航天器轨道动力学与控制(下)
地球轨道航天器编队飞行动力学与控制研究综述
第41卷第2期力学与实践2019年4月地球轨道航天器编队飞行动力学与控制研究综述1)孙俊2)黄静张宪亮黄庭轩(上海航天控制技术研究所,上海201109)(上海市空间智能控制技术重点实验室,上海201109)孙俊,上海航天控制技术研究所研究员,研发中心主任,哈尔滨工程大学兼职教授/博导,2004年毕业于南京航空航天大学电气工程及其自动化专业,后获得上海航天技术研究院导航制导与控制专业硕士和哈尔滨工业大学航空宇航科学与技术专业博士学位。
著有《航天器姿轨一体化动力学与控制技术》等。
发表空间飞行器动力学与控制技术方面的SCI、EI论文24篇,发明专利10余项,主持国家自然科学基金、科技部重点研发专项、国家863计划、973计划、军委科技委等11项重大/重点课题研究。
获上海市学术技术带头人、上海市青年拔尖人才及国家863计划先进个人等荣誉称号。
担任全国遥感技术标准化技术委员会委员。
摘要航天器编队飞行被定义为跟踪或维持航天器之间的期望相对间隔、期望指向和相对位置。
本文概括介绍了近年来地球轨道飞行编队的动力学和控制方面研究的发展状况,包括传统推进系统和新型无推进剂编队系统的动力学建模方法和控制器设计技术等。
在传统推进编队系统中,航天器由使用化学燃料或等离子体的推进器提供推力,可以实现高精度地相对姿态/位置保持或重构,控制简单,灵活性高,但是需要消耗较多的能源。
相比之下,在新型无推进剂编队系统中,航天器通过新的推力方式,如大气阻力作用,非接触内力,地磁洛伦兹力,动量交换等,将大大延长编队任务的寿命,并有效地避免羽流污染,但会带来新的控制问题。
本文总结了这些领域中动力学与控制方面的研究方法及取得的成果,并提出了相关领域值得深入研究的问题和后续发展的方向。
关键词航天器,编队飞行,动力学,编队控制,地球轨道中图分类号:V448.2文献标识码:A doi:10.6052/1000-0879-18-409DYNAMICS AND CONTROL OF SPACECRAFT FORMATION FLYING INEARTH ORBIT1)SUN Jun2)HUANG Jing ZHANG Xianliang HUANG Tingxuan(Shanghai Institute of Spaceflight Control Technology,Shanghai201109,China)(Shanghai Key Laboratory of Aerospace Intelligent Control Technology,Shanghai201109,China)Abstract The spacecraft formationflying is defined as the tracking or the maintenance of a desired relative separation,orientation or position between or among several spacecraft.This paper reviews the本文于2018–10-17收到。
哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论
“礼炮1号”空间站
空间飞行器动力学与控制 第一课 绪论
1981年4月,世界上第一 架垂直起飞、水平着陆、可 重复使用的美国航天飞机 “哥伦比亚号”试飞成功, 标志着航天运载器由一次性 使用的运载火箭转向重复使 用的航天运载器的新阶段, 标志着人类在空间时代又上 了一层楼,进入了航天飞机 时代。
美国“哥伦比亚号”航天飞机
空间飞行器动力学与控制 第一课 绪论
人类自20世纪60年 代开始探测火星的尝试。 大约半数火星探测任务 成功。 2008年05月25日 , 美国“凤凰”号火星探 测器成功降落在火星北 极区域,其核心任务是 寻找水和生命痕迹。 2008年11月,凤凰 号与地面控制中心失去 联络。
“凤凰”号挖掘臂挖掘火星土壤的情景
空间飞行器动力学与控制 第一课 绪论
1988年11月15日,前苏联的暴风雪号航天飞机从 拜科努尔航天中心首次发射升空,47分钟后进入距 地面 250公里的圆形轨道。它绕地球飞行两圈,在 太空遨游三小时后,按预定计划于 9时25分安全返 航,准确降落在离发射点12公里外的混凝土跑道上, 完成了一次无人驾驶的试验飞行。
“水手2号”探测器
空间飞行器动力学与控制 第一课 绪论
1966年1月,前苏联两艘载人飞船第一次在轨道上成功 交会对接,并实现了两位航天员从一艘飞船向另一艘飞船 的转移。
前苏联“联盟号”载人飞船
前苏联“上升号”载人飞船
空间飞行器动力学与控制 第一课 绪论
1971年4月19日,前苏联“礼炮1号”空间站入 轨成功,其质量约18t,总长14m,轨道高度200~ 250 km,轨道倾角51.6º ,成为人类第一个空间站。
空间飞行器动力学与控制 第一课 绪论
13~14世纪,中国的火箭技术与其他火药兵器一 同传到阿拉伯国家和印度,后又传入欧洲。至18世 纪后期,印度军队在抗击英国和法国军队的多次战 争中就曾大量使用火药火箭并取得了成功结果,由 此推动了欧洲火箭技术的发展。 曾在印度作战的英国人康格里夫(William Congreve)在19世纪初对印度火箭作了改进,他确定 了黑火药的多种配方,改善了制造方法并使火箭系 列化,最大射程可达3km。这些初期火箭的原理都 成为了近代火箭技术的最初基础。
航天器姿态与轨道控制原理
航天器姿态与轨道控制原理
从系统建模的角度来看,航天器的姿态与轨道控制原理包括两部分:旋转系统和平衡系统。
旋转系统包括控制方法、动力方法、传感方法和反馈控制方法等,来实现航天器姿态控制。
平衡系统则运用轨道力学、轨道建模、轨道规划以及发动机控制等方法,以轨道航行、轨道改良等为目标,保证航天器完成任务。
通常情况下,旋转系统使用发动机以及由发动机带动的旋转机构来控制和调节航天器构型和姿态。
旋转系统的主要控制方式有:有限旋转系统控制、控制反馈系统控制、面向目标的制导控制和旋转目标控制等,结合传感器系统通过利用陀螺仪、角速度矢量积分等方法,对航天器角度、转矩控制进行调节,使最终姿态稳定。
平衡系统使用发动机以及由发动机带动的旋转机构来推进航天器的空间轨道控制,通过改变发动机输出力及轨道建模下的参数,如卫星质量、平衡系数等,来调节航天器轨道,如通过线加速、混乱改正、超密对抗等方式,来实现轨道的航行控制。
总之,航天器姿态与轨道控制原理是结合发动机控制技术与建模技术,将航天器位置、朝向以及运动控制起来,以实现宇宙任务的一系列原理。
航空航天领域中的航天器动力学与控制技术研究
航空航天领域中的航天器动力学与控制技术研究航空航天领域一直以来都是科技领域的先锋,航天器作为航空航天技术的重要组成部分,在任何时候都承担着重要的使命。
航天器的动力学与控制技术是保障航天器正常运行的关键因素之一,它的研究对于提高航天器的性能和安全性具有重要的意义。
本文将对航天器动力学与控制技术的研究进行综述与探讨。
一、航天器动力学的基本原理和模型航天器动力学主要研究航天器在太空环境下受到的各种力的作用,包括重力、推力、空气动力学力等。
在基本原理上,航天器动力学可以分为牛顿力学和非惯性力学。
牛顿力学主要研究在重力和推力作用下航天器运动的规律,通过质量、速度和加速度的关系来描述。
非惯性力学则研究航天器在非惯性坐标系下的运动,考虑到四维空间的非线性变换。
航天器的动力学模型是研究航天器运动规律的基础,它是基于物理定律和力学原理建立起来的。
在建立动力学模型时,需要考虑到各种因素对航天器运动的影响,如重力、空气动力学力、姿态控制推力等。
通过建立动力学模型,可以预测航天器在特定条件下的运动轨迹和姿态变化。
二、航天器控制技术的发展与应用航天器控制技术是指通过控制航天器的姿态、位置和速度等参数,使其在空间中按照既定的轨道和航迹运动的技术。
航天器控制技术的发展经历了多个阶段,从简单的自动控制到复杂的智能控制。
在航天器控制技术的研究中,最重要的一项技术是姿态控制。
姿态控制是指通过控制航天器的推力、姿态控制器和导航系统等手段,使航天器能够按照要求保持特定的姿态。
姿态控制技术的研究可以提高航天器的稳定性和精确度,保证其正常运行和任务的完成。
另外,在航天器控制技术研究中,还包括轨道控制、位置控制和速度控制等方面。
轨道控制技术是指通过调整航天器的推力和飞行路径等参数,使航天器能够实现特定的轨道变化。
位置控制技术是指通过控制航天器的位置参数,使其在空间中按照要求实现精确定位。
速度控制技术则是控制航天器的速度和加速度等参数,使其能够按照要求实现特定的速度变化。
深空探测中的轨道分析、设计与控制
深空探测中的轨道分析、设计与控制一、本文概述深空探测是人类探索宇宙未知领域的重要手段,涉及多个关键领域,包括航天工程、天文学、物理学、数学等。
其中,轨道分析、设计与控制作为深空探测任务中的核心环节,对任务的成功与否起着至关重要的作用。
本文将对深空探测中的轨道分析、设计与控制进行深入研究,旨在提高我国深空探测任务的精准度和成功率,为未来的深空探测活动提供坚实的理论基础和实践指导。
本文将首先概述深空探测的背景和意义,阐述轨道分析、设计与控制在深空探测中的重要性。
随后,将详细介绍轨道分析的基本原理和方法,包括轨道动力学模型、轨道确定与预报等。
在此基础上,文章将探讨轨道设计的基本原则和优化方法,分析不同轨道类型在深空探测任务中的应用场景和优缺点。
本文还将深入讨论轨道控制的关键技术,如推力控制、轨道机动、轨道修正等,并分析这些技术在深空探测任务中的实际应用。
本文将对深空探测中的轨道分析、设计与控制进行总结,展望未来的发展趋势和研究方向。
通过本文的研究,将为我国深空探测任务的顺利开展提供有力的技术支撑和理论保障,推动我国深空探测事业的快速发展。
二、深空探测轨道基础深空探测轨道设计是深空探测任务中至关重要的一环,它涉及到如何最有效地将探测器从地球发送到目标天体,并在完成任务后将其安全带回地球。
在进行深空探测轨道设计时,需要考虑到多种因素,包括目标天体的位置、轨道动力学、能源限制、通信延迟等。
深空探测轨道通常可以分为发射轨道、转移轨道、接近轨道和返回轨道等几个阶段。
发射轨道是指探测器从地球表面发射后,进入地球引力场外的轨道。
转移轨道是指探测器从地球出发,经过一段时间的飞行,到达目标天体的轨道。
接近轨道是指探测器接近目标天体,进入其引力场,并准备进行科学实验或探测任务的轨道。
返回轨道则是指完成探测任务后,探测器从目标天体出发,返回地球的轨道。
在深空探测轨道设计中,需要特别关注轨道动力学的问题。
轨道动力学是研究物体在引力场中的运动规律的学科,对于深空探测轨道设计来说,它涉及到如何根据目标天体的引力场和探测器的动力学特性,计算出最佳的轨道轨迹。
哈尔滨工业大学飞行器设计与工程专业本科生培养方案
飞行器设计与工程专业本科生培养方案一、培养目标本专业培养具有良好的数学、力学基础和飞行器总体设计、气动设计、结构与强度分析、试验技术等专业知识,能够从事航空航天工程等领域的设计、科研与技术管理等,也可在其它领域从事产品机电一体化设计和控制等方面应用研究、技术开发工作的飞行器设计学科高级工程技术复合型、创新型人才。
二、培养要求本专业的学生应掌握飞行器总体设计、飞行器结构设计、空气动力学、控制系统原理、飞行器制造工艺及设计、实验等方面的基本理论和专业知识,具有飞行器总体设计、气动设计、结构与分析设计、大型先进通用计算软件的应用能力及相关的处理与分析实际问题的能力。
毕业生应获得以下几方面的知识和能力:1.掌握数学和自然科学基础,掌握飞行器设计的基本理论、基本知识;2.掌握飞行器设计的分析方法和实验方法;3.具有飞行器设计的工程能力;4.熟悉航空航天飞行器设计的有关规范和设计手册等;5.了解飞行器设计的理论前沿、应用前景和发展动态;6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力;7.具有本专业必需的计算、实验、测试、文献检索和基本工艺操作等基本技能和较强的计算机应用能力,对飞行器设计问题具备系统表达、建模、分析求解、论证及设计的能力;8.掌握一门外语,能熟练阅读本专业外文资料,具有一定的听说能力和跨文化的交流与合作能力;9.具有较好的人文艺术和社会科学素养,较强的社会责任感和良好的工程职业道德,较好的语言文字表达能力和人际交流能力;10.了解与本专业相关的法律、法规,熟悉航空航天领域的方针和政策。
三、主干学科航空宇航科学与技术、力学。
四、专业主干课程主要包括理论基础课:理论力学、材料力学、自动控制原理、飞行器结构动力学、计算机辅助设计、可靠性工程、空气动力学;空间飞行器设计方向专业主干课程:航天器轨道动力学、航天器姿态动力学与控制、航天器总体设计;导弹及运载火箭设计方向主干课程:导弹飞行力学、远程火箭弹道学及制导方法、导弹及运载火箭总体设计。
航天器轨道动力学与控制下
AT L C O M 仿 真 M M
S T K 仿 真 软 件
STK是Systems Tool Kit系统工具包的简称(原卫星工具包Satellite Tool Kit),是由美国Analytical Graphics公司开发的一款在航天领域处于领先地位的商业分析软件。STK支持航天任务的全过程,包括设计、 测试、发射、运行和任务应用。 最初,STK是作为一款专业的航天方面的仿真工具使用的,随着其不断的发 展,它逐渐集成了通信、导航、雷达和光电等方面的内容,STK可以对2D与3D建模环境评估系统的性能, 在使用STK的任务环境的背景下,模拟复杂的系统,如飞机,卫星,地面车辆和传感器,评估系统在真实或 模拟的环境下的性能,因此受到了各军工业、研究所的欢迎和支持。
轨
道
机
动
轨道机动的分类 脉冲式机动:发动机工作时间非常短,可以认为速度变化为瞬时完成, 也可再分为单脉冲轨道机动和双脉冲轨道机动; 连续式机动:小推力控制,作用持续一段时间。
变轨控制工程的实现
导航和导引
1
姿态测量的限制3Biblioteka 推进发动机的限制5
2
4
姿态稳定
飞行要求和操作复 杂性的限制
变 轨 的 推 力 模 型
小 特 征 速 度 变 轨
由能量方程式可得:
两边求一次微分:
得出:
基于轨道的瞬时假设,在轨道上 的某点速度v改变而半径r不变则
������a≈2a2/������ V������V
定
点
捕
获
西漂
东漂
轨
道
保
持
影响因素 ●地球扁率影响 ●太阳和月球的引力作用 ●太阳辐射压力 ●大气阻力
轨道保持 ●使实际轨道与预定轨 道维持在误差范围内 ●主动对航天器进行轨 道修正 ●依赖地面测控指令或 星上自主控制
航空航天航天器的轨道设计与控制技术
航空航天航天器的轨道设计与控制技术航空航天航天器的轨道设计与控制技术是航空航天领域中非常重要的一项技术,它涉及到飞行器的轨道规划、定位和航迹控制等方面。
本文将就航空航天航天器的轨道设计和控制技术进行探讨。
一、航空航天航天器的轨道设计航空航天航天器的轨道设计是指确定飞行器在空间中的运动轨迹,使其能按照预定的目标进行飞行。
轨道设计是航空航天任务中的基础性工作,它直接关系到飞行器的运行轨迹、速度、航向等要素。
1.1 轨道参数的选择在进行轨道设计时,需要选择合适的轨道参数。
常见的轨道参数包括轨道高度、轨道倾角、轨道形状等。
轨道高度决定了飞行器与地球之间的距离,轨道倾角则决定了飞行器飞越地球的纬度范围。
根据不同的任务需求和航天器类型,选择合适的轨道参数非常重要。
1.2 轨道设计方法轨道设计可以采用解析方法、数值计算方法或优化算法等。
解析方法是指根据运动方程精确计算出飞行器的轨道参数,但该方法一般只适用于简单的运动模型。
数值计算方法则是通过数值模拟来计算飞行器的轨道,它能够应用于复杂的运动模型。
优化算法则是针对特定的任务目标,通过优化计算得到最优的轨道参数。
1.3 轨道设计的约束条件在进行轨道设计时,需要考虑到各种约束条件,如飞行器的能量消耗、通信要求、观测要求等。
轨道设计需要在满足这些约束条件的前提下,尽可能优化飞行器的轨道参数,以实现任务目标。
二、航空航天航天器的轨道控制技术轨道控制技术是指针对飞行器在轨道运行过程中的姿态、位置等参数进行调整和控制,以实现飞行器的轨道控制。
2.1 轨道控制方法轨道控制可以采用主动控制或被动控制方法。
主动控制是指通过飞行器自身的航向调整、姿态调整等方式来控制轨道。
被动控制则是通过外部引力等方式来调整轨道。
2.2 控制器设计轨道控制还需要设计相应的控制器,以实现轨道的稳定性和精确性。
常见的控制器包括PID控制器、自适应控制器等。
控制器的设计需要考虑到飞行器的动力学特性和控制要求等因素。
航天器的轨道动力学与控制技术
航天器的轨道动力学与控制技术当我们仰望星空,畅想人类在宇宙中的未来时,航天器无疑是实现这一梦想的关键工具。
而要让航天器在浩瀚宇宙中准确、稳定地运行,就离不开对航天器轨道动力学与控制技术的深入研究和应用。
首先,我们来谈谈什么是航天器的轨道动力学。
简单来说,它就是研究航天器在太空中的运动规律。
这可不是一个简单的直线运动或者圆周运动,而是受到多种力的复杂作用下的运动。
地球的引力是其中最主要的影响因素之一。
想象一下,地球就像一个巨大的磁铁,而航天器就像是被磁力吸引的小铁球。
但这个“磁力”可不是均匀的,因为地球并不是一个完美的球体,其质量分布也不均匀,这就导致了引力的变化。
除了地球引力,太阳、月亮以及其他天体的引力也会对航天器的轨道产生影响。
就好像在一场拔河比赛中,不止有一方在用力,而是多方共同作用。
此外,太空中稀薄的大气阻力、太阳光压等也会悄悄地改变航天器的轨道。
那么,了解了这些复杂的影响因素后,如何去控制航天器的轨道呢?这就需要一系列先进的技术手段。
姿态控制是其中的重要一环。
航天器就像一个在太空中飞行的“舞者”,需要时刻保持优美的姿态。
通过使用各种姿态传感器,如陀螺仪、星敏感器等,能够精确感知航天器的姿态变化。
然后,利用推进器、动量轮等执行机构来调整姿态,确保航天器的太阳能电池板始终对准太阳,通信天线指向地球,各种科学仪器能够准确指向观测目标。
轨道控制则更为关键。
当航天器的轨道偏离了预定的轨迹,或者需要进行轨道转移、轨道维持时,就需要进行轨道控制。
这通常通过火箭发动机的点火来实现。
通过精确计算所需的推力大小、方向和作用时间,能够让航天器按照我们的意愿改变轨道。
为了实现精确的轨道控制,先进的导航、制导与控制算法至关重要。
这些算法就像是航天器的“大脑”,能够根据传感器获取的信息,快速准确地计算出最优的控制策略。
同时,随着计算机技术的飞速发展,越来越强大的计算能力也为更复杂、更精确的控制算法提供了支持。
在实际的航天器任务中,轨道动力学与控制技术面临着诸多挑战。
第四章航天器的姿态动力学与控制
11.3.6 姿态敏感器
姿态就是航天器在空间的方位,而姿态敏感器用来测量航天器 本体坐标系相对于某个基准坐标系的相对角位置和角速度,以确 定航天器的姿态。要完全确定一个航天器的姿态,需要3个轴的角 度信息。由于从一个方位基准最多只能得到两个轴的角度信息 (俯仰和偏航),为此要确定航天器的三轴姿态至少要有两个方 位基准。姿态敏感器按不同的基准方位,可分为下列5类:1、以 地球为基准方位:红外地平仪,地球反照敏感器;2、以天体为基 准方位:太阳敏感器,星敏感器;3、以惯性空间为基准方位:陀 螺,加速度计;4、以地面站为基准方位:射频敏感器;5、其 他:例如磁强计(以地磁场为基准方位),陆标敏感器(以地貌 为基准方位)。
单轴
与喷气推力器三轴姿态稳定系统相比,飞轮三轴姿态稳定系统 具有多方面的优点。
1、飞轮可以给出较精确的连续变化的控制力矩,可以进行线性控 制,而喷气推力器只能作非线性开关控制。因此飞轮的控制精度一 般比喷气推力器的高一个数量级,而且姿态误差速率也比喷气控制 小。
2、飞轮所需要的能源是电能,可以不断通过太阳能电池在轨得到补 充,因而适合于长寿命工作。喷气推力器需要消耗工质或燃料,在 轨无法补充,因此其使用寿命大大受限,基本上与航天器携带的工 质或燃料质量成正比,而且还有长期密封问题。
11.3.3 自旋稳定
自旋稳定的原理:是利用航天器绕自旋轴旋转所获得的陀螺定轴 性,使航天器的自旋轴方向在惯性空间定向。它的主要优点首先是为 航天器获得规则的姿态运动提供了一种简单的手段。自旋卫星利用非 常简单的仪器便可提供姿态信息,而且因为运载工具通常是以自旋方 式入轨的,所以航天器很容易达到完全无源的惯性定向,并且有一定 的精度。其次,由于自旋运动具有比较大的动量矩,因此航天器抵抗 外干扰的能力很强,因为当自旋航天器受到恒定干扰力矩作用时,其 自旋轴是以速度漂移,而不是以加速度漂移。加之自旋稳定能使航天 器发动机的推力偏心影响减至最小,因此自旋稳定方式在航天器,特 别是在早期发射的航天器中得到了广泛的应用。
航天器路径规划与优化控制
航天器路径规划与优化控制随着科技的不断进步,航天技术也在不断发展。
目前,人类已经成功地将许多航天器送上了太空,这些航天器不仅可以为我们提供丰富的科学数据,还可以为人类探索更加遥远的空间做出贡献。
然而,对于航天器来说,如何规划路径并实现优化控制也是至关重要的。
一、航天器路径规划航天器路径规划是指在行星空间内指定一条航线,使得航天器能够在规定时间内到达指定目的地的过程。
在实际操作中,航天器路径规划通常需要考虑多种因素。
1、引力场干扰航天器在行进过程中,受到行星的引力干扰,这会改变其轨道,因此路径规划需要考虑行星的重力场和每个时刻的位置。
2、轨道互相干扰多个航天器同时在行进路径上时,它们之间的轨道互相干扰也需要被规划在内。
3、动力学影响战斗所受的阻力和推力等因素也会影响航天器的轨道,因此它们也需要被考虑进来。
4、通信影响在传输过程中,航天器之间的通信也会受到影响,尤其是在远距离传输过程中,信息的传递速度会降低,因此航天器路径规划还需要考虑通信的实时性。
5、恶劣环境考虑在行星空间中,存在大量的粒子和射线等因素,对航天器的影响需要被考虑进去,应对为行星空间中恶劣的环境。
二、航天器优化控制优化控制可以使航天器沿着正确的轨迹飞行,达到更好的控制效果。
在控制过程中,我们需要考虑以下几点。
1、控制过程在飞行过程中,我们需要对航天器进行及时的控制,避免任何飞行偏差。
控制过程必须密切考虑航天器与外部环境相互作用,使其到达它的目标位置。
2、优化设计优化设计将保证发挥最大的能量效率,它考虑了燃料消耗量、时间限制和目标达成的需要等因素。
3、环境影响在控制过程中,环境影响是必须被考虑进去的。
飞行中的一些情况,例如黑暗和辐射等都应该考虑到,并且尽量减少其影响。
4、最佳路径选择在航天器的路径选择中,我们需要选择最适合的路径,同时也考虑节省燃料,控制成本的因素,最终达到最佳的经济效益。
结论航天器路径规划与优化控制是航天领域内非常重要和实用的技术手段,它们可以为我们提供更加优质的控制体验以及创造优异的经济效益。
航天器轨道动力学与控制(上)--李建辉
2、2特殊轨道和星座
轨道名称 定义 卫星选择
太阳同步轨道(近 进动角速度与平太阳在赤 资源卫星、气象卫星、军 用卫星等 极地太阳同步轨道) 道移动的角速度相等。 回归轨道 地面轨迹经过一定时间出 用于某一地区动态观察, 现重复的轨道。 可结合其他轨道如太阳同 步 相对地面观测禁止不动, 通信、广播、气象 距离地心42164km,覆盖 地球表面40%
航天器轨道动力学与控制 (上)
汇报人:李建辉
2018年9月22日
目
录
part one
理论基础 特殊轨道与卫星星座 卫星轨道确定 轨道转移 地月飞行和星际航行 工作映射
part two
part three part four part five Part six
1、1太阳系
开普勒定律三定律:1.行星沿椭圆轨道运动,而太阳则位于椭圆轨道的二个 焦点之一。2.在相同时间内,半径向量所扫过的面积是相等的。3.二个行星绕 太阳运动的轨道的周期时间平方之比等于二个轨道与太阳的平均距离的立方 之比。
最小二乘法: 批量计算法,适合观 测数据集中处理。
广义卡尔曼滤波法: 序贯计算法,按时间 顺序对每个数据结算, 改进,可时刻中断。
3.5卫星观测
卫星观测预报是解决跟踪站如何能看到卫星的问题,根据感 测设备不同有下面三个含义: 1、高度:卫星必须在地平线至上 2、天光:光学或人眼观看,天空背景须特别黑, 3、地影:对于不发光卫星用光学设备观测还需要太阳光能 直接照射它
三个步骤
计算方法
三个理论
3.2数据的预处理和精度分析
数据处理的任务是消除观测数据中由于测量设备和环境 引起的一部分已知误差(利用已知误差模型),并消除大部 分随机误差(利用平滑方法)。从而在轨道确定和改进中选 取合适的间隔点,减少计算量。
航天器姿态动力学与控制
姿态参数 – 欧拉轴/角
e
v
u' b
a
u
欧拉轴/角坐标变换示意图
姿态参数 – 欧拉轴/角
zb
za
e
z
x xa
xb
yb
y
ya
姿态参数 – 欧拉参数(姿态四元数)
欧拉参数与方向余弦矩阵的关系
Cbaq02qTqE32qqT2q0q
q202qq1q122qq223q0q32 2q1q3q2q0
2q1q2q3q0
q02q12q22q32
2q2q3q1q0
2q1q3q2q0 2q2q3q1q0
q02q12q22q32
q0
1 2
1 C 11 C 22 C 33
q1
1 4q0
C 23
C 3 2
q2
1 4q0
C 31
C 1 3
q3
1 4q0
C 12
C 2 1
q1
1 2
1 C 11 C 22 C 33
b 细长体航天器的空间锥和本体锥
第4章 自旋、双自旋航天器姿态动力学
z
自旋航天器在惯性空间的运动
y
x
第4章 自旋、双自旋航天器姿态动力学
能量椭球和角动量椭球的交线(本体极迹)
第4章 自旋、双自旋航天器姿态动力学
一般刚体自由姿态运动的本体极迹
第4章 自旋、双自旋航天器姿态动力学
不变平面和不变线的定义 Poinsot椭圆在不变平面上的无滑动滚动
绪论
章节安排
第一部分 航天器姿态动力学
绪论 第1章 航天器姿态运动学 第2章 航天器姿态动力学基本方程 ➢ 第3章 空间环境力矩 ➢ 第4章 自旋、双自旋航天器的姿态动力学 ➢ 第5章 重力梯度稳定航天器的姿态动力学 ➢ 第6章 三轴稳定航天器的姿态动力学
航天器轨道动力学与飞行控制的优化研究
航天器轨道动力学与飞行控制的优化研究航天器轨道动力学与飞行控制是航天器设计中至关重要的一部分,它涉及到航天器在轨道上运行的动力学特性以及对其进行控制和优化,以实现预定的任务目标。
本文将探讨航天器轨道动力学与飞行控制的优化研究,并介绍一些相关的理论和方法。
首先,航天器的轨道动力学描述了航天器在轨道上的运动和变化。
它涉及到航天器的姿态、速度、加速度等动力学参数的变化规律。
在航天器的轨道动力学分析中,经典动力学模型是基础。
该模型主要基于牛顿力学和万有引力定律,并结合航天器在空间中的运动情况,建立了航天器的动力学方程。
这些方程描述了航天器的姿态和位置的变化,可以用来研究航天器的运行轨迹和稳定性。
其次,航天器的飞行控制是保持航天器在轨道上稳定运行,并实现特定任务目标的关键。
航天器的飞行控制主要涉及到航天器的姿态控制和导航控制两个方面。
姿态控制主要是通过调整航天器的姿态参数,如航向、俯仰和横滚角等,来实现航天器在轨道上的定位和操控。
导航控制则是通过航天器内置的导航系统,利用传感器和导航算法来确定航天器的位置、速度和加速度等参数,以实现对航天器飞行路径的精确控制。
为了达到更高的控制精度和效率,航天器轨道动力学与飞行控制需要进行优化研究。
优化研究的目标是通过调整航天器的动力学参数和控制策略,使其在给定任务要求下,能够以最小的能量消耗和最短的时间完成任务。
这涉及到多目标优化、最优控制和强化学习等技术的应用。
例如,可以利用遗传算法、模拟退火算法等优化算法,对航天器的初始参数和控制策略进行优化,以实现轨道运行的最佳效果。
同时,也可以利用最优控制理论和方法,确定最优的控制输入,以实现最小能量消耗和最短时间的目标。
此外,航天器轨道动力学与飞行控制的优化研究还需要考虑航天器的动力学特性和环境因素的影响。
例如,航天器在轨道上受到地球引力、大气阻力和其他外部干扰等因素的影响。
这些因素会对航天器的轨道运动和飞行控制产生一定的影响,需要进行相应的建模和优化研究。
航天器轨道力学
航天器轨道力学航天器轨道力学是探索宇宙、开展航天活动的重要基础学科,它主要研究天体的运动规律及控制和利用它们的方法。
航天器轨道力学是过去和现在航天活动中所面临的主要问题之一,也是未来航天开发的重要领域之一。
一、航天器流动场和轨道安全匀强重力场下轨道分析是航天轨道力学中的基本问题。
航天器在重力作用下的运动轨迹主要受重力的作用,因此,在轨道分析过程中,重力场要被认真考虑。
航天器在地球轨道上的运动,轨道高度高达几百公里,大气稀薄,因此流动场的研究也很重要。
流动场分析包括气流、大气、高温等因素的影响,可以帮助科学家设计推进气态和固态发动机以及设计适应性更强的外部贴附式设备等。
如果不考虑地球自转,地球重力与轨道速度相平衡,所以航天器在略微偏离这些轨道平衡点的地方需要连续地修正航向和速度。
这种修正包括小姿态调整和大姿态调整。
如果考虑地球自转,它会带来另一重要问题:在许多情况下,地球的自转会导致航天器失去必要的姿态控制,从而可能会发生失控错误,因此轨道分析在对这种情况的解决方案上进行了深入研究。
这样的解决方案包括在设计过程中考虑完善的姿态控制系统,制定受限制的轨道,或者在地面控制中更为密切地监控和调整姿态控制系统。
如何保证航天器在轨道上的安全行驶,也是必须考虑的因素。
需要进行彻底的轨道分析,了解航天器与其他天体以及空间中的物体之间的相互影响,建立安全规则,如规定航天器轨道高度,预测轨道交叉日期和交汇点,并采取预防措施以确保轨道安全。
二、调整航天器的轨道调整航天器轨道的常见方法包括:1.点火交会。
这是指通过点火交会对航天器和飞行器进行调整的方法。
该方法对轨道的调整非常灵活,可以迅速调整航天器的姿态,是常用的轨道调整方式。
2.ETA(航飞交换点)。
这是一种用于要求不严格的轨道精度的轨道调整方法,通常用于地球轨道。
3.残余推力调整方法。
残余推力调整方法在轨道调整速度要求不高的情况下适用,可通过调整推进器的活动和姿态控制系统来完成调整。
哈工大航天学院课程-空间飞行器动力学与控制-第7课-空间飞行器轨道控制下
空间交会对接飞行程序
空间飞行器动力学与控制 第七课_空间飞行器轨道控制下
空间交会对接的控制方式有4种。 (1)手动操作:由航天员在轨道上亲自观察 和操作,这是目前比较成熟的方法。但是,对航 天员来说这是一项繁重的工作,这种方式仅适用 于载人航天器;
(2)遥控操作(非自主):由地面站通过遥测
和遥控来实现,要求全球设站或有中继卫星协助; (3)自动控制:不依靠航天员,由星上设备 和地面站相结合实现交会对接;
两者的对接组件轴在同一条直线上且相互对准,
以保证对接组件接触后的正常工作。 要实现这一点,就要求主动航天器在固定姿 态的情况下(即没有任何转动)能够前进和后退, 能够在任何方向侧移。
因此必须在航天器上配置纵向和侧向运动所
需的小发动机或推力器。
空间飞行器动力学与控制 第七课_空间飞行器轨道控制下
从上述空间交会和对接各阶段的顺序和相对
能够始终对着主动航天器。这样能够有效地减轻主
动航天器的控制任务。
空间飞行器动力学与控制 第七课_空间飞行器轨道控制下
交会对接通常可以分为3个主要阶段。
(1)会合阶段:通过远程导引的轨道控制来
实现两个航天器的会合,一般会合在几万米的相
对距离之内。远程导引方法与航天器的轨道机动
没有什么区别。 (2)接近阶段:通过近程导引的轨道控制使 两个航天器相对距离在1km之内,相对速度在1~ 1.5 m/s以下。
空间交会控制系统设计指标 燃料消耗量、交会花费时间和交会终点所达 到的精度三方面。
在系统设计中若需要满足某一个指标为主,
而其他两个指标处在从属地位,一般应用系统工
程方法,根据空间交会和对接的具体任务,全面
论证这三方面指标的相互关系和主从关系。
航天器开普勒轨道和非开普勒轨道的定义_分类及控制
第35卷 第4期2009年8月空间控制技术与应用Aer os pace Contr ol and App licati on航天器开普勒轨道和非开普勒轨道的定义、分类及控制3孙承启1,2(11北京控制工程研究所,北京100190;2.空间智能控制技术国家级重点实验室,北京100190)摘 要:给出了航天器开普勒轨道(K O)和非开普勒轨道(NK O)的来源、定义、分类和特点,阐明了K O和NK O之间的关系,介绍了相关的轨道控制与轨道确定、制导与导航的涵义.关键词:开普勒轨道;非开普勒轨道;轨道分类;轨道控制;轨道确定中图分类号:V412.41 文献标识码:A文章编号:167421579(2009)0420001205Spacecraft Kepler i a n O rb its and Non2Kepler i a n O rb its:D ef i n iti on,C l a ssi f i ca ti on and Con trolS UN Chengqi1,2(1.B eijing Institute of Control Engineering,B eijing100190,China;2.N ationa l L aboratory of Space Intelligent Control,B eijing100190,China)Abstract:This paper describes s pacecraft’s Kep lerian orbits(K O)and non2Kep lerian orbits(NK O) including their origins,definiti ons,classificati ons and characteristics,exp lains the relati onshi p bet w een the K O and the NK O,and intr oduces briefly s ome issues related t o orbit contr ol and orbit deter m inati on, guidance and navigati on.Keywords:Kep lerian orbits;non2Kep lerian orbits;classificati on of orbits;orbit contr ol;orbit deter m inati on 3本文是作者在2008年8月30—31日国家863计划“空间非开普勒轨道动力学与控制专题讨论会”上报告的基础上修改而成的. 收稿日期:2009203216作者简介:孙承启(1943—),男,浙江人,研究员,研究方向为航天器制导、导航与控制,空间交会对接(e2mail: sunchengqi@s ). 人类科学认识天体运动是从哥白尼(1473—1543)开始的,开普勒(1571—1630)根据前人的天文观测资料总结出了行星绕太阳运动的三大定律,被后人称为开普勒三定律.开普勒和伽利略(1564—1642)之后,牛顿(1642—1727)提出了万有引力定律和物体运动的三大定律(后人称之为牛顿三定律),以此为基础的牛顿力学是天体力学的基础,也是航天动力学的基础.开普勒定律给出了行星(也适用于航天器)轨道运动规律的运动学描述,牛顿力学则是对这种轨道运动规律给出了动力学意义下的解释.开普勒定律可以用牛顿力学得到严格证明.从哥白尼的日心地动说的提出到牛顿力学的建立是人类认识宇宙的第一次飞跃[1].二体问题是天体力学中的一个基本问题,它是・1・空间控制技术与应用35卷指可视为质点的两个天体在相互间唯一的万有引力作用下的运动规律问题.二体问题可以用牛顿万有引力定律和牛顿运动定律来描述并得到完全解决.开普勒三定律是二体问题的解.在二体问题的假设条件下,进一步假设主天体的质量远远大于次天体(或航天器)的质量,且认为主天体是惯性固定的,就成了限制性二体问题[2].航天器轨道是指航天器在天体引力和其它外力作用下其质心运动的轨迹.由于受到天体中心引力以外的其它外力的作用,航天器的轨道运动实际上并不严格遵循二体问题的解,这发生在航天器受到地球非球形及质量分布不均匀、大气阻力、太阳光压、其它天体的引力等自然环境摄动力作用的情况,也发生在航天器受到其主动产生的控制力作用的情况.这些情况下航天器的轨道不再是严格的有时甚至根本不是理想的开普勒轨道了,于是提出了非开普勒轨道问题.本文打算从轨道动力学和轨道控制的角度给出航天器开普勒轨道(K O)和非开普勒轨道(NK O)的定义和分类,把航天器开普勒轨道分为理想K O和视同K O两大类,把航天器非开普勒轨道分为非本质NK O和本质NK O两大类,这两类NK O中又有自然(被动)的和人为(主动)的两种情况,重点介绍本质NK O的分类及典型例子.本文最后简要介绍与航天器轨道密切相关的轨道控制和轨道确定问题,给出了航天器制导和导航的含义.除非特别说明,本文所说的航天器轨道是指航天器相对于天体的运行轨道,而不是指两个航天器之间的相对轨道.1 开普勒轨道1.1 开普勒轨道的名词来源作为一个名词术语,开普勒轨道来自开普勒三定律,起源于对行星绕太阳的运动规律———行星轨道问题的研究.“开普勒轨道”这个名词是开普勒以后的人提出来的,并把开普勒轨道扩展到二体问题的解.开普勒轨道的英文名词是Kep lerian orbits,本文把它缩写为K O.由于航天器的轨道运动也符合开普勒三定律,因此名词“开普勒轨道”同样适用于航天器.本文所说开普勒轨道大多数情况是指航天器开普勒轨道.1.2 开普勒轨道的定义开普勒轨道定义1:符合开普勒三定律的天体或航天器的运行轨道.开普勒轨道定义2:由二体问题的解得到的天体或航天器的运行轨道.所以,开普勒轨道也称为二体问题轨道.符合上述定义的开普勒轨道也称为理想的开普勒轨道. 1.3 开普勒轨道的分类和特点开普勒轨道的分类见图1.图1中的“视同”是“可以把它看作”的意思.视同K O的特点如图1所示.图1 开普勒轨道的分类图航天器的开普勒轨道可由如下二体问题基本方程解得:¨r+μrr3=0(1) 上述方程描述在惯性坐标系中航天器相对于天体的轨道运动.式(1)中的r是从天体(质量记为m1)到航天器(m2)的位置矢量,μ=G(m1+m2)是二体系统的引力常数,G是万有引力常数.由于m1µm2,可以只考虑m1对m2的引力,这种情况可把航天器开普勒轨道看成是限制性二体问题的解,即看成是在惯性固定天体中心引力场中的运动(有心力运动)轨迹.由式(1)可以解得航天器的轨道方程r=p1+e cosθ(2) 开普勒轨道可以用开普勒轨道六要素(简称轨道要素,也称轨道根数)来表示.必须指出,航天器开普勒轨道是在一定假设下的理想轨道.人造地球卫星出现以后,仅仅按照开普勒三定律和利用二体问题不可能准确预报卫星的位置,于是提出了航天器轨道摄动问题和摄动轨道这个名词,后来出现了非开普勒轨道这个名词.2 航天器非开普勒轨道2.1 非开普勒轨道的名词来源通过初步检索,non2Kep lerian orbits这个名词1980年出现在Baxter的文章中[3].本文把非开普勒轨道缩写为NK O.本文所说的NK O主要指航天器的NK O.・2・第4期孙承启:航天器开普勒轨道和非开普勒轨道的定义、分类及控制2.2 非开普勒轨道的定义非开普勒轨道定义1:不符合开普勒三定律的航天器的运行轨道.非开普勒轨道定义2:不符合二体问题解的航天器的运行轨道.2.3 非开普勒轨道的分类和特点在引起航天器开普勒轨道变化(摄动或偏离或根本不符)的原因中,有些对航天器轨道的影响较小,可当作摄动来处理,有些影响较大而必须另作处理.从影响程度上可以把非开普勒轨道分为非本质NK O和本质NK O两大类,从影响源上可分为自然(或被动)NK O和人为(或主动)NK O两种.本文采用以第一种分类为主的分类法.2.3.1 非本质NK O非本质NK O多半是由于空间环境干扰和某些人为因素造成的.空间环境摄动力虽小,但长期作用会形成NK O.航天器发动机的漏气(产生的推力很小)及姿态控制推力器的非力偶方式工作也会引起轨道摄动.还有一些发生在航天器遭到流星或空间碎片的撞击和发动机的脉冲工作情况.当这种瞬时干扰结束后,航天器将以干扰消失时刻的轨道继续运行下去.因此非本质NK O也可以说是由于干扰力或干扰力的影响远小于主天体对航天器的引力的影响而造成的.有些非本质NK O是很有用的.比如利用地球形状摄动可以获得太阳同步轨道、临界倾角(i= 6314°)轨道等.2.3.2 本质NK O对于作用在航天器上的自然环境力或控制力对航天器轨道的影响已不能当成摄动来处理的情况,航天器就运行在本质NK O上了.由自然环境引起的本质NK O的典型例子是航天器再入大气层后的飞行轨道和三体问题轨道.深空探测需要研究三体问题或多体问题.按照上述定义,深空探测器在三体问题中的轨道属于本质NK O,尽管它可以用干扰二体问题来处理.所谓三体问题是指研究3个可视为质点的天体在万有引力相互作用下的运动规律问题.三体问题是天体力学中的一个基本问题,可以用牛顿力学来处理.一般的三体问题没有解析解.但是对深空探测器而言,可以简化为限制性三体问题来研究.以日地系统为例,限制性三体问题有5个特解,称之为平动点或拉格朗日点(简记为L点).在这5个点处航天器相对于原点在日地公共质心上的旋转坐标系的相对加速度等于0,即引力加速度和离心力加速度相平衡.处于某些平动点附近轨道上运行的航天器有着特殊的应用价值,比如我国计划中的夸父卫星A在日2地之间的L1点(距离地球115×106km)的晕轨道(过L1点垂直于日地连线的平面附近绕L1点的运行轨道)上运行,对空间风暴、极光和空间天气进行探测和研究[4].2.3.3 航天器的人为本质NK O航天器的人为本质NK O是指航天器在经常性的或连续的控制力作用下的运行轨道.可以分为受控本质NK O和乱控本质NK O.乱控本质NK O是指在航天器控制系统或推进系统出现故障的情况,航天器在不符合要求的持续推力作用下的飞行轨道.下面列举一些航天器的受控本质NK O:1)进入或返回再入行星大气层后的受控飞行轨道,特别是有升力控制的再入段轨道;2)空间拦截或空间交会的末制导段轨道;3)行星软着陆制动段轨道;4)沿V(目标航天器飞行速度)方向或沿R(目标航天器地心矢量)方向直线靠拢时的轨道;5)对目标航天器作任意方位绕飞时的轨道;6)在目标航天器轨道平面外作相对位置保持时的轨道;7)保持在目标航天器R方向某个位置上的轨道;8)各种连续推力作用下的转移轨道;9)复杂形状编队飞行时的轨道;10)复杂形状星座保持时的轨道;11)太阳帆的飞行轨道;12)气动辅助变轨段轨道.综上所述,可以用图2来描述航天器非开普勒轨道的分类.3 开普勒轨道与非开普勒轨道的关系1)航天器开普勒轨道是航天器非开普勒轨道的近似,近似程度依具体情况而异.2)航天器开普勒轨道是对非开普勒轨道理想化的结果.3)在某些简化条件或允许条件下,非开普勒轨道可以用开普勒轨道要素来表示.a.对于长期受到小摄动作用的航天器轨道可以用密切轨道(瞬时开普勒轨道)来描述,或在一段不长的时间内可以用开普勒轨道来描述.・3・空间控制技术与应用35卷图2 非开普勒轨道的分类图 b.在短时强干扰或脉冲干扰作用前和结束后,可以用开普勒轨道来描述.c.在航天器轨道设计时,把开普勒轨道作为标称轨道或参考轨道来使用.当主要摄动模型已知时,把考虑摄动后的理论计算轨道(视同开普勒轨道)作为标称轨道或参考轨道来使用.4)牛顿力学是研究开普勒轨道和非开普勒轨道的共同基础.4 航天器的轨道控制航天器轨道控制就是通过利用或主动对航天器施加外力改变航天器质心运动的轨迹,使其沿要求的轨道到达预定目标(目标轨道或目标位置),一般包括轨道机动和轨道保持两种情况.有时把未施加控制力的轨道称为自由轨道.在不同参考坐标系中,航天器轨道的形态是不同的.以改变在惯性坐标系中的轨道形态为目的的轨道控制称为绝对轨道控制,以改变在航天器相对(动)坐标系中的轨道形态为目的的轨道控制称为相对轨道控制.轨道控制过程中的绝对轨道都是非开普勒轨道.对航天器主动施加外力(通常是在给定方向施加一定时间的有限推力,有些情况施加变推力)的结果是航天器飞行速度(轨道运动速度)的大小和方向发生变化.变轨前后速度矢量改变量的模即速度增量的大小是轨道控制所付出的能量代价的间接度量.短时间施加的推力可视为脉冲推力,n次脉冲推力控制的结果形成了一个由n+1段自由轨道相连的非本质NK O.但是如果施加推力的时间很长,则控制的结果是形成一段本质NK O.轨道控制通常是先针对给定的航天任务选择或设计一条标称轨道(也称参考轨道或目标轨道).这条参考轨道通常是按简化模型用标称参数值计算出来的理论轨道,它可以是K O,也可以是NK O.轨道控制系统按照事先设计好的控制规律在一个或几个时刻开启轨控发动机进行变轨,使航天器到达目标轨道或保持在标称轨道上.为到达空间预定位置或区域所进行的轨道控制称为制导.例如轨道拦截和交会对接任务中的末制导,航天器返回地面过程中的再入制导,运载火箭把航天器送入预定入轨点的制导等.现代航天器的制导系统通常是一个反馈控制系统.闭路制导系统把实测轨道与参考轨道进行比较,按照事先设计好的制导规律,控制航天器的飞行轨迹,消除误差,使其沿参考轨道飞行,最终到达目标点.这种情况下的参考轨道可以事先设计好并装订在星载计算机中,也可以由星载计算机按给定模型实时计算.轨道控制系统的主要性能指标是精度、时间和所消耗的能量或推进剂量.轨道控制或制导的精度主要取决于轨道确定或导航的精度和控制或制导的方法误差.轨道控制过程的时间主要取决于标准轨道的选择、轨道控制规律和执行机构的性能.轨道控制所消耗的推进剂量(正比于各次变轨速度增量绝对值之和,也称特征速度)主要取决于轨道控制规律和发动机的比冲.如果设计参考轨道时所用的动力学模型与实际轨道相差大,那么为迫使航天器沿・4・第4期孙承启:航天器开普勒轨道和非开普勒轨道的定义、分类及控制参考轨道飞行所消耗的推进剂就多.设计者要对上述性能指标进行权衡与折衷,并希望实现自然作用与人为控制作用的最佳结合———和谐控制.下面举3个轨道控制的例子.(1)从月球返回地球的跳跃式再入控制[5]低升阻比探月飞行器返回地球时,飞行器将以接近第二宇宙速度的高速再入地球大气层.如果要求返回起始于绕月轨道上的任意点和任意时刻,并保证最终能安全地着陆到地面指定区域,就要求飞行器有很长的纵向航程控制能力.由于飞行器的升阻比较小,所以必须采取跳跃式再入方式,即飞行器先再入大气层,然后跃升到大气层外,最后再一次进入大气层并着陆.再入制导系统必须能够提供可供跳跃的再入轨迹(即参考轨道)并进行精确制导.轨迹规划即制定参考轨道的任务是由星载计算机在轨(实时)计算出一条由当前点至第二次再入段终点(着陆器降落伞的开伞点)的可行的跳跃式再入轨迹和合适的倾侧角(称指令倾侧角).参考轨道设计的基本要求是满足从当前点到开伞点的航程要求,并保证过载不超过限定值.制导律设计的基本要求是通过跟踪指令倾侧角,保证飞行器沿该参考轨道飞行并有足够的鲁棒性.该探月飞行器的返回再入制导系统是一个闭路制导系统.从首次再入点开始到最终着陆的整个飞行过程除了中间有一小段是在大气层外的K O外,其余部分都是本质NK O.(2)交会对接最后停靠段的相对轨道控制如果在航天飞机与空间站交会对接最后停靠段要求航天飞机自下而上地靠拢空间站,则可以沿R(空间站的地心矢量)方向和V(空间站的轨道速度矢量)方向连续地对航天飞机施加推力,其中V方向的推力用于减小航天飞机与空间站沿V 方向的相对速度,R方向的推力用于减小二者之间的高度差,采用这种相对制导策略可以实现航天飞机沿R方向向空间站匀速直线靠拢,在停靠过程中航天飞机绕地球飞行的轨道(绝对轨道)是一个本质NK O.(3)星际航行的轨道控制如前所述,星际航行轨道涉及到三体问题.三体问题是一个非线性动态系统,其运动具有混沌现象.星际航行中的轨道转移可以应用混沌运动理论中的不变流形(有稳定流形和不稳定流形两种)的概念.利用不变流形可以大大减小轨道转移的推进剂消耗量.太阳系中的许多条不变流形组成了一个轨道网络.由于沿此网络中的管道表面飞行所消耗的能量极小,所以常称之为星际高速公路(I PS, inter p lanetary superhigh way).航天器可沿稳定流形接近天体,沿不稳定流形飞离天体.如果要使宇宙飞船从行星A飞向行星B,可以先让宇宙飞船沿稳定流形管道转移到行星A的一个晕轨道上,然后沿行星A晕轨道的一个不稳定流形管道上飞行,再在适当的时候让宇宙飞船切换到行星B的一个稳定流形管道上,宇宙飞船接着沿此管道到达行星B的一个晕轨道上,最后再转移到绕行星B的近星轨道上.由于宇宙飞船在整个飞行过程中很大一部分是沿不变流形管道飞行的,所以只需消耗非常少的推进剂.需要指出,航天器轨道控制通常需要姿态控制相配合.这种情况下,姿态控制系统的任务是将航天器的姿态或推力发生器(比如发动机、太阳帆等)的指向调整到并稳定在轨道控制所要求的数值上;或者在轨道控制力作用期间,使航天器的姿态或推力发生器的指向按轨道控制或制导给出的规律变化.有时需要考虑轨道控制与姿态控制作用的相互耦合对航天器轨道运动和姿态运动的影响.5 航天器的轨道确定航天器的轨道确定就是对轨道测量数据进行处理,给出航天器在给定时刻的位置和速度或者轨道要素.测量数据可以由地面站对航天器运动轨迹进行测量得到,也可以由装载在航天器上的测量设备提供.通过对这些测量数据的处理和计算可以获得航天器的轨道参数.轨道控制需要知道航天器现时的轨道参数,闭路制导需要航天器实时确定它自己的位置和速度,有时姿态确定也需要知道航天器的轨道参数.我们把为轨道控制或制导所进行的轨道确定称为导航.完全利用航天器上的测量设备和计算装置而不依赖于地面设备支持的导航称为自主导航.轨道动力学模型对轨道确定的精度有很大影响.在星上轨道计算或导航任务中,应在星载计算机的能力范围内尽量使用精度较高的轨道动力学模型———NK O模型,例如采用包含地球非球形摄动的J2项的轨道动力学方程,在相对导航滤波器设计中考虑航天器发动机工作时推力的影响.航天任务常常需要地面站给出航天器轨道参数的(下转第47页)・5・第4期党 蓉等:基于BANK编译模式在扩大单片机程序存储空间中的应用研究1.4 修改编译选项编译选项的修改与使用的编译器有关.本用例使用了Keil C51编译器,结合硬件的具体设计情况,在L51_BANK.A5l文件中修改如下两处配置代码,其他不变.1)设置?B_NBANKS为2;2)设置BANK S W I TCH采用单片机P1.4口操作.另外,还需要在编译选项中设置BANK区的起始和终止地址.2 设计验证通过对资源的分析和拷机试验验证了硬件设计和软件结构规划的正确性以及采用BANK编译模式编译后跨BANK区切换的可行性.由于在进行BANK区间切换操作时,会占用4个字节的堆栈空间,并且公用变量、常量必须放在COMMON区等缘故,所以本文采用仿真器对程序运行过程中的压栈情况、公用变量及常量进行了单步跟踪及分析,结果表明堆栈空间满足要求,公用变量及常量不存在冲突,数据传递正确.对软硬件进行了3h的连续拷机试验,试验结果表明程序运行正常.3 结 论本文利用Keil C51的BANK编译模式进行软硬件联合设计,解决了MCS251系列单片机对最大64K B程序空间的限制问题,可供类似应用参考.参 考 文 献[1] 徐爱钧,彭秀华.Keil Cx51V7.0单片机高级语言编程与μV isi on2应用实践[M].北京:电子工业出版社,2006:1472605[2] Keil Elektr onik G mbH and Keil Soft w are I nc.A51macr o assembler and utilities f or8051and variants[M].[S.l.]Keil Elektr onik G mbH and Keil Soft w areI nc,2001:2932304[3] Keil Elektr onik G mbH and Keil S oft w are I nc.GS51gettingstarted withμV isi on2[M].[S.l.]Keil Elektr onik G mbHand Keil S oft w are I nc,2001:67268[4] 孙涵芳,徐爱卿.MCS251系列单片机原理及应用[M].北京:北京航天航空大学出版社,1994:1482158[5] 周敬利,卓越.MCS251程序空间扩展原理及编译器优化[J].计算机工程,2003,29(8):1832185[6] 任克强,胡中栋.一种扩展MCS251单片机程序存储器地址空间的方法[J].南方冶金学院学报,2002,23(9):38240[7] 黄晴.基于C51的BANK编译器应用[J].机电工程技术,2005,34(8):79280(上接第5页)预报值,这种情况应尽量选用高精度的NK O模型,采用喷气姿态控制的低轨道卫星的轨道预报需要考虑小推力姿态控制发动机工作累积冲量引起的轨道摄动.6 结束语本文从开普勒三定律和牛顿力学出发,阐述了航天器的轨道问题,给出了航天器开普勒轨道和非开普勒轨道的定义、分类和特点.本文将开普勒轨道分为理想K O和视同K O两大类,将非开普勒轨道分为非本质NK O和本质NK O两大类,它们都有自然的和人为的两种情况,列举了许多受控本质NK O 的典型例子,还介绍了相关的轨道控制与轨道确定、制导与导航问题.参 考 文 献[1] 张钰哲,戴文赛,李珩,等.中国大百科全书:天文学[M].北京:中国大百科全书出版社,1980:127[2] Bong W.Space vehicle dyna m ics and contr ol[M].Rest on:A I A A I nc,1998[3] Baxter B E.Kep lerian rep resentati on of a non2Kep lerianorbit[J].Journal of Guidance and Contr ol,1980,3(2):1512153[4] 胡少春,刘一武,孙承启.星际高速公路技术及其在夸父计划中的应用[J].空间控制技术与应用,2008,34(6):12217[5] 陆平,朱亮,敬忠良,等.探月返回跳跃式再入制导[C].全国第十三届空间及运动体控制技术学术会议,湖北宜昌,2008年7月・74・。
航天器轨道动力学与控制(下)PPT课件
东西向经度位置保持控制策略
漂移率修正模式 漂移率、偏心率修正模式
南北向经度位置保持控制策略
轨道倾角修正模式
太阳同步轨道卫星的轨道控制
太阳同步轨道(Sun-synchronousorbit或Heliosynchronousorbit)指的就是卫星的轨道平面和太阳始终保持相对 固定的取向,轨道倾角(轨道平面与赤道平面的夹角)接近90度,卫星要在两极附近通过,因此又称之为近极 地太阳同步卫星轨道。为使轨道平面始终与太阳保持固定的取向,因此轨道平面每天平均向地球公转方向(自 西向东)转动0.9856度(即360度/年)。
风云一号卫星
太阳同步轨道卫星的轨道摄动
太阳同步轨道卫星主要受到地球非球形引力摄动、日月引力摄动、大气阻力摄动及太阳辐射压力摄动。
摄动因素 地球非球形摄动 量级
太阳引 月球引力 太阳辐射
力
压摄动
静止轨道摄动量级
太阳同步轨道卫星的轨道保持
平面内轨道保持控制策略 轨道倾角保持控制策略
半长轴修正模式 a、e、w联合修正模式 轨道倾角修正模式
制
程
作
用
小特征速度情形
近 圆 轨 道 的 摄 动 方 程
脉冲推力近圆轨道修正
静止卫星变轨后由于误差,并不是真正的静止轨道,称为准同步轨道,真正准同步轨道的周期、偏心 率和倾角误差,使偏差减小到能满足正常运行的要求,并使卫星定点于制定的进度位置,称为定点捕 获。
卫星上燃料的限制
考虑因素
使卫星处于可监控范围内 在规定时间完成捕获
东方红二号通信卫星
北斗导航静止轨道卫星
静止轨道卫星的轨道摄动
静止轨道卫星的轨道摄动包括非球形地球引力场;日、月引力摄动;太阳辐射压摄动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫星上燃料的限制
使卫星处于可监控范围内
在规定时间完成捕获
考虑因素
两次变轨的最小时间差
对姿态的影响
发动机推力误差
定点捕获实例
东方红二号甲01星宇1988年3月七日发射,经过四次变轨控制,完成定点捕获。
3
轨道保持与星座控制
静止轨道卫星的轨道保持
静止轨道卫星:又称24小时轨道,指的是轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的
位置保持策略
面向任务要求的保持策略
4
空间交会对接
空间交会对接
空间交会对接是指两个航天器在空间轨道上会合并在结构上连成一个整体的技术,是实现航天站、航天飞机
、太空平台和空间运输系统的空间装配、回收、补给、维修、航天员交换及营救等在轨道上服务的先决条件
。它是载人航天活动的三大基本技术之一。
四个过程:
有
限
推
力
模
型
一般情形
小
推
力
模
型
变轨的动力学问题
几个问题
邻
近
卫
星
相
对
运
动
方
程
近
圆
轨
道
的
球
坐Байду номын сангаас
标
相
对
运
动
方
程
小
推
力
脉
冲
对
近
圆
轨
道
的
控
制
作
用
小特征速度情形
近
圆
轨
道
的
摄
动
方
程
脉冲推力近圆轨道修正
静止卫星变轨后由于误差,并不是真正的静止轨道,称为准同步轨道,真正准同步轨道的周期、偏心
率和倾角误差,使偏差减小到能满足正常运行的要求,并使卫星定点于制定的进度位置,称为定点捕
道的形状保持不变。
资源一号卫星
海洋一号卫星
冻结轨道卫星星座的轨道摄动
影响冻结轨道的摄动项主要是日月引力摄动。
半长轴a
42164km
偏心率e
0.2687
倾角I
63.4°
近地点幅角w
270°
升交点赤经
45°/165°/285°
周期T
地球同步
星座轨道参数
冻结轨道卫星星座的轨道位置保持
面向轨道要求的保持策略
-星
光最
优组
合导
航仪
控制器
根据地面轨道控制的遥控指令或自主导航敏感仪的数据,星上控制器进行轨道计算,姿态几何计算与估计、
扰动估计、控制律的计算等,然后输出控制指令,控制执行机构的工作。分为非自主轨道控制器和自主轨道
控制器。
功能:
1、采集姿态敏感器的测量数据进行姿态确定预估
2、完成形体三轴姿态控制规律的计算
地月及星际飞行的轨道控制
地月及星际飞行轨道控制特点
特点:
1、控制精度要求高
2、导航技术难度大
3、飞行距离远,无线电传递时间延迟大,地面难以遥控
4、要求控制系统功耗小,设备轻,可靠性高。
地月及星际飞行轨道导航
为支持深空航天器的发射和测量
的地面测控和通信网,称为深空
网。现在的导航方式有自主导航
和组合导航。
3、完成卫星轨道的实时计算,并根据需要调用轨
道保持程序
4、接收地面遥控注入的轨道数据
5、实现控制方式转变
6、存储并通过遥测发出有关卫星运行状态和控制
计算机状态的数据
7、输出控制指令,控制执行机构工作
8、完成遥控回收任务
推进分系统
冷气推进系统
单组元推进系统
推进系统
单组元推进系统
电推进系统
中国研制的单组元肼推进系统
成。第二类制导过程中不需要实时引入追踪航天器的轨道参数,只需利用相对视线的信息。
霍曼交会
共面圆轨道
兰勃特交会
非共面椭圆轨道
四冲量交会
近地近圆轨道、交会时间固
定
开普勒转移轨道
最后逼近阶段自动寻的交会
交会方式
平
行
交
会
CW
交
会
一般情形
走
廊
式
交
会
空间交会对接的制导、导航和控制系统
RVD控制系统主要实现制导、导航和控制功能
航天器从初始轨道出发,通过一次或多次变轨,最终到达目标轨道。
变轨控制的工程实现
变轨控制是为实现变轨对航天器施加控制的过程,也就是按照预定的控制策略,
控制变轨推力的大小和方向的过程
导航和引导
姿态稳定
变轨控制
姿态测量的控制
飞行要求和操作复杂性的限制
推进发动机的限制
变轨的动力学问题
推力模型
脉
冲
推
力
模
型
合,称为航天器轨道控制系统。
推进系统 速度
增量
控制器
测
航天器
∆
轨道控制要求
(包括姿态控制要求)
量
系
统
轨道控制系统原理图
PPT模板下载:/moban/
节日PPT模板:/jieri/
PPT背景图片:/beijing /
优秀PPT下载:/xiazai/
1、地面发射追踪航天器,由地面控制,使它按比目标航天器稍微低一点的圆轨道运行;
2、通过霍曼变轨,使其进入与目标航天器高度基本一致的轨道,并与目标航天器建立通信关系;
3、追踪航天器调整自己与目标航天器的相对距离和姿态,向目标航天器靠近;
4、当两个航天器的距离为零时,完成对接合拢操作,结束对接过程。[6]
返回坐标系的用途:
1、它是捷联惯导的安装系,即陀螺和加速度计都是平行于该坐标系安装的
2、地面风洞实验得到的气动参数都是按该坐标系给出的
3、运动方程中用该坐标系相对返回坐标系oxyz的姿态表示返回舱的姿态。
弹道-升力式再入航天器的返回控制技术的返回过程
制
动
发
动
机
点
火
建
立
配
平
攻
角
再
入
大
气
层
的
姿
态
控
制
再
自转周期(23小时56分4秒),且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止
卫星轨道。一般用作通讯、气象等方面。
东方红二号通信卫星
北斗导航静止轨道卫星
静止轨道卫星的轨道摄动
静止轨道卫星的轨道摄动包括非球形地球引力场;日、月引力摄动;太阳辐射压摄动。
摄动因素
量级
地球非球形摄动
引力辅助变轨控制-行星引力辅助变轨
利用行星引力辅助变轨是目前国
际深空探测常用的技术,伽利略
号和卡西尼号都多次利用地球、
金星、木星改变轨道
引力辅助变轨控制-月球引力辅助变轨
传统的地球轨道航天器变轨方案
设计中往往将月球引力作为摄动
干扰力来处理,而1998年美国
休斯敦公司利用月球引力辅助变
轨,通过两次奔月飞行,拯救了
PPT素材下载:/sucai/
PPT图表下载:/tubiao/
PPT教程: /powerpoint/
Excel教程:/excel/
PPT课件下载:/kejian/
试卷下载:/shiti/
积敏红
分感外
陀仪地
螺 球
个敏
个 感
器
3
2
个
星
上
计
算
机
三
台
执
行
机
构
发作 姿
动为 态
机轨 控
一道 制
台控 冷
制气
和执
维行
持机
的构
单一
组套
元
肼
小特征速度情形
输
入
输
出
接
口
装
置
控控联
制制系
器器控
与与制
外执器
界行与
的机姿
信构态
息 敏
交 感
换 器
装
置
弹道-升力式再入航天器的返回控制技术
制导、导航和控制所用的坐标系
RVD导航、制导和控制
RVD的不同飞行阶段使用三种导航系统。
相对接近阶段
最后逼近阶段
对接阶段
5
返回与着陆控制
航天器的返回轨道
调姿段
制动段
航天器调整姿态
准备返回
在制动火箭的推
力作用下,航天
器离开原来的轨
道
过渡段
进入大气层以前
的被动段。在这
一阶段,一般要
经过多次轨道修
正,以便准确、
准时进入再入走
廊
地太阳同步卫星轨道。为使轨道平面始终与太阳保持固定的取向,因此轨道平面每天平均向地球公转方向(自
西向东)转动0.9856度(即360度/年)。
风云一号卫星
太阳同步轨道卫星的轨道摄动
太阳同步轨道卫星主要受到地球非球形引力摄动、日月引力摄动、大气阻力摄动及太阳辐射压力摄动。
摄动因素
地球非球形摄动
2 项
入
机
动
能
力
分
析
再
入
升
力
制
导
自
旋
再
入
控
制
升力式返回航天器的返回与着陆控制
航天飞机轨道器再入段的升力控制
轨
道
器
再
入
升
力
控
制
升力控制手段
高马赫数飞行状态
大于8
中马赫数飞行状态
2~8
低马赫数飞行状态