1.3.2杨辉三角与二项式系数的性质ppt
合集下载
《“杨辉三角”与二项式系数的性质》人教版高中数学选修2-3PPT课件(第1.3.2课时)
人教版高中数学选修2-3
第1章 计数原理 1.3.2“杨辉三角”与二项式系数的性质
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-3
讲解人: 时间:2020.6.1
课前导入
二项定理: 一般地,对于n N*有
(a b)n Cn0an Cn1an1b Cn2a b n2 2 Cnranrbr Cnnbn
(1-1)n=Cn0-Cn1+Cn2-Cn3+…+(-1)nCnn 即
0=(Cn0+Cn2 +…)-(Cn1+Cn3+…), 所以
Cn0+Cn2 +…= Cn1+Cn3+…, 即得证.
课堂训练
1. 如图1,在由二项式系数所构成的杨辉三角中,第__3_4___行中从左到右第14与第15个数的比
为2:3 .
(2)在(1+x)10的展开式中,二项式系数最大为 __C_15_0 __;
在(1-x)11的展开式中,二项式系数最大为_C__171_ .
课堂训练
2.选择
(1)( 2 3 3)100 的展开式中,无理项的个数是( )
√ A .83 B.84 C.85
D.86
(2)(x-2)9的展开式中,第6项的二项式系数 是( )
新知探究
由以上分析可以画出如下图:
新知探究
观察 结合杨辉三角和上图来研究二项式系数的一些性质.
新知探究
知识要点 1.对称性
与首末两端“等距离”的两个二项式系数相等.
这一性质可直接由公式 Cnm=Cnn-m 得到.
新知探究 直线r n 将函数f(r)的图像分成对称的两部分,它是图像的对称轴
第1章 计数原理 1.3.2“杨辉三角”与二项式系数的性质
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-3
讲解人: 时间:2020.6.1
课前导入
二项定理: 一般地,对于n N*有
(a b)n Cn0an Cn1an1b Cn2a b n2 2 Cnranrbr Cnnbn
(1-1)n=Cn0-Cn1+Cn2-Cn3+…+(-1)nCnn 即
0=(Cn0+Cn2 +…)-(Cn1+Cn3+…), 所以
Cn0+Cn2 +…= Cn1+Cn3+…, 即得证.
课堂训练
1. 如图1,在由二项式系数所构成的杨辉三角中,第__3_4___行中从左到右第14与第15个数的比
为2:3 .
(2)在(1+x)10的展开式中,二项式系数最大为 __C_15_0 __;
在(1-x)11的展开式中,二项式系数最大为_C__171_ .
课堂训练
2.选择
(1)( 2 3 3)100 的展开式中,无理项的个数是( )
√ A .83 B.84 C.85
D.86
(2)(x-2)9的展开式中,第6项的二项式系数 是( )
新知探究
由以上分析可以画出如下图:
新知探究
观察 结合杨辉三角和上图来研究二项式系数的一些性质.
新知探究
知识要点 1.对称性
与首末两端“等距离”的两个二项式系数相等.
这一性质可直接由公式 Cnm=Cnn-m 得到.
新知探究 直线r n 将函数f(r)的图像分成对称的两部分,它是图像的对称轴
1.3.2杨辉三角与二项式系数的性质ppt课件
C50C51C52C53C54C55
(a b)6 1 6 15 20 15 6 1 C60C61C62C63C64C65C66
……
……
……
(a b)n
r n1Cnn
表中每行两端都是1,与这两个1等距离的系数相等;而且在相邻的
两行中,除1以外的每一个数都等于它肩上两个数的和;同一行中系
即0 Cn0 Cn2 Cn1 Cn3
C
0 n
C
2 n
C
1 n
C
3 n
典例解析
小结:赋值法在二项式定理中,常对a,b赋予一些特 定的值1,-1 等来整体得到所求。
赋值法
新知探究
赋值法的应用 —解决二项式系数问题.
赋值法再思考
已知(1 2x)7 a0 a1 x a2 x2
课堂练习
课堂练习
a+b 1)已知 C155
a, C195
b,那么
C10 16
=
;
2)(a b)9 的展开式中,二项式系数的最大值是 126 ;
3)若 (a b)n 的展开式中的第十项和第十一项的二项式
系数最大,则n= 19 ;
典型例题
典例解析
例1 证明在 (a b)n 的展开式中,奇数项的 二项式系数的和等于偶数项的二项式系数的和.
证明在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数
项的二项式系数的和.
: 即证
C
0 n
C
2 n
C
1 n
C
3 n
(a b)6 1 6 15 20 15 6 1 C60C61C62C63C64C65C66
……
……
……
(a b)n
r n1Cnn
表中每行两端都是1,与这两个1等距离的系数相等;而且在相邻的
两行中,除1以外的每一个数都等于它肩上两个数的和;同一行中系
即0 Cn0 Cn2 Cn1 Cn3
C
0 n
C
2 n
C
1 n
C
3 n
典例解析
小结:赋值法在二项式定理中,常对a,b赋予一些特 定的值1,-1 等来整体得到所求。
赋值法
新知探究
赋值法的应用 —解决二项式系数问题.
赋值法再思考
已知(1 2x)7 a0 a1 x a2 x2
课堂练习
课堂练习
a+b 1)已知 C155
a, C195
b,那么
C10 16
=
;
2)(a b)9 的展开式中,二项式系数的最大值是 126 ;
3)若 (a b)n 的展开式中的第十项和第十一项的二项式
系数最大,则n= 19 ;
典型例题
典例解析
例1 证明在 (a b)n 的展开式中,奇数项的 二项式系数的和等于偶数项的二项式系数的和.
证明在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数
项的二项式系数的和.
: 即证
C
0 n
C
2 n
C
1 n
C
3 n
高中数学选修2-3课件1.3.2《“杨辉三角”与二项式系数的性质》课件
2.在(a+b)20展开式中,与第五项二项式系数 相同的项是 A.第15项 B.第16项 C.第17项 D.第18项
2.在(a+b)n展开式中,与第k项二项式系数 相同的项是
A. 第n-k项
B. 第n-k-1项
C. 第n-k+1项 C. 第n-k+2项
观察杨辉三角
(a b)1
1.增减性?
(a b)2
C
1 n
x1
C
2 n
x
2
Cnk x k
C
n n
x
n
问题1:此展开式二项式系数之和
_______________________________.
问题2:此展开式系数之和 赋值法求 _____________________________系__数. 和
(a+x)n的二项式展开各项的系数和求 法:只要令自变量为1即可。
C0n
C1n
C
2 n
Cnn
2n
这就是说,(a b)n的展开式的各二项式系
数的和等于:2n
同时由于C
0 n
1,上式还可以写成:
C1n
C2n
C3n
C
n n
2n
1
这是组合总数公式.
一般地,(a b)n 展开式的二项式系数
Cn0 ,Cn1,Cnn 有如下性质:
(1)
Cnm
C nm n
(2)
左增右减
(a b)3 (a b)4
2.在何处取得最大值?(a b)5
11 12 1 13 3 1 14 6 4 1 1 5 10 10 5 1
性质2:
当n是偶数时,展开式有n+1项( n+1是奇数),中间项
2.在(a+b)n展开式中,与第k项二项式系数 相同的项是
A. 第n-k项
B. 第n-k-1项
C. 第n-k+1项 C. 第n-k+2项
观察杨辉三角
(a b)1
1.增减性?
(a b)2
C
1 n
x1
C
2 n
x
2
Cnk x k
C
n n
x
n
问题1:此展开式二项式系数之和
_______________________________.
问题2:此展开式系数之和 赋值法求 _____________________________系__数. 和
(a+x)n的二项式展开各项的系数和求 法:只要令自变量为1即可。
C0n
C1n
C
2 n
Cnn
2n
这就是说,(a b)n的展开式的各二项式系
数的和等于:2n
同时由于C
0 n
1,上式还可以写成:
C1n
C2n
C3n
C
n n
2n
1
这是组合总数公式.
一般地,(a b)n 展开式的二项式系数
Cn0 ,Cn1,Cnn 有如下性质:
(1)
Cnm
C nm n
(2)
左增右减
(a b)3 (a b)4
2.在何处取得最大值?(a b)5
11 12 1 13 3 1 14 6 4 1 1 5 10 10 5 1
性质2:
当n是偶数时,展开式有n+1项( n+1是奇数),中间项
1.3.2“杨辉三角”与二项式系数的性质说课课件
一:教材分析 二:目标分析 三:重点难点 四:过程分析 五:教法分析
一:教材分析
教材的地位及作用
本节课是普通高中课程标准实验教科书数学 选修2-3、第一章第3节、二项式定理第3课 时,前面已经学习了组合、组合数及二项式 定理。在此基础上继续学习杨辉三角,研究 二项式系数的性质。可以进一步深化认识组 合数,导出一些组合数的恒等式,进行组合 数的计算和变形。又与概率统计中的二项分 布有其内在联系。
设计意图:在例1的基础上及时巩固,目的在于 对赋值法领会及运用能力;
综合跃升
1、在(x+y)n的展开式中,第四项与第八项的
系数相同,则展开式中系数最大的项是( )
A 第6项
B 第 5项
C 第5项和第6项 D 第6项和第7项
2、已知(1+2x)10=a0+ a1x+ a2x2+ …+a10x10
求(1) a0+ a1+ a2+… +a9+ a10的值;
质》
特征:
1 、 两端都是1
11 121
2 、 对称性
1331
3 、 中间数最大 1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
4 、 除1之外的每一个数都等于“肩上” 两个数的和
2021/1/7
质》
【设计意图 : 】
由学生自己动手计算、填表、主动去发现 规律,可以培养学生观察、分析、比较、 归纳、猜想的积极探索能力
4、巩固新知
• 1、求 (a b)6展开式中的倒数第三项的二项 式系数。
• 2、(1 x)n 展开式中只有第十项二项式系数 最 大,求n的值.
设计意图:对性质1、2及时巩固应用
人教版数学选修二1.3.2《“杨辉三角”与二项式系数的性质(一)》课件
二项式系数的性质
(3)各二项式系数的和
在二项式定理中,令a b 1,则:
C0n
C1n
C
2 n
Cnn
2n
这就是说,(a b)n的展开式的各二项式系
数的和等于:2n
同时由于C
0 n
1,上式还可以写成:
C1n C2n C3n Cnn 2n 1
这是组合总数公式.
图象的对称轴:r n 2
二项式系数的性质
(2)增减性与最大值
由于: C kn
n(n
1)(n 2)(n k (k 1)!
k
1)
Ck 1 n
n
k k
1
nk 1
所以C
k n
相对于C
k n
1的增减情况由
决定.
k
二项式系数的性质
(2)增减性与最大值
由:n k 1 1 k n 1
课堂练习:
1)已知 C155
a, C195
b
,那么
C10 16
=
;
2) (a b)9的展开式中,二项式系数的最大值 是;
3)若 (a b)n 的展开式中的第十项和第十一
项的二项式系数最大,则n=
;
例1 证明在 (a b)n的展开式中,奇 数项的二项式系数的和等于偶数项的二 项式系数的和.
一般地,(a b)n 展开式的二项式系数
Cn0 ,Cn1,Cnn 有如下性质:
(1)
Cnm
C nm n
(2)
Cnm
C m1 n
1.3.2“杨辉三角”与二项式系数的性质 课件(人教A版选修2-3)
Cr ·320- r·2r≥Cr+1·319- r·2r+ 1, 20 20 r - - 20- r r- C20·3 ·2r≥C20 1·321 r·2r 1, 3(r+1)≥2(20-r), 化简得 2(21-r)≥3r,
2 2 解得 7 ≤r≤8 (r∈N), 5 5 所以 r=8, 8 即 T9=C20312·28·x12y8 是系数绝对值最大的项. (3)由于系数为正的项为奇数项,故可设第 2r-1 项系数最大, 于是
如:求(a+x)n=a0+a1x+a2x2+…+anxn展开式中各项系 数和,可令x=1,即得各项系数和a0+a1+a2+…+an.若 要求奇数项的系数之和或偶数项的系数之和,可分别令x =-1,x=1,两等式相加或相减即可求出结果.
题型一
与杨辉三角有关的问题
【例1】 如图在“杨辉三角”中,斜线AB的 上方,从1开始箭头所示的数组成一 个锯齿形数列:1,2,3,3,6,4,
2
(2分)
(4分)
由于n=5为奇数,所以展开式中二项式系数最大的项为中
T3=C2(x3)3(3x2)2=90x6, 5
2 22
T4=C3(x3)2(3x2)3=270x 3 . 5
(6 分)
(2)展开式的通项公式为 假设
2 + r r Tr+1=C53 ·x3(5 2r).
Cr 3r≥Cr-1·3r-1, 5 5 r r Tr+1 项系数最大,则有 + + C53 ≥Cr 1·3r 1, 5
10,5,…,记其前n项和为Sn,求S19
的值. [思路探索] 本题关键是观察数列的特征,数列的每一项在 杨辉三角中的位置,把各项还原为二项展开式的二项式系 数,再利用组合数求解.
解 由图知,数列中的首项是 C2,第 2 项是 C1,第 3 项是 2 2 2 C2,第 4 项是 C1,„,第 17 项是 C10,第 18 项是 C1 ,第 19 3 3 10 2 项是 C11. 1 2 1 ∴S19=(C2+C2)+(C1+C3 )+(C4+C2)+„+(C1 +C2 )+C2 2 3 4 10 10 11 1 2 = (C 1 + C 3 + C 1 + „ + C 1 ) + (C 2 + C 2 + „ + C 11 ) = 2 4 10 2 3 (2+10)×9 +C3 =274. 12 2 规律方法 解决与杨辉三角有关的问题的一般思路是:通
2 2 解得 7 ≤r≤8 (r∈N), 5 5 所以 r=8, 8 即 T9=C20312·28·x12y8 是系数绝对值最大的项. (3)由于系数为正的项为奇数项,故可设第 2r-1 项系数最大, 于是
如:求(a+x)n=a0+a1x+a2x2+…+anxn展开式中各项系 数和,可令x=1,即得各项系数和a0+a1+a2+…+an.若 要求奇数项的系数之和或偶数项的系数之和,可分别令x =-1,x=1,两等式相加或相减即可求出结果.
题型一
与杨辉三角有关的问题
【例1】 如图在“杨辉三角”中,斜线AB的 上方,从1开始箭头所示的数组成一 个锯齿形数列:1,2,3,3,6,4,
2
(2分)
(4分)
由于n=5为奇数,所以展开式中二项式系数最大的项为中
T3=C2(x3)3(3x2)2=90x6, 5
2 22
T4=C3(x3)2(3x2)3=270x 3 . 5
(6 分)
(2)展开式的通项公式为 假设
2 + r r Tr+1=C53 ·x3(5 2r).
Cr 3r≥Cr-1·3r-1, 5 5 r r Tr+1 项系数最大,则有 + + C53 ≥Cr 1·3r 1, 5
10,5,…,记其前n项和为Sn,求S19
的值. [思路探索] 本题关键是观察数列的特征,数列的每一项在 杨辉三角中的位置,把各项还原为二项展开式的二项式系 数,再利用组合数求解.
解 由图知,数列中的首项是 C2,第 2 项是 C1,第 3 项是 2 2 2 C2,第 4 项是 C1,„,第 17 项是 C10,第 18 项是 C1 ,第 19 3 3 10 2 项是 C11. 1 2 1 ∴S19=(C2+C2)+(C1+C3 )+(C4+C2)+„+(C1 +C2 )+C2 2 3 4 10 10 11 1 2 = (C 1 + C 3 + C 1 + „ + C 1 ) + (C 2 + C 2 + „ + C 11 ) = 2 4 10 2 3 (2+10)×9 +C3 =274. 12 2 规律方法 解决与杨辉三角有关的问题的一般思路是:通
1.3.2杨辉三角和二项式系数的性质
因此,当n为偶数时,中间一项的二项式
n
系数 C
2 n
取得最大值;
n 1
当n为奇数时,中间两项的二项式系数 C n 2 、
n 1
C
2 n
相等,且同时取得最大值。
精品课件
二项式系数的性质
(3)各二项式系数的和
在二项式定理中,令 ab1,则:
C 0 n C 1 n C n 2 C n n2 n
这就是说,(a b)n的展开式的各二项式系
数的和等于:2 n
同时由于C0n 1,上式还可以写成: C 1 n C 2 n C 3 n C n n 2 n 1
这是组合总数公式.精品课件
例1 证明在 (a b)n的展开式中,奇 数项的二项式系数的和等于偶数项的二 项式系数的和.
精品课件
例2
已知 (3 x 2 )n 的展开式中,第
x
4项的二项式系数是倒数第2项的二项式系 数的7倍,求展开式中x的一次项.
精品课件
内容小结
二项展开式中的二项式系数都是一些特 殊的组合数,它有三条性质,要理解和掌握 好,同时要注意“系数”与“二项式系数” 的区别,不能混淆,只有二项式系数最大的 才是中间项,而系数最大的不一定是中间项, 尤其要理解和掌握“取特值”法,它是解决 有关二项展开式系数的问题的重要手段。
1.3.2杨辉三角和二项式系数性 质
精品课件
杨辉三角
《
九
章
杨
算
辉
术
》
精品课件
杨辉三角
《
详
解
九
章
算
法
》
中
记
载
的
表
精品课件
杨辉三角
课件1:1.3.2 杨辉三角与二项式系数的性质
C nn 1 1
探究一
性质1.对称性
与首末两端“等距离”的两个二项式系数相等.
1
C C
r
n
1
n r
n
1
1
1
1
2
3
4
1
3
6
1
4
1
1 5
10
5
1
…
… …10… …
……
…
1 C1n1 C 2n1 … C rn 1 … C nn 12 1
… C rn C rn 1 … C nn 1 1
(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6
二项式系数与杨辉三角
1
1
1
1
1
1
1
1
2
3
4
5
6
这个表叫做二项
式系数表,也称
“杨辉三角”
1
3
6
10
15
1
4 1
10 5
20 15
1
6
1
《
详
解
九
章
算
法
》
中
记
载
的
表
杨
辉
在国外,这个表被称为帕斯卡三角。认为是法国数学家帕斯卡
+1
2
与
2
3
4
1
3
6
1
4
1
1 5
10
10
5
1
…
…
…
…
…
…
…
…
; 1 C1 C 2 … C r … C n 2
人教版数学高二《“杨辉三角与二项式系数的性质》 精品课件
(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.
高中数学
• 根据已知条件可求出n,再根据n的奇偶性 确定二项式系数最大的项.列出不等关系 解不等式组,可求系数最大的项.
高中数学
• [规范解答] 令x=1, • 则展开式中各项系数和为(1+3)n=22n, • 又展开式中二项式系数和为2n, • ∴22n-2n=992,n=5.2分 • (1)∵n=5,展开式共6项,二项式系数最大的
高中数学
• 解得5≤r≤6, • 因为r=0,1,2,…,8, • 所以r=5或r=6. • 故系数最大的项为T6=1 792x5,T7=1 792x6.
高中数学
高中数学
• 如图,在“杨辉三角”中,斜线AB的上方, 从1开始箭头所示的数组成一个锯齿形数列: 1,2,3,3,6,4,10,5,…记其前n项和为Sn,求S19的 值.
高中数学
• (4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零, 而a1,a3,a5,a7小于零,
• ∴|a0|+|a1|+|a2|+…+|a7| • =(a0+a2+a4+a6)-(a1+a3+a5+a7), • ∴由(2)(3)即可得其值为2 187.
高中数学
[题后感悟] (1)赋值法——对恒等式中的变量代入数 值,可得到为解决某些问题而所需的关系.
②Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…
= 2n-1
.
高中数学
• 1.设(3-x)n=a0+a1x+a2x2+…+anxn,若n =4,则a0-a1+a2+…+(-1)nan=( )
• A.256
B.136
• C.120
D.16
• 解析: 在展开式中令x=-1得a0-a1+a2- a3+a4=44.故选A.
高中数学
• 根据已知条件可求出n,再根据n的奇偶性 确定二项式系数最大的项.列出不等关系 解不等式组,可求系数最大的项.
高中数学
• [规范解答] 令x=1, • 则展开式中各项系数和为(1+3)n=22n, • 又展开式中二项式系数和为2n, • ∴22n-2n=992,n=5.2分 • (1)∵n=5,展开式共6项,二项式系数最大的
高中数学
• 解得5≤r≤6, • 因为r=0,1,2,…,8, • 所以r=5或r=6. • 故系数最大的项为T6=1 792x5,T7=1 792x6.
高中数学
高中数学
• 如图,在“杨辉三角”中,斜线AB的上方, 从1开始箭头所示的数组成一个锯齿形数列: 1,2,3,3,6,4,10,5,…记其前n项和为Sn,求S19的 值.
高中数学
• (4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零, 而a1,a3,a5,a7小于零,
• ∴|a0|+|a1|+|a2|+…+|a7| • =(a0+a2+a4+a6)-(a1+a3+a5+a7), • ∴由(2)(3)即可得其值为2 187.
高中数学
[题后感悟] (1)赋值法——对恒等式中的变量代入数 值,可得到为解决某些问题而所需的关系.
②Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…
= 2n-1
.
高中数学
• 1.设(3-x)n=a0+a1x+a2x2+…+anxn,若n =4,则a0-a1+a2+…+(-1)nan=( )
• A.256
B.136
• C.120
D.16
• 解析: 在展开式中令x=-1得a0-a1+a2- a3+a4=44.故选A.
1.3.2“杨辉三角”与二项式系数的性质(共28张)
图象的对称轴: r n 2
第9页,共28页。
(2)增减(zēnɡ jiǎn)性与最大值:
①若n为偶数
中间一项(第
n 2
1
项)的二项式系数取得
最大值;即C
n 2
最大
。
n
n 当r≤ 2 时, Cnr单调递增;
当r≥
n 2
时,
C
r n
单调递减;
第10页,共28页。
(2)增减(zēnɡ jiǎn)性与最大值:
类 型 ( l èi x ín g ) 一 : 二 项 式 系 数 性 质 的 应 用
例2 、(
x
1 )n x
的展开式中第8项是常数,
则展开式中系数最大的项是( )
A、第8项
B、第9项
C、第8项或第9项 D、第11项或第12项
第16页,共28页。
练习 : (liànxí)
已知 (3 x2 3x2)n 展开式中各项系数和比它的二项式 系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.
1)请看系数有没有明显的规律? 2)上下两行有什么关系吗? 3)根据这两条规律,大家能写出下面的系数吗?
第6页,共28页。
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
+ ++ + ++ ++++
+++++
①每行两端都是1
②从第二行起,每行除1以外的每一个(yī ɡè)数都等于它 肩上的两个数的和
C30C31C32C33
第9页,共28页。
(2)增减(zēnɡ jiǎn)性与最大值:
①若n为偶数
中间一项(第
n 2
1
项)的二项式系数取得
最大值;即C
n 2
最大
。
n
n 当r≤ 2 时, Cnr单调递增;
当r≥
n 2
时,
C
r n
单调递减;
第10页,共28页。
(2)增减(zēnɡ jiǎn)性与最大值:
类 型 ( l èi x ín g ) 一 : 二 项 式 系 数 性 质 的 应 用
例2 、(
x
1 )n x
的展开式中第8项是常数,
则展开式中系数最大的项是( )
A、第8项
B、第9项
C、第8项或第9项 D、第11项或第12项
第16页,共28页。
练习 : (liànxí)
已知 (3 x2 3x2)n 展开式中各项系数和比它的二项式 系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.
1)请看系数有没有明显的规律? 2)上下两行有什么关系吗? 3)根据这两条规律,大家能写出下面的系数吗?
第6页,共28页。
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
+ ++ + ++ ++++
+++++
①每行两端都是1
②从第二行起,每行除1以外的每一个(yī ɡè)数都等于它 肩上的两个数的和
C30C31C32C33
人教版数学高二-新课标 《“杨辉三角与二项式系数的性质》 精品课件
则
C2r0
320r
2r
C r1 20
319r
2r1
C2r0
320r
2r
C r1 20
321 r
2r1
即 3(r+1)>2(20-r) 得 2
2
2(21-r)>3r
7 r8
5
5
所以当r=8时,系数绝对值最大的项为
T9
C280
312 28 高中数学
x12 y8
即 3(r+1)>2(20-r) 2(21-r)>3r
第0行
1
第1行
11
第2行
12 1
第3行
13 3 1
第4行
14 6 4 1
第5行
1 5 10 10 5 1
第6行 1 6 15 20 15 6 1
第7行 1 7 21 35 35 21 7 1
第8行 1 8 28
56高中数…学7…0 56 28 8 1
类似上面的表,早在我国南宋数学家杨辉 1261年所著的《详解九章算法》一书里就已经 出现了,这个表称为杨辉三角。在书中,还说 明了表里“一”以外的每一个数都等于它肩上 两个数的和,杨辉指出这个方法出于《释锁》 算书,且我国北宋数学家贾宪(约公元11世纪) 已经用过它。这表明我国发现这个表不晚于11 世纪。在欧洲,这个表被认为是法国数学家帕 斯卡(1623-1662)首先发现的,他们把这个 表叫做帕斯卡三角。这就是说,杨辉三角的发 现要比欧洲早五百年左右,由此可见我国古代 数学的成就是非常值得中华民族自豪的.
杨辉三角
高中数学
点击图片可以演示“杨辉三角”课件
杨辉三角
第0行
1
高中数学“杨辉三角”与二项式系数的性质课件
由二项式定理写出
(a b)n , n 1, 2,3, 4,5, 6时的展开式
转换形式,得到“杨辉三角”
赋值法,证明了 二项式系数的性 质3和推论
观察“杨辉三角”,得出二 项式系数的3个性质
3个性质的简单应用
应用函数的思想说明性质1 和性质2
方法:特殊到一般,分类讨论,赋值法
A组:习题1.3 A 7,8
11 121
C30
C
1 3
C32 C33
C40
C 41
C
2 4
C
3 4
C44
C
0 5
C
1 5
C52
C53 C54 C55
1 33 1 1 4641 1 5 10 10 5 1
C60
C
1 6
C62 C63
C64
C65
C
6 6
1
6 15 20 15 6 1
问题2,再次观察“杨辉三角”,你能发现二项式系 数的单调性是怎样的吗?有最值吗?如果有,最值
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
C10 C11
C20
C
1 2
C
2 2
11 121
C30
C
1 3
C32 C33
1 33 1
C40
C
1 4
C
2 4
C
3 4
C44
C50
C
1 5
C52
C53
C
4 5
C55
1 4641 1 5 10 10 5 1
C60
C
1 6
课件5: 1.3.2 “杨辉三角”与二项式系数的性质
[问题1] 你从上面的表示形式可以直观地看出什么规律? [提示1] 在同一行中,每行两端都是1,与这两个1等距离的项的系 数相等;在相邻的两行中,除1以外的其余各数都等于它“肩上”两 个数字之和. [问题2] 计算每一行的系数和,你又看出什么规律? [提示2] 2,4,8,16,32,64,…,其系数和为2n.
B.第7项
C.第9项
D.第10项
【解析】由组合数性质知 C312+C912 ,故与第3项二项式系数相同的
项是第9项.故选C. 【答案】C
2.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n等于( )
A.8
B.9
C.10
D.11
【解析】只有x5的系数最大,x5是展开式的第6项,第6项为中间项,展开式 共有11项,故n=10.
小结
1.二项式系数的性质可从杨辉三角中直观地看出. 2.求展开式中的系数或展开式中的系数的和、差的关键是给字母赋值, 赋值的选择则需根据所求的展开式系数和特征来确定.一般地对字母赋 的值为0,1或-1,但在解决具体问题时要灵活掌握. 3.注意以下两点: (1)区分开二项式系数与项的系数. (2)求解有关系数最大时的不等式组时,注意其中r∈{0,1,2,…,n}的 范围.
【答案】 (1) 2
(2)2n-1
二项展开式系数和问题
已知(1-2x)7=a0+a1x+a2x2+…+a7x7.求: (1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.
解:令 x=1,则 a0+a1+a2+a3+a4+a5+a6+a7=-1, ①
1.3.2 “杨辉三角”与二项式系数的性质
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项定理: 一般地,对于n ∈ 有
(a b) C a C a
n 0 n n 1 n
n 1
bC a
2 n r
n 2
b
2 n
C a
r n
n r
b C b
n n
课前练习: 45 项. 1. 乘积 a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 c5 有___ 2.展开 a b ,其中 a b
3)根据这两条规律,大家能写出下面的系数吗?
(a + b )1 (a + b )2 (a + b )3 (a + b )4 (a + b )5 (a + b )6
①每行两端都是1 上的两个数的和
+
+
+ +
+
+
+
+
+
+
+
+
+
+ +
Cn0= Cnn=1
②从第二行起,每行除1以外的每一个数都等于它肩
C C
k n
n(n 1)(n 2) (n k 1) k 1 n k 1 Cn k (k 1)! k
n 1 可知,当 k 时, 2
二项式系数是逐渐增大的,由对称性可知它的 后半部分是逐渐减小的,且中间项取得最大值。
(2)增减性与最大值 因此,当n为偶数时,中间一项的二项式 系数 C
总结:
“斜线和”
…… ……… 2 r n 2 r 1 1 第n-1行 1 C n 1 C n 1 … C n 1 C n 1 … C n 1 1 r n 1 2 1 … … 第 n行 1 C n C n Cn Cn …… … …
第 0行 第 1行 第 2行 第 3行 第 4行 第 5行 第 6行 第 7行
小 结
对称性 (1)二项式系数的三个性质 增减性与最大值 各二项式系数的和
(2) 数学思想:函数思想 a 单调性; b 图象; c 最值.
5
2 3
3 C 5 10 的系数是______.
二项展开式中的二项式系数指的是哪些?共有多少个? 下面我们来研究二项式系数有些什么性质?我 们先通过观察n为特殊值时,二项式系数有什么特 点?
计算(a+b)n展开式的二项式系数并填入下表
n 1 2 3 4 5 6 1 1 1 1 1 1
(a+b)n展开式的二项式系数
1 1 1 1 1 4 3 6
+
1 2 3
+
1 1
1 4 + 10 10 5 1 5 1 + 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1
1
C
2 n
3 n
4 n
C
C C
r r r r 1
C
C
r r 2
C
r n1
C
r 1 n
从第三个数起,任一数都等于前两个数的和, 如图,写出斜线上各行数字的和,有什么规律? 这就是著名的斐波那契数列 ,也称为兔子数列。 第 0行 第 1行 第 2行 第 3行 第 4行
n 2 取得最大值; n
n 1 2 、 n
C
n 1 2 相等,且同时取得最大值。 n
当n为奇数时,中间两项的二项式系数 C
(3)各二项式系数的和
在二项式定理中,令 a b 1,则:
C C C C 2
0 n 1 n 2 n n n
n
这就是说,
(a b)n 的展开式的各二项式系数的和等于:2 n
1
1 1
1 1 1 4 3
2 3 6
1 1 4 1
第 5行 1 5 10 10 5 1 第 6行 1 6 15 20 15 6 1 第 7行 1 7 21 35 35 21 7 1 第 8行 1 8 28 56 70 56 28 8 1
……
斐波那契数列
斐波那契 (11701250)
意大利商人兼数学家,他 的著作《算盘书》中,首 先引入阿拉伯数字,将 “十进制”介绍给欧洲 人认识,对欧洲的数学 发展有深远的影响。
m n
m 1 n
C
m n 1
(a b) 展开式的二项式 0 1 2 n 系数依次是: Cn , Cn , Cn ,, Cn
n
r C 从函数角度看, n 可看 成是以r为自变量的函数f (r ) 0,1,2,, n ,其定义域是:
当 n 6 时,其图象是右 图中的7个孤立点.
(1)对称性
1 1
0 n
n
C C C C (1) C
0 n 1 n 2 n
0 (C C ) (C C )
0 n 2 n 1 n 3 n
C C C C C C
2 n 4 n 1 n 3 n 5 n
例: 证明:在(a+b)n展开式中,奇数项的二项式系数 的和等于偶数项的二项式系数的和。
(a b) C a C a b C a b C b
n 0 n n
1 n 1 n
r nr r n
n n n
在二项式定理中,令
a 1, b 1 ,则:
3 n n n n
与首末两端“等距离”的两 个二项式系数相等. 这一性质可直接由公式 m nm C n C n 得到. n 图象的对称轴: r 2
(2)增减性与最大值
k C 由于: n
n k 1 1 所以C 相对于Ck 决定. n 的增减情况由 k n k 1 n 1 由: k 1 k 2
1 2 3 4 5 6 1 3 6 10 15
1 4 10 20
1 5 15
1 6
1
对称性
杨 辉
《详解九章算法》中记载的表
杨辉三角
(a + b )1 (a + b )2 (a + b )3 (a + b )4 (a + b )5 (a + b )6
1)请看系数有没有明显的规律?
2)上下两行有什么关系吗?
(a b) C a C a
n 0 n n 1 n
n 1
bC a
2 n r
n 2
b
2 n
C a
r n
n r
b C b
n n
课前练习: 45 项. 1. 乘积 a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 c5 有___ 2.展开 a b ,其中 a b
3)根据这两条规律,大家能写出下面的系数吗?
(a + b )1 (a + b )2 (a + b )3 (a + b )4 (a + b )5 (a + b )6
①每行两端都是1 上的两个数的和
+
+
+ +
+
+
+
+
+
+
+
+
+
+ +
Cn0= Cnn=1
②从第二行起,每行除1以外的每一个数都等于它肩
C C
k n
n(n 1)(n 2) (n k 1) k 1 n k 1 Cn k (k 1)! k
n 1 可知,当 k 时, 2
二项式系数是逐渐增大的,由对称性可知它的 后半部分是逐渐减小的,且中间项取得最大值。
(2)增减性与最大值 因此,当n为偶数时,中间一项的二项式 系数 C
总结:
“斜线和”
…… ……… 2 r n 2 r 1 1 第n-1行 1 C n 1 C n 1 … C n 1 C n 1 … C n 1 1 r n 1 2 1 … … 第 n行 1 C n C n Cn Cn …… … …
第 0行 第 1行 第 2行 第 3行 第 4行 第 5行 第 6行 第 7行
小 结
对称性 (1)二项式系数的三个性质 增减性与最大值 各二项式系数的和
(2) 数学思想:函数思想 a 单调性; b 图象; c 最值.
5
2 3
3 C 5 10 的系数是______.
二项展开式中的二项式系数指的是哪些?共有多少个? 下面我们来研究二项式系数有些什么性质?我 们先通过观察n为特殊值时,二项式系数有什么特 点?
计算(a+b)n展开式的二项式系数并填入下表
n 1 2 3 4 5 6 1 1 1 1 1 1
(a+b)n展开式的二项式系数
1 1 1 1 1 4 3 6
+
1 2 3
+
1 1
1 4 + 10 10 5 1 5 1 + 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1
1
C
2 n
3 n
4 n
C
C C
r r r r 1
C
C
r r 2
C
r n1
C
r 1 n
从第三个数起,任一数都等于前两个数的和, 如图,写出斜线上各行数字的和,有什么规律? 这就是著名的斐波那契数列 ,也称为兔子数列。 第 0行 第 1行 第 2行 第 3行 第 4行
n 2 取得最大值; n
n 1 2 、 n
C
n 1 2 相等,且同时取得最大值。 n
当n为奇数时,中间两项的二项式系数 C
(3)各二项式系数的和
在二项式定理中,令 a b 1,则:
C C C C 2
0 n 1 n 2 n n n
n
这就是说,
(a b)n 的展开式的各二项式系数的和等于:2 n
1
1 1
1 1 1 4 3
2 3 6
1 1 4 1
第 5行 1 5 10 10 5 1 第 6行 1 6 15 20 15 6 1 第 7行 1 7 21 35 35 21 7 1 第 8行 1 8 28 56 70 56 28 8 1
……
斐波那契数列
斐波那契 (11701250)
意大利商人兼数学家,他 的著作《算盘书》中,首 先引入阿拉伯数字,将 “十进制”介绍给欧洲 人认识,对欧洲的数学 发展有深远的影响。
m n
m 1 n
C
m n 1
(a b) 展开式的二项式 0 1 2 n 系数依次是: Cn , Cn , Cn ,, Cn
n
r C 从函数角度看, n 可看 成是以r为自变量的函数f (r ) 0,1,2,, n ,其定义域是:
当 n 6 时,其图象是右 图中的7个孤立点.
(1)对称性
1 1
0 n
n
C C C C (1) C
0 n 1 n 2 n
0 (C C ) (C C )
0 n 2 n 1 n 3 n
C C C C C C
2 n 4 n 1 n 3 n 5 n
例: 证明:在(a+b)n展开式中,奇数项的二项式系数 的和等于偶数项的二项式系数的和。
(a b) C a C a b C a b C b
n 0 n n
1 n 1 n
r nr r n
n n n
在二项式定理中,令
a 1, b 1 ,则:
3 n n n n
与首末两端“等距离”的两 个二项式系数相等. 这一性质可直接由公式 m nm C n C n 得到. n 图象的对称轴: r 2
(2)增减性与最大值
k C 由于: n
n k 1 1 所以C 相对于Ck 决定. n 的增减情况由 k n k 1 n 1 由: k 1 k 2
1 2 3 4 5 6 1 3 6 10 15
1 4 10 20
1 5 15
1 6
1
对称性
杨 辉
《详解九章算法》中记载的表
杨辉三角
(a + b )1 (a + b )2 (a + b )3 (a + b )4 (a + b )5 (a + b )6
1)请看系数有没有明显的规律?
2)上下两行有什么关系吗?