)细胞膜的流动性(fluidity): 生物膜的特性
1.膜脂双分子层是一种二维流体
相变:生物膜在生理常温下多呈液晶态,当温 度下降至某一点时,液晶态转变为晶态,若温 度上升,则晶态又可溶解为液晶态。这种状态 的相互转变称相变。
➢ 膜脂主要包括磷脂、糖脂和胆固醇三种类型
➢ 膜脂是双亲性分子:具有极性头(亲水头) 和非极性的尾部(疏水尾)
生物膜的化学组成
1. 磷脂——构成膜脂的基本成分
➢磷脂约占整个膜脂的50%以上。
➢ 磷脂
磷脂酰胆碱(卵磷脂PC) 磷脂酰乙醇胺(脑磷脂PE) 甘油磷脂 磷脂酰丝氨酸(PS)
磷脂酰肌醇(PI)

细胞生物学 第四章

细胞生物学 第四章

第二节 内质网
2.脂类的合成
内质网是脂类合成的重要场所。已经实验证明,大部分膜的脂双 层是在内质网组装的。ER膜能合成几乎所有细胞需要的脂类,包括磷 脂和胆固醇。其中最主要的磷脂是磷脂酰胆碱 (又称卵磷脂)。磷脂 酰胆碱是由两个脂肪酸、一个磷酸甘油和一个胆碱在三种酶的催化下 合成的。这些酶位于sER的脂类双层内,它们的活性部位都朝向细胞 质基质。这样,新合成的脂类分子最初只嵌入sER脂类双层的细胞质 基质面。磷脂酰胆碱的合成过程如图4-7所示。首先由酰基转移酶催 化细胞质中的脂酰辅酶A和3-磷酸甘油,将2个脂肪酸加到磷酸甘油上, 形成磷脂酸,磷脂酸为非水溶性化合物,合成后便保留在脂类双层中; 然后,在磷酸酶的作用下,将磷脂酸转化为二酰基甘油;最后,再在 胆碱磷酸转移酶的催化下,由二酰基甘油和CDP-胆碱合成磷脂酰胆碱。 除磷脂酰胆碱外,其它几种磷脂,如磷脂酰乙醇胺、磷脂酰丝氨酸以 及磷脂酰肌醇等都以类似的方式合成。
类型与形态差异很大。
图4-1 内质网立体结 构模式图
ห้องสมุดไป่ตู้
第二节 内质网
2.内质网的类型
根 据 内 质 网 表 面 有 无 核 糖 体 , 可 分 为 糙 面 内 质 网 ( rough endoplasmic reticulum,rER) 和 光 面 内 质 网 ( smooth endoplasmic reticulum, sER)两种基本类型。
第二节 内质网
在内质网膜上合成的磷脂很快就由细胞质基质侧转向 内质网膜腔面,其中有的插入到脂双分子里,有的向其它 膜转运。其转运主要有两种方式:一种是以出芽的方式, 以运输小泡转运到高尔基体、溶酶体和细胞膜上;另一种 方式是凭借一种水溶性的载体蛋白,即磷脂转换蛋白 (phospholipid exchange protein,PEP)在膜之间转移磷脂。 其转运模式是:PED与磷脂分子结合形成水溶性的复合物 进入细胞质基质,通过自由扩散,直到靶膜时,PEP将磷 脂释放出来,并安插在膜上,结果使磷脂从含量高的膜转 移到缺少磷脂的膜上。细胞中转移到线粒体或过氧化物酶 体膜上的磷脂就是通过此方式转运的。

细胞生物学 第四章细胞质膜

细胞生物学 第四章细胞质膜

蛋白与膜的结合方式 ①、②整合蛋白;③、④脂锚定蛋白;⑤、⑥外周蛋白
(一)内在蛋白(integral proteins)
内在蛋白又称为整合蛋白,以不同程度嵌入脂双层的内部 ,有的为全跨膜蛋白(tansmembrane proteins)。膜蛋白为
两性分子。它与膜结合非常紧密,只有用去垢剂(detergent)

5.血型糖蛋白(glycophorin ) 血型糖蛋白又称涎糖蛋白(sialo glycoprotein),因 它富含唾液酸。血型糖蛋白是第一个被测定氨 基酸序列的蛋白质,有几种类型,包括A、B、C、 D。血型糖蛋白B、C、D在红细胞膜中浓度较 低。血型糖蛋白A是一种单次跨膜糖蛋白, 由 131个氨基酸组成, 其亲水的氨基端露在膜的外 侧, 结合16个低聚糖侧链。血型糖蛋白的基本 功能可能是在它的唾液酸中含有大量负电荷,防 止了红细胞在循环过程中经过狭小血管时相互 聚集沉积在血管中。
才能从膜上洗涤下来,常用SDS和Triton-X100。
内在蛋白的跨膜结构域形成亲水通道有两种形式,一是由多
个α螺旋组成亲水通道;二是由β折叠组成亲水通道。
内在蛋白与脂膜的结合方式:
膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。
跨膜结构域两端带正电荷的aa残基与磷脂分子带负电的
极 性头形成离子键,或带负电的氨基酸残基通过Ca2+、Mg2+等 阳离子与带负电的磷脂极性头相互作用。 膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪 酸分子,插入脂双层之间, 还有少数蛋白与糖脂共价结合。
细胞融合技术观察蛋白质运动
光脱色恢复技术(FRAP)
4.膜流动性的意义
质膜的流动性是保证其正常功能的必要条件。例如 跨膜物质运输、细胞信息传递、细胞识别、细胞免疫 、细胞分化以及激素的作用等等都与膜的流动性密切 相关。当膜的流动性低于一定的阈值时,许多酶的活 动和跨膜运输将停止,反之如果流动性过高,又会造

细胞生物学第四章物质运输

细胞生物学第四章物质运输
(constitutive pathway) • 调节性分泌途径
(regulated pathway of secretion)
• 结构性分泌途径:分泌蛋白包装在如高 尔基分泌囊泡中,被迅速带到细胞膜处 排出,这种分泌过程称之为。
• 存在于所有细胞。
• 调节性分泌途径:分泌蛋白或小分子贮 存于分泌囊泡中,只有当接受细胞外信 号(如激素)的刺激时,才移到细胞膜, 与其融合将分泌物排出。
蛋白载体运输一类离子和分子,物质运输有一 个最大速度。载体的结合位点全部被占满。
• D:运输通过膜蛋白的变构而实现,结合和分 离是可逆的,如RBC膜上有53个葡萄糖载体, 速度180个葡萄糖分子/s。
• 类型: • 单运输(uniport):载体蛋白将一种溶质
分子从膜的一侧转运到另一侧称之。
• 协同运输(coupled transport):载体蛋白 在转运一种溶质分子同时或随后转运另 一溶质分子称之。
• 一.胞吞作用(endocytosis): • 二、胞吐作用(exocytosis):
一.胞吞作用:
• 由细胞膜把环境中的大分子和颗粒物质 包围成小泡脱离细胞膜进入细胞内的转 运过程。
• 胞饮作用(pinocytosis) • 吞噬作用(phagocytosis) • 受体介导的胞吞作用
(receptor-mediated endocytosis)
特点:顺浓度梯度,高浓度→低浓度,不消耗能量. 类型:单纯扩散、通道扩散、 协助扩散
单纯扩散 (simple diffusion)
• 特点:高浓→低浓.不消耗能量. 脂溶性物质:苯,乙醇,甾类激素,氧,氮. 极性小分子:CO2 尿素,水。 分子越小,脂溶性越大,通过速度越快。 如:甘油,分子量大,通过速度慢。

细胞生物学第四章细胞膜及物质的跨膜运输

细胞生物学第四章细胞膜及物质的跨膜运输

0.23 0.7 1.5 1.5-4 3.2
(一) 膜脂 生物膜上的脂类统称膜脂。
磷脂 膜 脂 胆固醇
糖脂
均为“双亲性分子”(★★)
既有亲水性一端,又有 疏水性一端的分子。
1、磷脂的类型
X

磷脂酰胆碱(卵磷脂)
性 头
磷 磷脂酰乙醇胺(脑磷脂)
部 (
脂 磷脂酰丝氨酸
亲 水 性
鞘磷脂






部 (
(一)吞噬作用
※指细胞内吞较大的固体颗粒或分子复合物的过程,
如细菌、细胞碎片、无机尘粒等。
※吞噬作用形成的囊泡称吞噬体。
※是原生动物获取营养的重要方式。 ※在高等动物和人类是机体免疫系统的重要功能
(如巨噬细胞等)。
(二)胞饮作用
※是指细胞内吞液体或小溶质分子的活动。 ※胞饮形成的囊泡称胞饮体。
※大多数细胞具有胞饮作用。
ATP
Na+
细胞外
Na+
小 亚 基 小 亚 基 小 亚 基
Na+
Na+ Na+
细胞内
K+ K+
K+
浓 钾结合部位 度
梯 度 30 倍
ADP+Pi
K+
K+
K+
K+
K+ K+
K+
K+
K+
K+
K+ K+
K+ K+
K+
K+
K+
K+
K+
K+ K+

《医学细胞生物学》第04章 细胞膜与物质的跨膜运输

《医学细胞生物学》第04章 细胞膜与物质的跨膜运输

17、协同运输:通过消耗ATP间接提供能量,借助某种物质浓度梯度或电化学梯度为动力进行运输。
18、配体门通道:通道蛋白亚基在膜上形成的孔道,如果通过与一些信号分子(配体)结合后构象发生改变而导致孔道的开关,则这样的通道蛋白称为配体门通道。
19、电压门通道:通道蛋白亚基在膜上形成的孔道,如果通过细胞内外离子浓度产生膜电位,由膜电位发生变化控制开关,则这样的通道蛋白称为电压门通道。
E、细胞膜及内膜系统的总称
2、生物膜的主要化学成分是( )。
A、蛋白质和核酸 B、蛋白质和糖类 C、蛋白质和脂肪
D、蛋白质和脂类 E、糖类和脂类
3、生物膜的主要作用是( )。
A、区域化 B、合成蛋白质 C、提供能量 D、运输物质 E、合成脂类
6、间隙连接和紧密连接都是脊椎动物的通讯连接方式。( )
7、桥粒和半桥粒的形态结构不同,但功能相同。( )
8、所有生物膜中的蛋白质和脂的相对含量都相同。( )
9、胞吞作用与胞吐作用是大分子物质与颗粒性物质的跨膜运输方式,也是一种主动运输,需要消耗能量。( )
2、外在(外周)膜蛋白为水不溶性蛋白,形成跨膜螺旋,与膜结合紧密,需用去垢剂使膜崩解后才可分离。( )
3、哺乳动物成熟的红细胞没有细胞核和内膜体系,所以红细胞的质膜是最简单最易操作的生物膜。( )
4、连接子(connexon) 是锚定连接的基本单位。
5、上皮细胞、肌肉细胞和血细胞都存在细胞连接。( )
9、桥粒:又称点状桥粒,位于粘合带下方。是细胞间形成的钮扣式的连接结构,跨膜蛋白(钙粘素)通过附着蛋白(致密斑)与中间纤维相联系,提供细胞内中间纤维的锚定位点。中间纤维横贯细胞,形成网状结构,同时还通过桥粒与相邻细胞连成一体,形成整体网络,起支持和抵抗外界压力与张力的作用。

细胞生物学 第四章 细胞膜与物质的穿膜运输

细胞生物学  第四章  细胞膜与物质的穿膜运输
孔蛋白(porin)。
2. 外在膜蛋白(extrinsic proteins)
也称外周蛋白(peripheral protein) 占20%~30%,位于膜的内外表面,内面较多
主要是水溶性蛋白质 连接较松散,温和处理就与膜分离
周边蛋白通过离子键、氢键或静电作用与膜脂 分子相互作用
高盐溶液可破坏离子键,不需用去垢剂 如:血影蛋白、锚蛋白。细胞色素C等
1. 膜脂的流动 脂双层是一种二维流体,因细胞内外的水环境
阻止膜脂分子自双层中逸出,只能在双层内运动和 交换位置
1)膜脂分子的运动形式
烃链的旋转异构运动(流动性的主要因素)
C一C 自由旋转产生旋转异构体
反式构象
歪扭构象
侧向扩散(lateral diffusion) 同一单分子层内脂类分子交换位置,107次/秒。 扩散距离为1~2 µm/秒
乙酰胆碱受体是典型的配体门控通道 N冲动传至神经末梢,电压闸门Ca2+通道瞬时开放 Ca2+内流使突触小泡释放Ach Ach结合突触后膜受体,使Na+通道开放 肌细胞膜Na+内流使电压闸门Na+通道短暂开放 肌细胞膜去极化,肌浆网上Ca2+通道开放 Ca2+内流,引起肌原纤维收缩
神经肌肉接头处离子通道
这种含特殊脂质和蛋白质的微区较膜其它部位厚, 更有序,较少流动,称脂筏
脂筏直径约70~100nm,其上数百个蛋白质形成小 窝(caveolae),它可转运生物活性分子入细胞,参 与信号转导
脂筏的特点 一是聚集蛋白质,便于相互作用 二是提供蛋白质变构环境,形成有效的变构
脂筏功能的紊乱已涉及HIV、肿瘤、动脉粥样硬化、 老年痴呆、疯牛病等
水端朝向膜的内外表面 球形蛋白质附着在脂双层的两侧表面,形成蛋白质-

细胞生物学-第四章 细胞质膜

细胞生物学-第四章  细胞质膜

水溶性蛋白-脂质-去污剂复合体
可溶性脂质去污剂混合胶粒
第二节 生物膜基本特征与功能
一.膜的流动性 (一)膜脂的流动性
膜的流动性是生物膜的基本特征之一,也是细胞进行 生命活动的必须条件。流动性包括膜脂的流动性和膜蛋白的 流动性。
典型的磷脂分子有1个极性的头部和2个疏水的碳氢链尾
部,当一条烃链中含有一个或几个顺式排列的双键(不饱和 的),在双键部分可形成弯曲。烃链的长度及饱和状态的不 同,影响膜的流动性。
翻转运动
弯曲 弯曲的碳氢链
饱和的碳氢链
胆固醇
(三)脂质体 (1)膜脂都是兼性分子,其分子结构中含有亲水 和疏水两部分。两条脂肪酸链几乎彼此平行,分子 的两端,形成所谓极性的头部和非极性的尾部,头 部具有亲水性而尾部具有疏水性。
(2)在水溶液中会自动形成双分子层结构,即亲水
第一节 细胞质膜的结构模型
一、生物膜的结构模型 (一)片层结构模型
1925年荷兰的2位科学家Gorter和Grendel用有机 溶剂抽提人的红细胞膜的膜脂成分并测定膜脂单层分 子在水面的铺展面积,发现它为红细胞表面积的二倍, 提 示 了 质 膜 是 由 双 层 脂 分 子 构 成 的 。 1935 年 , Daniell&Davson:发现质膜的表面张力比油-水界面的 表面张力低得多,已知脂滴表面如果吸附有蛋白质成 分则表面张力降低,因此推测,质膜中含有蛋白质成 分。从测定膜的表面张力得出细胞膜的“三明治结构 型”,即蛋白质—脂质—蛋白质。
不足之处:(1)单位膜为一种静态单一的结构无
法说明膜的动态结构的变化,(2)各种膜的功能不 一样,而单位膜模型显示不出来,(3)各种不同细 胞和同一细胞中的不同部分膜的厚度实际上并不都 是7.5nm。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)糙面内质网(rER) 糙面内质网又称为粗面或颗粒型内质网。 rER在细胞中多呈扁囊状,排列较为整齐,因其膜的外表面附着有大 量颗粒状的核糖体,所以表面粗糙,称为糙面内质网。
(2)光面内质网(sER) 光面内质网又称滑面内质网或无颗粒 型内质网。这类内质网的膜表面没有核糖体附着,所以表面光滑。光 面内质网的结构与糙面内质网不同,多为分支小管或小囊构成的细网, 很少有扁囊状的。小管直径为50~100nm,它们连接成网,形成较为 复杂的立体结构(图4-3)。
细胞生物学 第四章
第二节 内质网
在内质网膜上合成的磷脂很快就由细胞质基质侧转向 内质网膜腔面,其中有的插入到脂双分子里,有的向其它 膜转运。其转运主要有两种方式:一种是以出芽的方式, 以运输小泡转运到高尔基体、溶酶体和细胞膜上;另一种 方式是凭借一种水溶性的载体蛋白,即磷脂转换蛋白 (phospholipid exchange protein,PEP)在膜之间转移磷脂。 其转运模式是:PED与磷脂分子结合形成水溶性的复合物 进入细胞质基质,通过自由扩散,直到靶膜时,PEP将磷 脂释放出来,并安插在膜上,结果使磷脂从含量高的膜转 移到缺少磷脂的膜上。细胞中转移到线粒体或过氧化物酶 体膜上的磷脂就是通过此方式转运的。
细胞生物学 第四章
第一节 细胞质基质
3.细胞质基质在蛋白质的修饰、蛋白质寿命的控制以 及蛋白质选择性降解等方面有重要作用
现已发现的蛋白质侧链修饰有100余种,其中绝大多 数的修饰是由专一的酶作用于蛋白质侧链的特定位点。已 知在细胞质基质中发生蛋的白质修饰主要有:辅酶或辅基 与酶的共价结合;蛋白生物活性的磷酸化、去磷酸化;将 N-乙酰葡萄糖胺分子加到丝氨酸残基上的糖基化以及某些 蛋白质分子末端的甲基化修饰等。这些不同形式的修饰, 用以调节蛋白质的生物活性。同时,细胞质基质还在控制 蛋白质寿命、降解变性和错误折叠的蛋白质以及帮助变性 或错误折叠的蛋白质重新折叠为新的正确的分子构象等方 面起重要作用。
细胞生物学 第四章
第二节 内质网
③SRP-核糖体复合体与内质网膜结合。SRP不仅可 识别核糖体上的信号肽,而且还能识别糙面内质网膜上的 SRP受体。当SRP-核糖体复合体形成后,在SRP的介导 下逐渐向内质网膜靠近,与之接触后便与膜上的SRP受体 结合。与此同时,核糖体则与内质网膜上的转移器相结合, 从而加强了核糖体与内质网结合的稳定性。
图4-5 N-糖基化的蛋白质
细胞生物学 第四章
第二节 内质网
图4-6 在rER腔内蛋白质的糖基化作用
细胞生物学 第四章
第二节 内质网
(3)蛋白质的转运
新合成的分泌蛋白在内质网腔中经过糖基化等修饰加 工之后,由内质网分离出来的囊泡所包裹,形成运输小泡, 并转运到高尔基体中。随后便在高尔基体内转变为浓缩泡, 再经浓缩泡浓缩形成分泌颗粒而被排出细胞之外。这是分 泌蛋白的常见排出途径。另一种途径是含有分泌蛋白的小 泡由内质网脱落后,直接形成浓缩泡,再由浓缩泡变为分 泌颗粒而被排出。
值得说明的是, ER上核糖体所合成的如果是 分泌蛋白,多肽链则全部穿过ER膜进入ER腔中; 若是膜蛋白则存留于ER膜上,形成跨膜蛋白。注 定留在膜内的跨膜蛋白的转移过程比可溶性蛋白 的转移更为复杂。
细胞生物学 第四章
第二节 内质网
(2)蛋白质的修饰与加工 进入内质 网的蛋白质发生的化学修饰作用主要有糖 基化、羟基化、酰基化与二硫键的形成等。 糖基化是内质网中最常见的蛋白质修饰, 是指一些糖共价地结合到蛋白质上形成糖 蛋白的过程。在ER合成的多肽链进入ER腔 后,大部分可溶蛋白或结合膜的蛋白质, 包括那些注定到高尔基体、溶酶体、质膜 或细胞外空间的蛋白质都需要进行糖基化, 形成糖蛋白。而在细胞质中游离核糖体上 所合成的可溶性蛋白不进行糖基化。
细胞生物学 第四章
第二节 内质网
一、内质网的形态结构和类型
1.内质网的形态结构内质网是由一层单位膜围成的小管、小囊和扁囊 所构成的网状结构。其膜厚约5~6nm。通常情况下,这些小管、小囊或 扁囊相互连接,形成一个连续的、封闭的网状膜系统,其内腔是相连通 的(图4-1)。内质网通常占细胞膜系统的一半左右,体积约占细胞总体 积的10%以上。在不同类型的细胞或同一细胞不同的发育,内质网数量、
细胞生物学 第四章
第二节 内质网
经研究发现,ER腔里连接到蛋白质上的糖是一种由N-乙酰葡萄糖胺、甘 露糖、葡萄糖组成的寡糖,这种寡糖是与蛋白质的天冬酰胺(Asn)残基侧链 上的氨基基团连接(图4-5)。在ER腔面,寡糖通过高能的焦磷酸键连接到插 入ER膜内的多萜醇上,当新生肽链中与糖基化有关的氨基酸残基出现后,通 过内质网腔侧面上的寡糖转移酶的催化,将寡糖基由磷酸多萜醇转移到相应 的天冬酰胺残基上(图4-6)。
细胞生物学 第四章
第二节 内质网
②SRP-核糖体复合体形成。近年来研究证 明,在细胞质基质中有一种信号识别颗粒(signal recognition particle ,SRP)它主要由6个不同的多 肽亚单位和一个小的RNA分子组成,为一种GTP 结合蛋白。当信号肽从核糖体上一出现,就被信 号识别颗粒(SRP)所识别。SRP迅速与信号肽 和糖核体结合,形成SRP-核糖体复合体。此时, SRP占据了核糖体上与tRNA结合的位置,阻止了 携带氨基酸的tRNA进入核糖体,从而使蛋白质的 合成暂时中止。
SRP受体亦称停泊蛋白,为膜嵌蛋白,暴露于内质网 膜的外表面,可与SRP特异结合,当核糖体附着于内质网 膜之后,SRP便与SRP受体分离,又回到细胞质基质中, 准备完成下一次介导任务,实现了SRP循环。 转移器也是膜嵌蛋白,它只存在于糙面内质网,而不存在 于光面内质网和原核细胞的细胞膜。
细胞生物学 第四章
类型与形态差异很大。
图4-1 内质网立体结 构模式图
细胞生物学 第四章
第二节 内质网
2.内质网的类型
根 据 内 质 网 表 面 有 无 核 糖 体 , 可 分 为 糙 面 内 质 网 ( rough endoplasmic reticulum,rER ) 和 光 面 内 质 网 ( smooth endoplasmic reticulum, sER)两种基本类型。
细胞生物学 第四章
第一节 细胞质基质
二、细胞质基质的功能
1.细胞质基质是细胞内物质代谢的重要场所 经研究表明,细胞内所有的中间代谢过程均发生在细胞质中,其中 大部分是在细胞质基质中进行的。 2.细胞质基质与细胞质骨架密切相关 由于构成细胞质骨架的蛋白质存在于细胞质基质中,因此许多学者 认为细胞质骨架是细胞质基质的主要结构成分,它对维持细胞的形态、 细胞运动、细胞内的物质运输以及能量传递等有着重要作用,同时也为 细胞质基质中的其他成分及细胞器提供了锚定位点。如果离开了细胞质 骨架的支持和组织,细胞质基质中的其他成分就失去了锚定点,随之也 就丧失了其复杂的高度有序的结构体系,无法完成各种生物学功能。
细胞生物学 第四章
第二节 内质网
图4-2 胰腺腺泡细胞中发 达的糙面内质网
图4-3 sER的形态
细胞生物学 第四章
第二节 内质网
3.内质网的主要组成
应用蔗糖密度离心方法,可以从细胞匀浆中分离出内 质网的碎片—微粒体。通过对微粒体的生化分析,得知内 质网膜和所有细胞的生物膜一样,也由脂类和蛋白质组成。 ER中脂类约占1/3,蛋白质约占2/3,相比较而言,rER中 蛋白质含量多于sER。内质网膜的脂类含量比细胞膜的少, 蛋白质含量比细胞膜的多。脂类主要成分为磷脂,磷脂酰 胆碱含量较高,鞘磷脂含量较少,没有或很少含胆固醇。 ER约有30多种膜结合蛋白,另有30多种蛋白质位于内质网 腔中,这些蛋白的分布具有异质性。内质网膜还含有大量 的酶,其中葡萄糖-6-磷酸酶被视为内质网膜的标志酶的功能
1.蛋白质的合成、加工修饰和转运 (1)蛋白质的合成和转移 细胞中的蛋白质都是在核糖体上合成的,并 且起始于细胞质基质中。但是有些蛋白质在合成开始不久便转到内质网膜上 进行合成。附着在rER上的核糖体所合成的蛋白质主要有:向细胞外分泌的分 泌蛋白,如酶、抗体,激素和细胞外基质成分等;跨膜蛋白;驻留蛋白和溶 酶体蛋白;需要进行修饰的蛋白,如糖蛋白等。这些蛋白质的多肽链往往是 边合成边进入内质网。
图4-4 在结合膜的核糖体上合成分泌蛋白示细胞意生图物学 第四章
第二节 内质网
①信号肽的合成。蛋白质的合成是从mRNA 结合到游离的核糖体开始的。信号假说认为,在 合成分泌蛋白时,游离的核糖体首先合成了一段 多肽,在这段多肽的N端含有—信号序列——为 18~30个非极性氨基酸残基构成,它指导新生多 肽到内质网膜上。这种能引导新合成的肽链转移 到内质网上的多肽就是信号肽(signal peptide)。 信号肽还能引导游离的核糖体与内质网膜结合, 从而成为附着核糖体,而那些不能合成信号肽的 核糖体仍散布于细胞质基质中,即为游离核糖体。
细胞生物学 第四章
第二节 内质网
2.脂类的合成
内质网是脂类合成的重要场所。已经实验证明,大部分膜的脂双 层是在内质网组装的。ER膜能合成几乎所有细胞需要的脂类,包括磷 脂和胆固醇。其中最主要的磷脂是磷脂酰胆碱 (又称卵磷脂)。磷脂 酰胆碱是由两个脂肪酸、一个磷酸甘油和一个胆碱在三种酶的催化下 合成的。这些酶位于sER的脂类双层内,它们的活性部位都朝向细胞 质基质。这样,新合成的脂类分子最初只嵌入sER脂类双层的细胞质 基质面。磷脂酰胆碱的合成过程如图4-7所示。首先由酰基转移酶催 化细胞质中的脂酰辅酶A和3-磷酸甘油,将2个脂肪酸加到磷酸甘油上, 形成磷脂酸,磷脂酸为非水溶性化合物,合成后便保留在脂类双层中; 然后,在磷酸酶的作用下,将磷脂酸转化为二酰基甘油;最后,再在 胆碱磷酸转移酶的催化下,由二酰基甘油和CDP-胆碱合成磷脂酰胆碱。 除磷脂酰胆碱外,其它几种磷脂,如磷脂酰乙醇胺、磷脂酰丝氨酸以 及磷脂酰肌醇等都以类似的方式合成。
第二节 内质网
④多肽链进入内质网腔。一旦核糖体牢固结 合于内质网膜上,新生肽链含信号肽的一端插入 到转移器的通道,信号肽结合到转移器内的一个 位点,触发打开到内质网腔的通道,同时SRP被释 放,先前处于暂停状态的肽链合成又重新开始, 新生肽链随信号肽继续延伸,并通过转移器的通 道进入内质网腔。新生的多肽链边合成边向ER腔 转移,当新合成的蛋白质的羧基端通过ER膜时, 由位于内质网腔面的信号肽酶的作用将信号肽切 除,并从转移器孔释放出来,进入内质网腔,很 快被其他蛋白酶降解成氨基酸。此时转移器通道 关闭,核糖体也随之解离,脱离内质网,重新加 入“核糖体循环”。
相关文档
最新文档