07年高数2
高数二下练习题答案完整版全部
高等数学II 练习题________学院_______专业 班级 姓名______ ____学号_______反常积分、定积分应用(一) 1、求无穷限积分0ax e dx +∞-⎰(0>a )。
1ax e dx a+∞-=⎰(过程略)2、求瑕积分21⎰。
()()()2211021023/21/2013/21/20lim lim 12lim 1213828= lim 2333d x x x εεεεεεεεε+++++→+→→+→==-⎡⎤=-+-⎢⎥⎣⎦⎡⎤++=⎢⎥⎣⎦⎰⎰⎰3、求由曲线22y x =与4x y +=所围成图形的面积。
22232244282244(4)d (4)18226x x y x y y x y y y yS y y y --==⎧=⎧⎧⇒⎨⎨⎨==-+=⎩⎩⎩∴=--=--=⎰解:或是两交点 4、求由曲线1=xy 和直线x y =,2=x 所围成的平面图形的面积。
2113ln 22S x dx x ⎛⎫=-=- ⎪⎝⎭⎰或120111322ln 222S xdx dx x ⎛⎫=⨯⨯-+=- ⎪⎝⎭⎰⎰(请自己画草图,体会两种不同的求法)5、抛物线342-+-=x x y 与其在点)3,0(-和)0,3(处的切线所围成的图形的面积。
解:过点)3,0(-的切线方程为 34y x +=,而过)0,3(处的切线方程为 ()23y x =-- 故求的两切线交点为 )3,23(,则所要求图形的面为:()()()()3/23221203/29434326434S S S x x x dx x x x dx ⎡⎤⎡⎤=+=---+-+-+--+-=⎣⎦⎣⎦⎰⎰6、设椭圆的参数方程为2cos ,x t y t ==,求椭圆的面积。
解:由椭圆的对称性,椭圆的面积可表示为:()2020/2442cos sin S ydx td t tdt ππ===-=⎰⎰(简单的计算过程略,希望同学们自行补充完成)7、在]1,0[上给定函数2x y =,问t 取何值时,右图中曲边三角形OACO 与ADBA 的面积之和最小?何时最大?222331220322()22()(1()3341331()42,()0,021[0,]()021[,1]()021112(0),(),(1)32431t t t OACO ADBA A t A t y y y y y t t A t t t A t t t t A t t A t A A A t ∴=+=+-=-+''∴=-=∴=='∈<'∈>====⎰⎰解:设曲边三角形和的面积之和为令或当时,,函数单调减少当时,,函数单调增加所以当时,12t =面积之和最大,当时,面积之和最小。
07年高数2答案
五邑大学 试 卷 答卷一、填空题(每小题4分,总计16分)1.-1 2.sin sin (cos ln )x x x x x x ⋅+ 3.532π+ 4.A -s 二、单项选择题,答案填入下表。
(每小题4分,总计24分)三、解答题(每小题10分,总计60分)11.(1) 2(,)2(4)x f x y xy x y x y '=---,22(,)(4)y f x y x x y x y '=---解联立方程组(,)0(,)0x yf x y f x y '=⎧⎨'=⎩得驻点(4,0),(2,1) 及所有横坐标x =0,纵坐标满足0≤y ≤6的点。
易知这些驻点中,只有点(2,1)在D 的内部,且A =(2,1)xxf ''=-6,B =(2,1)xy f ''=-4,C =(2,1)yy f ''=-8<0 ∵ B 2-AC =-32<0 ∴ (2,1)为极大值点,极大值为(2,1)f =4(2) 再求z 在D 的边界上的值① 在边界x =0,0≤y ≤6上,z =0② 在边界y =0,0≤x ≤6上,z =0③ 在边界x +y =6上,将y =6-x 代入(,)f x y 中,有32(,)212(06)f x y x x x =-≤≤令26240f x x '=-=得驻点x =0及x =4,相应的函数值为00x f ==,464x f ==- 在区间[0,6]端点处有60x f ==,比较这些函数值可得函数在闭区域D 上的最大值为(2,1)f =4,最小值为(4,2)f =-64 12.(1) 如图,设切点坐标200(,)A x x ,而00()2y x x '=,所以切线方程为20002()y x x x x -=-令y =0,得切线与x 轴交点为(02x ,0),于是 S=022*******()2212x x dx x x x --=⎰ 解得 01x =,故A 的坐标为(1,1)。
07年专升本高数真题
2007年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一. 单项选择题(每题2分,共计50分)在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题无分.1.集合}5,4,3{的所有子集共有 ( )A. 5B. 6C. 7D. 82.函数x x x f -+-=3)1arcsin()(的定义域为 ( )A. ]3,0[B. ]2,0[C. ]3,2[D. ]3,1[3. 当0→x 时,与x 不等价的无穷小量是 ( )A.x 2B.x sinC.1-x eD.)1ln(x +4.当0=x 是函数x x f 1arctan )(= 的 ( )A.连续点B. 可去间断点C.跳跃间断点D. 第二类间断点5. 设)(x f 在1=x 处可导,且1)1(='f ,则h h f h f h )1()21(lim 0+--→的值为( )A.-1B. -2C. -3D.-46.若函数)(x f 在区间),(b a 内有0)(,0)(<''>'x f x f ,则在区间),(b a 内,)(x f 图形( )A .单调递减且为凸的B .单调递增且为凸的C .单调递减且为凹的D .单调递增且为凹的7.曲线31x y +=的拐点是 ( )A. )1,0(B. )0,1(C. )0,0(D. )1,1(8.曲线2232)(x x x f -=的水平渐近线是 ( )A. 32=y B. 32-=y C. 31=y D. 31-=y9. =⎰→4002tan lim x tdtx x ( )A. 0B. 21C.2D. 110.若函数)(x f 是)(x g 的原函数,则下列等式正确的是 ( )A.⎰+=C x g dx x f )()(B. ⎰+=C x f dx x g )()(C.⎰+='C x f dx x g )()(D. ⎰+='C x g dx x f )()(11.⎰=-dx x )31cos( ( )A.C x +--)31sin(31B. C x +-)31sin(31C. C x +--)31sin(D. C x +-)31sin(312. 设⎰--=xdt t t y 0)3)(1(,则=')0(y ( )A.-3B.-1C.1D.313. 下列广义积分收敛的是 ( ) A.⎰+∞1x dx B. ⎰+∞1x dxC.⎰+∞1x x dxD. ⎰10x x dx14. 对不定积分⎰dx x x 22cos sin 1,下列计算结果错误是 () A. C x x +-cot tan B. C x x +-tan 1tanC. C x x +-tan cotD. C x +-2cot15. 函数2x y =在区间]3,1[的平均值为 ( ) A. 326 B. 313C. 8D. 416. 过Oz 轴及点)4,2,3(-的平面方程为 ( )A. 023=+y xB. 02=+z yC. 032=+y xD. 02=+z x17. 双曲线⎪⎩⎪⎨⎧==-014322y z x 绕z 轴旋转所成的曲面方程为 ( )A. 143222=-+z y x B. 143222=+-z y x C. 143)(22=-+z y x D. 14)(322=+-z y x 18.=+-→→xyxy y x 93lim 00 ( ) A. 61 B. 61- C.0 D. 极限不存在19.若y x z =,则=∂∂)1,(e y z( ) A. e 1B. 1C. eD. 020. 方程 132=-xz y z 所确定的隐函数为),(y x f z =,则=∂∂x z( ) A. xz y z 322- B. y xz z 232- C. xz y z 32- D. y xz z23-21. 设C 为抛物线2x y =上从)0,0(到)1,1( 的一段弧,则⎰=+C dy x xydx 22( )A.-1B.0C.1D.222.下列正项级数收敛的是 ( ) A. ∑∞=+2131n n B. ∑∞=2ln 1n n n C. ∑∞=22)(ln 1n n n D. ∑∞=21n n n n 23.幂级数∑∞=++01)1(31n n n x 的收敛区间为 ( )A.)1,1(-B.)3,3(-C. )4,2(-D.)2,4(-24. 微分x e y y y x cos 23-=+'+''特解形式应设为=*y ( ) A. x Ce x cos B. )sin cos (21x C x C ex +- C. )sin cos (21x C x C xe x +- D. )sin cos (212x C x C e x x +-25.设函数)(x f y =是微分方程x e y y 2='+''的解,且0)(0='x f ,则)(x f 在0x 处( )A.取极小值B. 取极大值C.不取极值D. 取最大值二、填空题(每题2分,共30分)26.设52)(+=x x f ,则=-]1)([x f f _________. 27.=∞→!2lim n nn ____________. 28.若函数⎪⎩⎪⎨⎧≥+<=02203)(4x a x x e x f x ,,在0=x 处连续,则=a ____________. 29.已知曲线22-+=x x y 上点M 处的切线平行于直线15-=x y ,则点M 的坐标为 ________30.设12)(-=x e x f ,则 =)0()2007(f_________ 31.设⎩⎨⎧+-=+=12132t t y t x ,则==1t dx dy __________ 32. 若函数bx ax x f +=2)(在1=x 处取得极值2,则=a ______,=b _____ 33. ='⎰dx x f x f )()( _________ 34.⎰=-1021dx x _________ 35.向量k j i a -+=43的模=||a ________36. 已知平面1π:0752=+-+z y x 与平面2π:01334=+++mz y x 垂直,则=m ______ 37.设22),(y x xy y x f +=+,则=),(y x f ________38.已知=I ⎰⎰-21220),(y y dx y x f dy ,交换积分次序后,则=I _______39.若级数∑∞=11n nu 收敛,则级数∑∞=+⎪⎪⎭⎫ ⎝⎛-1111n n n u u 的和为 _______ 40.微分方程02=+'-''y y y 的通解为________ 三、判断题(每小题2分,共10分)你认为正确的在题后括号内划“√”,反之划“×”.41.若数列{}n x 单调,则{}n x 必收敛. ( )42.若函数)(x f 在区间[]b a ,上连续,在),(b a 内可导,且)()(b f a f ≠,则一定不存在),(b a ∈ξ,使0)(=ξ'f .( ) 43.1sin sin lim cos 1cos 1lim sin sin lim -=-=+-======+-∞→∞→∞→xx x x x x x x x x x 由洛比达法则. ( ) 44.2ln 23102ln 02≤-≤⎰-dx e x . ( ) 45.函数),(y x f 在点),(y x P 处可微是),(y x f 在),(y x P 处连续的充分条件.( )四、计算题(每小题5分,共40分) 46.求x x x sin 0lim +→.47.求函数3211xx x y +-⋅=的导数dx dy . 48.求不定积分⎰++dx x e x )]1ln([2. 49.计算定积分dx x ⎰π+02cos 22 . 50.设)3,sin (2y x y e f z x =,且),(v u f 为可微函数,求dz . 51.计算⎰⎰D dxdy x 2,其中D 为圆环区域:4122≤+≤y x . 52.将242xx -展开为x 的幂级数,并写出收敛区间. 53.求微分方程0)2(22=--+dx x xy y dy x 的通解.五、应用题(每题7分,共计14分)54. 某工厂欲建造一个无盖的长方题污水处理池,设计该池容积为V 立方米,底面造价每平方米a 元,侧面造价每平方米b 元,问长、宽、高各为多少米时,才能使污水处理池的造价最低?55. 设平面图形D 由曲线xe y =,直线e y =及y 轴所围成.求:(1)平面图形D 的面积; (2) 平面图形D 绕y 轴旋转一周所成的旋转体的体积.六、证明题(6分)56.若)(x f '在],[b a 上连续,则存在两个常数m 与M ,对于满足b x x a ≤<≤21的任意两点21,x x ,证明恒有 )()()()(121212x M x f x f x x m -≤-≤-.得分 评卷人得分 评卷人得分 评卷人 x y x e y = 1 1 o e 图07-2。
高等数学的基础学习方法
高等数学的基础学习方法在日常学习、工作或生活中,我们每个人都需要不断地学习,掌握一定的学习方法,学习效率就会提高很多。
下面为大家带来高等数学的基础学习方法,希望大家喜欢!在学习本课程时要按照教学进度,先自学文字主教材,掌握基本内容和方法,找出疑难点。
然后上网根据需要学习相关的部分的内容,包括网上的VOD资源、IP课件、教学文件和教学辅导、也可以在课程论坛中提问设疑,寻求老师和同学的帮助。
可以向主讲教师、主持教师发电子邮件等,争取尽快解决疑难问题。
再下网做形成性作业。
教学内容基本掌握后,最后做网上的综合练习,如果未达到教学要求,则返回本章节的起点重新组织学习;如果达到教学要求,可进行下一章节的学习。
在学习本课程的过程中要注意把握以下几点:1.基本概念要清楚2.基本公式要牢记所有基本公式都应该把它们记住,就是指在对有关概念的理解的基础上,通过逐步推导和反复运用将公式记住,公式的记忆还要讲究方法,注意总结规律。
3.反复学习勤思考通过反复学习来真正掌握有关的基本内容,需要经过由厚变薄和由薄变厚的两个学习过程。
勤于思考,对于掌握知识,将会有一个很大的提高。
4.***作业善总结学习数学仅仅满足于能够把书看懂,公式和定理记住,而自己不去动手做题,那是学不好数学的。
***完成作业是学习的重要手段。
学时所限,本课程的理论推证和例题都比较少,必须通过做数学作业来加深对基本概念的理解,熟悉公式的运用,掌握基本解题方法,从而达到掌握知识、提高能力的目的。
通过做作业,才能学到一些具体的方法,做完作业后,注意小结,养成做读书笔记的好习惯,看看这样一类问题应当如何入手,想想通过做这几个题目有那些收获,学到什么方法,使自己分析问题和解决实际问题的能力逐步提高。
5.全面复习保重点总之,本课程的学习要以文字教材为主,网上教学资源为强化,小组学习、协作学习为补充,集中面授答疑辅导为突破口,利用多种手段促进学习。
按照这种方式学习效果一定会比较明显的,预祝大家顺利完成本课程的学习。
07高数——线性方程组知识点速记
其中,A 为系数矩阵()=m n ijm na A ⨯⨯;1(,,)n x x x = 。
若将A 的第j 列元素看作是向量()1,2,,j j n α= ,则上述齐次线性方程组可用向量形式表示为11220n n x x x ααα+++= 若12,,,l βββ 是齐次方程组的l 个解向量,并且:(1)12,,,l βββ 线性无关;(2)方程组(1-8-4)的任意解向量都是12,,,l βββ 的线性组合,则称12,,,l βββ 是方程组的基础解系。
方程组的基础解系不唯一,但每个基础解系所含向量个数相同。
结论:若A 的秩()R A r =,则:①当r n =时,方程组只有零解。
②当r n <时,方程组有无穷多解,这时基础解系含有n r -个解向量。
并可按下列方法求基础解系:设A 中的r 阶子式11110rr rra a a a ≠ ,方程组与下列方程组同解可以分别取111111111111r r r r n nr rr r rr r rn n a x a x a x a x a x a x a x a x++++++=---++=---⎧⎪⎨⎪⎩ 12100010,,,001r r n x x x ++⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ n r -组数,由此可求得方程组的n r -个解向量,即为方程组的基础解系。
若12,,,t ξξξ 是齐次方程组0Ax =的一个基础解系,则齐次线性方程组0Ax =的通解是1122t t x k k k ξξξ=+++ ,其中12,,,t k k k 是任意常数。
高 数线性方程组知识点速记111122121122221122000n n n nm m mn n a x +a x a x a x a x a x a x a x a x ++=⎧⎪++ +=⎪⎨⎪++ +=⎪⎩ 可用矩阵形式表示为Ax =01111221211222200n n n n a x +a x a x a x a x a x ++=⎧⎪++ +=⎪⎨⎪ 可用矩阵形式表示为Ax =0线性方程组1、齐次线性方程组设常数项()12,,,m b b b b T= ,当12,,,m b b b 不全为零时,称Ax b =为非齐次线性方程组。
经管类高等数学答案
经管类高等数学答案【篇一:《高等数学》(经管类)期末考试试卷】class=txt>《高等数学》(经管类)期末考试试卷班级:姓名:学号:分数:1. ???0e?4xdx? 2. 已知点a(1,1,1),b(2,2,1),c(2,1,2)则?bac?3. 交换二次积分次序:?dy?0112?yf(x.y)dxxn4. 已知级数 ?n,其收敛半径r= 。
n?12?n?5. 已知二阶线性常系数齐次常微分方程的特征根为1和?2则此常微分方程是6. 差分方程2yx?1?3yx?0的通解为1. 求由x?0,x??,y?sinx,y?cosx 所围平面图形的面积。
《高等数学》(经管类)第 1 页共8页2. 求过点(2,0,且与两平面x?2y?4z?7?0,3x?5y?2z?1?平行的直线方?3)0程。
3.求x y??00 《高等数学》(经管类)第 2 页共8页4. 设可微函数z?z(x,y)由函数方程 x?z?yf(x2?z2) 确定,其中f有连续导数,求?z。
?x?z?2z5. 设 z?f(xy,xy),f具有二阶连续偏导数,求 ,2。
?x?x22《高等数学》(经管类)第 3 页共8页6. 计算二重积分???x2?y2d?,其中d为圆域x2?y2?9。
d7. 求函数 f(x,y)?x3?y3?3x2?3y2?9x 的极值。
《高等数学》(经管类)第 4 页共8页n221. 判断级数 ?nsinnx 的敛散性。
n?12?2. 将f(x)?x展开成x的幂级数,并写出展开式的成立区间。
x2?x?2《高等数学》(经管类)第 5 页共8页【篇二:高等数学经管类第一册习题答案】1.1 --1.1.3函数、函数的性质、初等函数一、选择题1.c;2.d;3.d 二、填空题1.x?5x?11;2. 1;3. ?0,1?2三、计算下列函数的定义域。
1. ???,2???3,???;2. ???,0???3,???;3. ?2,3???3,???;4. ?0,1?四、(1)y?u2,u?sinv,v?lnx.(2) y?u2,u?lnt,t?arctanv,v?2x.?sinx?1,x?1?五、 f?x???sinx?1,0?x?1??sinx?3,x?0?1.2.1 数列的极限一、选择题1.c;2.d;3.d 二、填空题1.111;2. ;3. 22311三、计算下列极限1. . 2. . 3. 1.4.231.2.2 函数的极限?2???. 5. 10 ?3?4一、选择题1.c;2.d;3.d 二、填空题1. a?4,b??2;2. 1;3.三、计算下列极限1. 2. 2. 6 . 3. 2x.4.1. 5. 1 33?;3. ;4. 05?1.2.3---1.2.5 无穷小与无穷大;极限的运算法则和极限存在准则;两个重要极限一、选择题1.ab;2.c;3. c 二、填空题1. ?1;2.?3?6三、计算下列极限1. e. 2. ?? . 3. e.4.?2??6205. e21.2.5--1.2.6 两个重要极限;无穷小的比较一、选择题1.c;2.b;3.a二、填空题1.1;2. k?0;3. 高. 21?1?22三、计算下列极限1. 1. 2. . 3. e.4. e2. 5. e41.3.1 函数的连续性与间断点一、选择题1.b;2.c;3.a 二、填空题1. x?0,?1;2. 三、求下列函数的不连续点并判别间断点的类型。
高等数学高数二07-08竞赛参考答案
高等数学2竞赛参考答案一. 填空题1、3 2、ln (22+-3、0()f x '4、35、2e 二. 选择题. 1. (C) 2. (A) 3. (A) 4.(B) 5.(D)三. 计算题 1.解:1(1)sin lim(1)(1)x x x x x x →-++-1sin12=x = –1 为第一类可去间断点1lim ()x f x →=∞x = 1 为第二类无穷间断点0lim ()1,x f x +→=-0lim ()1,x f x -→=x = 0 为第一类跳跃间断点2.解2sin 2(cos 2 )x y e x x '=⋅⋅2sin 21(2)x e x x +222sin sin 2cos x x x x e =3. 解: (1) 利用对称性. 2d d DI x x y =⎰⎰ 22d d xy Dxye x y ++⎰⎰213001d d 2r r πθ=⎰⎰(2) 积分域如图:添加辅助线,y x =-将D 分为12,,D D 利用对称性 , 得2212d d d d xy DD I x x y xye x y +=+⎰⎰⎰⎰222d d xy D xye x y ++⎰⎰1211d d 00xx x y --=++⎰⎰,221()d d 02D x y x y =++⎰⎰4π=23=四.应用题1.解:设观察者与墙的距离为 x m ,2.4(0,)x =∈+∞则1.4 1.8 1.8arctanarctan ,(0,)x x xθ+=-∈+∞ 2222222223.2 1.8 1.4( 5.76)3.2 1.8( 3.2)( 1.8)x x x x x θ---'=+=++++, 令0,θ'=得驻点 2.4(0,)x =∈+∞根据问题的实际意义, 观察者最佳站位存在,驻点又唯一,因此观察者站在距离墙 2.4 m 处看图最清楚.2.解:方法1 利用球坐标方程.设球面方程为r a =,球面面积元素为2222d sin d d d sin d 4A a A aaππϕϕθθϕϕπ=∴==⎰⎰方法2 利用直角坐标方程.3. 解:12012:0(1)01z x y y x x ≤≤--⎧⎪Ω≤≤-⎨⎪≤≤⎩,121(1)1200d d d d d d x x y x x y z x x y z ---Ω∴=⎰⎰⎰⎰⎰⎰121(1)d (12)d xx x x y y -=--⎰⎰123011(2)d 448x x x x =-+=⎰ 五.证明题1. 证:令sin 2(),x f x x π=-则()f x 在(0,]2π上连续,在(0,)2π上可导,且 22cos sin cos ()(tan )0x x x xf x x x x x⋅-'==-<, ()(0,),2f x π因此在内单调递减(),2f x π又在处左连续 因此()()02f x f π≥=,从而sin 2,(0,]2x x x ππ≥∈。
2008高数工-2期末-A(工-4ye)答案
一、单项选择题:本大题共5小题,每小题4分,共20 分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确结果的字母写在括号内。
1. 对函数xy x y x f +=2),(,原点 )0,0( 【 B 】 (A )不是驻点. (B )是驻点却不是极值点. (C )是极大值点. (D )是极小值点. 2. 微分方程01=-'xy 【 D 】 (A ) 不是可分离变量的微分方程 (B )是齐次微分方程(C )是一阶线性齐次微分方程 (D )是一阶线性非齐次微分方程3.级数()∑∞=⎪⎪⎭⎫⎝⎛+-111n n n n 的敛散情况是 【 C 】(A ) 条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不能确定 4.设∑为球面2222x y z a ++=的表面,则⎰⎰∑zdS = 【 A 】(A )0 (B )22a π (C ) 24a π (D ) 1 5.将二次积分dx x dy I y ⎰⎰+=1311交换积分次序后得 【 B 】(A )⎰⎰+13121x dy x dx (B) ⎰⎰+20311x dy x dx (C ) ⎰⎰+ydy x dx 03101 (D )⎰⎰+1311xdy x dx二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线t z t y t t x 2,sin ,cos ===在点),,1,0(πP 处的切线方程为2012π-=-=-z y x , 法平面方程为0440222=+-=-+-ππππz x z x 或.7.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a 为三个正数z y x ,,之和,使z y x ,,的倒数之和最小()()a z y x zy x z y x L -+++++=λ111,,.8.函数()x x x f -=1ln )(的麦克劳林级数的收敛域为[)1,1-∈x , ()=)0(5f -30 . 9.设函数(),001⎩⎨⎧≤≤--<<=x x x x f ππ)(x S 是()x f 的以2π为周期的傅立叶级数的和函数,则=-)21(S21 ,=)(πS 21+π . 10.2222=+++z y x xyz 确定了隐函数),(y x z z =,则),(y x z z =在点()1,0,1-处的全微分为 dy dx dz 2-=.三、计算下列各题:本大题共6小题,每小题9分,共54分. 解答应写出主要过程或演算步骤.11.设函数()ye x yf z ,22-=,其中f 具有二阶连续偏导数,求y z ∂∂,yx z ∂∂∂2.解 ye f yf y z 2'12'+=∂∂ ()y e f y f x yx z 1211222''+''-=∂∂∂12.计算三重积分dv y xI ⎰⎰⎰Ω+=)(22,其中Ω为旋转抛物面22y x z +=与平面 1=z 所围成的区域.解: 利用柱面坐标: dv y x I ⎰⎰⎰Ω+=)(22dz d d ⎰⎰⎰=1012202ρπρρρθ ()ρρρπd 21312-=⎰ ρρρπd )(2513-=⎰6π=13.利用高斯公式计算曲面积分 ⎰⎰∑++++=,222333zy x dxdyz dzdx y dydz x I 其中∑是球面2222a z y x =++的内侧.解:将球面方程2222a z y x =++代入I ,得: ⎰⎰⎰⎰∑∑++=++++=dxdy z dzdx y dydz x a z y x dxdyz dzdx y dydz x I 3332223331 利用高斯公式,333,,z R y Q x P ===,设球面∑所围闭区域为Ω,()dxdydz z y x a I ⎰⎰⎰Ω++-=2223331 dr r r d d a a ϕϕθππsin 3202020⎰⎰⎰-=⎰-=πϕϕπ05sin 56d a a 5124a π-=.14.计算()(),322⎰++-=Ly dy ye x dx y xI 其中L 是由直线22=+y x 上从点()0,2A 到点()1,0B 上的一段及圆弧21y x --=上从()1,0B 到()0,1-C 的一段连接而成的有向曲线.解:补线21:,0:→-=x y CA ,++BC 弧则围成封闭曲线,其所围闭区域为D ,在其上使用格林公式,y ye x Q y x +=-=3,2P 2,2,3-=∂∂=∂∂yPx Q()()⎰++-=Ly dyye x dx y x I 322()()()()⎰⎰++--++-=++CAy BC y dy ye x dx y xdy ye x dx y x32322CAAB 2弧=dx x dxdy y P x Q D ⎰⎰⎰--⎪⎪⎭⎫ ⎝⎛∂∂-∂∂21221335--=⎰⎰x dxdy D 4523415ππ+=-⎪⎭⎫⎝⎛+= 15. 求(1)幂级数()121121-∞=∑--n n n x n 的收敛域;(2)幂级数()121121-∞=∑--n n n x n 的和函数.解:(1)求收敛域:121211212lim()(lim -+∞→+∞→-+=n n n nn n x n n x x u x u 2x =,则该级数在()1,1-内收敛. 1=x 时,级数为()∑∞=--1121n nn ,收敛1-=x 时,级数为()∑∞=---1121n nn ,收敛,该级数的收敛域为[]1,1-. (2)求和函数 设()121121)(-∞=∑--=n n n x n x s , 两边同时对x 求导,得()221121)1(121)(-∞=-∞=∑∑-='⎪⎪⎭⎫ ⎝⎛--='n n n n n n x x n x s 211x +-=两边同时对x 积分,得 x dx x s x s xarctan 11)0()(02-=+-=-⎰由于,0)0(=s 所以[]1,1,arctan )(-∈-=x x x s 16.设函数)(x y 满足()()[]d t t y tex y x t⎰-+='01,且(),10=y , 求)(x y .解:两边求导得()()x y xe x y x -='',即:()()x xe x y x y =+'' 这是二阶常系数非齐次线性方程,且(),10=y ()10='y(1)先解对应的齐次方程: 特征方程为,012=+r 特征根为i r ±= 对应齐次方程的通解为x C x C Y sin cos 21+=(2)再求非齐次方程的一个特解:设特解为()x e B Ax y +=*,求"'**,yy ,代入方程()()x xe x y x y =+''化简得 21,21-==B A 则所求特解为x e x y ⎪⎭⎫⎝⎛-=2121*(3)求原方程的特解:原方程的通解为()x e x x C x C y Y y 121sin cos 21*-++=+= 将初始条件(),10=y ()10='y 代入得1,2321==C C 则()x e x x x y 121sin cos 23-++=四、 证明题: 本题共1题,6分. 17. 证明:()()21,21:,11ln 1ln ≤≤≤≤≥++⎰⎰y x D dxdy x y D. 证明:()()dxdy x y D⎰⎰++1ln 1ln ()()()()dxdy y x x y D ⎰⎰⎥⎦⎤⎢⎣⎡+++++=1ln 1ln 1ln 1ln 211⎰⎰=≥Ddxdy 其中用到了()()()()()()()()y x x y y x x y +++++=⎥⎦⎤⎢⎣⎡+++++1ln 1ln 21ln 1ln 1ln 1ln 1ln 1ln 21221≥。
欧阳光中数学分析答案
欧阳光中数学分析答案【篇一:数学分析目录】合1.1集合1.2数集及其确界第二章数列极限2.1数列极限2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b]9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的性质15.4用分项式逼近连续函数第十六章euclid空间上的点集拓扑16.1euclid空间上点集拓扑的基本概念16.2euclid空间上点集拓扑的基本定理第十七章euclid空间上映射的极限和连续17.1多元函数的极限和连续17.2euclid空间上的映射17.3连续映射第十八章偏导数18.1偏导数和全微分18.2链式法则第十九章隐函数存在定理和隐函数求导法19.1隐函数的求导法19.2隐函数存在定理第二十章偏导数的使用20.1偏导数在几何上的使用20.2方向导数和梯度20.3taylor公式20.4极值20.5logrange乘子法20.6向量值函数的全导数第二十一章重积分21.1矩形上的二重积分21.2有界集上的二重积分21.3二重积分的变量代换及曲面的面积21.4三重积分、n重积分的例子第二十二章广义重积分22.1无界集上的广义重积分22.2无界函数的重积分第二十三章曲线积分23.1第一类曲线积分23.2第二类曲线积分23.3green 公式23.4green定理第二十四章曲面积分24.1第一类曲面积分24.2第二类曲面积分24.3gauss公式24.4stokes公式24.5场论初步第二十五章含参变量的积分25.1含参变量的常义积分25,2含参变量的广义积分25.3b函数和函数第二十六章lebesgue积分26.1可测函数26.2若干预备定理26.3lebesgue积分26.4(l)积分存在的充分必要条件26.5三大极限定理26.6可测集及其测度26.7fubini定理练习及习题解答? 序言复旦大学数学系的数学分析教材从20世纪60年代起出版了几种版本,随着改革开放和对外交流的发展,现代数学观点和方法融入数学分析教材是必然的趋势。
2高数选修(导数)
(∆x → 0) ,其中 A 为与 ∆x 无关的常数,
( A = f ′( x0 ) )
函数 f ( x ) 在某点可导 ⇔ 函数 f ( x ) 在某点可微 ⇒ 函数 f ( x ) 在该点连续 但连续不一定可导也不一定可微。 4.奇偶函数与周期函数的导数性质 若 f ( x ) 在某区间上可导且为奇函数,则 f ′( x ) 为该区间上的偶函数; 若 f ( x ) 在某区间上可导且为偶函数,则 f ′( x ) 为该区间上的奇函数; 若 f ( x ) 在某区间上可导且以 T 为周期, f ′( x ) 在该区间上也是以 T 为周期的 则 周期函数。
(2) (sin( ax + b)) ( n ) = a n sin ax + b +
1 (5) ax + b
d 2 y dy′ dt 1 = = 2 dx dx dt −2t sin t 2
18
章节 重点 难点
(续)
日期
三.分段函数及高阶导数求导法 1.按定义求连接点处的导数或左右导数 例 1. (92 研)设 f ( x) = 3 x 3 + x 2 | x | ,则使 f ( n ) (0) 存在的最高阶数 n 为: () A.0
x + b
nπ 2 nπ (3) (cos( ax + b)) ( n ) = a n cos ax + b + 2 (4) (( ax + b) β ) ( n ) = a n β ( β − 1) ⋯ ( β − n + 1)( ax + b) β − n
高数试题及答案07
线段 OA : x = ϕ (t ) = t , y = ψ (t ) = 0, (0 ≤ t ≤ a) ,
∫
从而
OA
(e x sin y − 2 y )dx + (e x cos y − 2)dy = 0 π a2 4
(7 分)
∫
AB
(e x sin y − 2 y )dx + (e x cos y − 2)dy =
0。
二、选择题(每小题 4 分,共 20 分)
1
2
3
4
5
B
A
A
C
B
三、 (每小题 8 分,共 24 分) 1.计算第一型曲线积分: ∫ ( x + y )ds ,其中 L 是以 O (0, 0), A(1, 0), B(0,1) 为顶点的
L
三角形。
2
∫ ( x + y )ds = ∫ ( x + y)ds + ∫ ( x + y )ds + ∫ ( x + y )dsKK..K..KK (1分)
a 2 − x 2 − y 2 (a > 0) 的外侧,则曲面积分: ∫∫ xdydz + ydzdx + zdxdy =
B. 4π a 3
2
(
) 。
A. 2π a 3 3 C. 6π a 3 D. 0 ) 。
对于二元函数 f ( x, y ) = B. 0
2y
xy ,极限 lim f ( x, y ) 为( ( x , y ) → (0,0) x + y2
………………………………(7 分) ……………………………… (8 分)
……………… (3 分) ……………… (5 分) ………………… (7 分) …………………(8 分)
浙江理工大学07~08高数A2期末试卷(含答案)
浙江理工大学2007~2008学年第二学期高等数学A 期终试题(A )卷班级 学号 姓名 一、 选择题(每小题4分,满分28分)1、函数2222),(y x y x y x f +-= 在点)1,1(处的全微分)1,1(df 为 ( )(A) 0 (B) dy dx + (C) dx 4 (D) dy dx -2 2、设L 是从A (1,0)到B (-1,2)的直线段,则()Lx y ds +⎰= ( )(B)(C) 2 (D) 03、方程234sin 2y y x '''+=+的特解为 ( )(A)1(cos 2sin 2);2y x x =-+ (B) 31cos 222y x x =- (C)31sin 222y x x =- (D)311cos 2sin 2.222y x x x =--4、设)(x f 在),0(+∞上有连续的导数,点A )2,1(,B )8,2(在曲线22x y =上。
L为由A 到B 的任一曲线,则=++-⎰dy x xy f x dx x y f x y xy L])(1[)](22[22223( )。
(A) 20, (B) 30, (C) 35, (D) 40。
5、 设b 为大于1的自然数,对幂级数∑∞=1n bnnx a,有a a a nn n =+∞→1l i m,(1,0≠>a a ),则其收敛半径=R ( )。
(A) a , (B) a1, (C)ba , (D)ba1。
6、下列级数收敛的是 ( )(A) ∑∞=1sin n n π; (B )∑∞=1100!n n n ; (C )∑∞=+12)11ln(n n ; (D )∑∞=+-12)11(21)1(n n n nn . 7、已知曲线)(x f y =过原点,且在原点处的法线垂直于直线)(,13x y y x y ==-是微分方程02=-'-''y y y 的解,则=)(x y ( )(A )x xe e--2 (B )x x e e 2-- (C )x x e e 2-- (D )x x e e --2二、填空题(每小题4分,满分20分)1、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值, 则常数a = 。
高数答案(下)习题册答案 第六版 下册 同济大学数学系 编
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0)2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim y x yx y x +→不存在.证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01s i n l i m 22)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yxe xy + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x y x y x y e x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,yu ∂∂ ,z u ∂∂ 解:1-=∂∂y z x y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂5、设222z y x u ++=,证明 : uz u y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 0f y x f y x ==→→ 连续; 21s i n l i m)0,0(x f x x →= 不存在, 000lim)0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件(C )充分必要条件 (D )既非充分又非必要条件 (2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz y z y ln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx zz y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin)(),(2222y x y x yx y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
漳州职业技术学院2007——2008学年第一学期课程表(基础教学部(精)
07经信2经数A202
07会电2经数A402
07外贸经数A401
晚
9.10
07会电1经数A402
07仓储经数A304
星期四
上午
1、2
07嵌入计数1411
07机电高数2T1
07广播高数1301
3、4
07计辅高数2803
07电营高数1301
下午
5、6
07网构1计数1413
7、8
晚
9.10
07电子1高数1207
星期四
上午
1、2
07机制高数2803
07数据应数1#
07自动化1高数1207
07园艺经数2303
07保鲜经数2202
3、4
07自动化2高数1207
07电信1高数1305
07设备高数3601
07营养经数2304
下午
5、6
07化工经数2201
7、8
07移动计数1413
星期五
上午
1、2
07生物经数2204
9.10
星期五
上午
1、2
07汽电2高数1205
3、4
07软件3计数1411
下午
5、6
7、8
07互联2计数1401
备注:1、教室的第1位数字为教学楼代码,后3位数为教室代码。1为创业楼,2为卓理楼,3为博益楼,A、B、C为怀谨楼;“T”为梯教.
2、第1、2节8:00—9:35;第3、4节9:55—11:30;第5、6节14:30—16:05;第7、8节16:10—17:55;第9、10节19:00—20:35。
备注:1、教室的第1位数字为教学楼代码,后3位数为教室代码。1为创业楼,2为卓理楼,3为博益楼,A、B、C为怀谨楼;“T”为梯教.
考研数学免费资料大全
考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。
考研高数讲解新高等数学上册辅导讲解第一章上课资料
第一章函数与极限第 1 页第一节映射与函数一、集合常用数集:自然数集:整数集:有理数集:实数集:开区间:闭区间:半开区间:;邻域:去心邻域:二、函数定义:都有唯一与之对应,记为。
三、函数性质讨论函数:,讨论区间:1、有界性有界:假设,使得,称在区间上有界无界:对,总,使得,那么称在区间上无界上界、下界:假设,使得,,称在区间上有上界;假设,使得,,称在区间上有下界定理:假设在区间上有界在区间上有上界也有下界。
2、单调性严格单调增〔减〕:假设,且,恒有广义单调增〔减〕:假设,恒有,3、奇偶性偶函数:奇函数:常见奇函数:等常见偶函数:等4、周期性周期函数:,对,有,且,那么称为周期为周期函数。
常见周期函数:等【例1】〔87二〕是〔〕(A)有界函数. 〔B〕单调函数.〔C〕周期函数. 〔D〕偶函数.四、复合函数与反函数1、复合函数设定义域为,定义域为,值域为,且,在定义域上有复合函数。
【例2】〔88一二〕,且,求并写出它定义域.2、反函数将函数称为直接函数,函数称为反函数。
与图形关于直线对称。
五、初等函数第二节数列与函数极限一、数列极限定义数列:,,称为整标函数。
其函数值:叫做数列〔序列〕。
数列每一个数称为项,第项称为数列一般项。
简记数列为数列极限:已给数列与常数,如果对于,都,使得对于,不等式恒成立,那么称当时,以为极限,或收敛于,记为或。
反之,假设无极限,说发散。
二、函数极限定义〔1〕:设函数在内有定义,为一常数,假设对于,都,使有,那么称当时,以为极限,记为或。
单侧极限:左极限:。
右极限:定理:〔2〕:设函数在充分大时有定义,为一常数,假设对于,都,使都有,那么称当时,以为极限,记为或。
单侧极限:;定理:【例1】设〔为常数〕,求值,使得存在。
三、极限性质性质1 〔极限唯一性〕数列——假设存在,那么极限值是唯一。
函数——假设存在,那么其极限值是唯一。
性质2 〔有界性〕数列——如果收敛,那么一定有界。
专升本高数二总复习参考题笫2章
笫二章 一元函数微分学一. 求导数、微分与二阶导数1. 基本求导表重点记住 11()'0,()',()',(ln )',x x C x x e e x xααα-====21(sin )'cos ,(cos )'sin ,(arcsin )'(arctan )'1x x x x x x x ==-==+ 11-3. 设函数21()f x x =, 则'y = A. 31x - B. 32x- C. 31x D. 1x [ ] 【11-3、B 】10-2. 设函数()f x e =, 则'(1)f =A. 2e +B. 1e +C.12 D. 12- [ ] 【10-2、C 】 09-2. 设2sin ln 2y x x =++, 则'y =A. 2sin x x +B. 2cos x x +C. 12cos 2x x ++D. 2x 【09-2、B 】 08-22. 设函数3sin 3y x x =++, 求'y . 【08-22. 32'()'(sin )'3'3cos y x x x x =++=+】 08-3. 设函数ln y x =, 则'y = A.1x B. 1x- C. ln x D. xe [ ] 【08-3. A 】 07-3. 设函数y x =, 则'y =A. 1B. xC. 22x D. 2x [ ] 【07-3. 1】06-3. 巳知()3xf x x e =+,则'(0)f =A.1B. 2C. 3D. 4 [ ] 【06-3. D 】 05-2. 设33y x-=+,则'y 等于A.43x -- B. 23x -- C. 43x - D. 433x --+ [ ]【05-2. A 】04-9. 设函数21y x π=-,则'y = ____________ . 【04-9. 32x 】 03-9. 设函数2arcsin e x y +=,则'y = ____________ . 【03-9.211x-】00-8.设函数xx y 22sin 2++=,则dx dy=______________ . 【00-8. 2ln 22x x +】2.乘除求导法则:2''()''',()'u u v uv uv u v uv vv-=+= 11-22. 设函数1sin x y x+=, 求'y . 【11-22.2(1)'sin (1)(sin )''(sin )x x x x y x +-+=2sin (1)cos sin x x xx-+=】 09-3. 设函数()ln xf x e x =, 则'(1)f =A. 0B. 1C. eD. 2e 【09-3、C 】 08-13. 设函数cos y x x = 则'_______y =. 【08-13. cos sin x x x -】07-13. 设函数ln x y x = 则'_______y = 【07-13. 2ln 1ln x x-】 04-19. 设函数ln y x x =,求'y . 【04-19. 1'ln ln 1y x x x x=+⋅=+】03-10. 设函数x exy =,则)0('f = ____________ . 【03-10. 1】02-10. 设函数x y cos 11+=,则'y =_____________. 【02-10. 2)cos 1(sin x x +】 02-3. 设函数)(),(x v x u 可导,若)()(x v x u y ⋅=,则'y 等于 A. )(')()()('x v x u x v x u + B. )(')()()('x v x u x v x u -C. )()()(')('x v x u x v x u +D. )(')('x v x u [ ] 【02-3. A 】 01-22. 设函数1cos 2-=x xy ,求'y . 【01-22. 2222222)1(cos 2sin )1()1(cos 2)1(sin )'1cos ('----=---⋅-=-=x xx x x x x x x x x x y 】 00-18. 设函数x xxx f ln sin 1)(--=, 求)('πf .【00-18. x x x x x x x x x x x f 1)sin 1(cos sin 11)sin 1()cos (sin 1)(22'--+-=-----=ππππππππ111)sin 1()cos (sin 1)(2'--=-----=f 】3. 复合函数求导法则(简单型)(由外到里逐层处理) 10-3. 设函数()cos 2f x x =, 则'()f x =A. 2sin 2xB. 2sin 2x -C. sin 2xD. sin 2x - [ ]【10-3、B 】06-2. 设函数25xy e=+, 则'y =A. 2xe B. 22xe C. 225xe+ D. 25x e + [ ] 【06-2. B 】05-3. 设()cos 2f x x =, 则'(0)f 等于A. 2-B. 1-C. 0D. 2 [ ] 【05-3. 0】 04-18. 设函数()1sin 2f x x =+,求'(0)f .【04-18. '()0cos 2(2)'2cos 2,f x x x x =+⋅= '(0)2f =】02-10. 设函数xy cos 11+=,则'y =_____________.【02-10. 11,1cos ,,1cos y x u y x u=+==+令则''2211sin '()(1cos )(sin )(1cos )u x xy x x u u x =⋅+=--=+】 00-10.设函数x y arcsin ln =,则'y =________________________.【00-10.xx x arcsin )1(21-】00-2. 下列函数中,在点0=x 处导数等于零的是A. )1(x x y -=B. xex y 2sin 2-+=C. x x y arctan cos -=D. )1ln(x y += [ ] 【00-2. B 】 样题-12. 设函数cos()xy e -=,则'(0)y = ____________ .【样题-12. 00'sin (1)sin ,'(0)sin sin1xx x x y ee e e y e e ------=-⋅⋅-===】样题-23. 设函数(sin 2)f x y e=,其中()f u 可导,求'y .【样题-23. (sin 2)(sin 2)''(sin 2)cos 222cos 2'(sin 2)f x f x y ef x x x e f x =⋅⋅⋅=⋅⋅】(与复合函数记号有关的题型)要点:巳知x x f sin )(=,怎样求出()f x ?(见01-9)t =,解出2x t =,原式为2()sin f t t =,把t 更名为x ,得2()sin f x x =,04-20. 设函数3(cos )1cos f x x =+,求'()f x .【04-20. 33cos ,1cos 1,x t x t =+=+设则332()1,()1,'()3f t t f x x f x x =+=+=所以故则】02-23. 设函数x x g e x f xsin )(,)(==,且)]('[x g f y =,求dxdy. 【02-23. 因为x x g cos )('=,所以xex f y cos )(cos ==,则x e dxdyx sin cos -=】02-11. 设函数x x f ln )2(=,则)('x f =___________. 【02-11. x1】01-9. 设函数x x f sin )(=,则)('x f = ________________ . 【01-9. )cos(22x x 】 样题-13. 设函数211()1f x xx=++,则)('x f = ____________ . 【样题-13. 22311112,,()1,()1,'()1t x f t t f x x f x x t t x x-===++=++=+令得于是】4. 复合函数与四则运算混合型(由外到里逐层处理) 07-22.设函数ln(y x =, 求'y 【07-22. 'y x =+=+】03-18. 设函数x x y +=,求'y .【03-18. xx x x xx xxx x x y ++=++=++=242122112)'('】02-17. 设函数21xx y +=,求'y . 【02-17. 2322222)1(111221'x xx x x y +=++-+=】5. 二阶导数(连续求二次导数)11-14. 设函数sin y x =,则 '''______y =. 【11-14. cos x -】 10-15. 设函数ln(1)y x =+ 则''_______y =. 【10-15.21(1)x -+ 】 09-15. 函数sin y x x = 则''_______y =. 【09-15.2cos sin x x x - 】 08-14. 设函数5y x = 则''_______y =. 【08-14. 320x 】 07-14. 设函数x y e -= 则'''_______y =. 【07-14. xe -】 06-15. 设函数sin 2y x = 则'''_______y =. 【06-15. 4sin 2x -】 05-14. 设函数2x y e = 则''(0)_______y =. 【05-14. 4】 04-21. 设函数11y x=+,求''y . 【04-21. 2332'(1)(1),''(1)(2)(1)(1)y x y x x --=-+=--+=+】03-11. 设函数xex y 22+=,则y 的50阶导数)50(y=___________. 【03-11. xe 2502】02-12. 设函数xxe y =,则)0(''y =___________. 【02-12. 2】 01-8. 设函数x x x f ln )(3=,则)1("f =_____________________ . 【01-8. 5】 00-20. 若 x x y arctan )1(2+=, 求"y . 98-10. 设 a a x n a x a y++=-)2( (其中 )1,0≠>a a , 则 )(n y = ______________ .【98-10. ()(2)[]"()''n n x a a yy a x a -==++=22)1(ln --+a x x a a a a 】【00-20. 1arctan 2)1(1)1(arctan 222'+=+++=x x x x x x y ,2"12arctan 2xx x y ++=】样题-15. 设函数y 的2n -阶导数(2)n x yxe -=, 则()(0)_______n y =【样题-15. ()(2)()[]''()''()'n n x x x yx y xe e xe -===+()2,x x x x x e e xe e xe =++=+()(0)2n y =】6. 变限积分求导(参见第三章相应条款)7. 微分计算(先求导,然后乘上dx :'dy y dx =)11-5. 设函数cos 1y x =+, 则dy = [ ] A. (sin 1)x dx + B. (cos 1)x dx +C. sin xdx -D. sin xdx【11-5、C 】10-22. 设函数3cos x y x=, 求dy .【10-22. 332()'cos (cos )''(cos )x x x x y x -=2323cos sin (cos )x x x xx += 则2323cos sin '(cos )x x x xdy y dx dx x +===】09-22. 设函数sin xy e=, 求dy .【09-22. s i n'(s i n )'x y ex =s i nc o s x e x =则s i n c o s xd y ex d x =】 08-5. 设函数2xy e =+, 则dy = [ ] A. (2)xe dx + B. (2)x e x dx + C. (1)x e dx + D. xe dx 【08-5. D 】07-5. 设函数2s i n (1)y x =-,则dy = [ ] A. 2c o s (1)xd x - B. 2c o s (1)x d x -- C. 22c o s (1)x xd x - D. 22c o s (1)x x d x--【07-5. C 】 06-22. 设函数4s i n y x x =, 求dy =【06-22. 34'4sin cos y x x x x =+, 34(4sin cos )dy x x x x dx =+】 05-22. 设函数3c o s y x x =, 求dy .【05-22. 3323'()'c o s(c o s )'3c o s s i ny x x x x x x x x =+=-, 23(3cos sin )dy x x x x dx =-.】03-19. 设函数2arctan x y =,求dy .【03-19. dx x x dy x x x x y 442412,12)'(11'+=+=+=】01-7. 设函数21x y +=,则dy =____________ . 【01-7. dx xx 21+】00-9.设函数)(cos 2x y -=,则dy = ____________________ .【00-9. 2sin cos x xdx -, 也可写成sin 2xdx -. 注意cos()cos x x -=】8.** 幂指函数求导(对数求导法或e-ln 法) **01-23. 设函数xxx y +=sin ,求'y .【01-23. sin y x =+'(sin )'(cos ((*)y x x =+=+笫2项那个导数属幂指函数求导问题,采用对数求导法,先记2y =,两边取对数2ln ln y x ==,然后对x 求导,得2211'y x x y x ==+22'y y x x =+=即(x =+,代回(*)式,得'cos y x x =++. 】二. 隐函数求导数与微分 (做法分两步:(1)原式两边对x 求导,注意把y 视为x 的抽象函数;(2)解出y')注:一元隐函数求导数与微分的题目在2000-2011年中皆没有出现,这里只找了94-99年的3个题目作参考. 学员务必把精力集中到第四章二元隐函数求偏导数和全微分上,因为连续多年都有一个这样的大题目。
高数二 7.4可降阶微分方程
• 例8 我舰向正东1海里处的敌舰发射鱼 雷,鱼雷在航行中始终对准敌舰.设敌舰 以常速 V0沿正北方向直线行驶,已知鱼 雷速度是敌舰速度的两倍,求鱼雷的航 行曲线方程,并问敌舰航行多远时被鱼 雷击中?
思考题
已知 y1 3, y2 3 x 2 , y3 3 x 2 e x
都是微分方程
x2 2xy x2 2y 2x 2y 6x 1
将 y(k) P( x) 连续积分k次, 可得通解.
例 1 求方程 xy(5) y(4) 0 的通解.
解 设 y(4) P( x), y(5) P( x)
代入原方程 xP P 0, (P 0)
解线性方程, 得 P C1 x 即 y(4) C1 x,
两端积分,得
y
1 2
C1
x
2
四、小结
解法 通过代换将其化成较低阶的方程来求解.
例 5 求方程 yy y2 0的通解.
解
两
端同
乘不
为零
因子
1 y2
,
yy y2 d ( y) 0,
y2
dx y
故 y C1 y,
从而通解为 y C2eC1x .
另解 原方程变为 y y , y y
两边积分,得 ln y ln y ln C1, 即 y C1 y, 原方程通解为 y C2eC1x .
补充题: 求方程 xyy xy2 yy 的通解. 解 设 y e zdx , 代入原方程,得 zx z,
解其通解为 z C x,
原方程通解为 y e Cxdx C2eC1x2 .
例6.设有一均匀,柔软的绳索,两端固定,绳 索仅受重力的作用下坠.试问绳索在平 衡状态时是怎样的曲线?
• 例7 一个离地面很高的物体,受地球引力 的作用由静止开始落向地面.求它落到 地面时的速度和所需的时间(不计空气 阻力).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五邑大学试卷
学期: 2006 至 2007 学年度第 2 学期课程:高等数学(II)竞赛专业:姓名:完整学号:
填空题。
(每小题4分,总计16分)
1.设函数)
(x
f在0
=
x点处具有二阶连续导数,且(0)0
f=,(0)1
f'=,(0)2
f''=-,
则
2
()
lim
x
f x x
x
→
-
=。
2.求sin x
y x
=的导数y'= 。
3.区域D:1,02
x y
≤≤≤,积分
D
=.
4.设
1
1
()
n n
n
n u u s
∞
-
=
-=
∑,且lim n
n
nu A
→∞
=,则
n
n
u
∞
=
∑=.
单项选择题,答案填入下表。
(每小题4分,总计24分)5.设
21
,0
()
1,0
x
e
x
f x kx
x x
⎧-
>
⎪
=⎨
⎪-≤
⎩
在x=0处连续,k=( )
(A)-1 (B)1(C)-2 (D)2
6.如果函数
1
()
1
x
f x
x
+
=
-
,则()()
n
f x=( )
(A)
2!
(1)n
n
x
⋅
-
(B)
1
2!
(1)n
n
x+
⋅
-
(C)
1
(1)2!
(1)
n
n
n
x+
-⋅⋅
-
(D)
2(1)!
(1)
n
n
n
x
⋅-⋅
-
7.如果()
f x dx c
=
⎰,则()
f x=( )
(A)(B(C(D
8.若22
(,)
f xy x y x y xy
+=+-,则(,)
f x y
x
∂
∂
=( )
(A)-1 (B)2y(C) 2(x+y) (D) 2x
9.设D
是由曲线y y =x 围成,则x y
D
e dxdy ⎰⎰=( )
(A )12e - (B )2e (C )12
e
+ (D ) 1
10.下列级数中,绝对收敛的是( )
(A
)11n n -∞= (B
)1n ∞= (C ) 211cos 3n n n π
∞
=∑ (D )11(1)21n n n n -∞=--∑
解答题(每小题10分,总计60分)
11.求二元函数2(,)(4)z f x y x y x y ==--在由直线6x y +=,x 轴和y 轴所围成的闭区域D 上的极值、最大值与最小值。
12.过曲线2y x =(x ≥0)上某点A 作一条切线,使之与曲线及x 轴围成的图形的
面积为1
12
,求:(1) 切点A 的坐标;(2) 过切点A 的切线方程;
(3) 由上述图形绕x 轴旋转成的旋转体体积V 。
13 求极限1
lim 1ln 1x x x →+∞⎡⎤⎢⎥⎢⎥-⎛⎫⎢⎥
+ ⎪⎢⎥⎝⎭⎣⎦
14.求211(1)(21)!n n n n x
n ∞-=-+∑的和函数,并计算1
(1)(21)!n n n
n ∞
=-+∑的和数。
15. 设(,)y f x t =,而(,)t t x y =是由方程(,,)0F x y t =所确定的函数,其中f ,F 都具有一阶连续偏导数,求dy dx。
16. 设p ,q 是大于1的常数,且
111p q +=,证明:对于任意x >0,有11
p x x p q
+≥。