2019上海各区一摸初三数学试卷

合集下载

上海市长宁区金山区2019届中考一模数学试题含答案

上海市长宁区金山区2019届中考一模数学试题含答案

2019上海长宁区初三数学一模试题(与金山统考)(满分150分,考试时间100分钟) 2019.1.6考生注意:1、本试卷含有三个大题,共25小题;2、答题时,考生务必按照答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤一、选择题:(本题共6个小题,每题4分,共24分)1. 如果两个三角形的相似比是1:2,那么他们的面积比是( ).A. 1:2B. 1:4C. 1D. 2:12. 如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ).A. AD :AB =2:3B. AE:AC =2:5C. AD:DB =2:3D. CE:AE =3:23.在Rt △ABC 中,∠C =90°,AB =2,AC =1,则sin B 的值是( ).A. B. C. 12 D. 2 4. 在△ABC 中,若cos A =22,tan B =3,则这个三角形一定是( ). A. 直角三角形 B. 等腰三角形 C. 钝角三角形 D. 锐角三角形5. 已知1O 的半径r 为3cm ,2O 的半径R 为4cm ,两圆的圆心距12O O 为1cm ,则这两个圆的位置关系的( ).A. 相交B. 内含C. 内切D. 外切 6. 二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A. 先向左平移2个单位,再向上平移1个单位B. 先向左平移2个单位,再向下平移1个单位C. 先向右平移2个单位,再向上平移1个单位D. 先向右平移2个单位,再向下平移1个单位二、填空题:(本大题共12小题,每题4分,满分48分)7. 已知抛物线12+=x y 的顶点坐标是 .8. 已知抛物线32++=bx x y 的对称轴为直线x =1,则实数b 的值为 .9. 已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是 .10. 已知二次函数2(3)y x =-图像上的两点()3,A a 和(),B x b ,则a 和b 的大小关系是a b .11. 圆是轴对称图形,它的对称轴是 .12. 已知⊙O 的弦AB =8cm ,弦心距OC =3cm ,那么该圆的半径是 cm.13. 如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC =1,BC =22,那么sin ∠ACD 的值是 .14. 王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处 m .15. 已知△ABC 中,AD 是中线,G 是重心,设AD m =,那么用m 表示AG = .16. 如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB = .17. 的矩形称作黄金矩形。

2019年上海市宝山区中考数学一模试卷(解析版)

2019年上海市宝山区中考数学一模试卷(解析版)
2019年上海市宝山区中考数学一模试卷
一、选择题
1.如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论正 确的是( )
A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:CD=1:2
【答案】A
【解析】
【分析】
由AB∥CD∥EF,BD:DF=1:2,根据平行线分线段成比例定理,即可求得 ,又由AE=AC+CE,即可求得答案.
【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比是解答此题的关键.
13.Rt△ 中, , ,那么 _____.
【答案】
【解析】
【分析】
在直角△ABC中,AB2=AC2+BC2,且AB=2AC,利用勾股定理即可解答.
【详解】解:∵△ABC为直角三角形,且∠C=90°,
∴AB2=AC2+BC2,∵AB=2AC,
【详解】(1)∵ ,且∠A=∠A,
∴△ADE∽△ACB,
∴ = .
(2)∵AB=9,AD=2,AC=6,AE=3,
∴ ,
∴ ,
【点睛】本题主要考查相似三角形的判定及性质和向量,熟练掌握有关知识点并灵活应用是解答的关键.
22.如图,已知: 中, ,点 为 上一点, , ,过点 作 的垂线交射线 于点 ,延长 交 于点 .
【答案】
【解析】
【分析】
根据平行线定理和三角形相似相关知识即可解答.
【详解】解:由题知 ∥ ,
可得∠ABE=∠DCB,∠ABD=∠BDC,
又因为 所以∠CEA=∠BDC,
根据∠CEA=∠BDC,∠ABE=∠DCB,可判定△AEB∽△BDC,
因为3AE=2BD,BE=1,
可得3BE=2DC,解得DC= .

上海市青浦区2019届九年级中考一模数学试题(解析版)

上海市青浦区2019届九年级中考一模数学试题(解析版)
【答案】2.
【解析】
【分析】
由抛物线的对称轴为直线x=1,利用二次函数的性质可得出关于m的一元一次方程,解之即可得出结论.
【详解】∵抛物线y=﹣x2+mx﹣3m的对称轴是直线x=1,
∴﹣ ,
∴m=2.
故答案为2.
【点睛】本题考查了二次函数的性质,牢记抛物线的对称轴为直线x=﹣ 是解题的关键.
12.抛物线y=x2﹣2在y轴右侧的部分是_____.(填“上升”或“下降”)

∴ ,
∴ ,
∴ ,
故答案为: .
【点睛】本题考查了比例的性质,关键是熟练掌握比例的性质并灵活运用.
8.计算:3( -2 )﹣2( -3 )=_____.
【答案】
【解析】
【分析】
实数的运算法则同样适用于该题.
【详解】3( ﹣2 )﹣2( ﹣3 )
=3 ﹣3 ﹣2 +3
=(3﹣2) +(﹣3+3)
= .
D、由AD•AB=AE•AC得 ,∠A=∠A,故能确定△ADE∽△ACB,
故选C.
【点睛】本题考查了相似三角形的判定:
两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);
有两组角对应相等的两个三角形相似.
6.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是( )
【答案】 .
【解析】
【分析】
根据已知条件得到BC=AC•tan∠CAB=2,根据勾股定理得到AB= ,根据旋转的性质得到AD=AB= ,∠D=∠B,根据三角函数的定义即可得到结论.
【详解】如图,
∵在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,

2019年上海市宝山区中考数学一模试卷含答案解析

2019年上海市宝山区中考数学一模试卷含答案解析

2019年上海市宝山区中考数学一模试卷一.选择题1.如图,在直角△ABC中,∠C=90°,BC=1,tanA=,下列判断正确的是( )A.∠A=30°B.AC=C.AB=2 D.AC=22.抛物线y=﹣4x2+5的开口方向( )A.向上 B.向下 C.向左 D.向右3.如图,D、E在△ABC的边上,如果ED∥BC,AE:BE=1:2,BC=6,那么的模为( )A.﹣2 B.﹣3 C.2 D.34.已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为( )A.M在⊙O上B.M在⊙O内C.M在⊙O外D.M在⊙O右上方5.如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为( )A.26°B.64°C.52°D.128°6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.ac>0 B.当x>﹣1时,y<0 C.b=2a D.9a+3b+c=0二.填空题7.如果:,那么:=__________.8.两个相似比为1:4的相似三角形的一组对应边上的中线比为__________.9.如图,D、E分别是△ABC的边AB、AC上的点,则使△AED∽△ABC的条件是__________.10.如图,△ABC中,∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则CD=__________.11.计算:2(3+4)﹣5=__________.12.如图,菱形ABCD的边长为10,sin∠BAC=,则对角线AC的长为__________.13.抛物线y=﹣2(x﹣3)2+4的顶点坐标是__________.14.若A(1,2),B(3,2),C(0,5),D(m,5)是抛物线y=ax2+bx+c图象上的四点,则m=__________.15.已知A(4,y1)、B(﹣4,y2)是抛物线y=(x+3)2﹣2的图象上两点,则y1__________y2.16.已知⊙O中一条长为24的弦的弦心距为5,则此圆的半径长为__________.17.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正弦值为__________.18.如图,抛物线y=x2﹣2x﹣3交x轴于A(﹣1,0)、B(3,0),交y轴于C(0,﹣3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为__________(面积单位).三.解答题(8+8+8+8+10+10+12+14)19.计算:﹣.20.已知某二次函数的对称轴平行于y轴,图象顶点为A(1,0),且与y轴交于点B(0,1)(1)求该二次函数的解析式;(2)设C为该二次函数图象上横坐标为2的点,记=,=,试用、表示.21.如图是某个大型商场的自动扶梯侧面示意图,已知自动扶梯AC的坡度为1:2,AC的长度为5米,AB为底楼地面,CD为二楼侧面,EF为二楼楼顶,当然有EF∥AB∥CD,E为自动扶梯AC的最高端C的正上方,过C的直线EG⊥AB于G,在自动扶梯的底端A 测得E的仰角为42°,求该商场二楼的楼高CE.(参考数据:sin42°=,cos42°=,tan42°=)22.如图,以AB为直径的⊙O与弦CD相交于点E,若AC=2,AE=3,CE=,求弧BD的长度.(保留π)23.如图,D为△ABC边AB上一点,且CD分△ABC为两个相似比为1:的一对相似三角形;(不妨如图假设左小右大),求:(1)△BCD与△ACD的面积比;(2)△ABC的各内角度数.24.如图,△ABC中,AB=AC=6,F为BC的中点,D为CA延长线上一点,∠DFE=∠B.(1)求证:=;(2)若EF∥CD,求DE的长度.25.(1)已知二次函数y=(x﹣1)(x﹣3)的图象如图,请根据图象直接写出该二次函数图象经过怎样的左右平移,新图象通过坐标原点?(2)在关于二次函数图象的研究中,秦篆晔同学发现抛物线y=ax2﹣bx+c(a≠0)和抛物线y=ax2﹣bx+c(a≠0)关于y轴对称,基于协作共享,秦同学将其发现口诀化“a、c不变,b 相反”供大家分享,而在旁边补笔记的胡庄韵同学听成了“a、c相反,b不变”,并按此法误写,然而按此误写的抛物线恰巧与原抛物线也对称,请你写出小胡同学所写的与原抛物y=(x﹣1)(x﹣3)的对称图形的解析式,并研究其与原抛物线的具体对称情况;(3)抛物线y=(x﹣1)(x﹣3)与x轴从左到右交于A、B两点,与y轴交于点C,M是其对称轴上一点,点N在x轴上,当点N满足怎样的条件,以点N、B、C为顶点的三角形与△MAB有可能相似,请写出所有满足条件的点N的坐标;(4)E、F为抛物线y=(x﹣1)(x﹣3)上两点,且E、F关于D(,0)对称,请直接写出E、F两点的坐标.26.(14分)如图点C在以AB为直径的半圆的圆周上,若AB=4,∠ABC=30°,D为边AB 上一动点,点E和D关于AC对称,当D与A重合时,F为EC的延长线上满足CF=EC的点,当D与A不重合时,F为EC的延长线与过D且垂直于DE的直线的交点,(1)当D与A不重合时,CF=EC的结论是否成立?试证明你的判断.(2)设AD=x,EF=y 求y关于x的函数及其定义域;(3)如存在E或F恰好落在弧AC或弧BC上时,求出此时AD的值;如不存在,则请说明理由.(4)请直接写出当D从A运动到B时,线段EF扫过的面积.2019年上海市宝山区中考数学一模试卷一.选择题1.如图,在直角△ABC中,∠C=90°,BC=1,tanA=,下列判断正确的是( )A.∠A=30°B.AC=C.AB=2 D.AC=2【考点】解直角三角形.【专题】探究型.【分析】根据在直角△ABC中,∠C=90°,BC=1,tanA=,可以得到AC、BC的长,同时tanA=,tan30°=,可以判断∠A是否等于30°,从而可以得到问题的答案.【解答】解:∵在直角△ABC中,∠C=90°,BC=1,tanA=,tanA=,∴AC=,∴AB=,∵tanA=,tan30°=,∴∠A≠30°,故选D.【点评】本题考查解直角三角形,解题的关键是明确题意,找出各边之间的关系,进而判断选项是否正确.2.抛物线y=﹣4x2+5的开口方向( )A.向上 B.向下 C.向左 D.向右【考点】二次函数的性质.【专题】探究型.【分析】根据抛物线y=﹣4x2+5,可知二次项系数是﹣4,从而可以得到该函数的开口方向.【解答】解:∵抛物线y=﹣4x2+5,﹣4<0,∴该抛物线的开口向下,故选B.【点评】本题考查二次函数的性质,解题的关键是由二次项系数可以判断抛物线的开口方向.3.如图,D、E在△ABC的边上,如果ED∥BC,AE:BE=1:2,BC=6,那么的模为( )A.﹣2 B.﹣3 C.2 D.3【考点】*平面向量.【分析】由ED∥BC,可证得△AED∽△ABC,然后根据相似三角形的对应边成比例,求得ED:BC=1:3,则可得=﹣,又由BC=6,即可求得的模.【解答】解:∵ED∥BC,∴△AED∽△ABC,∴ED:BC=AE:AB,∵AE:BE=1:2,∴AE:AB=1:3,∴ED:BC=1:3,∴=﹣,∵BC=6,∴||=||=2.故选C.【点评】此题考查了平面向量的知识以及相似三角形的判定与性质.注意利用相似三角形的性质,求得=是解此题的关键.4.已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为( )A.M在⊙O上B.M在⊙O内C.M在⊙O外D.M在⊙O右上方【考点】点与圆的位置关系;坐标与图形性质.【分析】根据勾股定理,可得OM的长,根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:OM==5,OM=r=5.故选:A.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为( )A.26°B.64°C.52°D.128°【考点】圆心角、弧、弦的关系.【分析】先利用互余计算出∠B=64°,再利用半径相等和等腰三角形的性质得到∠CDB=∠B=64°,则根据三角形内角和定理可计算出∠BCD,然后根据圆心角的度数等于它所对弧的度数求解.【解答】解:∵∠C=90°,∠A=26°,∴∠B=64°,∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°﹣64°﹣64°=52°,∴的度数为52°.故选:C.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.ac>0 B.当x>﹣1时,y<0 C.b=2a D.9a+3b+c=0【考点】二次函数图象与系数的关系.【分析】A、由抛物线的开口方向,抛物线与y轴交点的位置即可确定a、c的符号;B、根据抛物线与x轴的交点,可得出y<0时,x的取值范围;C、根据抛物线的对称轴直接得出答案;D、根据抛物线与x轴的交点和抛物线的对称轴,即可得出抛物线与x轴的另一个交点,然后把x=3代入方程即可求得相应的y的符号.【解答】解:A、由抛物线的开口向上,得a>0,抛物线与y轴负半轴相交,得c<0,则ac<0,故本选项错误;B、根据抛物线与x轴的交点,可得出y<0时,﹣1<x<3,故本选项错误;C、根据抛物线的对称轴x=﹣=1,直接得出b=﹣2a,故本选项错误;D、根据抛物线与x轴的一个交点(﹣1,0)和抛物线的对称轴x=1,即可得出抛物线与x 轴的另一个交点(3,0),然后把x=3代入方程即9a+3b+c=0,故本选项正确;故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二.填空题7.如果:,那么:=.【考点】分式的基本性质.【专题】计算题.【分析】由已知可知,2a=3b,再代入所求式进行化简.【解答】解:∵,∴2a=3b,∴===.故答案为.【点评】本题的关键是找到a,b的关系.8.两个相似比为1:4的相似三角形的一组对应边上的中线比为1:4.【考点】相似三角形的性质.【分析】根据相似三角形对应中线的比等于相似比解答即可.【解答】解:∵两个相似三角形的相似比为1:4,∴这两个相似三角形的一组对应边上的中线比为1:4,故答案为:1:4.【点评】本题考查的是相似三角形的性质,掌握相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.9.如图,D、E分别是△ABC的边AB、AC上的点,则使△AED∽△ABC的条件是∠AED=∠B 或∠ADE=∠C或.【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】由本题图形相似已经有一个公共角,再找一组对应角相等或公共角的两边对应成比例即可.【解答】解:∵∠A=∠A,当∠AED=∠B,∴△AED∽△ABC,∵∠A=∠A,当∠ADE=∠C,∴△AED∽△ABC,∵∠A=∠A,当,∴△AED∽△ABC,故答案为:∠AED=∠B或∠ADE=∠C或.【点评】此题主要考查学生对相似三角形的判定方法的掌握情况.10.如图,△ABC中,∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则CD=6.【考点】射影定理.【分析】根据射影定理得到等积式,代入已知数据计算即可.【解答】解:∵∠C=90°,CD⊥AB,∴CD2=BD•AD=36,∴CD=6.故答案为:6.【点评】本题考查的是射影定理的应用,掌握直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项是解题的关键.11.计算:2(3+4)﹣5=+8.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:2(3+4)﹣5=6+8﹣5=+8.故答案为:+8.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.12.如图,菱形ABCD的边长为10,sin∠BAC=,则对角线AC的长为16.【考点】菱形的性质.【分析】根据菱形的性质可知AC⊥BD,解三角形求出BO的长,利用勾股定理求出AO的长,即可求出AC的长.【解答】解:如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,在Rt△AOB中,∵AB=10,sin∠BAC=,∴sin∠BAC==,∴BO=×10=6,∴AB2=OB2+AO2,∴AO===8,∴AC=2AO=16.故答案为:16.【点评】本题主要考查了菱形的性质、勾股定理、解直角三角形的知识;解答本题的关键是掌握菱形的对角线互相垂直平分,此题难度不大.13.抛物线y=﹣2(x﹣3)2+4的顶点坐标是(3,4).【考点】二次函数的性质.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=﹣2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故答案为:(3,4).【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.14.若A(1,2),B(3,2),C(0,5),D(m,5)是抛物线y=ax2+bx+c图象上的四点,则m=4.【考点】二次函数图象上点的坐标特征.【分析】根据对称点A(1,2),B(3,2)得到抛物线的对称轴为直线x=2,然后根据对称点C(0,5),D(m,5)得出=2,即可求得m的值.【解答】解:∵A(1,2),B(3,2)是抛物线y=ax2+bx+c图象上的点,∴抛物线的对称轴为直线x==2,∵C(0,5),D(m,5)是对称点,∴=2,解得m=4故答案为4.【点评】本题考查了二次函数图象上点的坐标特征:根据对称点(x1,m)、(x2,m)得到抛物线的对称轴为直线x=.15.已知A(4,y1)、B(﹣4,y2)是抛物线y=(x+3)2﹣2的图象上两点,则y1>y2.【考点】二次函数图象上点的坐标特征.【分析】先求得函数y=(x+3)2﹣2的对称轴为x=﹣3,再判断A(4,y1)、B(﹣4,y2)离对称轴的远近,从而判断出y1与y2的大小关系.【解答】解:由y=(x+3)2﹣2可知抛物线的对称轴为直线x=﹣3,∵抛物线开口向上,而点A(4,y1)到对称轴的距离比B(﹣4,y2)远,∴y1>y2.故答案为>.【点评】此题主要考查了二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出是解题关键.16.已知⊙O中一条长为24的弦的弦心距为5,则此圆的半径长为13.【考点】垂径定理;勾股定理.【分析】利用垂径定理得到C为AB的中点,由AB的长求出AC的长,在直角三角形AOC 中,由AC与OC的长,利用勾股定理求出OA的长即可.【解答】解:如图所示,∵OC⊥AB,∴AC=BC=AB=12,在Rt△AOC中,AC=12,OC=5,根据勾股定理得:AO===13,即此圆的半径长为13;故答案为:13.【点评】此题考查了垂径定理以及勾股定理;熟练掌握垂径定理,由勾股定理求出AO是解本题的关键.17.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正弦值为.【考点】旋转的性质.【专题】计算题.【分析】先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得∠DAE=∠BAC=60°,AD=AE,CE=BD=6,于是可判断△ADE为等边三角形,所以DE=AD=5,作CH⊥DE于H,如图,设DH=x,则HE=DE﹣DH=5﹣x,利用勾股定理得到42﹣x2=62﹣(5﹣x)2,解得x=,则可计算出CH=,然后根据正弦的定义求解.【解答】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,∴∠DAE=∠BAC=60°,AD=AE,CE=BD=6,∵△ADE为等边三角形,∴DE=AD=5,作CH⊥DE于H,如图,设DH=x,则HE=DE﹣DH=5﹣x在Rt△CDH中,CH2=CD2﹣DH2=42﹣x2,在Rt△CEH中,CH2=CE2﹣EH2=62﹣(5﹣x)2,∴42﹣x2=62﹣(5﹣x)2,解得x=,在Rt△CDH中,CH==,∴sin∠CDH===,即sin∠CDH=.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是求C点到DE的距离.18.如图,抛物线y=x2﹣2x﹣3交x轴于A(﹣1,0)、B(3,0),交y轴于C(0,﹣3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为9(面积单位).【考点】二次函数图象与几何变换.【分析】由图象可知曲线CMB在平移过程中扫过的面积=平行四边形OCBD的面积,求得四边形OCBD的面积即可.【解答】解;∵曲线CMB在平移过程中扫过的面积=平行四边形OCBD的面积,∴曲线CMB在平移过程中扫过的面积=OC•OB+OC•BD=×3×3+×3×3=9,故答案为9.【点评】题考查了二次函数图象与几何变换,由图象可知曲线CMB在平移过程中扫过的面积=平行四边形OCBD的面积是解题的关键.三.解答题(8+8+8+8+10+10+12+14)19.计算:﹣.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣=﹣=+﹣=+.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知某二次函数的对称轴平行于y轴,图象顶点为A(1,0),且与y轴交于点B(0,1)(1)求该二次函数的解析式;(2)设C为该二次函数图象上横坐标为2的点,记=,=,试用、表示.【考点】*平面向量;待定系数法求二次函数解析式.【分析】(1)由图象顶点为A(1,0),首先可设该二次函数的解析式为:y=a(x﹣1)2,又由与y轴交于点B(0,1),可利用待定系数法求得答案;(2)首先求得点C的坐标,然后根据题意作出图形,易求得,然后由三角形法则,求得答案.【解答】解:(1)设该二次函数的解析式为:y=a(x﹣1)2,∵与y轴交于点B(0,1),∴a=1,∴该二次函数的解析式为:y=(x﹣1)2;(2)∵C为该二次函数图象上横坐标为2的点,∴y=(2﹣1)2=1,∴C点坐标为:(2,1),∴BC∥x轴,∴=2=2,∴=+=+2.【点评】此题考查了平面向量的知识、待定系数法求函数的解析式以及点与二次函数的关系.注意结合题意画出图形,利用图形求解是关键.21.如图是某个大型商场的自动扶梯侧面示意图,已知自动扶梯AC的坡度为1:2,AC的长度为5米,AB为底楼地面,CD为二楼侧面,EF为二楼楼顶,当然有EF∥AB∥CD,E为自动扶梯AC的最高端C的正上方,过C的直线EG⊥AB于G,在自动扶梯的底端A 测得E的仰角为42°,求该商场二楼的楼高CE.(参考数据:sin42°=,cos42°=,tan42°=)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据AC的坡度得出AG=2CG,由勾股定理得出CG2+AG2=AC2,求出CG、AG,再由三角函数得出EG,即可得出结果.【解答】解:根据题意得:AG=2CG,∵∠AGE=90°,∴由勾股定理得:CG2+AG2=AC2,即CG2+(2CG)2=(5)2,解得:CG=5(米),∴AG=10米,∵tan∠EAG=,∴EG=AG•tan42°,∴CE=EG﹣CG=AG•tan42°﹣CG=10×﹣5=4﹣5(米);答:该商场二楼的楼高CE为(4﹣5)米.【点评】本题考查了解直角三角形的应用﹣仰角、坡度、勾股定理、三角函数;由勾股定理求出AG是解决问题的关键.22.如图,以AB为直径的⊙O与弦CD相交于点E,若AC=2,AE=3,CE=,求弧BD的长度.(保留π)【考点】垂径定理;勾股定理;弧长的计算.【分析】连接OC,先根据勾股定理的逆定理得出△ACE是直角三角形,再由垂径定理得出CE=DE,,由三角函数求出∠A=30°,由圆周角定理求出∠BOC,由弧长公式得出的长度=的长度=π即可.【解答】解:∵AC=2,AE=3,CE=,∴AE2+CE2=AC2,∴△ACE是直角三角形,∠AEC=90°,∴CD⊥AB,sin∠A==,∴,∠A=30°,连接OC,如图所示:则∠BOC=2∠A=60°,OC===2,∴的长度=的长度==π.【点评】本题考查的是垂径定理、勾股定理的逆定理、三角函数、弧长公式等知识;熟练掌握勾股定理的逆定理,由垂径定理得出是解决问题的关键.23.如图,D为△ABC边AB上一点,且CD分△ABC为两个相似比为1:的一对相似三角形;(不妨如图假设左小右大),求:(1)△BCD与△ACD的面积比;(2)△ABC的各内角度数.【考点】相似三角形的性质;解直角三角形.【分析】(1)根据相似三角形面积的比等于相似比的平方解答;(2)根据锐角三角函数的概念解答即可.【解答】解:(1)∵△BCD和△CAD的相似比为1:,∴△BCD和△CAD的面积比为1:3;(2)∵△BCD∽△CAD,∴∠BDC=∠ADC=90°,tanA===,∴∠A=30°,tanB==,∴∠B=60°,∴∠ACB=90°.【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方以及锐角三角函数的概念是解题的关键.24.如图,△ABC中,AB=AC=6,F为BC的中点,D为CA延长线上一点,∠DFE=∠B.(1)求证:=;(2)若EF∥CD,求DE的长度.【考点】相似三角形的判定与性质.【分析】(1)根据外角的性质得到∠EFB=∠FDC,由等腰三角形的性质得到∠C=∠B,证得△CDF∽△BFE,根据相似三角形的性质得到;(2)根据平行线的性质得到∠EFD=∠FDC,∠C=∠EFB,根据等腰三角形的性质得到∠B=∠C,等量代换得到∠FDC=∠C,推出DF=CF,得到BF=DF,推出△DF≌△BFE,根据全等三角形的性质得到结论.【解答】(1)证明:∵∠DFB=∠DEF+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE,∴;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∠C=∠EFB,∵AB=AC,∴∠B=∠C,∴∠FDC=∠C,∴DF=CF,∴BF=DF,∴EF=AC=3,∠DFE=∠BFE,在△DFE与△BFE中,,∴△DF≌△BFE,∴DE=BE=3.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行线的性质,熟练掌握相似三角形的判定和性质是解题的关键.25.(1)已知二次函数y=(x﹣1)(x﹣3)的图象如图,请根据图象直接写出该二次函数图象经过怎样的左右平移,新图象通过坐标原点?(2)在关于二次函数图象的研究中,秦篆晔同学发现抛物线y=ax2﹣bx+c(a≠0)和抛物线y=ax2﹣bx+c(a≠0)关于y轴对称,基于协作共享,秦同学将其发现口诀化“a、c不变,b 相反”供大家分享,而在旁边补笔记的胡庄韵同学听成了“a、c相反,b不变”,并按此法误写,然而按此误写的抛物线恰巧与原抛物线也对称,请你写出小胡同学所写的与原抛物y=(x﹣1)(x﹣3)的对称图形的解析式,并研究其与原抛物线的具体对称情况;(3)抛物线y=(x﹣1)(x﹣3)与x轴从左到右交于A、B两点,与y轴交于点C,M是其对称轴上一点,点N在x轴上,当点N满足怎样的条件,以点N、B、C为顶点的三角形与△MAB有可能相似,请写出所有满足条件的点N的坐标;(4)E、F为抛物线y=(x﹣1)(x﹣3)上两点,且E、F关于D(,0)对称,请直接写出E、F两点的坐标.【考点】二次函数综合题.【分析】(1)首先求得抛物线与x轴的交点,即可求得平移的方向和距离;(2)根据“a、c相反,b不变”,即可求得对应的函数解析式,然后确定顶点即可判断;(3)△MAB中M是在抛物线的对称轴上,则△MAB为等腰三角形,则△NBC是等腰三角形,同时根据∠OBC=45°,即已知等腰△NBC的一个角的度数,据此即可讨论,求解;(4)设E的坐标是(a,a2﹣4a+3),由点E与F关于点D(,0)对称,则可得F的坐标,然后根据点E和点F的纵坐标互为相反数即可列方程求解.【解答】解:(1)二次函数y=(x﹣1)(x﹣3)与x轴的交点是(1,0)和(3,0).抛物线向左平移1个单位长度或3个单位长度即可使新图象经过坐标原点;(2)y=(x﹣1)(x﹣3)=x2﹣4x+3.∵小胡同学听成了a与c相反,b不变.∴y=﹣x2﹣4x﹣3=﹣(x+2)2+1,顶点坐标是(﹣2,1),故与原抛物线关于原点对称;(3)∵△MAB中M是在抛物线的对称轴上,∴MA=MB,即△MAB为等腰三角形,又∵△MAB与△NBC相似,∴△NBC是等腰三角形.∵N在x轴上,∴∠CBN=45°或135°.当∠CBN=135°时,即N点在B的右侧且BC=BN,则N的坐标是(3+3,0);当∠CBN=45°时,即N在点B的左侧,若△MAB的底角为45°,此时三角形为等腰直角三角形,则N的坐标是(0,0)或(﹣3,0);若△MAB的顶角是45°时,在△NBC中,BC=BN=3,则N的坐标是(3﹣3,0);(4)设E的坐标是(a,a2﹣4a+3),由点E与F关于点D(,0)对称,则可得F(3﹣a,a2﹣2a),∴点E和点F的纵坐标互为相反数,即a2﹣4a+3+a2﹣2a=0,解得:a1=,a2=(舍去),∴E的纵坐标是(,),F的坐标是(,﹣).【点评】本题考查了二次函数与等腰三角形的性质,相似三角形的性质,正确理解△NBC 是等腰三角形是本题的关键.26.(14分)如图点C在以AB为直径的半圆的圆周上,若AB=4,∠ABC=30°,D为边AB 上一动点,点E和D关于AC对称,当D与A重合时,F为EC的延长线上满足CF=EC的点,当D与A不重合时,F为EC的延长线与过D且垂直于DE的直线的交点,(1)当D与A不重合时,CF=EC的结论是否成立?试证明你的判断.(2)设AD=x,EF=y 求y关于x的函数及其定义域;(3)如存在E或F恰好落在弧AC或弧BC上时,求出此时AD的值;如不存在,则请说明理由.(4)请直接写出当D从A运动到B时,线段EF扫过的面积.【考点】圆的综合题.(1)设DE交AC于M,DF交BC于N.由轴对称图形的性质可知EM=DM,ED⊥AC,【分析】然后可证明AC∥DF,由平行线分线成比例定理可知;(2)①当D与A不重合时.先证明四边形CNDM是矩形,从而得到MD∥BC,由平行线的性质可知∠ADM=∠ABC=30°,由特殊锐角三角函数可知ED=,DN==(4﹣x)=2﹣,然后由平行线分线段成比例定理可知DN=NF,从而得到DF=2DN=4﹣x,最后在Rt△EFD中,由勾股定理可求得y与x的函数关系式;②当D与A重合时,y=2AC=4;(3)①当点E在弧AC上时.由题意可知∠CAD=60°,由点E与点D关于AC对称可知:∠EAD=120°,故此点E不在弧AC上,故当且仅当点D与点A重合是,点E也与点A重合时,成立;②当点F在上时,如图3所示,连接BF、AF.由题意可知∠FDB=60°,由(2)可知DF=2DN,DB=2DN,故此DF=DB,从而可证明△DFB为等边三角形,于是得到DB=DF,然后再证明AD=DF,从而可知点D与点O重合,于是得到AD==2;(4)由(2)可知∠EAD=2∠CAD=120°,故此点E运动的轨迹为一条线段,由(3)可知∠FBD=60°,故此点F运动的轨迹也是一条线段,然后画出图形,最后利用三角形的面积公式即可求得答案.【解答】解:(1)成立.如图1所示:设DE交AC于M,DF交BC于N.∵点E与点D关于AC对称,∴EM=DM,ED⊥AC.又∵DE⊥DF,∴AC∥DF.∴.∴CE=CF.(2)①当D与A不重合时.∵∠CMD=∠MDN=∠MCN=90°,∴四边形CNDM是矩形.∴MD∥BC.∴∠ADM=∠ABC=30°.∵在Rt△AMD中,∠ADM=30°,∴MD==.∴ED=.在Rt△BDN中,∠DBN=30°,∴DN==(4﹣x)=2﹣.∵MD∥BC,∴.∴DN=NF.∴DF=2DN=4﹣x.在Rt△EDF中,由勾股定理可知EF=y===2(0<x≤4);②当D与A重合时,如图2所示;∵CF=EF,∴y=2AC=4.(3)①当点E在弧AC上时.∵∠CAD=60°,点E与点D关于AC对称,∴∠EAD=∠DAM=60°.∴∠EAD=120°.∵当点E在弧AC上时,∠EAD≤90°,∴此种情况不成立.故当且仅当点D与点A重合是,点E也与点A重合时,成立.∴AD=0.②当点F在上时,如图3所示,连接BF、AF.∵∠DBN=30°,∠BND=90°,∴∠FDB=60°.∵由(2)可知DF=2DN,DB=2DN,∴DF=DB.∴△DFB为等边三角形.∴∠DBF=60°,∠DFB=60°.∴∠AFD=30°.∵AB是圆O的直径,∴∠AFB=90°.∵∠CFA=∠CBA=30°,∴∠CFB=120°.∴∠CFB+∠FBD=180°.∴∠CF∥DB.∴∠FAD=∠CFA=30°.∴∠FAD=∠AFD=30°.∴AD=DF=DB.∴点D与点O重合.∴AD==2.综上所述,AD=0或AD=2.(4)如图4所示;E、F的初始位置为E1、F1,E1与A点重合,E、F的终止位置为E2、F2,F2与B点重合.∵由(2)可知∠EAD=2∠CAD=120°,∴点E运动的轨迹为线段AE1.∵由(3)可知∠FBD=60°,∴点F运动的轨迹为线段BF2.∴阴影部分的面积即为所求,S=2××AC•BC=2××2×2=4.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了轴对称图形的性质、平行线分线段成比例定理、等边三角形的性质和判定、等腰三角形的性质和判定,根据∠EAD和∠FBD为固定值,判断点E、F运动的轨迹都是一条线段是解题的关键.。

2019年上海市松江区中考数学一模试卷(解析版)

2019年上海市松江区中考数学一模试卷(解析版)

2019年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.2.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)23.下列各组图形中一定是相似形的是()A.两个直角三角形B.两个等边三角形C.两个菱形D.两个矩形4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.=B.=C.=D.=5.已知为单位向量,=﹣3,那么下列结论中错误的是()A.∥B.||=3C.与方向相同D.与方向相反6.如图,在△ABC中,D、E分别在边AB、AC上,DE∥BC,EF∥CD交AB于F,那么下列比例式中正确的是()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知,那么=.8.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是千米.9.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是.10.已知线段AB=2cm,点C在线段AB上,且AC2=BC•AB,则AC的长cm.11.已知某二次函数图象的最高点是坐标原点,请写出一个符合要求的函数解析式:.12.如果点A(﹣4,y1)、B(﹣3,y2)是二次函数y=2x2+k(k是常数)图象上的两点,那么y1 y2.(填“>”、“<”或“=”)13.小明沿坡比为1:的山坡向上走了100米.那么他升高了米.14.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果AC=3,CE=5,DF=4,那么BD=.15.如图,已知△ABC,D、E分别是边AB、AC上的点,且==.设=,=,那么=.(用向量、表示)16.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE∥BC.如果=,CE=4,那么AE的长为.17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.18.如图,在直角坐标平面xOy中,点A坐标为(3,2),∠AOB=90°,∠OAB=30°,AB与x 轴交于点C,那么AC:BC的值为.三、解答题:(本大题共7题,满分78分)19.(10分)将二次函数y=2x2+4x﹣1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.20.(10分)如图,已知△ABC中,AB=AC=5,cos A=.求底边BC的长.21.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.求的值.22.(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B 处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)23.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC•CE=AD•BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF•AD.24.如图,抛物线y=﹣x2+bx+c经过点A(﹣2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.25.(14分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP 与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.2019年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.【分析】根据三角函数的定义即可得到结论.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.【点评】本题考查了锐角三角函数的定义的应用,熟记三角函数的定义是解题的关键.2.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2【分析】先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.下列各组图形中一定是相似形的是()A.两个直角三角形B.两个等边三角形C.两个菱形D.两个矩形【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【解答】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点评】本题主要考查了相似多边形的性质,相似多边形的性质为:①对应角相等;②对应边的比相等.4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理的逆定理,当=或=时,DE∥BD,然后可对各选项进行判断.【解答】解:当=或=时,DE∥BD,即=或=.故选:D.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.5.已知为单位向量,=﹣3,那么下列结论中错误的是()A.∥B.||=3C.与方向相同D.与方向相反【分析】根据向量的定义,即可求得答案.【解答】解:A、由为单位向量,=﹣3知:两向量方向相反,相互平行,即∥,故本选项错误.B、由=﹣3得到||=3,故本选项错误.C、由为单位向量,=﹣3知:两向量方向相反,故本选项正确.D、由为单位向量,=﹣3知:两向量方向相反,故本选项错误.故选:C.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.6.如图,在△ABC中,D、E分别在边AB、AC上,DE∥BC,EF∥CD交AB于F,那么下列比例式中正确的是()A.=B.=C.=D.=【分析】根据相似三角形的性质可求解.【解答】解:∵DE∥BC,EF∥CD∴△ADE∽△ABC,△AFE∽△ADC,∴,∴故选:C.【点评】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知,那么=.【分析】因为,所以a=b,代入求解即可.【解答】解:∵,∴a=b,∴原式==.故答案为.【点评】本题主要考查比例的基本性质,解题关键是熟练应用比例的基本性质,本题注意掌握比例的合比性质即可得出结果.8.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是6千米.【分析】根据=比例尺列方程即可得到结论.【解答】解:设甲、乙两地的实际距离为xcm,根据题意得,=,解得:x=600000cm=6km,故答案为:6.【点评】本题考查了比例线段,熟练掌握=比例尺是解题的关键.9.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是10.【分析】根据正弦函数的定义得出sin A=,即=,即可得出AB的值.【解答】解:∵sin A=,即=,∴AB=10,故答案为:10.【点评】本题主要考查解直角三角形,熟练掌握正弦函数的定义是解题的关键.10.已知线段AB=2cm,点C在线段AB上,且AC2=BC•AB,则AC的长﹣1cm.【分析】根据黄金分割的定义得到点C是线段AB的黄金分割点,根据黄金比值计算得到答案.【解答】解:∵AC2=BC•AB,∴点C是线段AB的黄金分割点,AC>BC,∴AC=AB=×2=﹣1,故答案为:﹣1.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比值为是解题的关键.11.已知某二次函数图象的最高点是坐标原点,请写出一个符合要求的函数解析式:y=﹣x2.【分析】根据二次函数的顶点是坐标原点,设函数的解析式为:y=ax2,根据顶点是二次函数图象的最高点,结合二次函数的性质,得到a<0,任取负数a代入原解析式,即可得到答案.【解答】解:∵二次函数的顶点是:(0,0),∴设函数的解析式为:y=ax2,又∵点(0,0)是二次函数图象的最高点,∴抛物线开口方向向下,∴a<0,令a=﹣1,则函数解析式为:y=﹣x2.【点评】本题考查了二次函数的性质,二次函数的图象,二次函数图象上点的坐标特征,二次函数的最值,正确掌握二次函数的性质是解题的关键.12.如果点A(﹣4,y1)、B(﹣3,y2)是二次函数y=2x2+k(k是常数)图象上的两点,那么y1>y2.(填“>”、“<”或“=”)【分析】先根据二次函数的性质得到当x<0时,y随y的增大而减小,然后比较自变量的大小得到函数值的大小关系.【解答】解:抛物线的对称轴为y轴,所以当x<0时,y随y的增大而减小,所以y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.小明沿坡比为1:的山坡向上走了100米.那么他升高了50米.【分析】设BC=x米,根据坡度的概念得到AC=x米,根据勾股定理计算即可.【解答】解:∵坡比为1:,∴设BC=x米,则AC=x米,由勾股定理得,BC2+AC2=AB2,即x2+(x)2=1002,解得,x1=50,x2=﹣50(舍去),∴BC=50米,故答案为:50.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.14.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果AC=3,CE=5,DF=4,那么BD=.【分析】利用平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵a∥b∥c,∴=,即=,解得,BD=,故答案为:.【点评】本题考查的是平行线分线段成比例定理的应用,灵活运用定理、找准对应关系是解题的关键.15.如图,已知△ABC,D、E分别是边AB、AC上的点,且==.设=,=,那么=+3.(用向量、表示)【分析】由题意可得△ADE∽△ABC,可得BC=3DE,根据向量的加法可求解.【解答】解:∵==,∠BAC=∠DAE∴△ADE∽△ABC∴∴BC=3DE∵设=,=,∴==故答案为:+3【点评】本题考查了相似三角形的判定与性质,向量的性质,熟练运用相似三角形的判定是本题的关键.16.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE∥BC.如果=,CE=4,那么AE的长为.【分析】根据相似三角形的性质可得,即可求AE的长.【解答】解:∵DE∥BC∴△ADE∽△ABC∴∴设AE=3k,AC=5k(k≠0)),∴CE=3k+5k=4∴k=∴AE=3k=故答案为:【点评】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.【分析】根据线段中点的定义得到AD=3,根据角平分线的定义得到∠BAG=∠EAF,根据相似三角形的性质即可得到结论.【解答】证明:∵AB=6,D是边AB的中点,∴AD=3,∵AG是∠BAC的平分线,∴∠BAG=∠EAF,∵∠ADE=∠C,∴△ADF∽△ACG;∴==,故答案为:.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.18.如图,在直角坐标平面xOy中,点A坐标为(3,2),∠AOB=90°,∠OAB=30°,AB与x 轴交于点C,那么AC:BC的值为.【分析】作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E,先求得OA的长,然后证明△OEB∽△ODA,依据相似三角形的性质可得到==,最后依据AC:BC=S△AOC :S△OBC=AD:OE求解即可.【解答】解:如图所示:作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E.∵A(3,2),∴OA==,∵∠OAB=30°,∠AOB=90°,∴=,∵∠AOB=90°,∠EOC=90°,∴∠EOB=∠AOD,又∵∠BEO=∠ADO,∴△OEB∽△ODA,∴==,即=,解得:OE=,∵AC:BC=S△AOC :S△OBC=AD:OE=2:=,故答案为:.【点评】本题主要考查的是含30°的直角三角形的性质,相似三角形的判定和性质,证得△OEB∽△ODA是解答本题的关键.三、解答题:(本大题共7题,满分78分)19.(10分)将二次函数y=2x2+4x﹣1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.【分析】利用配方法把将二次函数y=2x2+4x﹣1的解析式化为y=a(x+m)2+k的形式,利用二次函数的性质指出函数图象的开口方向、顶点坐标和对称轴,即可得到答案.【解答】解:y=2(x2+2x)﹣1,y=2(x2+2x+1)﹣2﹣1,y=2(x+1)2﹣3,开口方向:向上,顶点坐标:(﹣1,﹣3),对称轴:直线x=﹣1.【点评】本题考查了二次函数的性质,二次函数的三种形式,正确掌握配方法和二次函数的性质是解题的关键.20.(10分)如图,已知△ABC中,AB=AC=5,cos A=.求底边BC的长.【分析】过点B作BD⊥AC,垂足为点D,解直角三角形即可得到结论.【解答】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos A=,∵cos A=,AB=5,∴AD=AB•cos A=5×=3,∴BD==4,∵AC=AB=5,∴DC=2,∴BC==2.【点评】本题考查了解直角三角形,勾股定理,等腰三角形的性质,正确的作出辅助线是解题的关键.21.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.求的值.【分析】设BG=2k,GH=4k,HC=3k,根据平行四边形的性质可得DF=BG=2k,EF=HC=3k,可得DE=5k,根据△ADE∽△FGH可得=()2=.【解答】解:∵BG:GH:HC=2:4:3,∴设BG=2k,GH=4k,HC=3k,(k≠0)∵DE∥BC,FG∥AB,∴四边形BDFG是平行四边形,∴DF=BG=2k,∵DE∥BC,FH∥AC∴四边形EFHC是平行四边形,∴EF=HC=3k,∴DE=5k∵DE∥BC∴∠ADE=∠B,∵FG∥AB∴∠FGH=∠B,∴∠ADE=∠FGH,同理可得:∠AED=∠FHG∴△ADE∽△FGH∴=()2=,【点评】本题考查了相似三角形的判定和性质,平行四边形判定和性质,熟练掌握相似三角形的性质是本题的关键.22.(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B 处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.【解答】解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.23.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC•CE=AD•BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF•AD.【分析】(1)通过题意可证△ACD∽△CBE,可得∠DCA=∠EBC;(2)通过证明△ABF∽△DAC,可得,可得AB2=AF•AD.【解答】证明:(1)∵AD∥BC,∴∠DAC=∠BCA∵AC•CE=AD•BC,∴∴△ACD∽△CBE∴∠DCA=∠EBC(2)∵AD∥BC,∴∠AFB=∠EBC,且∠DCA=∠EBC,∴∠AFB=∠DCA∵AD∥BC,AB=DC∴∠BAD=∠ADC∴△ABF∽△DAC∴且AB=DC,∴AB2=AF•AD【点评】本题考查了相似三角形的判定和性质,等腰梯形的性质,根据题意找到正确的两个三角形相似是本题的关键.24.如图,抛物线y=﹣x2+bx+c经过点A(﹣2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.【分析】(1)把点A(﹣2,0),点B(0,4)代入解析式求解即可;(2)先确定抛物线的对称轴,再过点P作PG⊥y轴,垂足为G,根据三角函数建立等量关系,求解即可;(3)设新抛物线的表达式为﹣m,则D(0,4﹣m),E(2,4﹣m),DE=2,过点F作FH⊥y轴,垂足为H,运用平行建立线段的比例关系求解即可.【解答】解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)∴,解得∴抛物线解析式为,(2)=,∴对称轴为直线x=1,如图1,过点P作PG⊥y轴,垂足为G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴∴,∴BG=∴OG=,∴P(1,),(3)如图2设新抛物线的表达式为﹣m则D(0,4﹣m),E(2,4﹣m),DE=2过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF∴,∴FH=1,①点D在y轴的正半轴上,则F(﹣1,),∴OH=m﹣∴,∴m=3,②点D在y轴的负半轴上,则F(1,),∴OH=m﹣,∴,∴m=5∴综上所述m的值为3或5.【点评】此题主要考查二次函数的综合问题,会求抛物线解析式,会求抛物线的对称轴,会待定点的坐标根据题意建立方程求解是解题的关键25.(14分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP 与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【分析】(1)根据已知条件得到CP=4,求得BP=2,根据三角形重心的性质即可得到结论;(2)如图1,过点B作BF∥CA交CD的延长线于点F,根据平行线分线段成比例定理得到,求得=,设CP=k,则PA=3k,得到PA=PB=3k根据三角函数的定义即可得到结论;(3)根据直角三角形的性质得到CD=BD=AB,推出△PBD∽△ABP,根据相似三角形的性质得到∠BPD=∠A,推出△DPE∽△DCP,根据相似三角形的性质即可得到结论.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则PA=3k,∵PD⊥AB,D是边AB的中点,∴PA=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,【点评】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.。

2019年上海市黄浦区中考数学一模试卷(附解析)

2019年上海市黄浦区中考数学一模试卷(附解析)

2019年上海市黄浦区中考数学一模试卷(附解析)一.选择题(共6小题,满分24分,每小题4分)1.下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=42.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米4.如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②=;③=.使△ADE与△ACB一定相似的是()A.①②B.②③C.①③D.①②③5.下列判断错误的是()A.0•=B.如果,,其中,那么∥C.设为单位向量,那么||=1D.如果|=2||,那么=2或=﹣26.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值是y1,y2,且y1=y2,设该函数图象的对称轴是x=m,则m的取值范围是()A.0<m<1B.1<m≤2C.2<m<4D.0<m<4二.填空题(共12小题,满分48分,每小题4分)7.已知,则xy=.8.若点P是线段AB的黄金分割点,AB=10cm,则较长线段AP的长是cm.9.计算:3(﹣2)﹣2(﹣3)=.10.如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于.11.如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=.12.在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos A=.13.如图,图中所有四边形都是正方形,其中左上角的n个小正方形与右下角的1个小正方形边长相等,若最大正方形边长是最小正方形边长的m倍,则用含n的代数式表示m的结果为m=.14.如图,在梯形ABCD中,AD∥BC,EF是梯形的中位线,点E在AB上,若AD:BC=1:3,=,则用表示是:=.15.在△ABC中,AB=AC=5,BC=8,如果点G为重心,那么∠GCB的余切值为.16.为了测量某建筑物BE的高度(如图),小明在离建筑物15米(即DE=15米)的A处,用测角仪测得建筑物顶部B的仰角为45°,已知测角仪高AD=1.8米,则BE=米.17.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE =.18.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则=.三.解答题(共7小题,满分78分)19.计算:sin30°+|﹣2|﹣tan45°+(﹣1)201920.已知:如图,在▱ABCD中,设=,=.(1)填空:=(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)21.已知抛物线y=﹣2x2+bx+c与x轴交于A(2,﹣1),B(﹣1,﹣4)两点.(1)求抛物线的解析式;(2)用配方法求抛物线的顶点坐标.22.2018年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC =35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)23.如图,菱形ABCD中,∠BAD=60°,点E在边AD上,连接BE,在BE上取点F,连接AF并延长交BD于H,且∠AFE=60°,过C作CG∥BD,直线CG、AF交于G.(1)求证:∠FAE=∠EBA;(2)求证:AH=BE;(3)若AE=3,BH=5,求线段FG的长.24.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.25.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.2019年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(共6小题,满分24分,每小题4分)1.【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、4×10=5×8,能成比例;B、2×5=2×,能成比例;C、1×4≠2×3,不能成比例;D、1×4=2×2,能成比例.故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.2.【分析】易得原抛物线的顶点及平移后新抛物线的顶点,根据平移不改变二次项系数利用顶点式可得抛物线解析式.【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.【点评】考查二次函数的平移情况,二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度坡角的概念是解题的关键.4.【分析】根据有两组角对应相等的两个三角形相似对①进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似对②③进行判断.【解答】解:∵∠DAE=∠BAC,∴当ADE=∠C时,△ADE∽△ACB;当=时,△ADE∽△ACB.故选:C.【点评】本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似;两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.5.【分析】轨迹平面向量的性质一一判断即可.【解答】解:A、0•=,正确,故本选项不符合题意.B、由,,得到:=,=﹣,故两向量方向相反,∥,正确,故本选项不符合题意.C、为单位向量,那么|=1,正确,故本选项不符合题意.D、由|=2||,只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意.故选:D.【点评】本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】根据二次函数图象上点的坐标特征即可求得.【解答】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选:C.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.二.填空题(共12小题,满分48分,每小题4分)7.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵=,∴xy=6.故答案为:6.【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.8.【分析】根据黄金分割的概念得到AP=AB,把AB=10cm代入计算即可.【解答】解:∵P是线段AB的黄金分割点,AP>BP,∴AP=AB,而AB=10cm,∴AP==;故答案为:﹣5.【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.9.【分析】实数的运算法则同样适用于该题.【解答】解:3(﹣2)﹣2(﹣3)=3﹣3﹣2+3=(3﹣2)+(﹣3+3)=.故答案是:.【点评】考查了平面向量,熟练掌握平面向量的加法结合律即可解题,属于基础计算题.10.【分析】把原点坐标代入抛物线解析式即可得到对应m的值.【解答】解:把(0,0)代入y=2x2+x+m﹣1得m﹣1=0,解得m=1,故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.【分析】根据平行四边形的性质可得出DE∥AB、DC=AB,进而可得出△DEF∽△BAF,根据相似三角形的性质可得出=,再结合EC=CD﹣DE即可求出结论.【解答】解:∵四边形ABCD为平行四边形,∴DE∥AB,DC=AB,∴△DEF∽△BAF.∵△DEF的面积与△BAF的面积之比为9:16,∴=,∵===3.故答案为:3:1.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,根据相似三角形的性质求出DE、BA之间的关系是解题的关键.12.【分析】作出图形,根据锐角的余弦等于邻边比斜边,列式计算即可得解.【解答】解:如图,∵∠C=90°,AB=10,AC=8,∴cos A===.故答案为:.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13.【分析】如图,过A作AB⊥FG于B,根据相似三角形的性质得到=2,设小正方形的边长为1,则答正方形的边长为m,求得BC=2DE=2,CD=AB=(m﹣1),列方程即可得到结论.【解答】解:如图,过A作AB⊥FG于B,则△ABC∽△CDE,∴=2,设小正方形的边长为1,则大正方形的边长为m,∴AB=m﹣1,BF=n,DE=1,∴BC=2DE=2,CD=AB=(m﹣1),∴FG=FB+BC+CD+DG=n+2+(m﹣1)+1=m,∴m=2n+5,故答案为:2n+5.【点评】本题考查了列代数式,相似三角形的性质和判定,正方形的性质,正确的作出辅助线构造相似三角形是解题的关键.14.【分析】此题只需根据梯形的中位线定理得到EF和AD的关系即可.【解答】解:根据AD:BC=1:3,则BC=AD.根据梯形的中位线定理,得EF=2AD.又∵=,∴=﹣2.【点评】考查了梯形的中位线定理.15.【分析】根据等腰三角形的三线合一,勾股定理求出AD的长,利用重心的性质即可求出DG的长,利用余切的定义解答即可.【解答】解:作AD⊥BC于D,则点G在AD上,连接GC,∵AB=AC,AD⊥BC,∴CD=BC=4,由勾股定理得,AD==3,∵G为△ABC的重心,∴DG=AD=1,∴cot∠GCB==4,故答案为:4.【点评】本题考查的是重心的概念和性质,锐角三角函数的定义,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.【分析】在Rt△ABC中,已知角的邻边求对边,可以用正切求BC,再加上CE即可.【解答】解:过A作AC⊥BE于C,则AC=DE=15,根据题意:在Rt△ABC中,有BC=AC×tan45°=15,则BE=BC+CE=16.8(米),故答案为:16.8.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,理解仰角俯角的概念、熟记锐角三角函数的概念是解题的关键.17.【分析】根据题意,作出合适的辅助线,然后根据勾股定理、三角形相似可以求得GE的长,本题得以解决.【解答】解:作EF⊥BC于点F,∵AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,∴AD⊥BC,AD=3,CD=4,∴AD∥EF,BC=8,∴EF=1.5,DF=2,△BDG∽△BFE,∴,BF=6,∴DG=1,∴BG=,∴,得BE=,∴GF=BE﹣BG==,故答案为:.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由中点定义可得DE=CE,再由翻折的性质得出DE=EF,BF=BC,∠BFE=∠D=90°,从而得到DE=EF,连接EG,利用“HL”证明Rt△EDG≌Rt△EFG,得出DG=FG,设DG=a,求出GA、AD,再由矩形的对边相等得出AD=BC,求出BF,再求出BG,由勾股定理得出AB,再求比值即可.【解答】解:连接GE,∵点E是CD的中点,∴EC=DE,∵将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,∴EF=DE,∠BFE=90°,在Rt△EDG和Rt△EFG中,∴Rt△EDG≌Rt△EFG(HL),∴FG=DG,∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理的应用、以及翻折变换的性质;熟记性质并作辅助线构造出全等三角形是解题的关键.三.解答题(共7小题,满分78分)19.【分析】直接利用特殊角的三角函数值以及绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1﹣1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】(1)根据三角形法则可知:=+,延长即可解决问题;(2)连接BD.因为=+,=,即可推出=+.【解答】解:(1)∵=+,=,=.∴=﹣.故答案为﹣.(2)连接BD.∵=+,=,∴=+.∴即为所求;【点评】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【分析】(1)利用待定系数法确定函数关系式;(2)利用配方法将所求的函数解析式转化为顶点式,即可直接得到答案.【解答】解:(1)把A(2,﹣1),B(﹣1,﹣4)两点代入y=﹣2x2+bx+c,得.解得,故该抛物线解析式为:y=﹣2x2+3x+1.(2)由(1)知,抛物线解析式为:y=﹣2x2+3x+1.y=﹣2x2+3x+1=﹣2(x2﹣x+)+1+=﹣2(x﹣)2+.所以抛物线的顶点坐标是(,).【点评】考查了抛物线与x轴的交点坐标,二次函数的三种形式以及待定系数法确定函数解析式,掌握配方法是将二次函数解析式的三种形式间转换的关键.22.【分析】(1)由AC⊥BC,得到∠C=90°,根据三角函数的定义得到AC=800,在Rt△ABC中根据三角函数的定义得到AB==≈1395 米;(2)求得该车的速度==55.8km/h<60千米/时,于是得到结论.【解答】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395 米;(2)∵AB=1395,∴该车的速度==55.8km/h<60千米/时,故没有超速.【点评】此题主要考查了解直角三角形的应用,关键是掌握三角函数定义.23.【分析】(1)由∠AFE=∠BAE=60°、∠AEF=∠BEA证△AEF∽△BEA,据此可得;(2)根据菱形的性质得AB=AD、∠BAE=∠ADB=60°,利用“ASA”证△ABE≌△DAH可得答案;(3)连接AC交BD于点P,则AC⊥BD,且AC平分BD,利用AE=DH=3、BH=5,结合菱形的性质可得AC=2AP=8、PH=1,由CG∥BD且P为AC中点知CG=2,根据勾股定理知AG =14,BE=AH=AG=7,利用△AEF∽△BEA知=,据此求得AF=,由FG=AG﹣AF可得答案.【解答】解:(1)∵∠AFE=∠BAE=60°、∠AEF=∠BEA,∴△AEF∽△BEA,∴∠FAE=∠ABE;(2)∵四边形ABCD是菱形,且∠BAD=60°,∴AB=AD、∠BAE=∠ADB=60°,在△ABE和△DAH中,∵,∴△ABE≌△DAH(ASA),∴AH=BE;(3)如图,连接AC交BD于点P,则AC⊥BD,且AC平分BD,∵△ABE≌△DAH,∴AE=DH=3,则BD=BH+DH=8,∴BP=PD=4,PH=BH﹣BP=1,∵AB=BD=8,∴AP==4,则AC=2AP=8,∵CG∥BD,且P为AC中点,∴∠ACG=90°,CG=2PH=2,∴AG==14,BE=AH=AG=7,∵△AEF∽△BEA,∴=,即=,解得:AF=,∴FG=AG﹣AF=14﹣=.【点评】本题主要考查相似三角形的判定与性质及菱形的性质,解题的关键是熟练掌握菱形的性质和中位线定理、勾股定理及相似三角形的判定与性质、全等三角形的判定和性质等知识点.24.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待x1,t=﹣2,即可得出直线QH过定点(0,﹣2).定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.25.【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【解答】解:(1)∵AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠CAD,在△ABC中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC,BD,OE,∵四边形ABCD是矩形,∴OA=OB=OC=OD=AC=BD,∵AE⊥CE,∴∠AEC=90°,∴OE=AC,∴OE=BD,∴∠BED=90°,∴BE⊥DE;(3)如图3,∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵△ADE是等边三角形,∴AE=AD=BC,∠DAE=∠AED=60°,由(2)知,∠BED=90°,∴∠BAE=∠BEA=30°,过点B作BF⊥AE于F,∴AE=2AF,在Rt△ABF中,∠BAE=30°,∴AB=2BF,AF=BF,∴AE=2BF,∴AE=AB,∴BC=AB.【点评】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形,是一道中等难度的中考常考题.。

2019年上海市杨浦区中考数学一模试卷(附解析)

2019年上海市杨浦区中考数学一模试卷(附解析)

2019年上海市杨浦区中考数学一模试卷(附解析)一、选择题:(本大题共6题,每题4分,满分24分)1.下列四条线段能成比例线段的是()A.1,1,2,3B.1,2,3,4C.2,2,3,3D.2,3,4,52.如果a:b=3:2,且b是a、c的比例中项,那么b:c等于()A.4:3B.3:4C.2:3D.3:23.如果△ABC中,∠C=90°,sin A=,那么下列等式不正确的是()A.B.C.D.4.下列关于向量的运算中,正确的是()A.B.C.D.5.如果二次函数中函数值y与自变量x之间的部分对应值如下表所示:A.x=0B.C.D.x=16.如果以a、b、c为三边的三角形和以4、5、6为三边的三角形相似,那么a与b的比值不可能为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.8.等边三角形的中位线与高之比为.9.如果两个相似三角形的面积比为4:9,较小三角形的周长为4,那么这两个三角形的周长和为.10.在△ABC中,AB=3,AC=5,BC=6,点D、E分别在边AB、AC上,且AD=1,如果△ABC∽△ADE,那么AE=.11.在△ABC中,AB=AC=5,BC=8,如果点G为重心,那么∠GCB的余切值为.12.如果开口向下的抛物线y=ax2+5x+4﹣a2(a≠0)过原点,那么a的值是.13.如果抛物线y=﹣2x2+bx+c的对称轴在y轴的左侧,那么b0(填入“<”或“>”).14.已知点A(x1,y1)、B(x2,y2)在抛物线y=x2+2x+m上,如果0<x1<x2,那么y1y2(填入“<”或“>”).15.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=.16.如图,某单位门前原有四级台阶,每级台阶高为18cm,宽为30cm,为方便残疾人土,拟在门前台阶右侧改成斜坡,设台阶的起点为A点,斜坡的起点为C点,准备设计斜坡BC的坡度i=1:5,则AC的长度是cm.17.如果抛物线C1的顶点在抛物线C2上时,抛物线C2的顶点也在抛物线C1上,此时我们称抛物线C1与C2是“互为关联”的抛物线.那么与抛物线y=2x2是“互为关联”且顶点不同的抛物线的表达式可以是(只需写出一个).18.Rt△ABC中,∠C=90°,AC=3,BC=2,将此三角形绕点A旋转,当点B落在直线BC上的点D处时,点C落在点E处,此时点E到直线BC的距离为.三、解答题:(本大题共7题,满分78分)19.如图,已知▱ABCD的对角线交于点O,点E为边AD的中点,CE交BD于点G.(1)求的值;(2)如果设,,试用、表示.20.已知二次函数y=ax2+bx+c(a≠0)的图象过点(1,﹣2)和(﹣1,0)和(0,﹣).(1)求此二次函数的解析式;(2)按照列表、描点、连线的步骤,在如图所示的平面直角坐标系内画出该函数的图象(要求至少5点).21.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)∠ADC的正弦值.22.某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G 与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.23.已知:如图,在△ABC中,点D在边AB上,点E在线段CD上,且∠ACD=∠B=∠BAE.(1)求证:;(2)当点E为CD中点时,求证:.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,2),它的顶点为D(1,m),且tan∠COD=.(1)求m的值及抛物线的表达式;(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°.求P 点的坐标.25.已知:梯形ABCD中,AD∥BC,AB⊥BC,AD=3,AB=6,DF⊥DC分别交射线AB、射线CB 于点E、F.(1)当点E为边AB的中点时(如图1),求BC的长;(2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;(3)当△AEF的面积为3时,求△DCE的面积.2019年上海市杨浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.下列四条线段能成比例线段的是()A.1,1,2,3B.1,2,3,4C.2,2,3,3D.2,3,4,5【分析】若a,b,c,d成比例,即有a:b=c:d.只要代入验证即可.【解答】解:A、1:2≠1:3,则a:b≠c:d,即a,b,c,d不成比例;B、1:3≠2:4,则a:b≠c:d.故a,b,d,c不成比例;C、2:2=3:3,即b:a=c:d,故b,a,c,d成比例;D、2:4≠3:5,则a:b≠c:d,即a,b,c,d不成比例.故选:C.【点评】本题主要考查了成比例的定义,并且注意叙述线段成比例时,各个线段的顺序,难度适中.2.如果a:b=3:2,且b是a、c的比例中项,那么b:c等于()A.4:3B.3:4C.2:3D.3:2【分析】根据比例中项的概念可得a:b=b:c,则可求得b:c值.【解答】解:∵a:b=3:2,b是a和c的比例中项,即a:b=b:c,∴b:c=3:2.故选:D.【点评】本题考查了比例中项的概念.在线段a,b,c中,若b2=ac,则b是a,c的比例中项.3.如果△ABC中,∠C=90°,sin A=,那么下列等式不正确的是()A.B.C.D.【分析】依据△ABC中,∠C=90°,sin A=,分四种情况讨论,即可得到结论.【解答】解:设BC=1,∵△ABC中,∠C=90°,sin A=,∴AB=2,AC=,∴cos A=,故A选项错误;,故B选项正确;,故C选项正确;,故D选项正确;故选:A.【点评】此题主要考查了锐角三角函数关系,正确把握锐角三角函数的定义是解题关键.4.下列关于向量的运算中,正确的是()A.B.C.D.【分析】根据平面向量的有关概念,判定选项中的计算是否正确即可.【解答】解:A、,故本选项错误.B、,故本选项正确.C、+(﹣)=,故本选项错误.D、+=,故本选项错误.故选:B.【点评】本题考查了平面向量的有关概念,是基础题.5.如果二次函数中函数值y与自变量x之间的部分对应值如下表所示:A.x=0B.C.D.x=1【分析】由图表可知,x=0和2时的函数值相等,然后根据二次函数的对称性求解即可【解答】解:∵x=0、x=2时的函数值都是3相等,∴此函数图象的对称轴为直线x==1.故选:D.【点评】本题主要考查了二次函数图象上点的坐标特征,熟练掌握二次函数的图象与性质是解题的关键.6.如果以a、b、c为三边的三角形和以4、5、6为三边的三角形相似,那么a与b的比值不可能为()A.B.C.D.【分析】利用相似三角形的性质即可判断.【解答】解:∵以a、b、c为三边的三角形和以4、5、6为三边的三角形相似,∴a:b=4:5或5:6或2:3,故选:B.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考基础题.二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.【分析】由可得=,进一步得到1﹣=,可求,进一步得到的值.【解答】解:,=,1﹣=,=,=.故答案为:.【点评】考查了比例的性质,关键是得到1﹣=.8.等边三角形的中位线与高之比为1:.【分析】可设等边三角形的边长为2a,根据三角形的中位线定理和等边三角形的性质以及勾股定理可分别求出中位线的长和高的长度即可求出其比值.【解答】解:设等边三角形的边长为2a,则中位线长为a,高线的长为=a,所以等边三角形的中位线与高之比为a: a=1:,故答案为:1:.【点评】本题考查了等边三角形的性质和三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.9.如果两个相似三角形的面积比为4:9,较小三角形的周长为4,那么这两个三角形的周长和为10.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方计算即可.【解答】解:设较大三角形的周长为x,∵两个相似三角形相似,两个相似三角形的面积比为4:9,∴两个相似三角形的周长比为2:3,∴=,解得,x=6,∴这两个三角形的周长和=4+6=10,故答案为:10.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.10.在△ABC中,AB=3,AC=5,BC=6,点D、E分别在边AB、AC上,且AD=1,如果△ABC∽△ADE,那么AE=.【分析】根据相似三角形对应边的比相等列出比例式,计算即可.【解答】解:∵△ABC∽△ADE,∴=,即=,解得,AE=,故答案为:.【点评】本题考查的是相似三角形的性质,掌握相似三角形对应边的比相等是解题的关键.11.在△ABC中,AB=AC=5,BC=8,如果点G为重心,那么∠GCB的余切值为4.【分析】根据等腰三角形的三线合一,勾股定理求出AD的长,利用重心的性质即可求出DG的长,利用余切的定义解答即可.【解答】解:作AD⊥BC于D,则点G在AD上,连接GC,∵AB=AC,AD⊥BC,∴CD=BC=4,由勾股定理得,AD==3,∵G为△ABC的重心,∴DG=AD=1,∴cot∠GCB==4,故答案为:4.【点评】本题考查的是重心的概念和性质,锐角三角函数的定义,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.12.如果开口向下的抛物线y=ax2+5x+4﹣a2(a≠0)过原点,那么a的值是﹣2.【分析】由抛物线开口向下及过原点,即可得出关于a的一元一次不等式及一元二次方程,解之即可得出a的值.【解答】解:∵抛物线y=ax2+5x+4﹣a2(a≠0)过原点,且开口向下,∴,解得:a=﹣2.故答案为:﹣2.【点评】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出关于a的一元一次不等式及一元二次方程是解题的关键.13.如果抛物线y=﹣2x2+bx+c的对称轴在y轴的左侧,那么b<0(填入“<”或“>”).【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由对称轴可知:x=<0,∴b<0,故答案为:<【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.14.已知点A(x1,y1)、B(x2,y2)在抛物线y=x2+2x+m上,如果0<x1<x2,那么y1<y2(填入“<”或“>”).【分析】先求出抛物线的对称轴,然后根据二次函数的性质解决问题.【解答】解:抛物线的对称轴为直线x=﹣=﹣1,当x>﹣1时,y随x的增大而增大,因为0<x1<x2,所以y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.15.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=3:2.【分析】由AG∥BC,推出△AGF∽△BDF,推出==,设AG=3k,BD=5k,可得CD =2k,由AG∥CD,推出△AGE∽△CDE,可得===.【解答】解:∵AG∥BC,∴△AGF∽△BDF,∴==,设AG=3k,BD=5k,∵=,∴=∴CD=2k,∵AG∥CD,∴△AGE∽△CDE,∴===,故答案为3:2.【点评】本题考查相似三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,某单位门前原有四级台阶,每级台阶高为18cm,宽为30cm,为方便残疾人土,拟在门前台阶右侧改成斜坡,设台阶的起点为A点,斜坡的起点为C点,准备设计斜坡BC的坡度i=1:5,则AC的长度是270cm.【分析】根据题意求出BH,根据坡度的概念求出CH,计算即可.【解答】解:由题意得,BH⊥AC,则BH=18×4=72,∵斜坡BC的坡度i=1:5,∴CH=72×5=360,∴AC=360﹣30×3=270(cm),故答案为:270.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.17.如果抛物线C1的顶点在抛物线C2上时,抛物线C2的顶点也在抛物线C1上,此时我们称抛物线C1与C2是“互为关联”的抛物线.那么与抛物线y=2x2是“互为关联”且顶点不同的抛物线的表达式可以是y=﹣2(x﹣1)2+2,(答案不唯一)(只需写出一个).【分析】首先求得抛物线抛物线y=2x2的顶点坐标(0,0),则“互为关联”的抛物线为y=﹣2(x﹣m)2+2m2,即可求得答案.【解答】解:由抛物线y=2x2可知顶点为(0,0),设“互为关联”的抛物线为y=a(x﹣m)2+2m2,代入(0,0)求得a=﹣2,∴“互为关联”的抛物线为y=﹣2(x﹣m)2+2m2,故答案为y=﹣2(x﹣1)2+2,(答案不唯一).【点评】此题以新定义的形式考查了二次函数解析式的确定,充分理解新定义的含义是解题的关键.18.Rt△ABC中,∠C=90°,AC=3,BC=2,将此三角形绕点A旋转,当点B落在直线BC上的点D处时,点C落在点E处,此时点E到直线BC的距离为.【分析】过B作BG⊥AD于G,根据旋转的性质得到AD=AB,DE=BC,∠ADE=∠ABC,根据勾股定理得到AB=AD==,求得BG=,过E作EH⊥BD交BD的延长线于H,根据相似三角形的性质即可得到结论.【解答】解:如图,过B作BG⊥AD于G,∵将△ABC绕点A旋转得到△ADE,∴AD=AB,DE=BC,∠ADE=∠ABC,∵Rt△ABC中,∠C=90°,AC=3,BC=2,∴AB=AD==,∴BD=2BC=4,∠ABC=∠ACB,=AD•BD=AC•BG,∵S△ABD∴BG=,过E作EH⊥BD交BD的延长线于H,∵∠BAG=180°﹣∠ABC﹣∠ADB,∠EDH=180°﹣∠ADB﹣∠ADE,∴∠BAG=∠EDH,∵∠AGB=∠DHE=90°,∴△ABG∽△DEH,∴=,∴=,∴EH=,∴点E到直线BC的距离为:.故答案为:.【点评】本题考查了旋转的性质,勾股定理,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题:(本大题共7题,满分78分)19.如图,已知▱ABCD的对角线交于点O,点E为边AD的中点,CE交BD于点G.(1)求的值;(2)如果设,,试用、表示.【分析】(1)由△DEG∽△BCG,可得==,设DG=k,GB=2k,则BD=3k,OB=OD=1.5k,推出OG=0.5k,即可解决问题;(2)求出,根据OG=BD即可解决问题;【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,OD=OB,∵AE=DE,∴BC=2DE,∵DE∥BC,∴△DEG∽△BCG,∴==,设DG=k,GB=2k,则BD=3k,OB=OD=1.5k,∴OG=0.5k,∴==.(2)∵=+=﹣,∵OG=BD,∴=﹣(﹣)=﹣.【点评】本题考查相似三角形的判定和性质,平行四边形的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.已知二次函数y=ax2+bx+c(a≠0)的图象过点(1,﹣2)和(﹣1,0)和(0,﹣).(1)求此二次函数的解析式;(2)按照列表、描点、连线的步骤,在如图所示的平面直角坐标系内画出该函数的图象(要求至少5点).【分析】(1)把三个已知点的坐标代入y=ax2+bx+c(a≠0)得到关于a、b、c的方程组,然后解方程组即可得到抛物线解析式;(2)先把一般式配成顶点式得到抛物线顶点坐标,再解方程x2﹣x﹣=0得到抛物线与x轴的交点坐标,然后描点即可.【解答】解:(1)根据题意得,解得,所以此二次函数的解析式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,则抛物线的对称轴为直线x=1,顶点坐标为(1,﹣2),当y=0时, x2﹣x﹣=0,解得x1=﹣1,x2=3,则抛物线与x轴的另一个交点坐标为(3,0);如图,【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.21.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)∠ADC的正弦值.【分析】(1)如图,作AH⊥BC于H.在Rt△ACH中,求出AH=CH=1,在Rt△ABH中,求出BH即可解决问题;(2)在Rt△ADH中,求出DH,AD即可解决问题;【解答】解:(1)如图,作AH⊥BC于H.在Rt△ACH中,∵cos C==,AC=,∴CH=1,AH==1,在Rt△ABH中,∵tan B==,∴BH=5,∴BC=BH+CH=6.(2)∵BD=CD,∴CD=3,DH=2,AD==在Rt△ADH中,sin∠ADH==.∴∠ADC的正弦值为.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考中考常考题型.22.某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G 与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.【分析】根据题意和图形,可以求得AD、AC、BC的长,从而可以求得该树的高度AH和树叶部分的高度AB,本题得以解决.【解答】解:由题意可得,∠AEC=30°,∠ADC=60°,∠BDC=45°,CH=DG=EF=1.5米,FG=ED=15米,∵∠ADC=∠AED+∠EAD,∴∠EAD=30°,∴∠EAD=∠AED,∴ED=AD,∴AD=15米,∵∠ADC=60°,∠ACD=90°,∴∠DAC=30°,∴DC=米,AC=米,∴AH=AC+CH=+=米,∵∠BDC=45°,∠BCD=90°,∴∠DBC=45°,∴∠BDC=∠DBC,∴BC=CD=米,∴AB=AC﹣BC=﹣=米,即AH=米,AB=米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用特殊角的三角函数和数形结合的思想解答.23.已知:如图,在△ABC中,点D在边AB上,点E在线段CD上,且∠ACD=∠B=∠BAE.(1)求证:;(2)当点E为CD中点时,求证:.【分析】(1)欲证明:,只要证明△AED∽△BAC即可解决问题;(2)由△DAE∽△DCA,推出=,由DE=EC,可得=,推出=,再证明AC2=AD•AB即可解决问题;【解答】证明:(1)∵∠ACD=∠B=∠BAE,∠BAC=∠BAE+∠CAE,∠AED=∠ACD+∠CAE,∴∠AED=∠BAC,∵∠DAE=∠B,∴△AED∽△BAC,∴=.(2)∵∠ADE=∠CDA,∠DAE=∠ACD,∴△DAE∽△DCA,∴=,∵DE=EC,∴=,∴=,∵∠DAC=∠BAC,∠ACD=∠B,∴△ACD∽△ABC,∴AC2=AD•AB,∴==.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,2),它的顶点为D(1,m),且tan∠COD=.(1)求m的值及抛物线的表达式;(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°.求P 点的坐标.【分析】(1)顶点为D(1,m),且tan∠COD=,则m=3,则抛物线的表达式为:y=a(x ﹣1)2+3,即可求解;(2)设:抛物线向上平移n个单位,则函数表达式为:y=﹣x2+2x+2+n,求出OA、OB,即可求解;(3)过点B、A分别作x轴、y轴的平行线交于点G,OA=OB=3,则过点G作圆G,圆与x、y 轴均相切,∠BPA=45°=∠BOA,故点P在圆G上,即可求解.【解答】解:(1)顶点为D(1,m),且tan∠COD=,则m=3,则抛物线的表达式为:y=a(x﹣1)2+3,即:a+3=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+2;(2)设:抛物线向上平移n个单位,则函数表达式为:y=﹣x2+2x+2+n,令y=0,则x=1+,令x=0,则y=2+n,∵OA=OB,∴1+=2+n,解得:n=1或﹣2(舍去﹣2),则点A的坐标为(3,0),故点E(3,﹣1);(3)过点B、A分别作x轴、y轴的平行线交于点G,∵OA=OB=3,则过点G作圆G,圆与x、y轴均相切,∵∠BPA=45°=∠BOA,故点P在圆G上,过点P作PF⊥x轴交BG于点E,交x轴于点F,则四边形AGEF为边长为3的正方形,则:PF=EF+PE=3+=3+=3+.【点评】本题考查了二次函数的综合题,涉及到一次函数、圆的基本等知识点,其中(3),构建圆G是本题的突破点,本题有一点难度.25.已知:梯形ABCD中,AD∥BC,AB⊥BC,AD=3,AB=6,DF⊥DC分别交射线AB、射线CB 于点E、F.(1)当点E为边AB的中点时(如图1),求BC的长;(2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;(3)当△AEF的面积为3时,求△DCE的面积.【分析】(1)证明△AED,△BEF,△DFC都是等腰直角三角形即可解决问题.(2)如图2中,连接BD.取EC的中点O,连接OD,OB.证明E,B,C,D四点共圆,可得∠DCE=∠ABD即可解决问题.=•AE•FB=3,推出xy=6,(3)如图2﹣1中,连接AF.设AE=x,FB=y,EB=m,由S△AEF由AD∥FB,推出=,推出=,可得xy=3m,推出6=3m,推出m=2,可得EB=2,AE=4,再利用勾股定理求出DE,DC即可解决问题.【解答】解:(1)如图1中,∵AD∥BC,AB⊥BC,∴∠ABC=∠A=90°,∵AE=EB=3,AD=3,∴AD=AE,∴∠AED=∠ADE=∠BEF=∠F=45°,∴EF=DE=3,FB=3,∵DF⊥DC,∴∠FDC=90°,∴∠C=∠F=45°,∴DF=DC=6,∴CF=DC=12,∴BC=CF﹣BF=12﹣3=9.(2)结论::∠DCE的大小是定值.理由:如图2中,连接BD.取EC的中点O,连接OD,OB.∵∠EBC=∠EDC=90°,EO=OC,∴OD=OE=OC=OB,∴E,B,C,D四点共圆,∴∠DCE=∠ABD,∵在Rt△ADE中,tan∠ABD==,∴∠ABD的大小是定值,∴∠DCE的大小是定值,∴tan∠DCE=.(3)如图2﹣1中,连接AF.设AE=x,FB=y,EB=m,=•AE•FB=3,∵S△AEF∴xy=6,∵AD∥FB,∴=,∴=,∴xy=3m,∴6=3m,∴m=2,∴EB=2,AE=4,在Rt△AED中,DE==5,在Rt△DEC中,∵tan∠DCE==,∴DC=10,∴S=•DE•DC=×5×10=25.△DEC【点评】本题属于四边形综合题,考查了相似三角形的判定和性质,四点共圆,平行线的性质,勾股定理,三角形的面积,锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用四点共圆解决问题,属于中考压轴题.。

2019年上海初三数学一模大题

2019年上海初三数学一模大题

(宝山区)23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,恒有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”,同理函数y =x 也是闭区间[1,3]上的“闭函数”.(1)反比例函数2018y x是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由; (2)如果已知二次函数y =x 2-4x +k 是闭区间[2,t ]上的“闭函数”,求k 和t 的值; (3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线x =1上的一点,当△ABC 为直角三角形时,写出点B 的坐标.25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD中,AD//BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.(青浦区)23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD CA CE CB⋅=⋅.(1)求证:∠CAE=∠CBD;(2)若BE ABEC AC=,求证:AB AD AF AE⋅=⋅.AB CDEF图824.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图9,在平面直角坐标系xOy 中,抛物线()20y axbx c a =++>与x 轴相交于点A (-1,0)和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当△CGF 为直角三角形时,求点Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图10,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点 D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC =∠BPQ . (1)当QD =QC 时,求∠ABP 的正切值; (2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.图10QP D C BA备用图A BCD图9 C B A O yx(长宁区)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.F EDABC第23题图备用图第24题图25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E .设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.(松江区)23.(本题满分12分,每小题6分)已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =⋅. (1)求证:AD ∥BC ;(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =⋅.备用图 备用图图1 DCBA DCB A F E P DC B A 第25题图24.(本题满分12分,每小题4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++的对称轴为直线x =1,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),且AB =4,又P 是抛物线上位于第一象限的点,直线AP 与y 轴交于点D ,与对称轴交于点E ,设点P 的横坐标为t . (1)求点A 的坐标和抛物线的表达式; (2)当AE :EP =1:2时,求点E 的坐标;(3)记抛物线的顶点为M ,与y 轴的交点为C ,当四边形CDEM 是等腰梯形时,求t 的值.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知△ABC 中,∠ACB =90°,AC =1,BC =2,CD 平分∠ACB 交边AB 与点D ,P 是射线CD 上一点,联结AP . (1)求线段CD 的长;(2)当点P 在CD 的延长线上,且∠P AB =45°时,求CP 的长;(3)记点M 为边AB 的中点,联结CM 、PM ,若△CMP 是等腰三角形,求CP 的长.(徐汇区)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B ,∠ADF =∠C ,线段EF 交线段AD 于点G . (1)求证:AE =AF ;(2)若DF CFDE AE=,求证:四边形EBDF 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(1)小题满分4分,第(3)小题满分5分)如图,在平面直角坐标系xOy 中,直线y kx =(0k ≠)沿着y 轴向上平移3个单位长度后,与x 轴交于点B (3,0),与y 轴交于点C .抛物线2y x bx c =++过点B 、C 且与x 轴的另一个交点为A . (1)求直线BC 及该抛物线的表达式;(2)设该抛物线的顶点为D ,求DBC ∆的面积;(3)如果点F 在y 轴上,且∠CDF =45°,求点F 的坐标.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分7分,第(3)小题满分4分)已知,在梯形ABCD 中,AD ∥BC ,∠A =90°,AD =2,AB =4,BC =5,在射线BC 任取一点M ,联结DM ,作∠MDN =∠BDC ,∠MDN 的另一边DN 交直线BC 于点N (点N 在点M 的左侧).(1)当BM 的长为10时,求证:BD ⊥DM ; (2)如图(1),当点N 在线段BC 上时,设BN x =,BM y =,求y 关于x 的函数解析式,并写出它的定义域;(3)当DMN ∆是等腰三角形时,求BN 的长.G F EB AC D第23题 yxB O 第24题 (备用图)ADBC图(1)ABCMN第25题11(普陀区)23.(本题满分12分)已知:如图9,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE·DB.求证:(1)△BCE∽△ADE;(2)AB·BC=BD·BE.24.(本题满分12分,每小题满分各4分)如图10,在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(-3, 0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求该抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.25.如图11,∠BAC的余切值为2,AB=D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F 在点E的右侧.联结BG,并延长BG,交射线EC于点P.(1)点D在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BPA;(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果△PFG与△AFG相似,但面积不相等,求此时正方形的边长.。

2019年上海市静安区中考数学一模试卷(答案解析)

2019年上海市静安区中考数学一模试卷(答案解析)

一、选择题(本大题共6题,每题4分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.下列抛物线中,顶点坐标为(2,1)的是()A.y=(x+2)2+1 B.y=(x﹣2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣2)2﹣1 3.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.4.点P把线段AB分割成AP和PB两段,如果AP是PB和AB的比例中项,那么下列式子成立的是()A.=B.=C.=D.=5.如图,点D、E分别在△ABC的边AB、AC上,且DE与BC不平行.下列条件中,能判定△ADE与△ACB相似的是()A.=B.=C.=D.=6.下列说法不正确的是()A.设为单位向量,那么||=1B.已知、、都是非零向量,如果=2,=﹣4,那么∥C.四边形ABCD中,如果满足AB∥CD,||=||,那么这个四边形一定是平行四边形D.平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解二、填空题(本大题共12题,每题4分)7.不等式2x﹣1>0的解是.8.方程=的根是.9.已知=,那么的值是.10.△ABC∽△A1B1C1,其中点A,B,C分别与点A1,B1,C1对应,如果AB:A1B1=2:3,AC=6,那么A1C1=.11.如图,在点A处测得点B处的仰角是.(用“∠1,∠2,∠3或∠4”表示)12.如图,当小明沿坡度i=1:的坡面由A到B行走了6米时,他实际上升的高度BC =米.13.抛物线y=ax2+(a﹣1)(a≠0)经过原点,那么该抛物线在对称轴左侧的部分是的.(填“上升”或“下降”)14.如图4,AD∥BC,AC、BD相交于点O,且S△AOD:S△BOC=1:4.设=,=,那么向量=.(用向量、表示)15.在中△ABC,∠C=90°,AC=8,BC=6,G是重心,那么G到斜边AB中点的距离是.16.抛物线y=ax2(a≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y=x2沿直线y=x向上平移,平移距离为时,那么它的“同簇抛物线”的表达式是.17.如图,梯形ABCD中,AB∥CD,BE∥AD,且BE交CD于点E,∠AEB=∠C.如果AB=3,CD=8,那么AD的长是.18.如图,将矩形ABCD沿对角线BD所在直线翻折后,点A与点E重合,且ED交BC于点F,连接AE.如果tan∠DFC=,那么的值是.三、解答题(本大题共7题,满分78分)19.(10分)计算:20.(10分)先化简,再求值:(2﹣)÷,其中x=2.21.(10分)已知:如图,反比例函数的图象经过点A、P,点A(6,),点P的横坐标是2.抛物线y=ax2+bx+c(a≠0)经过坐标原点,且与x轴交于点B,顶点为P.求:(1)反比例函数的解析式;(2)抛物线的表达式及B点坐标.22.(10分)2018年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)23.(12分)已知:如图,在△ABC中,点D、E分别在边BC和AB上,且AD=AC,EB =ED,分别延长ED、AC交于点F.(1)求证:△ABD∽△FDC;(2)求证:AE2=BE•EF.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+c(a≠0)的图象经过点B(4,0)、D(5,3),设它与x轴的另一个交点为A(点A在点B的左侧),且△ABD的面积是3.(1)求该抛物线的表达式;(2)求∠ADB的正切值;(3)若抛物线与y轴交于点C,直线CD交x轴于点E,点P在射线AD上,当△APE与△ABD 相似时,求点P的坐标.25.(14分)已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM∥AC,动点P在射线BM上(点P不与B重合),联结P A并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.2019年上海市静安区中考数学一模试卷参考答案一、选择题1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x5【分析】原式利用幂的乘方与积的乘方运算法则计算即可求出值.【解答】解:原式=x6,故选:C.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.2.下列抛物线中,顶点坐标为(2,1)的是()A.y=(x+2)2+1 B.y=(x﹣2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣2)2﹣1 【分析】根据各个选项中的函数解析式可以直接写出它们的顶点坐标,从而可以解答本题.【解答】解:y=(x+2)2+1的顶点坐标是(﹣2,1),故选项A不符合题意,y=(x﹣2)2+1的顶点坐标是(2,1),故选项B符合题意,y=(x+2)2﹣1的顶点坐标是(﹣2,﹣1),故选项C不符合题意,y=(x﹣2)2﹣1的顶点坐标是(2,﹣1),故选项D不符合题意,故选:B.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.【分析】根据三角函数的定义即可得到结论.【解答】解:∵∠A=α,AB=3,∴cosα=,∴AC=AB•cosα=3cosα,故选:B.【点评】本题考查了锐角三角函数的定义的应用,熟记三角函数的定义是解题的关键.4.点P把线段AB分割成AP和PB两段,如果AP是PB和AB的比例中项,那么下列式子成立的是()A.=B.=C.=D.=【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值()叫做黄金比.【解答】解:∵点P把线段AB分割成AP和PB两段,AP是PB和AB的比例中项,∴根据线段黄金分割的定义得:=.故选:D.【点评】考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.5.如图,点D、E分别在△ABC的边AB、AC上,且DE与BC不平行.下列条件中,能判定△ADE与△ACB相似的是()A.=B.=C.=D.=【分析】根据两边对应成比例且夹角相等的两个三角形相似即可求解.【解答】解:在△ADE与△ACB中,∵=,且∠A=∠A,∴△ADE∽△ACB.故选:A.【点评】此题考查了相似三角形的判定:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.6.下列说法不正确的是()A.设为单位向量,那么||=1B.已知、、都是非零向量,如果=2,=﹣4,那么∥C.四边形ABCD中,如果满足AB∥CD,||=||,那么这个四边形一定是平行四边形D.平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解【分析】根据单位向量的定义,向量平行的定义以及平行四边形的判定进行判断.【解答】解:A、设为单位向量,那么||=1,故本选项说法正确.B、已知、、都是非零向量,如果=2,=﹣4,那么、方向相反,则∥,故本选项说法正确.C、四边形ABCD中,如果满足AB∥CD,||=||即AD=BC,不能判定这个四边形一定是平行四边形,故本选项说法错误.D、由平面向量的平行四边形法则可以推知,平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,故本选项说法正确.故选:C.【点评】此题考查了平面向量的知识,属于基础题,解答本题的关键是明确平面向量的表示形式,难度一般.二、填空题(本大题共12题,每题4分)7.不等式2x﹣1>0的解是x>.【分析】先移项,再系数化为1即可.【解答】解:移项,得2x>1,系数化为1,得x>.【点评】注意移项要变号.8.方程=的根是x=﹣1.【分析】按分式方程的解法,去分母化分式方程为整式方程求解即可.【解答】解:方程的两边都乘以(x﹣1),得x2=1所以x=±1.当x=1时,x﹣1=0,所以1不是原方程的根;当x=﹣1时,x﹣1=﹣2≠0,所以﹣1是原方程的根.所以原方程的解为:x=﹣1.故答案为:x=﹣1.【点评】本题考查了分式方程的解法.题目比较简单,解分式方程易忘记检验而出错.9.已知=,那么的值是.【分析】直接根据已知用同一未知数表示出各数,进而得出答案.【解答】解:∵=,∴设x=2a,则y=5a,那么==.故答案为:.【点评】此题主要考查了比例的性质,正确表示出x,y的值是解题关键.10.△ABC∽△A1B1C1,其中点A,B,C分别与点A1,B1,C1对应,如果AB:A1B1=2:3,AC=6,那么A1C1=9.【分析】根据相似三角形的性质即可得到结论.【解答】解:∵△ABC∽△A1B1C1,AB:A1B1=2:3,∴==,∵AC=6,∴=∴A1C1=9,故答案为:9.【点评】本题主要考查了相似三角形的性质,熟记相似三角形的性质是解题的关键.11.如图,在点A处测得点B处的仰角是∠4.(用“∠1,∠2,∠3或∠4”表示)【分析】根据仰角的定义即可得到结论.【解答】解:在点A处测得点B处的仰角是∠4,故答案为:∠4.【点评】本题考查了解直角三角形的应用﹣仰角和俯角,熟记仰角和俯角的定义是解题的关键.12.如图,当小明沿坡度i=1:的坡面由A到B行走了6米时,他实际上升的高度BC =3米.【分析】根据坡度的概念求出∠A,根据直角三角形的性质解答.【解答】解:∵i=1:,∴tan A==,∴∠A=30°,∴BC=AB=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.13.抛物线y=ax2+(a﹣1)(a≠0)经过原点,那么该抛物线在对称轴左侧的部分是下降的.(填“上升”或“下降”)【分析】根据抛物线y=ax2+(a﹣1)(a≠0)经过原点,从而可以求得a的值,进而得到该抛物线在对称轴左侧的部分是上升还是下降,本题得以解决.【解答】解:∵抛物线y=ax2+(a﹣1)(a≠0)经过原点,∴0=a×02+(a﹣1),得a=1,∴y=x2,∴该函数的顶点坐标为(0,0),函数图象的开口向上,∴该抛物线在对称轴左侧的部分是下降的,故答案为:下降.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.14.如图4,AD∥BC,AC、BD相交于点O,且S△AOD:S△BOC=1:4.设=,=,那么向量=+.(用向量、表示)【分析】根据已知条件得到△ADO∽△CBO,根据相似三角形的性质得到=()2=,得到=,求得=,根据已知条件得到=+,于是得到结论.【解答】解:∵AD∥BC,∴△ADO∽△CBO,∴=()2=,∴=,∴=,∵=,=,∴=+,∴==+,+.故答案为:【点评】本题考查了相似三角形的判定和性质,平面向量,熟练掌握相似三角形的判定和性质是解题的关键.15.在中△ABC,∠C=90°,AC=8,BC=6,G是重心,那么G到斜边AB中点的距离是.【分析】根据勾股定理可求得AB=10,再根据直角三角形斜边上的中线等于斜边的一半可得CD=5,最后根据重心的性质可求DG.【解答】解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵CD为AB边上的中线,∴CD=AB=5,∵点G是重心,∴DG=CD=.故答案为:.【点评】本题考查的是三角形的重心的概念和性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.16.抛物线y=ax2(a≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y=x2沿直线y=x向上平移,平移距离为时,那么它的“同簇抛物线”的表达式是y=(x﹣1)2+1.【分析】沿直线y=x向上平移,平移距离为则相当于抛物线y=ax2(a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【解答】解:∵抛物线y=x2沿直线y=x向上平移,平移距离为,相当于抛物线y=ax2(a≠0)向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是y=(x﹣1)2+1.故答案为:y=(x﹣1)2+1.【点评】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.如图,梯形ABCD中,AB∥CD,BE∥AD,且BE交CD于点E,∠AEB=∠C.如果AB=3,CD=8,那么AD的长是.【分析】根据平行四边形的判定得到四边形ABED是平行四边形,由平行四边形的性质得到BE=AD,DE=AB=3,根据相似三角形的性质即可得到结论.【解答】解:∵AB∥CD,BE∥AD,∴四边形ABED是平行四边形,∴BE=AD,DE=AB=3,∵CD=8,∴CE=CD=DE=5,∵AB∥CD,∴∠ABE=∠BEC,∵∠AEB=∠C,∴△AEB∽△BCE,∴,∴,∴BE=,故答案为:.【点评】本题考查了相似三角形的判定和性质,平行四边形的判定和性质,平行线的性质,正确的识别图形是解题的关键.18.如图,将矩形ABCD沿对角线BD所在直线翻折后,点A与点E重合,且ED交BC于点F,连接AE.如果tan∠DFC=,那么的值是.【分析】根据矩形的性质得到BC=AD,∠DAB=∠C=90°,AD∥BC,根据折叠的性质得到DE=AD,∠BED=∠DAB=90°,∠ADB=∠BDE,设CD=BE=2x,CF=EF=3x,根据勾股定理得到BF=CF==x,求得BC=(+3)x,根据勾股定理得到BD==x,根据三角形的面积公式得到AH=,求得AE=2AH=,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴BC=AD,∠DAB=∠C=90°,AD∥BC,∴∠ADB=∠DBC,∵矩形ABCD沿对角线BD所在直线翻折后,点A与点E重合,∴DE=AD,∠BED=∠DAB=90°,∠ADB=∠BDE,∴∠DBF=∠FDB,∴BF=DF,∴EF=CF,∵tan∠DFC=∠BFE=,∴设CD=BE=2x,CF=EF=3x,∴BF=CF==x,∴BC=(+3)x,∴BD==x,∵AE⊥BD,∴AH=,∴AE=2AH=,∴===,故答案为:.【点评】本题考查了翻折变换(折叠问题),矩形的性质,解直角三角形,正确的识别图形是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3﹣2.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)先化简,再求值:(2﹣)÷,其中x=2.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(2﹣)÷====,当x=2时,原式=.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.21.(10分)已知:如图,反比例函数的图象经过点A、P,点A(6,),点P的横坐标是2.抛物线y=ax2+bx+c(a≠0)经过坐标原点,且与x轴交于点B,顶点为P.求:(1)反比例函数的解析式;(2)抛物线的表达式及B点坐标.【分析】(1)设反比例函数的解析式为:y=,把点A(6,)代入,得到关于k的一元一次方程,解之得到k的值,即可得到答案,(2)把x=2代入(1)的解析式,得到点P的坐标,根据抛物线过坐标原点,利用待定系数法,求得抛物线的表达式,把y=0代入抛物线的表达式,解之即可得到答案.【解答】解:(1)设反比例函数的解析式为:y=,把点A(6,)代入得:=,解得:k=8,即反比例函数的解析式为:y=,(2)把x=2代入y=得:y==4,即点P的坐标为:(2,4),设抛物线的表达式为:y=a(x﹣2)2+4,把点O(0,0)代入得:4a+4=0,解得:a=﹣1,即抛物线的表达式为:y=﹣(x﹣2)2+4,把y=0代入得:﹣(x﹣2)2+4=0,解得:x1=0,x2=4,即B点的坐标为:(4,0).【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,抛物线与x轴的交点,解题的关键:(1)正确掌握待定系数法求反比例函数解析式,(2)正确掌握待定系数法求二次函数解析式,根据抛物线解析式,求抛物线与x轴的交点.22.(10分)2018年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)【分析】(1)由AC⊥BC,得到∠C=90°,根据三角函数的定义得到AC=800,在Rt△ABC中根据三角函数的定义得到AB==≈1395 米;(2)求得该车的速度==55.8km/h<60千米/时,于是得到结论.【解答】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395 米;(2)∵AB=1395,∴该车的速度==55.8km/h<60千米/时,故没有超速.【点评】此题主要考查了解直角三角形的应用,关键是掌握三角函数定义.23.(12分)已知:如图,在△ABC中,点D、E分别在边BC和AB上,且AD=AC,EB =ED,分别延长ED、AC交于点F.(1)求证:△ABD∽△FDC;(2)求证:AE2=BE•EF.【分析】(1)根据等腰三角形的性质得到∠ADC=∠ACD,∠B=∠BDE,根据三角形的外角的性质得到∠BAD=∠F,于是得到结论;(2)根据相似三角形的性质得到=,等量代换即可得到结论.【解答】证明:(1)∵AD=AC,∴∠ADC=∠ACD,∵BE=DE,∴∠B=∠BDE,∵∠BDE=∠CDF,∴∠CDF=∠B,∵∠BAD=∠ADC﹣∠B,∠F=∠ACD﹣∠CDF,∴∠BAD=∠F,∴△ABD∽△FDC;(2)∵∠EAD=∠F,∠AED=∠FEA,∴△AED∽△FEA,∴=,∴AE2=DE•EF,∵BE=DE,∴AE2=BE•EF.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+c(a≠0)的图象经过点B(4,0)、D(5,3),设它与x轴的另一个交点为A(点A在点B的左侧),且△ABD的面积是3.(1)求该抛物线的表达式;(2)求∠ADB的正切值;(3)若抛物线与y轴交于点C,直线CD交x轴于点E,点P在射线AD上,当△APE与△ABD 相似时,求点P的坐标.【分析】(1)设A(m,0),由△ABD的面积是3可求得m=2,再利用待定系数法求解可得;(2)作DF⊥x轴,BF⊥AD,由A,B,D坐标知DF=AF=3,据此可求得AD=3,∠DAF=45°,继而可得AE=BE=,DE=2,再依据正切函数的定义求解可得;(3)先求出直线AD解析式为y=x﹣2,直线BD解析式为y=3x﹣12,直线CD解析式为y=﹣x+8,①△ADB∽△APE时BD∥PE,此条件下求得PE解析式,连接直线PE和直线AD解析式所得方程组,解之求得点P坐标;②△ADB∽△AEP时∠ADB=∠AEP,依据tan∠ADB=tan∠AEP=求解可得.【解答】解:(1)设A(m,0),则AB=4﹣m,由△ABD的面积是3知(4﹣m)×3=3,解得m=2,∴A(2,0),设抛物线解析式为y=a(x﹣2)(x﹣4),将D(5,3)代入得:3a=3,解得a=1,∴y=(x﹣2)(x﹣4)=x2﹣6x+8;(2)如图1,过点D作DF⊥x轴于点F,∵A(2,0),B(4,0),D(5,3),∴DF=3,AF=3,则AD=3,∠DAF=45°,过点B作BE⊥AD于E,则AE=BE=,∴DE=2,∴tan∠ADB===;(3)如图2,由A(2,0),D(5,3)得直线AD解析式为y=x﹣2,由B(4,0),D(5,3)可得直线BD解析式为y=3x﹣12,由C(0,8),D(5,3)可得直线CD解析式为y=﹣x+8,当y=0时,﹣x+8=0,解得x=8,∴E(8,0),①若△ADB∽△APE,则∠ADB=∠APE,∴BD∥PE,设PE所在直线解析式为y=3x+m,将点E(8,0)代入得24+m=0,解得m=﹣24,∴直线PE解析式为y=3x+24,由得,∴此时点P(11,9);②若△ADB∽△AEP,则∠ADB=∠AEP,∴tan∠ADB=tan∠AEP=,设P(n,n﹣2),过点P作PG⊥AE于点G,则OG=n,PG=n﹣2,∴GE=8﹣n,由tan∠AEP===求得n=4,∴P(4,2);综上,P(11,9)或(4,2).【点评】本题是二次函数的综合问题,解题的关键是掌握三角形的面积公式、待定系数法求二次函数和一次函数的解析式、一次函数和二次函数的交点问题等知识点.25.(14分)已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM∥AC,动点P在射线BM上(点P不与B重合),联结P A并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.【分析】(1)确定∠PBA=∠BAC=α=∠AQC后,用解直角三角形的方法,求出AH和BC 长即可求解;(2)证明△ABP∽△CQA,利用,即可求解;(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,利用cos∠PQC=cosα==,即可求解.【解答】解:(1)过点A作AH⊥BC交于点H,∵BM∥AC,∠PBA=∠BAC=α=∠AQC,tan∠ABC=2=tanα,则sinα=,cosα=,设:BH=a,则AH=a,则AB2=AH2+BH2,即:36=a2+8a2,解得:a=2,即BH=2,AH=,CH==2,则BC=BH+CH=9=AC,∴∠ABC=∠BAC=α,S△ABC=AH•BC=××9=18;(2)过点A作AG⊥P A交于点G,∵∠PBA=∠CBA=α,AH⊥BC,∴BG=BH=2,AG=AH=,PG=x﹣2,AP==,∵∠QAC+∠P AB=180﹣α,∠P AB+∠APB=180°﹣α,∴∠QAC=∠APB,又∠AQC=∠ABP,∴△ABP∽△CQA,∴,其中:AB=6,BP=x,QA=y,AP=,AC=9,CQ=,y=(x>0);(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,cos∠PQC=cosα==…①,其中CQ=,PQ=AP+AQ=y+AP,AP=,把CQ、P A、AP代入①式整理得:解得:x=9,即BP的长为9.【点评】本题为三角形综合题,重点是确定三角形相似,利用解直角三角形和三角形相似的方法,求出对应线段长度是解题的关键,本题难度较大.。

2019年上海市奉贤区中考数学一模考试卷含逐题详解

2019年上海市奉贤区中考数学一模考试卷含逐题详解

2019年上海市奉贤区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=12.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.=B.=C.=﹣D.=5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣10﹣3…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8二、填空题(本大题共12题,每题4分,满分48分)7.计算:3+2()=.8.计算:sin30°tan60°=.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是.(只需写一个即可)11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线.12.如图,AD与BC相交于点O,如果=,那么当的值是时,AB∥CD.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC 的坡度都为1:2.5,那么这个水库大坝的坝高是米.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.三、解答题(本大题共7题,满分78分)19.(10分)已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.20.(10分)如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.21.(10分)如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.22.(10分)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C ′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)23.(12分)已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.24.(12分)如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.25.(14分)如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.2019年上海市奉贤区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=1【分析】根据比例的性质进行判断即可.【解答】解:A、当a=10,b=4时,a:b=5:2,但是a+b=14,故本选项错误;B、由a:b=5:2,得2a=5b,故本选项错误;C、由a:b=5:2,得=,故本选项正确;D、由a:b=5:2,得=,故本选项错误.故选:C.【点评】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两个外项的积等于两个内项的积,比较简单.2.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)【分析】由二次函数y=(x+1)2,可得其对称轴、顶点坐标;由二次项系数,可知图象开口向上;对每个选项分析、判断即可;【解答】解:A、由二次函数二次函数y=(x+1)2中a=>0,则抛物线开口向上;故本项错误;B、当x=0时,y=,则抛物线不过原点;故本项错误;C、由二次函数y=(x+1)2得,开口向上,对称轴为直线x=﹣1,对称轴右侧的图象上升;故本项错误;D、由二次函数y=(x+1)2得,顶点为(﹣1,0);故本项正确;故选:D.【点评】本题主要考查了二次函数的性质,应熟练掌握二次函数的性质:顶点、对称轴的求法及图象的特点.3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)【分析】过点A作AB⊥x轴于点B,由于tanα=3,设AB=3x,OB=x,根据勾股定理列出方程即可求出x的值,从而可求出点A的坐标.【解答】解:过点A作AB⊥x轴于点B,由于tanα=3,∴,设AB=3x,OB=x,∵OA=,∴由勾股定理可知:9x2+x2=10,∴x2=1,∴x=1,∴AB=3,OB=1,∴A的坐标为(1,3),故选:A.【点评】本题考查解直角三角形,解题的关键是熟练作出辅助线后,利用勾股定理列出方程,本题属于中等题型.4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.=B.=C.=﹣D.=【分析】根据已知条件得到非零向量、的模间的数量关系,再结合它们的方向相同解题.【解答】解:∵2||=3||,∴||=||.又∵非零向量与的方向相同,∴=.故选:B.【点评】本题考查的是平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣10﹣3…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.【分析】除了x=2,y=﹣1,其它四组对应值可能为抛物线的对称点,由于表格中有一组数据计算错误,从而可判断x=2,y=﹣1错误.【解答】解:由表中数据得x=0和x=4时,y=3;x=1和x=3时,y=0,它们为抛物线上的对称点,而表格中有一组数据计算错误,所以只有x=2时y=﹣1错误.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8【分析】先确定点C到⊙A的最大距离为8,最小距离为2,利用⊙C与⊙A相交或相切确定r的范围.【解答】解:∵⊙A的半径AB长是5,点C在AB上,且AC=3,∴点C到⊙A的最大距离为8,最小距离为2,∵⊙C与⊙A有公共点,∴2≤r≤8.故选:D.【点评】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).二、填空题(本大题共12题,每题4分,满分48分)7.计算:3+2()=5﹣.【分析】根据平面向量的加法法则计算即可;【解答】解:3+2()=3+2﹣=5﹣;故答案为5﹣;【点评】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.8.计算:sin30°tan60°=.【分析】直接利用特殊角的三角函数值计算得出答案.【解答】解:sin30°tan60°=×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是m≠1.【分析】依据二次函数的二次项系数不为零求解即可.【解答】解:∵函数y=(m﹣1)x2+x(m为常数)是二次函数,∴m﹣1≠0,解得:m≠1,故答案为:m≠1.【点评】本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是y=﹣x2+2(答案不唯一).(只需写一个即可)【分析】二次函数的图象在其对称轴左侧部分是上升的可知该函数图象的开口向下,得出符合条件的函数解析式即可.【解答】解:∵二次函数的图象在其对称轴左侧部分是上升的,∴a<0,∴符合条件的二次函数解析式可以为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).【点评】本题考查的是二次函数的性质,根据二次函数的性质判断出a的符号是解答此题的关键,此题属开放性题目,答案不唯一.11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线x=3.【分析】直接利用二次函数图象平移规律得出答案.【解答】解:将抛物线y=﹣2x2向右平移3个单位得到的解析式为:y=﹣2(x﹣3)2,故所得到的新抛物线的对称轴是直线:x=3,故答案为:x=3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.12.如图,AD与BC相交于点O,如果=,那么当的值是时,AB∥CD.【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【解答】解:∵=,∴当=时,=,∴AB∥CD.故答案为:.【点评】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是35°.【分析】连接OC交AB于E.想办法求出∠OAC即可解决问题.【解答】解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.【点评】本题考查垂径定理,圆周角定理,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是1:2.【分析】根据D、E、F分别是AB、BC、AC的中点,求证△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【解答】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴DE+DF+EF=AC+BC+AB,∵△DEF∽△ABC,∴所得到的△DEF与△ABC的周长之比是:1:2.故答案为:1:2.【点评】此题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是6.【分析】根据正n边形的内角是它中心角的两倍,列出方程求解即可.【解答】解:依题意有=×2,解得n=6.故答案为:6.【点评】此题考查了多边形内角与外角,此题比较简单,解答此题的关键是熟知正多边形的内角和公式及中心角的求法.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC 的坡度都为1:2.5,那么这个水库大坝的坝高是16米.【分析】直接利用坡度的定义表示出AM,BN的长,进而利用已知表示出AB的长,进而得出答案.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.【点评】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是2.【分析】由“钻石菱形”的面积可求对角线的乘积,再根据比例中项的定义可求“钻石菱形”的边长.【解答】解:由比例中项的定义可得,“钻石菱形”的边长==2.故答案为:2.【点评】本题主要考查比例线段、菱形的性质、菱形的面积公式,熟练掌握菱形性质和菱形的面积公式是关键.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.【分析】如图,过A作AH⊥BC于H,得到∠AHB=∠AHC=90°,BH=CH,根据三角函数的定义得到AH=3,求得CH=BH==4,根据旋转的性质得到∠BAF=∠CAE,根据平行线的性质得到∠CAE=∠C,设AF=BF=x,得到FH=4﹣x,根据勾股定理即可得到结论.【解答】解:如图,过A作AH⊥BC于H,∴∠AHB=∠AHC=90°,BH=CH,∵AB=AC=5,sin C==,∴AH=3,∴CH=BH==4,∵将△ABC绕点A逆时针旋转得到△ADE,∴∠BAF=∠CAE,∵AE∥BC,∴∠CAE=∠C,∵∠B=∠C,∴∠BAF=∠B,∴AF=BF,设AF=BF=x,∴FH=4﹣x,∵AF2=AH2+FH2,∴x2=32+(4﹣x)2,解得:x=,∴BF=,故答案为:,【点评】本题考查了旋转的性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用二次函数平移规律得出平移后解析式.【解答】解:(1)y=x(x﹣2)+2=x2﹣2x+2=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)∵将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,∴图象向下平移1个单位得到:y=(x﹣1)2.【点评】此题主要考查了二次函数图象与几何变换,正确得出平移后解析式是解题关键.20.(10分)如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.【分析】(1)根据已知条件得到=,由=,得到=+,由于G是重心,得到==(+)=+,于是得到结论;(2)延长BG交AC于H,根据等腰三角形的判定得到GA=GC,求得AH=AC=1,求得BH⊥AC,解直角三角形即可得到结论.【解答】解:(1)∵AD是△ABC的中线,=,∴=,∵=,∴=+,∵G是重心,∴==(+)=+,∴=×(+)═+;(2)延长BG交AC于H,∵∠GAC=∠GCA,∴GA=GC,∵G是重心,AC=2,∴AH=AC=1,∴BH⊥AC,在Rt△ABH中,∠AHB=90°,AB=3,∴BH==2,∴BG=BH=.【点评】本题考查了三角形的直线,平面向量,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.21.(10分)如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.【分析】(1)如图连接AD,作AH⊥BD于H.利用面积法求出AH,再利用勾股定理求出BH即可解决问题;(2)作DM⊥AC于M.利用面积法求出DM即可解决问题;【解答】解:(1)如图连接AD,作AH⊥BD于H.∵Rt△ABC,∠BAC=90°,BC=5,AC=2,∴AB==,∵•AB•AC=•BC•AH,∴AH==2,∴BH==1,∵AB=AD,AH⊥BD,∴BH=HD=1,∴BD=2.(2)作DM⊥AC于M.=S△ABD+S△ACD,∵S△ACB∴××2=×2×2+×2×DM,∴DM=,∴sin∠DAC===.【点评】本题考查勾股定理,解直角三角形,垂径定理等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.22.(10分)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C ′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)【分析】(1)过C作CG⊥AB于G,过D作DH⊥AB于H,解直角三角形顶点AG=AC=10,CG=AG=10,根据相似三角形的性质得到DH;(2)过C′作C′S⊥MN于S,解直角三角形得到A′S=C′S=10,求得A′B=10+10,根据线段的和差即可得到结论.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.【点评】本题考查解直角三角形,勾股定理、相似三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.23.(12分)已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.【点评】本题考查相似三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(12分)如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.【分析】(1)利用待定系数法求二次函数和一次函数的解析式;(2)先说明OA=OH=6,则∠OAH=45°,作辅助线,根据正切值证明∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:先根据中点坐标公式可得F(,﹣),易得直线OB的解析式为:y=﹣5x,根据两直线垂直的关系可得直线FC的解析式为:y=x﹣,列方程x﹣=x﹣6,解出可得C的坐标;解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),根据OC=BC,列方程可得结论.【解答】解:(1)把点A(6,0)和点B(1,﹣5)代入抛物线y=ax2+bx得:,解得:,∴这条抛物线的表达式:y=x2﹣6x,设直线AB的解析式为:y=kx+b,把点A(6,0)和点B(1,﹣5)代入得:,解得:,则直线AB的解析式为:y=x﹣6;(2)当x=0时,y=6,当y=0时,x=6,∴OA=OH=6,∵∠AOH=90°,∴∠OAH=45°,过B作BG⊥x轴于G,则△ABG是等腰直角三角形,∴AB=5,过O作OE⊥AB于E,S△AOH=AH•OE=OA•OH,6•OE=6×6,OE=3,∴BE=AB﹣AE=5﹣3=2,Rt△BOE中,tan∠OBE===,∵∠BOC的正切值是,∴∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:∵B(1,﹣5),∴F(,﹣),易得直线OB的解析式为:y=﹣5x,设直线FC的解析式为:y=x+b,把F(,﹣)代入得:﹣=+b,b=﹣,∴直线FC的解析式为:y=x﹣,x﹣=x﹣6,x=,当x=时,y=﹣6=﹣,∴C(,﹣);解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),则AC=(6﹣m),∵OC=BC,∴m2+(m﹣6)2=[5﹣(6﹣m)],m=,∴C(,﹣).【点评】此题考查二次函数综合题,综合考查待定系数法求函数解析式,锐角三角函数的意义,等腰直角三角形的性质,画出图形,利用数形结合的思想解决问题.25.(14分)如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.【分析】(1)由题意可得四边形DCEF是平行四边形,可得CD=EF,通过证明△CFE∽△CAB,可得,可得BE=CE,则可求CE:BE的值;(2)延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H,由题意可得四边形ADCN是矩形,可得AD=CN=4,CD=AN=3,BN=3,由平行线分线段成比例可求BE,ME,MC,CH,GC的长,即可求GD的长,由三角求形面积公式可△DFG的面积;(3)由△AFD∽△ADG,可得∠AFD=∠ADG=90°,由余角的性质可得∠DAG=∠B,即可求∠DAG的余弦值.【解答】解:(1)如图,∵DC∥EF,DF∥CE∴四边形DCEF是平行四边形∴CD=EF,∵AB=2CD=6,∴AB=2EF,∵EF∥CD,AB∥CD,∴EF∥AB,∴△CFE∽△CAB∴∴BC=2CE,∴BE=CE∴EC:BE=1:1=1(2)如图,延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H∵AD⊥CD,CN⊥CD∴AD∥CN,且CD∥AB∴四边形ADCN是平行四边形,又∵∠DAB=90°∴四边形ADCN是矩形,∴AD=CN=4,CD=AN=3,∴BN=AB﹣AN=3,在Rt△BCN中,BC==5∴BE=BC﹣CE=5﹣m,∵EF∥AB∴,即∴ME=BE=5﹣m,∴MC=ME﹣CE=5﹣2m,∵EF∥AB∴=∴HC=m,∵CG∥EF∴即∴GC=∴DG=CD﹣GC=3﹣==×DG×CH=∴S△DFG(3)过点C作CN⊥AB于点N,∵AB∥CD,∠DAB=90°,∴∠DAB=∠ADG=90°,若△AFD∽△ADG,∴∠AFD=∠ADG=90°∴DF⊥AG又∵DF∥BC∴AG⊥BC∴∠B+∠GAB=90°,且∠DAG+∠GAB=90°∴∠B=∠DAG∴cos∠DAG=cos B=【点评】本题是相似形综合题,考查了平行四边形的判定和性质,矩形的判定和性质,相似三角形的判定和性质,锐角三角函数等知识,熟练运用相似三角形的性质求线段的长度是本题的关键.。

2019年上海市崇明区中考数学一模试卷(解析版)

2019年上海市崇明区中考数学一模试卷(解析版)

2019年上海市崇明区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.若2x=3y,则的值为()A.B.C.D.2.在Rt△ABC中,如果∠C=90°,那么表示∠A的()A.正弦B.正切C.余弦D.余切3.已知二次函数y=ax2+bx的图象如图所示,那么a、b的符号为()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<0,b<04.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=5.已知向量和都是单位向量,那么下列等式成立的是()A.B.C.D.6.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.化简:=.8.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=.9.在以O为坐标原点的直角坐标平面内有一点A(4,3),如果AO与y轴正半轴的夹角为α,那么cosα=.10.如果一个正六边形的半径为2,那么这个正六边形的周长为.11.如果两个相似三角形的周长比为4:9,那么它们的面积比是.12.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且AC>BC,则AC=cm.(结果保留根号)13.已知抛物线y=(x﹣1)2﹣4,那么这条抛物线的顶点坐标为.14.已知二次函数y=﹣x2﹣2,那么它的图象在对称轴的部分是下降的(填“左侧”或“右侧”).15.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.16.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知BC =6,△ABC的高AH=3,则正方形DEFG的边长为.17.已知Rt△ABC中,∠ACB=90°,AB=10,AC=8.如果以点C为圆心的圆与斜边AB有唯一的公共点,那么⊙C的半径R的取值范围为.18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F 分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=,则线段EF的长为.三、解答题:(本大题共7题,满分78分)19.(10分)计算:cos245°﹣+cot30°•sin60°.20.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).21.(10分)已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.22.(10分)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°≈,tan32°≈,tan40°≈)23.(12分)如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,∠BGD=∠BAD=∠C.(1)求证:BD•BC=BG•BE;(2)如果∠BAC=90°,求证:AG⊥BE.24.(12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+6(a、b都是常数,且a<0)的图象与x轴交于点A(﹣2,0)、B(6,0),顶点为点C.(1)求这个二次函数的解析式及点C的坐标;(2)过点B的直线y=﹣x+3交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;(3)点P为抛物线上一个动点,当∠PBA=∠CBD时,求点P的坐标.25.(14分)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.2019年上海市崇明区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.若2x=3y,则的值为()A.B.C.D.【分析】根据比例的基本性质:两内项的积等于两外项的积即可求解.【解答】解:∵2x=3y,∴=3,则=.故选:B.【点评】本题考查了比例的基本性质:两内项的积等于两内项的积.2.在Rt△ABC中,如果∠C=90°,那么表示∠A的()A.正弦B.正切C.余弦D.余切【分析】根据余切的定义求解可得.【解答】解:在Rt△ABC中,∵∠C=90°,∴cot A=,故选:D.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦、余弦、正切、余切的定义.3.已知二次函数y=ax2+bx的图象如图所示,那么a、b的符号为()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<0,b<0【分析】根据函数图象的特点:开口方向、对称轴等即可判断出a、b的符号.【解答】解:如图所示,抛物线开口向上,则a>0,又因为对称轴在y轴左侧,故﹣<0,因为a>0,所以b>0,故选:A.【点评】本题考查了二次函数的图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴确定.4.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解答】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点评】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.5.已知向量和都是单位向量,那么下列等式成立的是()A.B.C.D.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:A、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.B、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.C、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.D、向量和都是单位向量,则||=||=1,故本选项正确.故选:D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.6.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交【分析】利用两圆之和一定大于两圆的圆心距可判断这两个圆不可能外离.【解答】解:∵r>1,∴2<3+r,∴这两个圆的位置关系不可能外离.故选:C.【点评】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.化简:=+.【分析】平面向量的加减计算法则与实数的加减计算法则相同.【解答】解:原式=﹣+=+.故答案是:+.【点评】考查了平面向量,解答此类题目时,直接去括号,然后计算加减法即可.8.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=2.【分析】根据比例中项的定义可得b2=ac,从而易求b.【解答】解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.【点评】本题考查了比例线段,解题的关键是理解比例中项的含义.9.在以O为坐标原点的直角坐标平面内有一点A(4,3),如果AO与y轴正半轴的夹角为α,那么cosα=.【分析】根据勾股定理以及锐角三角函数的定义即可求出答案.【解答】解:过点A作AB⊥x轴于点B,∵A(4,3),∴OB=4,AB=3,∴由勾股定理可知:OA=5,∴cosα==,故答案为:【点评】本题考查锐角三角函数,解题的关键是根据勾股定理求出OA的长度,本题属于基础题型.10.如果一个正六边形的半径为2,那么这个正六边形的周长为12.【分析】根据正六边形的半径等于边长进行解答即可.【解答】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为:12.【点评】本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.11.如果两个相似三角形的周长比为4:9,那么它们的面积比是16:81.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的周长比为4:9,∴两个相似三角形的相似比为4:9,∴两个相似三角形的面积比为16:81,故答案为:16:81.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.12.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且AC>BC,则AC=5﹣5cm.(结果保留根号)【分析】根据黄金比值是列式计算即可.【解答】解:∵点C是线段AB的黄金分割点,AC>BC,∴AC=AB=(5﹣5)cm,故答案为:5﹣5.【点评】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比.13.已知抛物线y=(x﹣1)2﹣4,那么这条抛物线的顶点坐标为(1,﹣4).【分析】利用二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),顶点坐标是(h,k)进行解答.【解答】解:∵y=(x﹣1)2﹣4∴抛物线的顶点坐标是(1,﹣4)故填空答案:(1,﹣4).【点评】本题主要是对抛物线中顶点式的对称轴,顶点坐标的考查.14.已知二次函数y=﹣x2﹣2,那么它的图象在对称轴的右侧部分是下降的(填“左侧”或“右侧”).【分析】根据解析式判断开口方向,结合对称轴回答问题.【解答】解:∵二次函数y=﹣x2﹣2中,a=﹣1<0,抛物线开口向下,∴抛物线图象在对称轴右侧,y随x的增大而减小(下降).故答案为:右侧.【点评】本题考查了二次函数的性质,根据抛物线的开口方向和对称轴,可判断抛物线的增减性.15.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【分析】根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.【解答】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB==10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD=AB=5,∵G为△ABC的重心,∴CG=CD=,故答案为:.【点评】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知BC =6,△ABC的高AH=3,则正方形DEFG的边长为2.【分析】高AH交DG于M,如图,设正方形DEFG的边长为x,则DE=MH=x,所以AM=3﹣x,再证明△ADG∽△ABC,则利用相似比得到=,然后根据比例的性质求出x即可.【解答】解:高AH交DG于M,如图,设正方形DEFG的边长为x,则DE=MH=x,∴AM=AH﹣MH=3﹣x,∵DG∥BC,∴△ADG∽△ABC,∴=,即=,∴x=2,∴正方形DEFG的边长为2.答:正方形DEFG的边长和面积分别为2.故答案为:2.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.17.已知Rt△ABC中,∠ACB=90°,AB=10,AC=8.如果以点C为圆心的圆与斜边AB有唯一的公共点,那么⊙C的半径R的取值范围为r=4.8或6<r≤8.【分析】因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:根据勾股定理求得BC==6,当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则6<r≤8.故半径r的取值范围是r=4.8或6<r≤8.故答案为:r=4.8或6<r≤8.【点评】此题考查了直线与圆的位置关系,此题注意考虑两种情况,只需保证圆和斜边只有一个公共点即可.18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F 分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=,则线段EF的长为或.【分析】作FH⊥AB于点H,利用已知得出△ADF∽△FCB,进而得出=,求得构造的直角三角形的两条直角边即可得出答案.【解答】解:作FH⊥AB于点H,连接EF.∵∠AFB=90°,∴∠AFD+∠BFC=90°,∵∠AMD+∠DAM=90°,∴∠DAF=∠BFC又∵∠D=∠C,∴△ADF∽△FCB,∴=,即=,∴FC=2或3.∵点F,E分别为矩形ABCD边CD,AB上的直角点,∴AE=FC,∴当FC=2时,AE=2,EH=1,∴EF2=FH2+EH2=()2+12=7,∴EF=.当FC=3时,此时点E与点H重合,即EF=BC=,综上,EF=或.故答案为:或.【点评】此题考查了相似三角形的判定定理及性质和勾股定理,得出△ADF∽△FCB是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:cos245°﹣+cot30°•sin60°.【分析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.【解答】解:原式=()2﹣+×=﹣+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).【分析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【解答】解:(1)如图,∵DE∥BC,且DE=BC,∴==.又AC=6,∴AE=4.(2)∵=,=,∴=﹣=﹣.又DE∥BC,DE=BC,∴==(﹣).【点评】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.21.(10分)已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.【分析】(1)由垂径定理得出AE=4,设圆的半径为r,知OE=OF﹣EF=r﹣2,根据OA2=AE2+OE2求解可得;(2)由∠OAE=∠CAD,∠AEO=∠ADC=90°知∠AOE=∠ACD,从而根据sin∠ACD=sin∠AOE=可得答案.【解答】解:(1)∵O是圆心,且点F为的中点,∴OF⊥AC,∵AC=8,∴AE=4,设圆的半径为r,即OA=OF=r,则OE=OF﹣EF=r﹣2,由OA2=AE2+OE2得r2=42+(r﹣2)2,解得:r=5,即AO=5;(2)∵∠OAE=∠CAD,∠AEO=∠ADC=90°,∴∠AOE=∠ACD,则sin∠ACD=sin∠AOE==.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理、垂径定理及其推论和勾股定理等知识点.22.(10分)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°≈,tan32°≈,tan40°≈)【分析】(1)然后在Rt△ABO中,根据tan∠OAB==tan32°,求出OB的长度,继而可求得BF;(2)根据∠AOD=40°,OD⊥AD,可得∠OAD=50°,继而可求得∠CAD的度数,以及AB 的坡度.【解答】解::(1)∵∠OAC=32°,OB⊥AD,∴tan∠OAB==tan32°,∵AB=2m,∴≈,∴OB=1.24m,∵⊙O的半径为0.2m,∴BF=1.04m;(2)∵∠AOD=40°,OD⊥AD,∴∠OAD=50°,∵∠OAC=32°∴∠CAD=18°,∴AB的坡度为tan18°=,【点评】本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.23.(12分)如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,∠BGD=∠BAD=∠C.(1)求证:BD•BC=BG•BE;(2)如果∠BAC=90°,求证:AG⊥BE.【分析】(1)由△BDG∽△BEC,可得=,即可推出结论;(2)由△BAD∽△BCA,推出∠BDA=∠BAC=90°,由∠BAD=∠BGD,推出A,B,D,G四点共圆,推出∠AGB=∠ADB=90°;【解答】(1)证明:∵∠DBG=∠CBE,∠BGD=∠C,∴△BDG∽△BEC,∴=,∴BD•BC=BG•BE;(2)∵∠ABD=∠CBA,∠BAD=∠C,∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,∵∠BAD=∠BGD,∴A,B,D,G四点共圆,∴∠AGB=∠ADB=90°,∴AG⊥BE.【点评】本题考查相似三角形的判定和性质,四点共圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+6(a、b都是常数,且a<0)的图象与x轴交于点A(﹣2,0)、B(6,0),顶点为点C.(1)求这个二次函数的解析式及点C的坐标;(2)过点B的直线y=﹣x+3交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;(3)点P为抛物线上一个动点,当∠PBA=∠CBD时,求点P的坐标.【分析】(1)由点A,B的坐标,利用待定系数法即可求出二次函数的解析式,再利用配发法即可求出顶点C的坐标;(2)利用一次函数图象上点的坐标特征可求出点D的坐标,过点D作DE⊥BC,垂足为点E,设抛物线对称轴与x轴的交点为点F,由点B,C,D,F的坐标可得出CD,DF,BF的长,利用勾股定理可得出BC的长,利用角的正切值不变可求出DE的长,进而可求出BE的长,再利用余切的定义即可求出∠CBD的余切值;(3)设直线PB与y轴交于点M,由∠PBA=∠CBD及∠CBD的余切值可求出OM的长,进而可得出点M的坐标,由点B,M的坐标,利用待定系数法即可求出直线BP的解析式,联立直线BP及二次函数解析式成方程组,通过解方程组可求出点P的坐标.【解答】解:(1)将A(﹣2,0),B(6,0)代入y=ax2+bx+6,得:,解得:,∴二次函数的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点C的坐标为(2,8).(2)当x=2时,y=﹣x+3=2,∴点D的坐标为(2,2).过点D作DE⊥BC,垂足为点E,设抛物线对称轴与x轴的交点为点F,如图1所示.∵抛物线的顶点坐标为(2,8),∴点F的坐标为(2,0).∵点B的坐标为(6,0),∴CF=8,CD=6,DF=2,BF=4,BC==4,BD==2.∴sin∠BCF==,即=,∴DE=,∴BE==,∴cot∠CBD===.(3)设直线PB与y轴交于点M,如图2所示.∵∠PBA=∠CBD,∴cot∠PBA==,即=,∴OM=,∴点M的坐标为(0,)或(0,﹣).设直线BP的解析式为y=mx+n(m≠0),将B(6,0),M(0,)代入y=mx+n,得:,解得:,∴直线BP的解析式为y=﹣x+.同理,当点M的坐标为(0,﹣)时,直线BP的解析式为y=x﹣.联立直线BP与抛物线的解析式成方程组,得:或,解得:,或,,∴点P的坐标为(﹣,)或(﹣,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、解直角三角形、余切的定义、待定系数法求一次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)由点的坐标,利用待定系数法求出二次函数解析式;(2)构造直角三角形,利用余切的定义求出∠CBD的余切值;(3)联立直线BP和抛物线的解析式成方程组,通过解方程组求出点P的坐标.25.(14分)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.【分析】(1)根据等腰三角形的性质可得BD=3,通过证明△ABD∽△GBP,可得BG=BP=x,即可得DG的长度;(2)根据相似三角形的性质可得FD=BD﹣BF=3﹣x,DE=x﹣,根据三角形面积公式可求y与x之间的函数关系式;(3)分EF⊥PG,EF⊥PF两种情况讨论,根据相似三角形的性质可求BP的长.【解答】解:(1)∵AB=AC=5,BC=6,AD⊥BC,∴BD=CD=3,在Rt△ABD中,AD==4,∵∠B=∠B,∠ADB=∠BPG=90°,∴△ABD∽△GBP∴∴BG=BP=x,∴DG=BG﹣BD=x﹣3(2)∵PF∥AC∴△BFP∽△BCA∴即∴BF=x,∴FD=BD﹣BF=3﹣x,∵∠DGE+∠DEG=∠DGE+∠ABD,∴∠ABD=∠DEG,∠ADG=∠ADB=90°∴△DEG∽△DBA∴∴=∴DE=x﹣∴S=y=×DF×DE=×(3﹣x)×(x﹣)=﹣x2+x﹣(△DEF<x<)(3)若EF⊥PG时,∵EF⊥PG,ED⊥FG,∴∠FED+∠DEG=90°,∠FED+∠EFD=90°,∴∠EFD=∠DEG,且∠EDF=∠EDG,∴△EFD∽△GDE∴∴ED2=FD×DG∴(x﹣)2=(3﹣x)(x﹣3)∴5×57x2﹣1138x+225×5=0∴x=(不合题意舍去),x=若EF⊥PF,∴∠PFB+∠EFD=90°,且∠PFB=∠ACB,∠ACB+∠DAC=90°∴∠EFD=∠DAC,且∠EDF=∠ADC=90°,∴△EDF∽△CDA∴∴=∴x=综上所述:当BP为或时,△PEF为直角三角形.【点评】本题是三角形综合题,考查了等腰三角形的性质,相似三角形判定和性质,以及分类讨论思想,熟练运用相似三角形的判定和性质是本题的关键.。

上海市闵行区2019届初三数学一模试卷

上海市闵行区2019届初三数学一模试卷

上海市闵行区2019届初三一模数学试卷2019.01一. 选择题(本大题共6题,每题4分,共24分)1. 在Rt △ABC 中,90C ,A 、B 、C 所对的边分别为a 、b 、c ,下列等式中,不成立的是( ) A. tan b B a B. cos a B c C. sin a A c D. cot a A b2. 如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A. 北偏东30°B. 北偏西30°C. 北偏东60°D. 北偏西60°3. 将二次函数22(2)y x 的图像向左平移1个单位,再向下平移3个单位后所得图像的函数解析式为( )A. 22(2)4y xB. 22(1)3y xC. 22(1)3y xD. 223y x4. 已知二次函数2y ax bx c 的图像如图所示,那么根据图像,下列判断中不正确的是( )A. 0aB. 0bC. 0cD. 0abc5. 已知,点C 在线段AB 上,且2AC BC ,那么下列等式一定正确的是( ) A. 423AC BC AB B. 20AC BC C. ||||AC BC BC D. ||||AC BC BC6. 已知在△ABC 中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE ∥BC ,DF ∥ AC ,那么下列比例式中,正确的是( ) A. AE CF EC FB B. AE DE EC BC C. DF DE AC BC D. EC FC AC BC二. 填空题(本大题共12题,每题4分,共48分)7. 已知:2:5x y ,那么():x y y8. 化简:313()222a b a b 9. 抛物线232y x x 与y 轴的公共点的坐标是10. 已知二次函数2132y x ,如果0x ,那么函数值y 随着自变量x 的增大而 (填“增大”或减小”)11. 已知线段4AB 厘米,点P 是线段AB 的黄金分割点(AP BP ),那么线段AP 厘米(结果保留根号)12. 在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,如果35AD AB ,6DE , 那么BC13. 已知两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为14. 在Rt △ABC 中,90C ,AB ,1tan 3A ,那么BC 15. 某超市自动扶梯的坡比为1:2.4,一位顾客从地面沿扶梯上行了5.2米,那么这位顾客 此时离地面的高度为 米16. 在△ABC 和△DEF 中,AB BC DE EF,要使△ABC ∽△DEF ,还需要添加一个条件, 那么这个条件可以是 (只需填写一个正确的答案)17. 如图,在Rt △ABC 中,90ACB ,AC BC ,点D 、E 分别在边AB 上,且2AD ,45DCE ,那么DE18. 如图,在Rt △ABC 中,90ACB ,3BC ,4AC ,点D 为边AB 上一点,将 △BCD 沿直线CD 翻折,点B 落在点E 处,联结AE ,如果AE ∥CD ,那么BE三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19. 已知在平面直角坐标系xOy 中,二次函数2y ax bx c 的图像经过点(1,0)A 、(0,5)B 、(2,3)C ,求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.20. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 为边AB 上一点,且2BE AE ,设AB a ,AD b . (1)填空:向量DE ; (2)如果点F 是线段OC 的中点,那么向量EF ,并在图中画出向量EF 在向量AB 和AD 方向上的分向量. (注:本题结果用向量a 、b 的式子表示,画图不要求写作法,但要指出所作图中表示结论的向量)21. 如图,在Rt △ABC 中,90ACB ,6BC ,8AC ,点D 是AB 边上一点,过点D 作DE ∥BC ,交边AC 于E ,过点C 作CF ∥AB ,交DE 的延长线于点F .(1)如果13AD AB ,求线段EF 的长; (2)求CFE 的正弦值.22. 如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD ,中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度(结果精确到0.01米).【参考数据:sin 320.5299 ,cos320.8480 ,tan 320.6249 1.4142 】23. 如图,在△ABC 中,点D 是边BC 上一点,且AD AB ,AE BC ,垂足为点E , 过点D 作DF ∥AB ,交边AC 于点F ,联结EF ,212EF BD EC. (1)求证:△EDF ∽△EFC ;(2)如果14EDF ADC S S ,求证:AB BD .24. 已知,在平面直角坐标系xOy 中,抛物线2y ax bx 经过点(5,0)A 、(3,4)B ,抛物线的对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)联结OB 、BD ,求BDO 的余切值;(3)如果点P 在线段BO 的延长线上,且PAO BAO ,求点P 的坐标.25. 如图,在梯形ABCD 中,AD ∥BC ,AB CD ,5AD ,15BC ,5cos 13ABC , E 为射线CD 上任意一点(点E 与点C 不重合),过点A 作AF ∥BE ,与射线CD 相交于点F ,联结BF ,与直线AD 相交于点G (点C 与点A 、D 都不重合),设CE x ,AG y DG. (1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEFABCD S S 四边形四边形,求线段CE 的长.参考答案一. 选择题1. D2. B3. C4. B5. C6. A二. 填空题7. 7:5 8. 14a b 9. 0,2() 10. 减小 11. 2 12. 10 13. 4:9 14. 2 15. 216. B E (或AB AC DE DF 或BC AC EF DF ) 17. 103 18. 245(或4.8)三. 解答题19. 265y x x ,顶点坐标为(3,4),对称轴为直线3x . 20.(1)13a b ;(2)53124a b ,画图及结论正确2分. 21.(1)4EF ;(2)4sin 5CFE . 22. 塔AB 的高度约为33米.23.(1)证明略;(2)证明略.24.(1)21566y x x ;(2)11cot 8BDO ;(3)1520(,)1111P . 25.(1)13AB ;(2)3923x y x (3902x );(3)132CE 或652.。

2019上海各区一摸初三数学试卷

2019上海各区一摸初三数学试卷

普陀区2018学年第一学期初三质量调研数学试卷(时间:100分钟,满分150分)2019.01.08一、选择题(本大题共6题,每题4分,满分24分)1. 已知二次函数y=(a−1)x2+3的图像有最高点,那么a的取值范围是(▲)(A)a>0 (B)a<0(C)a>1 (D)a<12. 下列二次函数中,如果图像能与y轴交于点A(0.1),那么这个函数是(▲)(A)y=3x2(B)y=3x2+1(C)y=3(x+1)2(D)y=3x2−x3. 如图1,在∆ABC中,点D、E分别在∆ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使∆ADE与∆ABC相似,那么这个条件是(▲)(A)∠AED=∠B(B)∠ADE=∠C(C)ADAC =AEAB(D)ADAB=DEBC4. 已知a⃗、b⃗⃗、c⃗都是非零向量,如果a⃗=2c⃗,b⃗⃗=−2c⃗,那么下列说法中,错误的是(▲)(A)a⃗//b⃗⃗(B)|a⃗|=|b⃗⃗|(C)a⃗+b⃗⃗=0(D)a⃗与b⃗⃗方向相反5. 已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3,如果两圆内切圆心距等于2,那么两圆外切时圆心距等于(▲);(A)1 (B)4 (C)5 (D)86. 如图2,在∆ABC中,点D、E分别在边AB、AC上,DE//BC,且DE经过重心G,在下列四个说法中,○1DEBC =23○2BDAD=13○3C∆ADEC∆ABC=23○4S∆ADES四边形DBCE=45,正确的个数是(▲)(A)1 (B)2 (C)3 (D)4二、填空题(本大题共12题,每题4分,共计48分)7. 如果xy =72,那么x−2yy的值是▲;8. 化简3(a⃗+1b⃗⃗)−2(a⃗−b⃗⃗)= ▲;(x+3)2−4先向右平移2个单位,在向上平移3个单位,那么平移后所得10. 将抛物线y=12新抛物线的表达式是▲;11. 已知抛物线y=2x2+bx−1的对称轴是直线x=1,那么b的值等于▲;12. 已知∆ABC三边的比为2:3:4,与它相似的∆A′B′C′最小边的长等于12,那么∆A′B′C′最大边的长等于▲;13. 在Rt∆ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是▲;14. 正八边形的中心角为▲度;15. 如图3,在梯形ABCD中,AD//BC,AB⊥BC,BD⊥DC,tan∠ABD=1,BC=5,那么DC2的长等于▲;16. 如图4,AB//CD,AD、BC相交于点E,过E作EF//CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于▲;17. 已知二次函数y=ax2+c(a>0)的图像上有纵坐标分别为y1、y2的两点A、B,如果A、B到对称轴的距离分别等于2、3,那么y1▲y2;(填“<”、“=”或“>”),点D在边BC上,将∆ABD沿直线AD翻折得到∆AED,18. 如图5,∆ABC中,AB=AC=8,cosB=34点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF= ▲;三、解答题(本大题7题,满分78分)19. (本题满分10分)计算:4sin45°+cos230°−2cot45°tan60°−√2如图6,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 在边BC 上,AE 与BD 相交于点G ,AG:GE=3:1(1) 求EC:BC 的值;(2) 设BA ⃗⃗⃗⃗⃗⃗=a ⃗,AO ⃗⃗⃗⃗⃗⃗=b ⃗⃗,那么EC ⃗⃗⃗⃗⃗⃗= ▲ ;GB ⃗⃗⃗⃗⃗⃗= ▲ (用向量a ⃗、b⃗⃗表示)21. (本题满分10分)如图7,⊙O 1和⊙O 2相交于A 、B 两点,O 1O 2与AB 相交于点C ,O 2A 的延长线交⊙O 1于点D ,点E 为AD 的中点,AE=AC ,联结O 1E ; (1)求证:O 1E =O 1C ;(2)如果O 1O 2=10,O 1E =6,求⊙O 2的半径长;如图8,小山的一个横断面是梯形BCDE,EB//DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡度D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度;(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23. (本题满分12分)已知,如图9,∆ADE的顶点E在∆ABC的边BC上,DE与AB相交于点F,AE2=AF∙AB,∠DAF=∠EAC;(1)求证:∆ADE~∆ACB;(2)求证:DFDE =CECB如图10,在平面直角坐标系xOy中,抛物线y=ax2+bx−3(a≠0)与x轴交于点A(-1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为D;(1)求抛物线的表达式及顶点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点,且∠FBD=135°,求点F的坐标;如图11,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点;(1)如图11○1,当∠ACB=90°,OC=2,求a的值;(2)如图11○2,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ//BC,并使∠QOC=∠B,求AQ:OQ的值;123456D B D C B C789101112131415161718奉贤区2018学年第一学期初三质量调研数学试卷(时间:100分钟,满分150分)2019.01.08一、选择题(本大题共6题,每题4分,满分24分)1. 已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是(▲)(A)a+b=7 (B)5a=2b(C)a+bb =72(D)a+5b+2=12. 关于二次函数y=12(x+1)2的图像,下列说法正确的是(▲)(A)开口向下(B)经过原点(C)对称轴右侧的部分是下降的(D)顶点坐标是(-1,0)3. 如图1,在直角坐标平面内,射线OA与x轴正半轴的夹角为 α,如果OA=√10,tanα=3,那么点A的坐标是(▲)(A)(1,3)(B)(3,1)(C)(1,√10)(D)(3,√10)4. 对于非零向量a⃗、b⃗⃗,如果2|a⃗|=3|b⃗⃗|,且它们的方向相同,那么用向量a⃗表示向量b⃗⃗正确是(▲)(A)b⃗⃗=32a⃗(B)b⃗⃗=23a⃗(C)b⃗⃗=−32a⃗(D)b⃗⃗=−23a⃗5. 某同学在利用描点法画二次函数y=ax2+bx+c(a≠0)的图像时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x⋯01234⋯y⋯-30-103⋯接着,他在描述中发现,表格中有一组数据计算错误,他计算错误的一组数据是(▲)(A){x=0y=−3(B){x=2y=−1(C){x=3y=0(D){x=4y=36. 已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是(▲)(A)r≥2(B)r≤8(C)2<r<8(D)2≤r≤8二、填空题(本大题共12题,每题4分,共计48分)7. 计算:3a⃗+2(a⃗−12b⃗⃗)= ▲;8. 计算:sin30°∙tan60°=▲;9. 如果函数y=(m−1)x2+x(m是常数)是二次函数,那么m的值取值范围是▲;10. 如果一个二次函数的图像在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是▲;(只需些一个即可)11. 如果将抛物线y=−2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线▲;12. 如图2,AD与BC相交于点O,如果AOAD =13,那么当BOCO的值是▲时,AB//CD;13. 如图3,已知AB是⊙O的弦,C是AB̂的中点,联结OA、AC,如果∠OAB=20°,那么∠CAB 的度数是▲;14. 联结三角形各边中点,所得的三角形的周长与原三角形周长的比是▲;15. 如果正n边形的一个内角是它的中心角的2倍,那么n的值是▲;16. 如图4,某水库大坝的横截面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是▲米;17. 我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”,如果一个“钻石菱形”的面积为6,那么它的边长是▲;18. 如图5,在∆ABC中,AB=AC=5,sinC=35,将∆ABC绕点A逆时针旋转得到∆ADE,点B、C分别与点D、E对应,AD与边BC交于点F,如果AE//BC,那么BF的长是▲;三、解答题(本大题7题,满分78分) 19. (本题满分10分,每小题满分5分) 已知抛物线y =x (x −2)+2(1)用配方法把这个抛物线的表达式化成y =a(x +m)2+k 的形式,并写出它的顶点坐标; (2)将抛物线y =x (x −2)+2上下平移,使顶点移到x 轴上,求新抛物线的表达式;20. (本题满分10分,每小题满分5分)如图6,已知AD 是∆ABC 的中线,G 是重心; (1)设AB ⃗⃗⃗⃗⃗⃗=a ⃗,BC ⃗⃗⃗⃗⃗⃗=b ⃗⃗,用向量a ⃗、b ⃗⃗表示BG ⃗⃗⃗⃗⃗⃗ (2)如果AB=3,AC=2,∠GAC =∠GCA ,求BG 的长;21. (本题满分10分,每小题满分5分)如图7,已知Rt∆ABC ,∠BAC =90°,BC=5,AC =2√5,以A 为圆心,AB 为半径画圆,与边BC 交于另一点D ; (1)求BD 的长;(2)联结AD ,求∠DAC 的正弦值;22. (本题满分10分,每小题满分5分)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图8-1),如图8-2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C、D之间的距离是10厘米,张角∠CAB=60°;(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A’,(在移动过程中,托臂长度不变,即AC=A’C’,BC=BC’)当张角∠C′A′B=45°时,求滑块A向左侧移动的距离(精确到1厘米)。

上海市宝山区2019届九年级上学期期末教学质量监测(一模)数学试题(解析版)

上海市宝山区2019届九年级上学期期末教学质量监测(一模)数学试题(解析版)

2019年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论正确的是()A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:CD=1:22.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似3.已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣14.如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.5.设m,n为实数,那么下列结论中错误的是()A.m(n)=(mn)B.(m+n)=m+nC.m()=m+m D.若m=,那么=6.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.抛物线y=x2﹣1的顶点坐标是.8.将二次函数y=2x2的图象向右平移3个单位,所得图象的对称轴为.9.请写出一个开口向下且过点(0,2)的抛物线解析式:.10.若2||=3,那么3||=.11.甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,那么图上4.5cm的两地之间的实际距离为千米.12.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于.13.Rt△ABC中,∠C=90°,AB=2AC,那么sin B=.14.直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为.15.如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE=2BD,BE =1,那么DC=.16.⊙O的直径AB=6,C在AB延长线上,BC=2,若⊙C与⊙O有公共点,那么⊙C的半径r的取值范围是.17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于.18.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=5,点P为AC上一点,将△BCP沿直线BP 翻折,点C落在C′处,连接AC′,若AC′∥BC,那么CP的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°tan30°+cos60°cot30°.20.(10分)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF •CE=AB2.21.(10分)如图,已知:△ABC中,点D、E分别在AB、AC上,AB=9,AC=6,AD=2,AE =3.(1)求的值;(2)设=,=,求(用含、的式子表示).22.(10分)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.(12分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.24.(12分)如图,已知:二次函数y=x2+bx的图象交x轴正半轴于点A,顶点为P,一次函数y =x﹣3的图象交x轴于点B,交y轴于点C,∠OCA的正切值为.(1)求二次函数的解析式与顶点P坐标;(2)将二次函数图象向下平移m个单位,设平移后抛物线顶点为P′,若S△ABP =S△BCP,求m的值.25.(14分)如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB =5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.(1)若AP=,求DE的长;(2)联结CP,若CP=EP,求AP的长;(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.2019年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论正确的是()A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:CD=1:2【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质对各选项进行判断.【解答】解:∵AB∥CD∥EF,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:CE=1:3,CE:EA=2:3.故选:A.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.2.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似【分析】根据相似三角形的判定方法对A、C进行判断;利用反例可对B、D进行判断.【解答】解:两个直角三角形不一定相似,两个矩形不一定相似,两个菱形不一定相似,而两个等边三角形一定相似.故选:C.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣1【分析】把已知点的坐标代入抛物线解析式可得到a的值.【解答】解:把(1,﹣2)代入y=ax2﹣1得a﹣1=﹣2,解得a=﹣1.故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.4.如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.【分析】过点P作PA⊥x轴于点A.由P点的坐标得PA、OA的长,根据余切函数的定义得结论.【解答】解:过点P作PA⊥x轴于点A.由于点P(2,4),∴PA=4,OA=2∴cotα==.故选:B.【点评】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形.5.设m,n为实数,那么下列结论中错误的是()A.m(n)=(mn)B.(m+n)=m+nC.m()=m+m D.若m=,那么=【分析】根据平面向量的性质,即可判断A、B,C正确,根据向量的计算法则即可得D错误.【解答】解:A、如果m、n为实数,那么m(n)=(mn),故本选项结论正确;B、如果m、n为实数,那么(m+n)=m+n,故本选项结论正确;C、如果m、n为实数,那么m()=m+m,故本选项结论正确;D、如果m为实数,那么若m=,那么m=0或=,故本选项结论错误.故选:D.【点评】此题考查了平面向量的性质.题目比较简单,注意向量是有方向性的,掌握平面向量的性质是解此题的关键.6.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定【分析】先根据两点间的距离公式计算出PA的长,然后比较PA与半径的大小,再根据点与圆的关系的判定方法进行判断.【解答】解:∵圆心A的坐标是(1,2),点P的坐标是(5,2),∴AP==4<5,∴点P在⊙A内,故选:A.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了坐标与图形性质.二、填空题(本大题共12题,每题4分,满分48分)7.抛物线y=x2﹣1的顶点坐标是(0,﹣1).【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1).故答案是:(0,﹣1).【点评】本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.8.将二次函数y=2x2的图象向右平移3个单位,所得图象的对称轴为直线x=3.【分析】直接利用二次函数平移规律得出平移后解析式进而得出答案.【解答】解:将二次函数y=2x2的图象向右平移3个单位,所得解析式为:y=2(x﹣3)2,故其图象的对称轴为:直线x=3.故答案为:直线x=3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.9.请写出一个开口向下且过点(0,2)的抛物线解析式:y=﹣x2+2(答案不唯一).【分析】根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,2)得出即可.【解答】解:∵开口向下且过点(0,2)的抛物线解析式,∴可以设顶点坐标为(0,2),故解析式为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).【点评】本题考查了二次函数图象的性质,是开放型题目,答案不唯一.10.若2||=3,那么3||=.【分析】实数的乘除运算法则同样适用于向量的运算.【解答】解:由2||=3得到:||=,故3||=3×=.故答案是:.【点评】考查了平面向量的知识,解题时,可以与实数的运算法则联系起来考虑,属于基础题.11.甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,那么图上4.5cm的两地之间的实际距离为225千米.【分析】依据甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,即可得到比例尺,即可得出图上4.5cm的两地之间的实际距离.【解答】解:∵甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,∴比例尺==,设图上4.5cm的两地之间的实际距离为xcm,则=,解得x=22500000,∵22500000cm=225km,∴图上4.5cm的两地之间的实际距离为225千米.故答案为:225.【点评】本题主要考查了比例线段,解题时注意:比例尺等于图上距离与实际距离的比值.12.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于1:16.【分析】由两个相似三角形的周长的比等于1:4,即可求得它们的相似比,根据相似三角形的面积比等于相似比的平方,即可求得它们的面积的比.【解答】解:∵两个相似三角形的周长的比等于1:4,∴它们的相似比为1:4,∴它们的面积的比等于1:16.故答案为:1:16.【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方,相似三角形的对应高线、角平分线、中线的比等于相似比.13.Rt△ABC中,∠C=90°,AB=2AC,那么sin B=.【分析】根据锐角的正弦等于对边比斜边,可得答案.【解答】解:由题意,得sin B==,故答案为:.【点评】本题考查了锐角三角函数的定义,利用锐角的正弦等于对边比斜边是解题关键.14.直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为12cm.【分析】根据三角形的重心的性质求出CD,根据直角三角形的性质计算即可.【解答】解:由题意得,CG=4,∵点G是△ABC的重心,∴CD=CG=6,CD是△ABC的中线,在Rt△ACB中,∠ACB=90°,CD是△ABC的中线,∴AB=2CD=12(cm),故答案为:12cm.【点评】本题考查的是三角形的重心的概念和性质,直角三角形的性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.15.如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE=2BD,BE =1,那么DC=.【分析】根据平行线的性质得到∠ABD=∠BDC,推出△AEB∽△BDC,根据相似三角形的性质即可得到结论.【解答】解:∵AB∥DC,∴∠ABD=∠BDC,∵∠ABD=∠CEA,∴∠AEB=∠BDC,∴∠EAB=180°﹣∠AEB﹣∠ABE,∠CBD=180°﹣∠ABD﹣∠ABE,∴∠EAB=∠CBD,∴△AEB∽△BDC,∴=,∵3AE=2BD,BE=1,∴CD=,故答案为:.【点评】本题考查了平行线的性质,相似三角形的判定和性质,证得△AEB∽△BDC是解题的关键.16.⊙O的直径AB=6,C在AB延长线上,BC=2,若⊙C与⊙O有公共点,那么⊙C的半径r的取值范围是2≤r≤8.【分析】利用⊙C与⊙O相切或相交确定r的范围.【解答】解:∵⊙O的直径AB=6,C在AB延长线上,BC=2,∴CA=8,∵⊙C与⊙O有公共点,即⊙C与⊙O相切或相交,∴r=2或r=8或2<r<8,即2≤r≤8.故答案为2≤r≤8.【点评】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R ﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于或.【分析】根据题意,可以求得底边的长,然后利用分类讨论的方法和锐角三角函数可以求得相应的角的三角函数值.【解答】解:设等腰三角形的底边长为a,|5﹣a|=3,解得,a=2或a=8,当a=2时,这个等腰三角形底角的余弦值是:,当a=8时,这个等腰三角形底角的余弦值是:,故答案为:或【点评】本题考查解直角三角形、等腰三角形的性质、锐角三角函数,解答本题的关键是明确题意,求出相应的角的三角函数值.18.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=5,点P为AC上一点,将△BCP沿直线BP 翻折,点C落在C′处,连接AC′,若AC′∥BC,那么CP的长为.【分析】过点C'作C'D⊥BC于点D,通过题意可证四边形C'DCA是矩形,可得CD=AC',C'D=AC =4,根据勾股定理可求BD=3,即CD=AC'=2,根据勾股定理可求CP的长.【解答】解:过点C'作C'D⊥BC于点D,∵A'C∥BC,∠ACB=90°,∴∠C'AC=∠ACB=90°,且C'D⊥BC,∴四边形C'DCA是矩形,∴CD=AC',C'D=AC=4,∵折叠∴BC'=BC=5,CP=C'P,在Rt△BDC'中,BD==3∴CD=BC﹣BD=2∴AC'=2,在Rt△AC'P中,C'P2=C'A2+AP2,∴CP2=4+(4﹣CP)2,∴CP=故答案为:【点评】本题是翻折变换,考查了矩形的判定和性质,折叠的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°tan30°+cos60°cot30°.【分析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.【解答】解:原式=×+×=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF •CE=AB2.【分析】利用两角对应成比例可得△ABF∽△ECA,对应边成比例可得相应的比例式,整理可得所求的乘积式.【解答】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点评】此题考查了相似三角形的判定与性质.注意证得△ABF∽△ECA是解此题的关键.21.(10分)如图,已知:△ABC中,点D、E分别在AB、AC上,AB=9,AC=6,AD=2,AE =3.(1)求的值;(2)设=,=,求(用含、的式子表示).【分析】(1)根据已知∠AED=∠ABC,∠A=∠A,进而得出△ADE∽△ACB,由该相似三角形的性质解答;(2)由三角形法则解答即可.【解答】解:(1)∵∠AED=∠ABC,∠A=∠A∴△ADE∽△ACB,∴===,即=.(2)=+=﹣+.【点评】考查了平面向量和相似三角形的判定与性质.注意:平面向量是有方向的.22.(10分)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.【分析】(1)证△ABC∽△FAC,得=,将相关线段的长代入计算可得;(2)作CH⊥AB,先计算AB=5,据此可得CH==,AH==,EH=AE ﹣AH=,依据tan D=tan∠ECH=可得答案.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△FAC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.【点评】本题主要考查解直角三角形与相似三角形的判定和性质,解题的关键是添加辅助线构造与∠D相等的角,并熟练掌握相似三角形的判定与性质、勾股定理等知识点.23.(12分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.【分析】根据题意作出合适的辅助线,然后根据锐角三角函数即可求得电梯AB的坡度,然后根据勾股定理即可求得AB的长度.【解答】解:作BC⊥PA交PA的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD=,∴tan14°=,即0.25=,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC==,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB==19.5,即电梯AB的坡度是5:12,长度是19.5米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.24.(12分)如图,已知:二次函数y=x2+bx的图象交x轴正半轴于点A,顶点为P,一次函数y =x﹣3的图象交x轴于点B,交y轴于点C,∠OCA的正切值为.(1)求二次函数的解析式与顶点P坐标;(2)将二次函数图象向下平移m个单位,设平移后抛物线顶点为P′,若S△ABP =S△BCP,求m的值.【分析】(1)先由直线解析式求出点B,C坐标,利用∠OCA正切值求得点A坐标,再利用待定系数法求解可得;(2)由平移知点P′坐标为(1,﹣1﹣m),设抛物线对称轴与x轴交于点H,与BC交于点M,知M(1,﹣),先得出S△ABP′=AB•P′H=2(m+1),S△BCP′=S△P′MC+S△P′MB=P′M•OB=3|﹣m|,根据S△ABP =S△BCP列出方程求解可得.【解答】解:(1)∵y=x﹣3,∴x=0时,y=﹣3,当y=0时,x﹣3=0,解得x=6,∴点B(6,0),C(0,﹣3),∵tan∠OCA==,∴OA=2,即A(2,0),将A(2,0)代入y=x2+bx,得4+2b=0,解得b=﹣2,∴y=x2﹣2x=(x﹣1)2﹣1,则抛物线解析式为y=x2﹣2x,顶点P的坐标为(1,﹣1);(2)如图,由平移知点P′坐标为(1,﹣1﹣m),设抛物线对称轴与x轴交于点H,与BC交于点M,则M(1,﹣),S△ABP′=AB•P′H=×4(m+1)=2(m+1),S △BCP ′=S △P ′MC +S △P ′MB =P ′M •OB =|﹣1﹣m +|×6=3|﹣m |,∴2(m +1)=3|﹣m |,解得m =或m =.【点评】本题主要考查抛物线与x 轴的交点,解题的关键是掌握待定系数法求函数解析式,二次函数的图象与性质及三角函数的应用等知识点.25.(14分)如图,已知:梯形ABCD 中,∠ABC =90°,∠DAB =45°,AB ∥DC ,DC =3,AB=5,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 于射线CB 交于点F .(1)若AP =,求DE 的长;(2)联结CP ,若CP =EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似?若相似,求FG 的值;若不相似,请说明理由.【分析】(1)如图,过点A ,作AH ∥BC ,交CD 的延长线于点H ,在Rt △AHE 中求出AE ,即可求求解;(2)设:AP =x ,利用△APE ∽△PEC ,得出PC 2=CE •AP ,利用勾股定理得出PC 2=PB 2+BC 2,即可求解;(3)利用△ADE ∽△FGE ,得到3α=45°,进而求出相应线段的长度,再利相似比=,即可求解.【解答】解:(1)如图1中,过点A ,作AH ∥BC ,交CD 的延长线于点H .∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP=,根据勾股定理得,HE==3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EPA=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴=,即:PE2=AE•CE,而EC=2PB=2(5﹣x),即:PC2=CE•AP=2(5﹣x)x,而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,∴2(5﹣x)x=(5﹣x)2+22,解得:x=(不合题意值已舍去),即:AP=;(3)如图3中,在线段CF上取一点G,连接EG.设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,则:∠EAP=180°﹣2∠APE=2α,∵△ADE∽△FGE,设∠DAE=∠F=α,由∠DAB=45°,可得3α=45°,2α=30°,在Rt△ADH中,AH=DH=2,在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,∴HE=AH•tan∠HAE=2,∴DE=HE﹣HD=2﹣2,EC=HC﹣HE=5﹣2,∵△ADE∽△FGE,∴∠ADC=∠EGF=135°,则∠CEG=45°,∴EG=EC=5﹣2,∴=,即:=,解得:FG=3﹣1.【点评】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题.第21 页共21 页。

2019年上海初三数学一模大题

2019年上海初三数学一模大题

(宝山区)23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,恒有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”,同理函数y =x 也是闭区间[1,3]上的“闭函数”.(1)反比例函数2018y x是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由; (2)如果已知二次函数y =x 2-4x +k 是闭区间[2,t ]上的“闭函数”,求k 和t 的值; (3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线x =1上的一点,当△ABC 为直角三角形时,写出点B 的坐标.25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD中,AD//BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.(青浦区)23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD CA CE CB⋅=⋅.(1)求证:∠CAE=∠CBD;(2)若BE ABEC AC=,求证:AB AD AF AE⋅=⋅.AB CDEF图824.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图9,在平面直角坐标系xOy 中,抛物线()20y axbx c a =++>与x 轴相交于点A (-1,0)和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当△CGF 为直角三角形时,求点Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图10,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点 D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC =∠BPQ . (1)当QD =QC 时,求∠ABP 的正切值; (2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.图10QP D C BA备用图A BCD图9 C B A O yx(长宁区)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.F EDABC第23题图备用图第24题图25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E .设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.(松江区)23.(本题满分12分,每小题6分)已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =⋅. (1)求证:AD ∥BC ;(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =⋅.备用图 备用图图1 DCBA DCB A F E P DC B A 第25题图24.(本题满分12分,每小题4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++的对称轴为直线x =1,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),且AB =4,又P 是抛物线上位于第一象限的点,直线AP 与y 轴交于点D ,与对称轴交于点E ,设点P 的横坐标为t . (1)求点A 的坐标和抛物线的表达式; (2)当AE :EP =1:2时,求点E 的坐标;(3)记抛物线的顶点为M ,与y 轴的交点为C ,当四边形CDEM 是等腰梯形时,求t 的值.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知△ABC 中,∠ACB =90°,AC =1,BC =2,CD 平分∠ACB 交边AB 与点D ,P 是射线CD 上一点,联结AP . (1)求线段CD 的长;(2)当点P 在CD 的延长线上,且∠P AB =45°时,求CP 的长;(3)记点M 为边AB 的中点,联结CM 、PM ,若△CMP 是等腰三角形,求CP 的长.(徐汇区)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B ,∠ADF =∠C ,线段EF 交线段AD 于点G . (1)求证:AE =AF ;(2)若DF CFDE AE=,求证:四边形EBDF 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(1)小题满分4分,第(3)小题满分5分)如图,在平面直角坐标系xOy 中,直线y kx =(0k ≠)沿着y 轴向上平移3个单位长度后,与x 轴交于点B (3,0),与y 轴交于点C .抛物线2y x bx c =++过点B 、C 且与x 轴的另一个交点为A . (1)求直线BC 及该抛物线的表达式;(2)设该抛物线的顶点为D ,求DBC ∆的面积;(3)如果点F 在y 轴上,且∠CDF =45°,求点F 的坐标.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分7分,第(3)小题满分4分)已知,在梯形ABCD 中,AD ∥BC ,∠A =90°,AD =2,AB =4,BC =5,在射线BC 任取一点M ,联结DM ,作∠MDN =∠BDC ,∠MDN 的另一边DN 交直线BC 于点N (点N 在点M 的左侧).(1)当BM 的长为10时,求证:BD ⊥DM ; (2)如图(1),当点N 在线段BC 上时,设BN x =,BM y =,求y 关于x 的函数解析式,并写出它的定义域;(3)当DMN ∆是等腰三角形时,求BN 的长.G F EB AC D第23题 yxB O 第24题 (备用图)ADBC图(1)ABCMN第25题11(普陀区)23.(本题满分12分)已知:如图9,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE·DB.求证:(1)△BCE∽△ADE;(2)AB·BC=BD·BE.24.(本题满分12分,每小题满分各4分)如图10,在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(-3, 0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求该抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.25.如图11,∠BAC的余切值为2,AB=D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F 在点E的右侧.联结BG,并延长BG,交射线EC于点P.(1)点D在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BPA;(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果△PFG与△AFG相似,但面积不相等,求此时正方形的边长.。

上海市闵行区2019届初三数学一模试卷

上海市闵行区2019届初三数学一模试卷

上海市闵行区2019届初三一模数学试卷2019.01一. 选择题(本大题共6题,每题4分,共24分)1. 在Rt △ABC 中,90C ,A 、B 、C 所对的边分别为a 、b 、c ,下列等式中,不成立的是( ) A. tan b B a B. cos a B c C. sin a A c D. cot a A b2. 如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A. 北偏东30°B. 北偏西30°C. 北偏东60°D. 北偏西60°3. 将二次函数22(2)y x 的图像向左平移1个单位,再向下平移3个单位后所得图像的函数解析式为( )A. 22(2)4y xB. 22(1)3y xC. 22(1)3y xD. 223y x4. 已知二次函数2y ax bx c 的图像如图所示,那么根据图像,下列判断中不正确的是( )A. 0aB. 0bC. 0cD. 0abc5. 已知,点C 在线段AB 上,且2AC BC ,那么下列等式一定正确的是( ) A. 423AC BC AB B. 20AC BC C. ||||AC BC BC D. ||||AC BC BC6. 已知在△ABC 中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE ∥BC ,DF ∥ AC ,那么下列比例式中,正确的是( ) A. AE CF EC FB B. AE DE EC BC C. DF DE AC BC D. EC FC AC BC二. 填空题(本大题共12题,每题4分,共48分)7. 已知:2:5x y ,那么():x y y8. 化简:313()222a b a b 9. 抛物线232y x x 与y 轴的公共点的坐标是10. 已知二次函数2132y x ,如果0x ,那么函数值y 随着自变量x 的增大而 (填“增大”或减小”)11. 已知线段4AB 厘米,点P 是线段AB 的黄金分割点(AP BP ),那么线段AP 厘米(结果保留根号)12. 在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,如果35AD AB ,6DE , 那么BC13. 已知两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为14. 在Rt △ABC 中,90C ,AB ,1tan 3A ,那么BC 15. 某超市自动扶梯的坡比为1:2.4,一位顾客从地面沿扶梯上行了5.2米,那么这位顾客 此时离地面的高度为 米16. 在△ABC 和△DEF 中,AB BC DE EF,要使△ABC ∽△DEF ,还需要添加一个条件, 那么这个条件可以是 (只需填写一个正确的答案)17. 如图,在Rt △ABC 中,90ACB ,AC BC ,点D 、E 分别在边AB 上,且2AD ,45DCE ,那么DE18. 如图,在Rt △ABC 中,90ACB ,3BC ,4AC ,点D 为边AB 上一点,将 △BCD 沿直线CD 翻折,点B 落在点E 处,联结AE ,如果AE ∥CD ,那么BE三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19. 已知在平面直角坐标系xOy 中,二次函数2y ax bx c 的图像经过点(1,0)A 、(0,5)B 、(2,3)C ,求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.20. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 为边AB 上一点,且2BE AE ,设AB a ,AD b . (1)填空:向量DE ; (2)如果点F 是线段OC 的中点,那么向量EF ,并在图中画出向量EF 在向量AB 和AD 方向上的分向量. (注:本题结果用向量a 、b 的式子表示,画图不要求写作法,但要指出所作图中表示结论的向量)21. 如图,在Rt △ABC 中,90ACB ,6BC ,8AC ,点D 是AB 边上一点,过点D 作DE ∥BC ,交边AC 于E ,过点C 作CF ∥AB ,交DE 的延长线于点F .(1)如果13AD AB ,求线段EF 的长; (2)求CFE 的正弦值.22. 如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD ,中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度(结果精确到0.01米).【参考数据:sin 320.5299 ,cos320.8480 ,tan 320.6249 1.4142 】23. 如图,在△ABC 中,点D 是边BC 上一点,且AD AB ,AE BC ,垂足为点E , 过点D 作DF ∥AB ,交边AC 于点F ,联结EF ,212EF BD EC. (1)求证:△EDF ∽△EFC ;(2)如果14EDF ADC S S ,求证:AB BD .24. 已知,在平面直角坐标系xOy 中,抛物线2y ax bx 经过点(5,0)A 、(3,4)B ,抛物线的对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)联结OB 、BD ,求BDO 的余切值;(3)如果点P 在线段BO 的延长线上,且PAO BAO ,求点P 的坐标.25. 如图,在梯形ABCD 中,AD ∥BC ,AB CD ,5AD ,15BC ,5cos 13ABC , E 为射线CD 上任意一点(点E 与点C 不重合),过点A 作AF ∥BE ,与射线CD 相交于点F ,联结BF ,与直线AD 相交于点G (点C 与点A 、D 都不重合),设CE x ,AG y DG. (1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEFABCD S S 四边形四边形,求线段CE 的长.参考答案一. 选择题1. D2. B3. C4. B5. C6. A二. 填空题7. 7:5 8. 14a b 9. 0,2() 10. 减小 11. 2 12. 10 13. 4:9 14. 2 15. 216. B E (或AB AC DE DF 或BC AC EF DF ) 17. 103 18. 245(或4.8)三. 解答题19. 265y x x ,顶点坐标为(3,4),对称轴为直线3x . 20.(1)13a b ;(2)53124a b ,画图及结论正确2分. 21.(1)4EF ;(2)4sin 5CFE . 22. 塔AB 的高度约为33米.23.(1)证明略;(2)证明略.24.(1)21566y x x ;(2)11cot 8BDO ;(3)1520(,)1111P . 25.(1)13AB ;(2)3923x y x (3902x );(3)132CE 或652.。

上海市静安区中考数学一模试卷(解析版)

上海市静安区中考数学一模试卷(解析版)

2019年上海市静安区中考数学一模试卷一、选择题(本大题共6题,每题4分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.下列抛物线中,顶点坐标为(2,1)的是()A.y=(x+2)2+1 B.y=(x﹣2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣2)2﹣1 3.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.4.点P把线段AB分割成AP和PB两段,如果AP是PB和AB的比例中项,那么下列式子成立的是()A.=B.=C.=D.=5.如图,点D、E分别在△ABC的边AB、AC上,且DE与BC不平行.下列条件中,能判定△ADE与△ACB相似的是()A.=B.=C.=D.=6.下列说法不正确的是()A.设为单位向量,那么||=1B.已知、、都是非零向量,如果=2,=﹣4,那么∥C.四边形ABCD中,如果满足AB∥CD,||=||,那么这个四边形一定是平行四边形D.平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解二、填空题(本大题共12题,每题4分)7.不等式2x﹣1>0的解是.8.方程=的根是 .9.已知=,那么的值是 . 10.△ABC ∽△A 1B 1C 1,其中点A ,B ,C 分别与点A 1,B 1,C 1对应,如果AB :A 1B 1=2:3,AC =6,那么A 1C 1= .11.如图,在点A 处测得点B 处的仰角是 .(用“∠1,∠2,∠3或∠4”表示)12.如图,当小明沿坡度i =1:的坡面由A 到B 行走了6米时,他实际上升的高度BC= 米.13.抛物线y =ax 2+(a ﹣1)(a ≠0)经过原点,那么该抛物线在对称轴左侧的部分是 的.(填“上升”或“下降”)14.如图4,AD ∥BC ,AC 、BD 相交于点O ,且S △AOD :S △BOC =1:4.设=,=,那么向量= .(用向量、表示)15.在中△ABC ,∠C =90°,AC =8,BC =6,G 是重心,那么G 到斜边AB 中点的距离是 .16.抛物线y =ax 2(a ≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y =x 2沿直线y =x 向上平移,平移距离为时,那么它的“同簇抛物线”的表达式是.17.如图,梯形ABCD中,AB∥CD,BE∥AD,且BE交CD于点E,∠AEB=∠C.如果AB=3,CD=8,那么AD的长是.18.如图,将矩形ABCD沿对角线BD所在直线翻折后,点A与点E重合,且ED交BC 于点F,连接A E.如果tan∠DFC=,那么的值是.三、解答题(本大题共7题,满分78分)19.(10分)计算:20.(10分)先化简,再求值:(2﹣)÷,其中x=2.21.(10分)已知:如图,反比例函数的图象经过点A、P,点A(6,),点P的横坐标是2.抛物线y=ax2+bx+c(a≠0)经过坐标原点,且与x轴交于点B,顶点为P.求:(1)反比例函数的解析式;(2)抛物线的表达式及B点坐标.22.(10分)2019年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)23.(12分)已知:如图,在△ABC中,点D、E分别在边BC和AB上,且AD=AC,EB =ED,分别延长ED、AC交于点F.(1)求证:△ABD∽△FDC;(2)求证:AE2=BE•EF.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+c(a≠0)的图象经过点B(4,0)、D(5,3),设它与x轴的另一个交点为A(点A在点B的左侧),且△ABD的面积是3.(1)求该抛物线的表达式;(2)求∠ADB的正切值;(3)若抛物线与y轴交于点C,直线CD交x轴于点E,点P在射线AD上,当△APE与△ABD相似时,求点P的坐标.25.(14分)已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM ∥AC,动点P在射线BM上(点P不与B重合),联结PA并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.参考答案一、选择题1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x5【分析】原式利用幂的乘方与积的乘方运算法则计算即可求出值.【解答】解:原式=x6,故选:C.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.2.下列抛物线中,顶点坐标为(2,1)的是()A.y=(x+2)2+1 B.y=(x﹣2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣2)2﹣1 【分析】根据各个选项中的函数解析式可以直接写出它们的顶点坐标,从而可以解答本题.【解答】解:y=(x+2)2+1的顶点坐标是(﹣2,1),故选项A不符合题意,y=(x﹣2)2+1的顶点坐标是(2,1),故选项B符合题意,y=(x+2)2﹣1的顶点坐标是(﹣2,﹣1),故选项C不符合题意,y=(x﹣2)2﹣1的顶点坐标是(2,﹣1),故选项D不符合题意,故选:B.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.【分析】根据三角函数的定义即可得到结论.【解答】解:∵∠A=α,AB=3,∴cosα=,∴AC=AB•cosα=3cosα,故选:B.【点评】本题考查了锐角三角函数的定义的应用,熟记三角函数的定义是解题的关键.4.点P把线段AB分割成AP和PB两段,如果AP是PB和AB的比例中项,那么下列式子成立的是()A.=B.=C.=D.=【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值()叫做黄金比.【解答】解:∵点P把线段AB分割成AP和PB两段,AP是PB和AB的比例中项,∴根据线段黄金分割的定义得:=.故选:D.【点评】考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.5.如图,点D、E分别在△ABC的边AB、AC上,且DE与BC不平行.下列条件中,能判定△ADE与△ACB相似的是()A.=B.=C.=D.=【分析】根据两边对应成比例且夹角相等的两个三角形相似即可求解.【解答】解:在△ADE与△ACB中,∵=,且∠A=∠A,∴△ADE∽△ACB.故选:A.【点评】此题考查了相似三角形的判定:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.6.下列说法不正确的是()A.设为单位向量,那么||=1B.已知、、都是非零向量,如果=2,=﹣4,那么∥C.四边形ABCD中,如果满足AB∥CD,||=||,那么这个四边形一定是平行四边形D.平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解【分析】根据单位向量的定义,向量平行的定义以及平行四边形的判定进行判断.【解答】解:A、设为单位向量,那么||=1,故本选项说法正确.B、已知、、都是非零向量,如果=2,=﹣4,那么、方向相反,则∥,故本选项说法正确.C、四边形ABCD中,如果满足AB∥CD,||=||即AD=BC,不能判定这个四边形一定是平行四边形,故本选项说法错误.D、由平面向量的平行四边形法则可以推知,平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,故本选项说法正确.故选:C.【点评】此题考查了平面向量的知识,属于基础题,解答本题的关键是明确平面向量的表示形式,难度一般.二、填空题(本大题共12题,每题4分)7.不等式2x﹣1>0的解是x>.【分析】先移项,再系数化为1即可.【解答】解:移项,得2x>1,系数化为1,得x>.【点评】注意移项要变号.8.方程=的根是x=﹣1 .【分析】按分式方程的解法,去分母化分式方程为整式方程求解即可.【解答】解:方程的两边都乘以(x﹣1),得x2=1所以x=±1.当x=1时,x﹣1=0,所以1不是原方程的根;当x =﹣1时,x ﹣1=﹣2≠0,所以﹣1是原方程的根.所以原方程的解为:x =﹣1.故答案为:x =﹣1.【点评】本题考查了分式方程的解法.题目比较简单,解分式方程易忘记检验而出错.9.已知=,那么的值是 .【分析】直接根据已知用同一未知数表示出各数,进而得出答案.【解答】解:∵=, ∴设x =2a ,则y =5a ,那么==.故答案为:.【点评】此题主要考查了比例的性质,正确表示出x ,y 的值是解题关键.10.△ABC ∽△A 1B 1C 1,其中点A ,B ,C 分别与点A 1,B 1,C 1对应,如果AB :A 1B 1=2:3,AC =6,那么A 1C 1= 9 .【分析】根据相似三角形的性质即可得到结论.【解答】解:∵△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,∴==,∵AC =6,∴=∴A 1C 1=9,故答案为:9.【点评】本题主要考查了相似三角形的性质,熟记相似三角形的性质是解题的关键.11.如图,在点A 处测得点B 处的仰角是 ∠4 .(用“∠1,∠2,∠3或∠4”表示)【分析】根据仰角的定义即可得到结论.【解答】解:在点A处测得点B处的仰角是∠4,故答案为:∠4.【点评】本题考查了解直角三角形的应用﹣仰角和俯角,熟记仰角和俯角的定义是解题的关键.12.如图,当小明沿坡度i=1:的坡面由A到B行走了6米时,他实际上升的高度BC = 3 米.【分析】根据坡度的概念求出∠A,根据直角三角形的性质解答.【解答】解:∵i=1:,∴tan A==,∴∠A=30°,∴BC=AB=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.13.抛物线y=ax2+(a﹣1)(a≠0)经过原点,那么该抛物线在对称轴左侧的部分是下降的.(填“上升”或“下降”)【分析】根据抛物线y=ax2+(a﹣1)(a≠0)经过原点,从而可以求得a的值,进而得到该抛物线在对称轴左侧的部分是上升还是下降,本题得以解决.【解答】解:∵抛物线y=ax2+(a﹣1)(a≠0)经过原点,∴0=a×02+(a﹣1),得a=1,∴y=x2,∴该函数的顶点坐标为(0,0),函数图象的开口向上,∴该抛物线在对称轴左侧的部分是下降的,故答案为:下降.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.14.如图4,AD∥BC,AC、BD相交于点O,且S△AOD:S△BOC=1:4.设=,=,那么向量=+.(用向量、表示)【分析】根据已知条件得到△ADO∽△CBO,根据相似三角形的性质得到=()2=,得到=,求得=,根据已知条件得到=+,于是得到结论.【解答】解:∵AD∥BC,∴△ADO∽△CBO,∴=()2=,∴=,∴=,∵=,=,∴=+,∴==+,故答案为:+.【点评】本题考查了相似三角形的判定和性质,平面向量,熟练掌握相似三角形的判定和性质是解题的关键.15.在中△ABC,∠C=90°,AC=8,BC=6,G是重心,那么G到斜边AB中点的距离是.【分析】根据勾股定理可求得AB=10,再根据直角三角形斜边上的中线等于斜边的一半可得CD=5,最后根据重心的性质可求DG.【解答】解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵CD为AB边上的中线,∴CD=AB=5,∵点G是重心,∴DG=CD=.故答案为:.【点评】本题考查的是三角形的重心的概念和性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.16.抛物线y=ax2(a≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y=x2沿直线y=x向上平移,平移距离为时,那么它的“同簇抛物线”的表达式是y=(x﹣1)2+1 .【分析】沿直线y=x向上平移,平移距离为则相当于抛物线y=ax2(a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【解答】解:∵抛物线y=x2沿直线y=x向上平移,平移距离为,相当于抛物线y=ax2(a≠0)向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是y=(x﹣1)2+1.故答案为:y=(x﹣1)2+1.【点评】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.如图,梯形ABCD中,AB∥CD,BE∥AD,且BE交CD于点E,∠AEB=∠C.如果AB=3,CD=8,那么AD的长是.【分析】根据平行四边形的判定得到四边形ABED是平行四边形,由平行四边形的性质得到BE=AD,DE=AB=3,根据相似三角形的性质即可得到结论.【解答】解:∵AB∥CD,BE∥AD,∴四边形ABED是平行四边形,∴BE=AD,DE=AB=3,∵CD=8,∴CE=CD=DE=5,∵AB∥CD,∴∠ABE=∠BEC,∵∠AEB=∠C,∴△AEB∽△BCE,∴,∴,∴BE=,故答案为:.【点评】本题考查了相似三角形的判定和性质,平行四边形的判定和性质,平行线的性质,正确的识别图形是解题的关键.18.如图,将矩形ABCD沿对角线BD所在直线翻折后,点A与点E重合,且ED交BC 于点F,连接AE.如果tan∠DFC=,那么的值是.【分析】根据矩形的性质得到BC=AD,∠DAB=∠C=90°,AD∥BC,根据折叠的性质得到DE=AD,∠BED=∠DAB=90°,∠ADB=∠BDE,设CD=BE=2x,CF=EF =3x,根据勾股定理得到BF=CF==x,求得BC=(+3)x,根据勾股定理得到BD==x,根据三角形的面积公式得到AH=,求得AE=2AH=,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴BC=AD,∠DAB=∠C=90°,AD∥BC,∴∠ADB=∠DBC,∵矩形ABC D沿对角线BD所在直线翻折后,点A与点E重合,∴DE=AD,∠BED=∠DAB=90°,∠ADB=∠BDE,∴∠DBF=∠FDB,∴BF=DF,∴EF=CF,∵tan∠DFC=∠BFE=,∴设CD=BE=2x,CF=EF=3x,∴BF=CF==x,∴BC=(+3)x,∴BD==x,∵AE⊥BD,∴AH=,∴AE=2AH=,∴===,故答案为:.【点评】本题考查了翻折变换(折叠问题),矩形的性质,解直角三角形,正确的识别图形是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3﹣2.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)先化简,再求值:(2﹣)÷,其中x=2.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(2﹣)÷====,当x=2时,原式=.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.21.(10分)已知:如图,反比例函数的图象经过点A、P,点A(6,),点P的横坐标是2.抛物线y=ax2+bx+c(a≠0)经过坐标原点,且与x轴交于点B,顶点为P.求:(1)反比例函数的解析式;(2)抛物线的表达式及B点坐标.【分析】(1)设反比例函数的解析式为:y=,把点A(6,)代入,得到关于k的一元一次方程,解之得到k的值,即可得到答案,(2)把x=2代入(1)的解析式,得到点P的坐标,根据抛物线过坐标原点,利用待定系数法,求得抛物线的表达式,把y=0代入抛物线的表达式,解之即可得到答案.【解答】解:(1)设反比例函数的解析式为:y=,把点A(6,)代入得:=,解得:k=8,即反比例函数的解析式为:y=,(2)把x=2代入y=得:y==4,即点P的坐标为:(2,4),设抛物线的表达式为:y=a(x﹣2)2+4,把点O(0,0)代入得:4a+4=0,解得:a=﹣1,即抛物线的表达式为:y=﹣(x﹣2)2+4,把y=0代入得:﹣(x﹣2)2+4=0,解得:x1=0,x2=4,即B点的坐标为:(4,0).【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,抛物线与x轴的交点,解题的关键:(1)正确掌握待定系数法求反比例函数解析式,(2)正确掌握待定系数法求二次函数解析式,根据抛物线解析式,求抛物线与x轴的交点.22.(10分)2019年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)【分析】(1)由AC⊥BC,得到∠C=90°,根据三角函数的定义得到AC=800,在Rt△ABC 中根据三角函数的定义得到AB==≈1395 米;(2)求得该车的速度==55.8km/h<60千米/时,于是得到结论.【解答】解:(1)∵AC⊥BC,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395 米;(2)∵AB=1395,∴该车的速度==55.8km/h<60千米/时,故没有超速.【点评】此题主要考查了解直角三角形的应用,关键是掌握三角函数定义.23.(12分)已知:如图,在△ABC中,点D、E分别在边BC和AB上,且AD=AC,EB =ED,分别延长ED、AC交于点F.(1)求证:△ABD∽△FDC;(2)求证:AE2=BE•EF.【分析】(1)根据等腰三角形的性质得到∠ADC=∠ACD,∠B=∠BDE,根据三角形的外角的性质得到∠BAD=∠F,于是得到结论;(2)根据相似三角形的性质得到=,等量代换即可得到结论.【解答】证明:(1)∵AD=AC,∴∠ADC=∠ACD,∵BE=DE,∴∠B=∠BDE,∵∠BDE=∠CDF,∴∠CDF=∠B,∵∠BAD=∠ADC﹣∠B,∠F=∠ACD﹣∠CDF,∴△ABD∽△FDC;(2)∵∠EAD=∠F,∠AED=∠FEA,∴△AED∽△FEA,∴=,∴AE2=DE•EF,∵BE=DE,∴AE2=BE•EF.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+c(a≠0)的图象经过点B(4,0)、D(5,3),设它与x轴的另一个交点为A(点A在点B的左侧),且△ABD的面积是3.(1)求该抛物线的表达式;(2)求∠ADB的正切值;(3)若抛物线与y轴交于点C,直线CD交x轴于点E,点P在射线AD上,当△APE与△ABD相似时,求点P的坐标.【分析】(1)设A(m,0),由△ABD的面积是3可求得m=2,再利用待定系数法求解可得;(2)作DF⊥x轴,BF⊥AD,由A,B,D坐标知DF=AF=3,据此可求得AD=3,∠DAF=45°,继而可得AE=BE=,DE=2,再依据正切函数的定义求解可得;(3)先求出直线AD解析式为y=x﹣2,直线BD解析式为y=3x﹣12,直线CD解析式为y=﹣x+8,①△ADB∽△APE时BD∥PE,此条件下求得PE解析式,连接直线PE和直线AD解析式所得方程组,解之求得点P坐标;②△ADB∽△AEP时∠ADB=∠AEP,依据tan∠ADB=tan∠AEP=求解可得.【解答】解:(1)设A(m,0),则AB=4﹣m,由△ABD的面积是3知(4﹣m)×3=3,解得m=2,∴A(2,0),设抛物线解析式为y=a(x﹣2)(x﹣4),将D(5,3)代入得:3a=3,解得a=1,∴y=(x﹣2)(x﹣4)=x2﹣6x+8;(2)如图1,过点D作DF⊥x轴于点F,∵A(2,0),B(4,0),D(5,3),∴DF=3,AF=3,则AD=3,∠DAF=45°,过点B作BE⊥AD于E,则AE=BE=,∴DE=2,∴tan∠ADB===;(3)如图2,由A(2,0),D(5,3)得直线AD解析式为y=x﹣2,由B(4,0),D(5,3)可得直线BD解析式为y=3x﹣12,由C(0,8),D(5,3)可得直线CD解析式为y=﹣x+8,当y=0时,﹣x+8=0,解得x=8,∴E(8,0),①若△ADB∽△APE,则∠ADB=∠APE,∴BD∥PE,设PE所在直线解析式为y=3x+m,将点E(8,0)代入得24+m=0,解得m=﹣24,∴直线PE解析式为y=3x+24,由得,∴此时点P(11,9);②若△ADB∽△AEP,则∠ADB=∠AEP,∴tan∠ADB=tan∠AEP=,设P(n,n﹣2),过点P作PG⊥AE于点G,则OG=n,PG=n﹣2,∴GE=8﹣n,由tan∠AEP===求得n=4,∴P(4,2);综上,P(11,9)或(4,2).【点评】本题是二次函数的综合问题,解题的关键是掌握三角形的面积公式、待定系数法求二次函数和一次函数的解析式、一次函数和二次函数的交点问题等知识点.25.(14分)已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM ∥AC,动点P在射线BM上(点P不与B重合),联结PA并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.【分析】(1)确定∠PBA=∠BAC=α=∠AQC后,用解直角三角形的方法,求出AH和BC 长即可求解;(2)证明△ABP∽△CQA,利用,即可求解;(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,利用cos∠PQC=cosα==,即可求解.【解答】解:(1)过点A作AH⊥BC交于点H,∵BM∥AC,∠PBA=∠BAC=α=∠AQC,tan∠ABC=2=tanα,则sinα=,cosα=,设:BH=a,则AH=a,则AB2=AH2+BH2,即:36=a2+8a2,解得:a=2,即BH=2,AH=,CH==2,则BC=BH+CH=9=AC,∴∠ABC=∠BAC=α,S=AH•BC=××9=18;△ABC(2)过点A作AG⊥PA交于点G,∵∠PBA=∠CBA=α,AH⊥BC,∴BG=BH=2,AG=AH=,PG=x﹣2,AP==,∵∠QAC+∠PAB=180﹣α,∠PAB+∠APB=180°﹣α,∴∠QAC=∠APB,又∠AQC=∠ABP,∴△ABP∽△CQA,∴,其中:AB=6,BP=x,QA=y,AP=,AC=9,CQ=,y=(x>0);(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,cos∠PQC=cosα==…①,其中CQ=,PQ=AP+AQ=y+AP,AP=,把CQ、PA、AP代入①式整理得:解得:x=9,即BP的长为9.【点评】本题为三角形综合题,重点是确定三角形相似,利用解直角三角形和三角形相似的方法,求出对应线段长度是解题的关键,本题难度较大.课后拓展名言名句:任何一个人,都要必须养成自学的习惯,即使是今天在学校的学生,也要养成自学的习惯,因为迟早总要离开学校的!自学,就是一种独立学习,独立思考的能力。

上海市青浦区2019届初三数学一模试卷

上海市青浦区2019届初三数学一模试卷

上海市青浦区2019届初三一模数学试卷2019.01一. 选择题(本大题共6题,每题4分,共24分)1. 下列图形中,一定相似的是( )A. 两个正方形B. 两个菱形C. 两个直角三角形D. 两个等腰三角形2. 如图,已知AB ∥CD ∥EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E , 如果:3:1AD DF ,10BE ,那么CE 等于( ) A. 103 B. 203 C. 52 D. 1523. 在Rt △ABC 中,90C ,如果A ,BC a ,那么AC 等于( )A. tan aB. cot aC. sin aD. cos a4. 下列判断错误的是( )A. 00aB. 如果2a b c ,3a b c ,其中0c ,那么a ∥bC. 设e 为单位向量,那么||1eD. 如果||2||a b ,那么2a b 或2a b5. 如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A. AED BB. 180BDE CC. AD BC AC DED. AD AB AE AC6. 已知二次函数2y ax bx c 的图像如图所示,那么下列结论中正确的是( )A. 0acB. 0bC. 0a cD. 0a b c二. 填空题(本大题共12题,每题4分,共48分)7. 如果25x x y ,那么x y8. 计算:3(2)2(3)a b a b9. 如果两个相似三角形的相似比为1:3,那么它们的周长比为10. 二次函数241y x x 的图像的顶点坐标是11. 抛物线23y x mx m 的对称轴是直线1x ,那么m12. 抛物线22y x 在y 轴右侧的部分是 (填“上升”或“下降”)13. 如果 是锐角,且sin cos 20 ,那么 度14 如图,某水库大坝的横断面是梯形ABCD ,坝高为15米,迎水坡CD 的坡度为1:2.4,那么该水库迎水坡CD 的长度为 米15. 如图,在边长相同的小正方形组成的网格中,点A 、B 、C 都在这些小正方形的顶点上,则tan ABC 的值为16. 在△ABC 中,AB AC ,高AH 与中线BD 相交于点E ,如果2BC ,3BD ,那 么AE17. 如图,在Rt △ABC 中,90ACB ,1AC ,tan 2CAB ,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D ,点C 落在点E ,DE 与直线BC 相交于点F ,那 么CF18. 对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都 在图形内或图形上,那么这样的点S 称为“亮点”,如图,对于封闭图形ABCDE ,1S 是 “亮点”,2S 不是“亮点”,如果AB ∥DE ,AE ∥DC ,2AB ,1AE ,60B C , 那么该图形中所有“亮点”组成的图形的面积为三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19. 计算:121(sin30)|1cot 30|cos 45.20. 如图,在平行四边形ABCD 中,点E 在边BC 上,2CE BE ,AC 、DE 相交于点F .(1)求:DF EF 的值; (2)如果CB a ,CD b ,试用a 、b 表示向量EF .21. 如图,在△ABC 中,点D 、E 分别在AB 、AC 上,2AE AD AB ,ABE ACB .(1)求证:DE ∥BC ;(2)如果:=1:8ADE DBCE S S 四边形,求:ADE BDE S S 的值.22. 如图,在港口A 的南偏东37°方向的海面上,有一巡逻艇B ,A 、B 相距20海里,这时在巡逻艇的正北方向及港口A 的北偏东67°方向上,有一渔船C 发生故障,得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C 处?【参考数据:sin 370.60 ,cos370.80 ,tan 370.75 ,12sin 6713 ,5cos6713 , 12tan 675】23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD AF ,AE CE DE EF .(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ,求证:AB AC .24. 在平面直角坐标系xOy 中,将抛物线2y x 平移后经过点(1,0)A 、(4,0)B ,且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD ,求CAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.25. 如图,在梯形ABCD 中,AD ∥BC ,18BC ,15DB DC ,点E 、F 分别在线段BD 、CD 上,5DE DF ,AE 的延长线交边BC 于点G ,AF 交BD 于点N ,其延长线交BC 的延长线于点H .(1)求证:BG CH ;(2)设AD x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.参考答案一. 选择题1. A2. C3. B4. D5. C6. D二. 填空题 7. 238. a 9. 1:3 10. (2,5) 11. 2 12. 上升 13. 70° 14. 3915.12 16. 17. 12 18. 4三. 解答题19. 20.(1):3:2DF EF ;(2)24515EF b a . 21.(1)证明略;(2):1:2ADE BDE S S .22. 能.23.(1)证明略;(2)证明略.24.(1)234y x x ;(2)sin 221CAD ;(3)(42)Q .25.(1)证明略;(2)22(09)6x y x x ;(3)3AD 或32AD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普陀区2018学年第一学期初三质量调研数学试卷(时间:100分钟,满分150分)2019.01.08一、选择题(本大题共6题,每题4分,满分24分)1. 已知二次函数y=(a−1)x2+3的图像有最高点,那么a的取值范围是(▲)(A)a>0 (B)a<0(C)a>1 (D)a<12. 下列二次函数中,如果图像能与y轴交于点A(0.1),那么这个函数是(▲)(A)y=3x2(B)y=3x2+1(C)y=3(x+1)2(D)y=3x2−x3. 如图1,在∆ABC中,点D、E分别在∆ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使∆ADE与∆ABC相似,那么这个条件是(▲)(A)∠AED=∠B(B)∠ADE=∠C(C)ADAC =AEAB(D)ADAB=DEBC4. 已知a⃗、b⃗⃗、c⃗都是非零向量,如果a⃗=2c⃗,b⃗⃗=−2c⃗,那么下列说法中,错误的是(▲)(A)a⃗//b⃗⃗(B)|a⃗|=|b⃗⃗|(C)a⃗+b⃗⃗=0(D)a⃗与b⃗⃗方向相反5. 已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3,如果两圆内切圆心距等于2,那么两圆外切时圆心距等于(▲);(A)1 (B)4 (C)5 (D)86. 如图2,在∆ABC中,点D、E分别在边AB、AC上,DE//BC,且DE经过重心G,在下列四个说法中,○1DEBC =23○2BDAD=13○3C∆ADEC∆ABC=23○4S∆ADES四边形DBCE=45,正确的个数是(▲)(A)1 (B)2 (C)3 (D)4二、填空题(本大题共12题,每题4分,共计48分)7. 如果xy =72,那么x−2yy的值是▲;8. 化简3(a⃗+1b⃗⃗)−2(a⃗−b⃗⃗)= ▲;(x+3)2−4先向右平移2个单位,在向上平移3个单位,那么平移后所得10. 将抛物线y=12新抛物线的表达式是▲;11. 已知抛物线y=2x2+bx−1的对称轴是直线x=1,那么b的值等于▲;12. 已知∆ABC三边的比为2:3:4,与它相似的∆A′B′C′最小边的长等于12,那么∆A′B′C′最大边的长等于▲;13. 在Rt∆ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是▲;14. 正八边形的中心角为▲度;15. 如图3,在梯形ABCD中,AD//BC,AB⊥BC,BD⊥DC,tan∠ABD=1,BC=5,那么DC2的长等于▲;16. 如图4,AB//CD,AD、BC相交于点E,过E作EF//CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于▲;17. 已知二次函数y=ax2+c(a>0)的图像上有纵坐标分别为y1、y2的两点A、B,如果A、B到对称轴的距离分别等于2、3,那么y1▲y2;(填“<”、“=”或“>”),点D在边BC上,将∆ABD沿直线AD翻折得到∆AED,18. 如图5,∆ABC中,AB=AC=8,cosB=34点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF= ▲;三、解答题(本大题7题,满分78分)19. (本题满分10分)计算:4sin45°+cos230°−2cot45°tan60°−√2如图6,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 在边BC 上,AE 与BD 相交于点G ,AG:GE=3:1(1) 求EC:BC 的值;(2) 设BA ⃗⃗⃗⃗⃗⃗=a ⃗,AO ⃗⃗⃗⃗⃗⃗=b ⃗⃗,那么EC ⃗⃗⃗⃗⃗⃗= ▲ ;GB ⃗⃗⃗⃗⃗⃗= ▲ (用向量a ⃗、b⃗⃗表示)21. (本题满分10分)如图7,⊙O 1和⊙O 2相交于A 、B 两点,O 1O 2与AB 相交于点C ,O 2A 的延长线交⊙O 1于点D ,点E 为AD 的中点,AE=AC ,联结O 1E ; (1)求证:O 1E =O 1C ;(2)如果O 1O 2=10,O 1E =6,求⊙O 2的半径长;如图8,小山的一个横断面是梯形BCDE,EB//DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡度D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度;(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23. (本题满分12分)已知,如图9,∆ADE的顶点E在∆ABC的边BC上,DE与AB相交于点F,AE2=AF∙AB,∠DAF=∠EAC;(1)求证:∆ADE~∆ACB;(2)求证:DFDE =CECB如图10,在平面直角坐标系xOy中,抛物线y=ax2+bx−3(a≠0)与x轴交于点A(-1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为D;(1)求抛物线的表达式及顶点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点,且∠FBD=135°,求点F的坐标;如图11,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点;(1)如图11○1,当∠ACB=90°,OC=2,求a的值;(2)如图11○2,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ//BC,并使∠QOC=∠B,求AQ:OQ的值;123456D B D C B C789101112131415161718奉贤区2018学年第一学期初三质量调研数学试卷(时间:100分钟,满分150分)2019.01.08一、选择题(本大题共6题,每题4分,满分24分)1. 已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是(▲)(A)a+b=7 (B)5a=2b(C)a+bb =72(D)a+5b+2=12. 关于二次函数y=12(x+1)2的图像,下列说法正确的是(▲)(A)开口向下(B)经过原点(C)对称轴右侧的部分是下降的(D)顶点坐标是(-1,0)3. 如图1,在直角坐标平面内,射线OA与x轴正半轴的夹角为 α,如果OA=√10,tanα=3,那么点A的坐标是(▲)(A)(1,3)(B)(3,1)(C)(1,√10)(D)(3,√10)4. 对于非零向量a⃗、b⃗⃗,如果2|a⃗|=3|b⃗⃗|,且它们的方向相同,那么用向量a⃗表示向量b⃗⃗正确是(▲)(A)b⃗⃗=32a⃗(B)b⃗⃗=23a⃗(C)b⃗⃗=−32a⃗(D)b⃗⃗=−23a⃗5. 某同学在利用描点法画二次函数y=ax2+bx+c(a≠0)的图像时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x⋯01234⋯y⋯-30-103⋯接着,他在描述中发现,表格中有一组数据计算错误,他计算错误的一组数据是(▲)(A){x=0y=−3(B){x=2y=−1(C){x=3y=0(D){x=4y=36. 已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是(▲)(A)r≥2(B)r≤8(C)2<r<8(D)2≤r≤8二、填空题(本大题共12题,每题4分,共计48分)7. 计算:3a⃗+2(a⃗−12b⃗⃗)= ▲;8. 计算:sin30°∙tan60°=▲;9. 如果函数y=(m−1)x2+x(m是常数)是二次函数,那么m的值取值范围是▲;10. 如果一个二次函数的图像在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是▲;(只需些一个即可)11. 如果将抛物线y=−2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线▲;12. 如图2,AD与BC相交于点O,如果AOAD =13,那么当BOCO的值是▲时,AB//CD;13. 如图3,已知AB是⊙O的弦,C是AB̂的中点,联结OA、AC,如果∠OAB=20°,那么∠CAB 的度数是▲;14. 联结三角形各边中点,所得的三角形的周长与原三角形周长的比是▲;15. 如果正n边形的一个内角是它的中心角的2倍,那么n的值是▲;16. 如图4,某水库大坝的横截面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是▲米;17. 我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”,如果一个“钻石菱形”的面积为6,那么它的边长是▲;18. 如图5,在∆ABC中,AB=AC=5,sinC=35,将∆ABC绕点A逆时针旋转得到∆ADE,点B、C分别与点D、E对应,AD与边BC交于点F,如果AE//BC,那么BF的长是▲;三、解答题(本大题7题,满分78分) 19. (本题满分10分,每小题满分5分) 已知抛物线y =x (x −2)+2(1)用配方法把这个抛物线的表达式化成y =a(x +m)2+k 的形式,并写出它的顶点坐标; (2)将抛物线y =x (x −2)+2上下平移,使顶点移到x 轴上,求新抛物线的表达式;20. (本题满分10分,每小题满分5分)如图6,已知AD 是∆ABC 的中线,G 是重心; (1)设AB ⃗⃗⃗⃗⃗⃗=a ⃗,BC ⃗⃗⃗⃗⃗⃗=b ⃗⃗,用向量a ⃗、b ⃗⃗表示BG ⃗⃗⃗⃗⃗⃗ (2)如果AB=3,AC=2,∠GAC =∠GCA ,求BG 的长;21. (本题满分10分,每小题满分5分)如图7,已知Rt∆ABC ,∠BAC =90°,BC=5,AC =2√5,以A 为圆心,AB 为半径画圆,与边BC 交于另一点D ; (1)求BD 的长;(2)联结AD ,求∠DAC 的正弦值;22. (本题满分10分,每小题满分5分)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图8-1),如图8-2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C、D之间的距离是10厘米,张角∠CAB=60°;(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A’,(在移动过程中,托臂长度不变,即AC=A’C’,BC=BC’)当张角∠C′A′B=45°时,求滑块A向左侧移动的距离(精确到1厘米)。

(备用数据:√2≈1.41,√3≈1.73,√6≈2.45,√7≈2.65)23. (本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知,如图9,在∆ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE, ED2=EA∙EC;(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD∙AC24. (本题满分12分)如图10,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,-5);(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是3,求点C的坐标;225. (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD中,AB//CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G;;(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求∆DFG的面积为;(用含m的代数式表示)(3)当∆AFD~∆ADG时,求∠DAG的余弦值;金山区2018学年第一学期初三质量调研数学试卷(时间:100分钟,满分150分)2019.01.12一、选择题(本大题共6题,每题4分,满分24分)1. 下列函数是二次函数的是(▲)(A)y=x (B)y=1x (C)y=x−2+x2(D)y=1x22. 在Rt∆ABC中,∠C=90°,那么sin∠B等于(▲)(A)ACAB (B)BCAB(C)ACBC(D)BCAC3. 如图,已知BD与CE相交于点A,ED//BC,AB=8,AC=12,AD=6,那么AE的长等于(▲)(A)4 (B)9 (C)12 (D)164. 已知e⃗是一个单位向量, a⃗⃗、b⃗⃗是非零向量,那么下列等式正确的是(▲)(A)|a⃗|e⃗=a⃗(B)|e⃗|b⃗⃗=b⃗⃗(C)1|a⃗⃗|a⃗=e⃗(D)1|a⃗⃗|a⃗=1|b⃗⃗|b⃗⃗5. 已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是(▲)(A)a<0、b>0、c>0 (B)a<0、b<0、c>0(C)a<0、b>0、c<0 (D)a<0、b<0、c<06. 如图,在Rt∆ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,,那么下列说法正确的是(▲)(A)点B、点C都在⊙A内(B)点C在⊙A内,点B在⊙A外(C)点B在⊙A内,点C在⊙A外(D)点B、点C都在⊙A外二、填空题(本大题共12题,每题4分,共计48分)7. 已知二次函数f(x)=x2−3x+1,那么f(2)=▲;8. 已知抛物线y =12x 2−1,那么抛物线在y 轴右侧部分是 ▲ (填“上升的”或“下降的”);9. 已知x y =52,那么x+yy = ▲ ;10. 已知α是锐角,sinα=12,那么cosα= ▲ ;11. 一个正n 边形的中心角等于18°,那么n= ▲ ;12. 已知点P 是线段AB 上的黄金分割点,AP>BP ,AB=4,那么AP= ▲ ;13. 如图,为了测量铁塔AB 的高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB= ▲ 米;14. 已知⊙O 1,⊙O 2的半径分别为2和5,圆心距为d ,若⊙O 1和⊙O 2相交,那么d 的取值范围是 ▲ ;15. 如图,已知O 为∆ABC 内一点,点D 、E 分别在边AB 和AC 上,且AD AB =25,DE//BC ,设OB⃗⃗⃗⃗⃗⃗=b ⃗⃗、OC ⃗⃗⃗⃗⃗⃗=c ⃗,那么DE ⃗⃗⃗⃗⃗⃗= ▲ (用b ⃗⃗、c ⃗表示);16. 如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB =60°,AP=6,那么⊙O 2的半径等于 ▲ ;17. 如图,在∆ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos∠C =45,那么GE= ▲ ;18. 如图,在Rt∆ABC 中,∠C =90°,AC=8,BC=6,在边AB 上取一点O ,使BO=BC ,以点O 为旋转中心,把∆ABC 逆时针旋转90°,那么∆ABC 与∆A′B′C′重叠部分的面积是 ▲ ;三、解答题(19-22题,每题10分,23-24题12分,25题14分,满分78分)+tan260°−cot45°∙sin30°19. 计算:cos245°−cot30°2sin60°20. 已知二次函数y=x2−4x−5,与y轴的交点为P,与x轴交于A、B两点,(点B在点A 的右侧)(1)当y=0时,求x的值;(2)点M(6,m)在二次函数y=x2−4x−5的图像上,设直线MP与x轴交于点C,求cot∠MCB 的值;21. 如图,已知某水库的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2;求(1)背水坡AB的长度;(2)坝底BC的长度;22. 如图,已知AB是⊙O的直径,C为圆上一点,D是BĈ的中点,CH⊥AB于H,垂足为H,联结OD交弦BC于E,交CH于F,联结EH;(1)求证:∆BHE~∆BCO;(2)若OC=4,BH=1,求EH的长;23. 如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H;(1)求证:AM2=MF∙MH(2)若BC2=BD∙DM,求证:∠AMB=∠ADC;24. 已知抛物线y=x2+bx+c经过点A(0,6)点B(1,-3),直线ℓ1:y=kx(k≠0),直线ℓ2:y=−x−2,直线ℓ1经过抛物线y=x2+bx+c的顶点P,且ℓ1与ℓ2相交于点C,直线ℓ2与x 轴、y轴分别交于点D、E,若把抛物线上下平移,使抛物线的顶点在直线ℓ2上(此时抛物线的顶点记为M)。

相关文档
最新文档