《微积分A2》秋季学期重修课程说明
高等数学A2)课程教学大纲
课程基本信息(Course Information)
课程代码
*学时
(Course Code)
MA0002/MA081 (Credit Hours)
64
*课程名称
(中文)高等数学 A(2)
(Course Name)
(英文)Calculus A(2)
*学分 (Credits) 4
18
重积分
12
曲线积分与
曲面积分
18
级数
16
教学方式 面授
作业及要求 基本要求 考查方式
习题
完成要求 书面作业
面授
习题
完成要求 书面作业
面授
习题
完成要求 书面作业
面授
习题
完成要求 书面作业
*教学内容、进度安排 及要求
(Class Schedule &Requirements)
……
*考核方式 (Grading)
强化学生合理运用数学知识分析并解决实际问题的能力。
课程内容:
本门课程主要包括以下内容:多元函数微分学、重积分、曲线积分与曲
面积分、级数等几大板块。
Calculus studying is one of the most effective ways for students to build up the good learning habits and learning motivation. It also plays a critical role *课程简介(Description) in cultivating and improving students' innovation ability and integrated quality. This course provides not only necessary mathematical knowledge to follow-up Science and Engineering courses, but also proper training in
微积分课程教学大纲
微积分课程教学大纲一、课程简介微积分课程是大学数学的基础课程之一,旨在培养学生分析、解决实际问题的能力,以及为后续数学课程和科学类课程奠定基础。
本大纲将介绍微积分课程的教学目标、教学内容、教学方法和评估方式。
二、教学目标1、掌握微积分的基本概念、原理和方法,了解微积分的实际应用。
2、培养学生的数学思维、逻辑推理和解决问题的能力。
3、培养学生的创新意识和团队协作能力。
三、教学内容1、极限与连续:极限的定义与性质,极限的运算,连续函数的概念与性质。
2、导数与微分:导数的定义与计算,微分的定义与计算,导数与微分的应用。
3、不定积分与定积分:不定积分的定义与计算,定积分的定义与计算,定积分的应用。
4、多元微积分:多元函数的极限、导数与微分,以及偏导数与全微分的应用。
5、无穷级数与常微分方程:无穷级数的概念与性质,常微分方程的基本概念与求解方法。
四、教学方法1、理论教学:通过课堂讲解、推导和证明,使学生深入理解微积分的原理和方法。
2、实践教学:通过例题讲解、课堂练习、课后作业和实验等方式,加强学生的实际操作能力。
3、多媒体教学:利用多媒体课件、教学视频等手段,提高教学效果和学生学习效率。
4、团队协作:通过小组讨论、合作解决问题等方式,培养学生的团队协作能力。
五、评估方式1、平时成绩:包括课堂表现、作业完成情况、实验报告等。
2、期中考试:以闭卷形式进行,主要考察学生对基本概念和方法的掌握情况。
3、期末考试:以闭卷形式进行,主要考察学生对整个课程内容的理解和应用能力。
4、总评成绩:结合平时成绩、期中考试和期末考试的成绩进行综合评价。
六、教学进度安排本课程总计学时,具体分配如下:5、极限与连续:学时;6、导数与微分:学时;7、不定积分与定积分:学时;8、多元微积分:学时;9、无穷级数与常微分方程:学时;10、总复习与答疑:学时。
微积分教学大纲一、课程简介微积分是高等数学的一个分支,研究函数的微分和积分以及相关的概念和应用。
清华大学微积分A(2)教学大纲
二、复合偏导数计算,导数的应用
三、含参数积分与二重积分计算
四、三重积分计算和应用
五、第二类曲线积分,Green公式与应用
六、Gauss-Stokes公式及其应用
七、常微分方程习题
考核成绩评定标准:总成绩=期中考试(20-30%)+作业(10-20%)+期末考试(50-60%)
2、多元函数的极限和连续
3、偏导数、方向导数、梯度、全微分
4、向量值函数的微分,高阶偏导数
5、隐(反)函数定理
6、微分的几何应用
7、Taylor公式,绝对极值
8、条件极值:Lagrange乘子方法
二、含参数积分和广义积分
1、含参数积分的概念和性质
2、无穷区间上的广义积分
3、绝对收敛和条件收敛
4、无界函数的广义积分
微积分A2课程教学大纲
课程名称
微积分A2
课程负责人
苏宁
教学重点
通过对本课程的学习使学生掌握多元函数的极限、微分、积分的概念和基本计算方法,理解与一元函数相应概念的异同,掌握解决相应实际问题的基本思路,同时进一步提高学生分析问题、解决问题的能力。
课程主要内容教学:
一、多元函数及其微分学
1、n维欧氏空间的点集和区域
3、平面第二类曲线积分与路径无关
4、第二类曲面积分
5、空间向量场,Gauss公式和Stokes公式
6、空间第二类曲线积分与路径无关
六、场论初步
1、梯度、散度、旋度阶线性常微分方程
2、线性方程解的结构
3、二阶齐次线性方程
4、非齐次方程求解
5、一阶线性常微分方程组
另外配有14-16学时习题课:
〔注:平时或期中考试可以使用计算机网络辅助的考试方式〕
微积分课程教学大纲
微积分课程教学大纲一、课程简介微积分是数学的重要分支,旨在研究变化与积分的关系。
本课程旨在帮助学生掌握微积分的基本概念、原理和应用,培养学生的分析思维和问题解决能力。
二、教学目标1. 理解微积分的基本概念,包括导数、积分和微分方程等。
2. 掌握微积分的基本理论和方法,能够运用微积分解决实际问题。
3. 发展学生的数学思维和逻辑推理能力,培养学生的数学建模与分析能力。
三、教学内容1. 导数a. 极限的概念与性质b. 导数的定义和计算c. 函数的增减性和极值d. 高阶导数和隐函数求导2. 积分a. 不定积分和定积分的概念b. 基本积分表及其应用c. 曲线的弧长和曲面的面积d. 积分中值定理和微积分基本定理3. 微分方程a. 基本概念和分类b. 一阶微分方程的解法c. 二阶线性微分方程的解法d. 微分方程在科学与工程中的应用四、教学方法1. 理论授课:通过讲解理论知识,确立微积分的基本原理和概念。
2. 数学推导:通过演绎推理,引导学生理解微积分理论和方法的证明过程。
3. 示例分析:通过解析实例,帮助学生应用微积分解决实际问题。
4. 互动讨论:组织学生讨论并解答问题,促进学生思维的活跃和思考能力的提升。
5. 实验实践:引导学生通过实验和实践,加深对微积分理论的理解和应用。
五、教学评价1. 课堂小测:每节课结束时进行小测,检测学生对当天所学知识的掌握情况。
2. 作业与习题:布置大量练习题和作业,帮助学生巩固所学知识。
3. 期中、期末考试:考察学生对整个学期微积分内容的掌握情况。
4. 课堂表现:评价学生参与课堂讨论的积极性、问问题的能力以及思维的灵活性。
六、参考教材1. 《微积分学教程》(第一册、第二册、第三册),作者:XX2. 《微积分导论》(上、下册),作者:XX3. 《微积分基础》(全2册),作者:XX七、教学进度安排1. 第一章导数(4周)2. 第二章积分(5周)3. 第三章微分方程(4周)八、教学资源支持1. 数学实验室的使用2. 多媒体教学设备的应用九、教学团队本课程将由数学系教师共同组成的教学团队进行授课。
高等数学A2教学大纲
《高等数学AⅡ》课程教学大纲一、课程基本信息二、课程教学目标本课程为我校理、工等学科本科生的公共基础课。
通过系统学习,使学生掌握高等数学的基本知识,使学生计算能力和解决问题的能力进一步提高,逐步培养学生抽象思维和概括问题的能力、逻辑推理能力、创新思维能力、自学能力、较熟练的运算能力和综合运用所学知识分析和解决问题的能力,为后续课程的学习和专业发展奠定必要的数学基础。
第一,通过课程学习,学生的计算能力要进一步提高,主要是求极限、求导数、求积分的能力要达到一定的熟练程度。
第二,通过课程学习,学生的自学能力要进一步提高,主要是培养学生的自主学习意识和学习习惯。
第三,通过课程学习,学生的分析和解决问题的能力要进一步提高,主要是要培养学生的学以致用的能力,把高等数学的知识用到后续的专业课程中去的能力。
第四,通过课程学习,学生的抽象思维和逻辑推理能力要进一步提高。
三、教学学时分配《高等数学AⅡ》课程理论教学学时分配表四、教学内容和教学要求第七章常微分方程(12学时)(一)教学要求:1.掌握微分方程的基本概念。
2.熟练掌握可分离变量、齐次、一阶线性等一阶微分方程的解法与应用。
3.掌握三类可降价的高阶微分方程的解法及应用。
4.理解二阶线性微分方程解的结构。
5.掌握二阶常系数线性齐次与非齐次微分方程的解法及应用。
(二)教学重点与难点:重点:可分离变量的微分方程,一阶线性微分方程,二阶常系数线性齐次与非齐次微分方程。
难点:求解一阶线性,二阶常系数线性齐次与非齐次微分方程。
(三)教学内容:第一节微分方程的基本概念第二节可分离变量的微分方程第三节齐次方程1.齐次方程2.可化为齐次方程的方程第四节一阶线性微分方程1.线性方程2.伯努利方程第五节可降阶的高阶微分方程第六节高阶线性微分方程1.二阶线性微分方程举例2.线性微分方程的解的结构第七节常系数齐次线性微分方程第八节常系数非齐次线性微分方程本章习题要点:1.解一阶微分方程2.解二阶微分方程第八章空间解析几何与向量代数(14学时)(一)教学要求:1.理解空间直角坐标系及两点间距离。
《微积分(二)》教学大纲
(4)知道二阶线性非齐次微分方程解的结构;
(5)能根据二阶线性常系数齐次微分方程的特征方程根的不同情况,熟练的写出
方程的通解;
(6)当二阶线性常系数非齐次微分方程右端函数
,根据?是否为特征方程根的根来确定方程
系数线性微分方程。
难点:二阶常系数非齐次线性方程特解求法。
§ 9.1 微分方程的基本概念
内容与要求:
(1)熟知微分方程、阶、解、通解、初始条件、特解的含义;
(2)清楚微分方程的解、通解、特解的异同。
§9.2 一阶微分方程
§7.4 偏导数
内容与要求:
(1)理解并掌握偏导数的定义;
(2)知道偏导数的几何意义;
(3)掌握偏导数的求法;
(4)知道高阶偏导数的含义,知道二阶混合偏导数相等的条件。
§7.5 全微分
内容与要求:
(1)正确理解二元函数全微分的定义。
(2)知道二元函数连续、偏导数存在、可微之间的关系;会求全微分。
§6.2 微积分基本定理
内容与要求:
(1)知道变上限函数
(2)熟知微积分基本定理,理解"区间I上的连续函数存在原函数";
(3)熟练掌握牛顿--莱布尼兹公式。
§6.3 定积分的换元积分法与分步积分法
Hale Waihona Puke 内容与要求: (1)掌握并正确使用换元积分法;
(2)牢记分步积分公式并会用分步积分公式计算定积分;
(3)会用拉格朗日乘数法解条件极值问题;
(4)会求多元函数最大值、最小值应用问题。
§ 7.8 二重积分
内容与要求:
高等数学a2教学大纲
《高等数学A2》教学大纲一、课程说明高等数学A2是适应物理类各专业(微电子,应用物理学等专业)的一门公共必修课,课程学分4学分,64学时。
高等数学是非数学专业的一门非常重要的基础课程,同时也是一门培养科学文化素质的课程。
也是各理科专业研究生入学考试的必考课程。
通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、多元函数微积分学;4、曲线积分与曲面积分5、无穷级数等基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础,并着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。
自古以来,数学的发展始终与社会的进步、科学技术的发展紧密相连,数学(尤其是高等数学)的教学和人们对数学思想方法的需求也在不断发展和更新。
首先从和社会发展比较紧密的自然科学上来看,航海、航空、建筑、运动等需要进行模型的刻化与定量分析,而建立了高等数学的开创性和基础性工作,并与数学相互促进和发展,形成了当今数学的核心理论。
同样,经济的发展也离不开数学的支撑,对经济规划、预测与决策等问题的研究,尤其是定量化研究对于决策的关键作用,数学在经济学中的成功应用,强有力地推动了西方经济的发展,促进了经济持续有序的健康发展。
高尔基曾说“数学是科学的王后”。
而我们再看当今大学所开设的很多专业,如:物理学、天文学、力学、经济学、管理学、地理学、生物学、化学等诸多学科无不需要数学的支撑。
高等数学课的教学不仅关系到学生在整个大学以至于研究生期间的学习水平,而且还关系到培养学生的科学思想方法和分析解决问题的能力和他们的文化素质。
课堂讲授注重深入浅出,通俗易懂,逻辑严密。
善于从实际问题出发,提出数学问题,通过解决这些问题,深入领会数学概念和定理,提高了学生学习的积极性和主动性,培养了学生创造性地应用数学知识解决实际问题的能力。
二、先修课程及应具备的知识先修课程:初等数学,高等数学A1应具备的知识:一元微积分知识三、学习目标1、一元函数积分学(定积分) ( 12学时)(1a)理解定积分的概念。
《高等数学A2》课程教学大纲_2
1 / 31 / 3《高等数学A2》课程教学大纲一、课程基本信息课程代码:SL1102课程名称:高等数学A2课程性质:必修课课程类别:通识教育基础课程适用专业:工学、管理学、经济学、理学(非数学类)类本科多学时各专业总 学 时:88 学时总 学 分:5.5学分先修课程:高等数学A1后续课程:各相关专业课程课程简介:《高等数学A2》是利用微积分方法研究客观世界数量关系和空间形式的科学,是高等学校工学、管理学、经济学、理学(非数学类)类本科多学时各专业学生的一门必修的重要通识教育基础课程.通过本课程中的基本概念、基本理论、基本方法和运算技能的学习,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力,特别培养学生具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力以及创新精神,为今后学习后继课程和进一步拓广知识面奠定必要的坚实的数学基础.主要内容包括:微分方程、空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数.选用教材:《高等数学》(第六版)(上、下册)[M].同济大学应用数学系编,高等教育出版社,2007.参考书目:[1] 《高等数学》(上、下册)[M].王金金 编,北京:北京邮电大学出版社,2010;[2]《高等数学》(上、下册)[M].朱士信等编,北京:中国电力出版社,2007;[3]《高等数学》[M]. 杜先能 孙国正编,安徽:安徽大学出版社,2004;[4]《高等数学习题课讲义》[M].同济大学应用数学系编, 北京:高等教育出版社,1998;[5]《高等数学习题集》[M].华东六省工科数学系列教材编委会编,北京:高等教育出版社;[6]《数学分析》(第四版)(上、下册)[M].华东师范大学数学系 编,北京:高等教育出版社,2008.二、课程总目标通过本课程的学习,使学生获得微分方程、向量代数与空间解析几何、多元函数微积分学、无穷级数等方面的基本概念、基本理论、基本方法和运算技能,逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间抽象能力以及自学能力,特别注意培养学生具有比较熟练的运算能力和综合运用所学知识分析和解决问题能力以及创新精神,为今后学习后继课程和进一步拓广知识面奠定必要的坚实的数学基础.三、课程教学内容与基本要求1、教学内容:(1)微分方程;(2)空间解析几何;(3)多元函数微分法及其应用;(4)重积分;(5)曲线积分与曲面积分;(6)无穷级数.2、基本要求:(1) 微分方程①了解微分方程的解、通解、初始条件和特解等概念;②掌握变量可分离的方程及一阶线性方程的解法;③会解齐次方程和伯努利(Bernoulli )方程,并从中领会用变量代换求解方程的思想;④会用降阶法求下列三种类型的高阶方程:()()n y f x =,(),y f x y '''=,(),y f y y '''= ;⑤理解二阶线性微分方程解的性质及解的结构;⑥掌握二阶常系数齐次线性微分方程的解法,了解某些高阶常系数齐次线性微分方程的解法;⑦会求自由项形如:()ax n P x e ,12()sin ()cos ax m n e p x x p x x ωω⎡⎤+⎣⎦的二阶常系数非齐次线性微分方程的特解,其中()n P x 为实系数n 次多项式,,a ω实数;⑧会用微分方程解一些简单的几何和物理问题.重点:可分离变量及一阶线性微分方程解法;二阶线性微分方程解的结构;二阶常系数齐次微分方程解法.难点:微分方程的建立;初始条件的确定.(2) 向量代数与空间解析几何2 / 32 /3 ①理解空间直角坐标系,理解向量的概念及其表示;②掌握向量的运算(线性运算,数量积,向量积),了解两向量垂直、平行的条件;③理解单位向量、方向数与方向余弦的概念,掌握用坐标表达式进行向量运算的方法;④掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题;⑤了解曲面方程概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面方程 ;会求母线平行于坐标轴的柱面方程;⑥了解空间曲线的参数方程和一般方程;⑦了解曲面的交线在坐标平面上的投影,并会求其方程.重点:空间直线与平面的方程,;曲面的图形.难点:曲面的交线在坐标平面上的投影.(3) 多元函数微分法及其应用①理解多元函数的概念, 理解二元函数的几何意义;②了解二元函数的极限与连续性的概念以及有界闭域上连续函数的性质;③理解偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件;○4理解方向导数与梯度的概念,会求方向导数与梯度; ○5掌握多元复合函数的一阶偏导数的求法,会求多元复合函数的二阶偏导数(对于求抽象复合函数的 二阶导数,只要求作简单训练);○6会求多元隐函数(包括两个方程组成的方程组确定的隐函数)的一阶偏导数; ○7了解空间曲线的切线和法平面及曲面的切平面与法线的概念,并会求出它们的方程; ○8理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求解一些较简单的最大值和最小值的应用问题.重点:偏导数与全微分的概念;多元函数概念;偏导数的计算;多元函数的极值和条件极值(拉格朗日乘数法).难点:复合函数与隐函数的一、二阶偏导数求解.(4)重积分①理解二重积分、三重积分的概念,了解重积分的性质.②掌握二重积分的计算方法(直角坐标、极坐标),会计算简单的三重积分(直角坐标、柱面坐标、*球面坐标).③会用重积分求一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量等).重点:二重积分、三重积分的概念与计算.难点:二重积分、三重积分的计算.(5)曲线积分与曲面积分①理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系,掌握计算两类曲线积分的方法;②掌握格林(Green )公式,会使用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,了解全微分方程的解法..③了解两类曲面积分的概念、性质及相互联系,并会计算两类曲面积分;④会用高斯(Gauss )公式计算曲面积分,了解斯托克斯(Stokes )公式(斯托克斯公式的证明以及利用该公式计算空间曲线积分不作要求); ⑤了解散度、旋度的概念,并会计算;○6会用重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等). 重点:两类曲线积分的概念及计算;格林公式.难点:第二类曲线与曲面积分;高斯公式.(6)无穷级数①理解无穷级数收敛、发散以及收敛级数的和的概念,掌握无穷级数基本性质及收敛的必要条件;②掌握几何级数和P –级数的收敛性;○3掌握正项级数的比较审敛法和比值审敛法,会用根值审敛法; ○4掌握交错级数的莱布尼茨定理; ○5了解无穷级数的绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系; ○6了解函数项级数的收敛域及和函数的概念; ○7掌握比较简单的幂级数收敛区间的求法; ○8了解幂级数在其收敛区间内的一些基本性质,会求一些幂级数在其收敛区间内的和函数; ○9了解函数展开为泰勒级数的充分必要条件; ○10掌握x e ,sin x ,x cos ,ln(1)x +和m x )1(+的麦克劳林(Maclaurin )展开式,会利用它们将一些简单的函数间接展开成幂级数;○11了解幂级数在近似计算上的简单应用; ○12了解用三角函数逼近周期函数的思想,了解函数展开为傅里叶(Fourier )级数的狄利克雷(Dirichlet )条件,会将定义在(),ππ-和(),l l -上的函数展开为傅里叶级数,会将定义在()0,l 上函数展开为正弦或余弦级数,会写出傅里叶级数的和的表达式.重点:无穷级数收敛与发散的概念;正项级数的比值判别法;幂级数的收敛区间;泰勒级数;函数的幂级数展开式;函数的傅里叶级数;函数的傅里叶正弦和余弦级数.难点:正项级数的比较审敛法;用间接法展函数为泰勒级数.3、学时分配《高等数学A2》课程总学时:88 其中讲授学时:88四、考核方式本课程为考试课程,采用闭卷笔试的考核办法,学生成绩的评定:考试成绩占70%,出勤考核占10%,平时作业占20%.执笔人:俞能福审定人:陈邦考2011年8月19日3 / 33 / 3。
高等数学A2(二) 教学大纲
高等数学A2(二)一、课程说明课程编号:130702X20课程名称(中/英文):高等数学A2(二)/Advanced Mathematics A2(II)课程类别:必修学时/学分:80/5先修课程:高等数学A2(一)适用专业:理工类教材、教学参考书:基本教材:《高等数学》(下册),主编,2014.7,中南大学出版社主要参考书:《大学数学系列课程学习辅导与同步练习册》(高等数学下),2015.9,中南大学出版社二、课程设置的目的意义高等数学A2是高等院校理工类(非数学)专业理工科各专业学生必修的重要基础理论课,是研究自然科学和工程技术的重要工具,是学生提高文化素质和学习有关专业知识的重要基础.通过本课程的学习,要使学生获得:1、函数、极限与连续(不包括实数理论);2、一元函数微积分学;3、无穷级数(包括傅立叶级数);4、向量代数与空间解析几何;5、多元函数微积分学(不包括含参变量的积分);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础.高等数学A2的教学分为两部分,分别是高等数学A2(一)、高等数学A2(二).开设时间是大学第一学年,分两学期授课,总学时为80+80,学分为5+5.第一学期每周6学时(约14周);第二学期每周5学时(约16周).学习本课程的目的和任务:第一、使学生系统地获得大纲中所列基础知识、基本理论和基本运算技能,为学习后续课程和进一步深造奠定必要的数学基础;第二、通过各个教学环节逐步培养学生具有抽象概括问题的能力、空间想象能力、逻辑推理能力和自学能力,特别要培养学生具有熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力.三、课程的基本要求本课程基本要求的高低用不同词汇加以区分,对概念、理论,高要求用“理解”一词表述,低要求用“了解”一词表述;对方法、运算,高要求用“掌握”一词表述,低要求用“会”或“了解”表述.学生对高要求部分必须深入理解,牢固掌握,熟练应用.具体要求如下:第5章空间解析几何1.理解向量的概念,熟练掌握向量的运算:线性运算(加、减、数乘)和乘积运算(数量积、向量积和混合积);2.掌握向量的坐标表示,熟练掌握用向量坐标进行向量的运算;3.掌握两个向量夹角的求法与两个向量垂直、平行的条件;4.掌握平面方程和直线方程及其特点,熟练掌握求平面方程和直线方程的方法;5.掌握点到直线、点到平面及两异面直线的距离;6.理解曲面方程的概念,掌握常用二次曲面:球面、椭球面、锥面、椭圆抛物面的方程及其图形,掌握以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程及以坐标原点为顶点的锥面方程;7.会用平面束的方法解决有关直线与平面的各类问题;8.会利用平面的法向量和直线的方向向量研究平面与平面、直线与直线、平面与直线的位置关系;9.会用截痕法研究二次曲面;10.知道空间曲线的参数方程和一般方程,会求空间曲线投影到坐标面的投影柱面及投影曲线方程.第6章多元函数微分学1.理解多元函数的概念及其几何意义,会求函数的定义域;2.理解偏导数和全微分的概念,掌握多元函数一阶、二阶偏导数的求法;3.掌握多元复合函数一阶偏导数的求法,会求多元复合函数的二阶偏导数;4.掌握多元隐函数(包括由两个方程组成的方程组确定的隐函数)偏导数的求法;5.掌握方向导数与梯度的计算方法;6.掌握求空间曲线上一点的切线与法平面及曲面上一点的切平面与法线的方程;7.理解多元函数的极值和条件极值的概念,会求二元函数的极值;8.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质;9.了解全微分存在的必要条件和充分条件;10.了解方向导数与梯度的概念及其计算方法;11.了解空间曲线上一点的切线与法平面及曲面上一点的切平面与法线的概念,12.了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题.第7章多元函数积分学1.熟练掌握二重积分的计算方法(直角坐标、极坐标);2.熟练掌握计算第一类、第二类曲线积分的方法;3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件;4.熟练掌握用高斯公式计算第二类曲面积分的方法;5.理解二重积分、三重积分的概念,了解重积分的性质,了解重积分的中值定理;6.掌握计算三重积分(直角坐标、柱面坐标、球面坐标); 7.掌握计算第一类、第二类曲面积分的方法,;8.理解第一类、第二类曲线积分的概念,了解第一类、第二类曲线积分的性质及第一类、第二类曲线积分的关系;9.了解重积分换元法;10.会求二元函数全微分的原函数;11.了解第一类、第二类曲面积分的概念、性质及第一类、第二类曲面积分的关系;12.会用斯托克斯公式计算第二类空间曲线积分; 13.了解散度与旋度的概念,并会计算;14.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).第8章 常微分方程1.熟练掌握微分方程的基本概念;2.熟练掌握可分离变量的微分方程的求解方法; 3.熟练掌握一阶线性微分方程的求解方法;4.熟练掌握二阶常系数齐次线性微分方程的求解方法;5.掌握齐次方程和两种可化为齐次方程的微分方程的求解方法; 6.会解Bernoulli 方程;7.会解全微分方程,了解积分因子法;8.会用降阶法解下列方程()(),(,')n y f x y f x y ''==和'(,)y f y y ''=; 9.理解线性微分方程解的结构及相关性质; 11.了解高阶常系数齐次线性微分方程的解法; 12.会解几类二阶常系数非齐次线性微分方程; 13.了解Euler 方程及其求解方法;14.会用微分方程解一些简单的几何和物理问题. 四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无六、考核方式及成绩评定七、大纲撰写:大纲审核:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分A2》秋季学期重修课程说明
一、课程安排
1、学生自行观看视频:
2、习题课上课安排(考勤列入平时成绩):
教师:桂胜华;上课时间:第5周,7周,第9周,第13周周二11-12节;8302教室
教师:种田;上课时间:第5周,第9周,第13周周二11-13节;4301教室
3、课外辅导答疑安排:
桂胜华;时间:第6-8,10-12周周一8-10节;答疑地点:5号楼4楼教师休息室。
种田;时间: 第6-8,10-12周周二9:40-11:55;答疑地点:4号楼4楼教师休息室。
二、课程内容
(一)不定积分
(二)定积分
(三)定积分的应用
(四)多元函数积分学及其应用
三、教学效果评价
各部分的比例分别为:
平时成绩30%(出勤率,视频观看情况,课后答疑)
期终考试70%
总计100%
四、教材及推荐参考书
1、教材:同济大学数学系.《高等数学(上、下册)》,高等教育出版社,2014年第7版
2、推荐参考书及电子资源网站:
1)同济大学应用数学系. 《高等数学(上册)》(新世纪高级应用型人才培养系列教材), 同济大学出版社,2004年第1版
2).同济大学应用数学系.《高等数学附册――学习辅导与习题选解(上下册合订本)》,
高等教育出版社,2003年第1版
3). G.B.Thomas 《托马斯微积分》
4). 数苑网。