八年级数学月考试卷及答案

合集下载

2023-2024学年安徽省阜阳市阜南县文勤学校八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省阜阳市阜南县文勤学校八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省阜阳市阜南县文勤学校八年级(上)第三次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在函数中,自变量x的取值范围是()A. B. C. D.2.若点M的坐标为,则点M在()A.第一象限B.第二象限C.第三象限D.第四象限3.以下列各组线段为边,不能组成三角形的是()A.2cm,3cm,4cmB.3cm,4cm,5cmC.3cm,6cm,7cmD.5cm,6cm,12cm4.点关于x轴对称的点的坐标为()A. B. C. D.5.把函数的图象向下平移5个单位,所得到的函数表达式为()A. B. C. D.6.如图,,,则判定与全等的依据是()A.HLB.SASC.SSSD.AAS7.关于函数,下列说法正确的是()A.直线在y轴上的截距为6B.当时,C.与直线平行D.y值随着x值增大而增大8.如图所示,FB为的角平分线,且,,,则的大小是()A. B. C. D.9.一次函数的图象如图所示,则一次函数的图象大致是()A.B.C.D.10.已知:如图,,,下面结论正确的个数是①;②;③;④A.1个B.2个C.3个D.4个二、填空题:本题共4小题,每小题3分,共12分。

11.写出命题“如果,,那么”的逆命题是______.12.若直线l与直线平行,且l过点,则直线l的表达式为______.13.已知且交于点G,,,其中的面积为,四边形ABFG的面积为,若,则G点到CF的距离为______14.已知一次函数若该函数图象与x轴的交点位于x轴的正半轴,则m的取值范围是______;若该函数图象与y轴的交点在、之间包括A、B两点,则m的最大值为______.三、解答题:本题共9小题,共90分。

解答应写出文字说明,证明过程或演算步骤。

15.本小题8分已知一次函数的图象经过点,两点.求这个一次函数的表达式.16.本小题8分如图,的三个顶点都在格点上.写出A、B、C三点的坐标;若把向上平移2个单位,再向左平移6个单位得到,请在坐标系中直接画出17.本小题8分如图,在中,AD是BC边上的高,CE平分,若,,求的度数.18.本小题8分已知一次函数试说明与成正比例函数关系;当一次函数经过点、时,求出函数表达式.19.本小题10分如图所示,已知,,求证:≌;说明AF与DE的位置关系.20.本小题10分如图,在平面直角坐标系中,直线:与直线:相交于一点,在y轴上的截距为直线,的表达式;讨论与的大小关系.21.本小题12分如图所示,在四边形ABCD中,,E为AF的中点,连接AE、BE,并延长AE交BC的延长线于点求证:≌;若,求证:22.本小题12分某超市计划销售甲乙两种饮料,这两种饮料的进价与售价如表所示:甲种饮料乙种饮料进价元3010售价元4520若超市计划购进20件饮料,求成本y与甲种饮料的件数x之间的函数表达式;若在的情况下,超市为了控制成本,计划20件饮料的成本不得高于500元,求超市能够获得的最大利润.23.本小题14分如图所示,在图1、2中,,在图1中证明:≌;利用图2证明:;拓展与应用:如图3,若,,求证:答案和解析1.【答案】B【解析】解:,,解得:故选:根据分式和二次根式有意义的条件列不等式求解即可.本题主要考查了分式有意义的条件、二次根式有意义的条件等知识点,掌握分式和二次根式有意义的条件是解题的关键.2.【答案】C【解析】解:点M的坐标为,,,点M在第三象限,故选:根据第一象限;第二象限;第三象限;第四象限即可解答.本题主要考查了判断点所在的象限,熟知每个象限内点的坐标特点是解题的关键.3.【答案】D【解析】解:A、,能构成三角形,故该选项不符合题意;B、,能构成三角形,故该选项不符合题意;C、,能构成三角形,故该选项不符合题意;D、,不能构成三角形,故该选项符合题意;故选:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析判断即可得到正确选项.此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.【答案】A【解析】解:关于x轴对称,横坐标不变,纵坐标变为相反数,点关于x轴对称的点的坐标为故选:根据关于x轴对称,横坐标不变,纵坐标变为相反数即可得到答案.本题主要考查关于x轴对称的点的坐标的特点,熟练掌握关于x轴对称的点的坐标的特点是解题的关键.5.【答案】D【解析】解:把函数的图象向下平移5个单位,所得到的函数表达式为,故选:根据“左加右减,上加下减”的平移规律求解即可.本题主要考查了一次函数图象的平移,解题的关键是掌握平移的特征.6.【答案】D【解析】解:BE与CD相交于点O,如图,在和中,,≌,,,,即,在和中,,≌故选:BE与CD相交于点O,如图,先根据“AAS”证明≌得到,,所以,然后根据“AAS”可判断≌本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键;选用哪一种方法,取决于题目中的已知条件.7.【答案】B【解析】解:直线在y轴上的截距为,故选项A错误,不符合题意;由可得,当时,,解得,故选项B正确,符合题意;与直线相交,故选项C错误,不符合题意;y值随着x值增大而减小,故选项D错误,不符合题意.故选:根据一次函数的图形和性质判断即可.本题主要考查一次函数的性质,两直线相交或平行问题,熟练掌握函数图象的图形和性质是解题的关键.8.【答案】A【解析】解:,,,为的角平分线,,即,在和中,,≌,,故选:先根据邻补角的定义可得,再根据三角形内角和定理可得,再由角平分线的定义可得、;然后证明≌可得,最后根据三角形内角和定理即可解答.本题主要考查了全等三角形的判定与性质、三角形内角和定理,等腰三角形的性质等知识点,掌握全等三角形的判定与性质是解题的关键.9.【答案】B【解析】解:由题意知,,,则一次函数的图象大致经过二、三、四象限,故选:根据系数的正负判断函数经过的象限即可得到答案.本题主要考查一次函数的图象,熟练掌握函数的图象是解题的关键.10.【答案】D【解析】解:,,,在和中,,,,,,,故①正确,四边形ABCD是平行四边形,,,故②④正确,,,,四边形DEBF是平行四边形,,故③正确.故选:证明,再证明四边形ABCD,四边形DEBF都是平行四边形可得结论.本题考查全等三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.11.【答案】如果,那么,【解析】解:命题“如果,,那么”的逆命题是“如果,那么,”,故答案为:如果,那么,根据逆命题的概念解答即可.本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.【答案】【解析】解:直线l与直线平行,设直线l的函数表达式为,把点代入得:,解得:,直线的函数表达式为故答案为:根据两平行直线的解析式的k值相等可设直线的函数表达式为,再把经过的点的坐标代入函数解析式计算求出b即可解答.本题主要考查了两直线平行的问题,熟记两平行直线的解析式的k值相等是解题的关键.13.【答案】4【解析】解:,,,≌,,,,则G点到CF的距离为4cm,故答案为:根据ASA证明≌,结合题意得出,进而根据三角形的面积公式,即可求解.本题考查了全等三角形的性质与判定,熟记全等三角形的判定与性质是解题的关键.14.【答案】【解析】解:一次函数的图象与x轴的交点位于x轴的正半轴,,解得:,,解得:,故m的取值范围是;故答案为:;当时,,函数图象与y轴的交点在、之间,,解得:,的最大值为故答案为:根据题意得不等式,解不等式即可得到结论;根据题意得不等式组,解不等式组即可得到答案.本题主要考查的是一次函数的图象与系数的关系,熟知函数图象与坐标轴的交点是解题的关键.15.【答案】解:设解析式为,将点,代入得,,解得:,这个一次函数的表达式【解析】根据题意设解析式为,待定系数法求解析式,即可求解.本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,关键待定系数法求解析式的应用.16.【答案】解:根据A,B,C的位置可得:、、;如图,即为所画的三角形,.【解析】直接根据A,B,C的位置可得其坐标,先分别确定A,B,C平移后的对称点,,,再顺次连接即可.本题考查作图-平移变换,掌握平移的性质并应用于画图是解本题的关键.17.【答案】解:是BC边上的高,,,,,平分,,【解析】根据已知条件得到,求得,根据三角形的内角和定理得到,根据角平分线的定义得到,于是得到答案.本题考查了三角形内角和定理以及三角形的外角性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.18.【答案】解:,即,与成正比例函数关系;将、代入,则,,【解析】将解析式写成正比例函数形式,进而即可求解;待定系数法求解析式,即可求解.本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,关键是一次函数性质的应用.19.【答案】证明:,,,,即,又,在和中,,≌;解:,理由如下,≌,,在和中,,≌,,,【解析】根据平行线的性质得出,进而根据SAS,即可得证;根据得出,进而根据SAS证明≌得出,进而可得,即可得出本题考查了全等三角形的性质与判定,平行线的性质与判定,解题的关键是正确寻找全等三角形解决问题.20.【答案】解:将代入:得:,,,在y轴上的截距为过点,将、代入:得:,解得:,:解:令,即:,解得:;令,即:,解得:;令,即:,解得:;【解析】将代入:即可求解;根据在y轴上的截距为4可得过点,、代入:即可求解;分别令、、即可求解.本题考查了一次函数与一元一次不等式、待定系数法求一次函数解析式、两直线相交或平行问题,掌握待定系数法是解题关键.21.【答案】证明:,,是AF的中点,,在和中,,≌;解:,,,,≌,,,≌,,【解析】根据平行线的性质可得,根据中点的性质得出,对顶角相等可得,即可证明≌;证明≌,又≌,根据全等三角形的性质,根据,即可得证.本题考查了全等三角形的性质与判定,解题的关键是正确寻找全等三角形解决问题.22.【答案】解:依题意,,即;由可得,解得:,设甲乙两种饮料的总利润为w元,根据题意得,,,随x的增大而增大当时,w取的最大值,最大值为,答:超市能够获得的最大利润为275元.【解析】根据表格数据,列出函数关系式即可求解;根据题意列出表达式得出,进而设甲乙两种饮料的总利润为w元,根据一次函数的性质,即可求解.本题考查了一次函数的应用,解题的关键是根据题意列出关系式.23.【答案】证明:,,,即,在和中,,,,≌证明:,,,即,在和中,,,,≌,,,,即:解:,,,,,在和中,,,,≌,,,,即:【解析】先根据角的和差及等量代换可得,然后结合已知条件利用AAS即可证明结论;先证明≌可得,,然后根据线段的和差及等量代换即可解答;由等腰三角形的性质可得,再根据三角形外角的性质及角的和差可得,再证≌可得,,最后根据线段的和差及等量代换即可解答.本题主要考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角的性质等知识点,掌握全等三角形的判定与性质成为解题的关键.。

2024-2025学年江苏省南京师范大学附属中学树人学校八年级上学期第一次月考数学及答案

2024-2025学年江苏省南京师范大学附属中学树人学校八年级上学期第一次月考数学及答案

2024-2025学年江苏省南京师大附中树人学校八年级(上)第一次月考数学试卷一、选择题1. 下列图形中,不是轴对称图形的是( )A. B.C D.2. 如图,ABC DEF ≌△△,若100A ∠=°,47F ∠=°,则E ∠的度数为( )A. 100°B. 53°C. 47°D. 33°3. 如图,ABC DEF ≌△△,点D ,E 在直线AB 上,4BE =,1AE =,则DE 的长为( )A. 5B. 4C. 3D. 24. 等腰三角形一边为4,一边为3,则此三角形的周长是( )A. 10cmB. 11cmC. 6cm 或8cmD. 10cm 或11cm5. A 、B 、C 三名同学玩“抢凳子”游戏.他们所站的位围成一个ABC ,在他们中间放一个木凳,谁先抢到凳子谁获胜,为保证游戏公平,则凳子应放的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三边中线的交点C. 三个内角角平分线的交点D. 三边高的交点 6. 如图1,已知三角形纸片ABC ,AB AC =,50A ∠=°,将其折叠,如图2所示,使点A 与点B重.的合,折痕为ED ,点E ,D 分别在AB ,AC 上,那么DBC ∠的度数为( )A. 10°B. 15°C. 20°D. 30°7. 如图,已知ABC 的周长是36cm ,ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥于点D ,若3cm OD =,则ABC 的面积是( )A. 248cmB. 254cmC. 260cmD. 266cm8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4二、填空题9. 如图,已知AD BC =,要使ABC CDA △△≌,还要添加的一个条件可以是______.(只需填上一个正确的条件).10. 如图,在ABC 中,点D 、E 、F 分别是BC AB AC ,,上的点,若B C BF CD ∠=∠=,,54BD CE EDF =∠=°,,则A ∠=________.11. 如图,把一个长方形纸条ABCD 沿EF 折叠,若154∠=°,则FGE ∠=_______.12. 如图,在3×3的方格中,每个小方格的边长均为1,则1∠与2∠的数量关系是________.13. 如图所示.A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,1km BD =,1km DC =,村庄A 与C ,A 与D间也有公路相连,且公路AD 是南北走向,3km AC =,只有A ,B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得 1.2km AE =,0.7km BF =,则建造的斜拉桥长至少有____________km .14. 如图,在ABC 中,4AB =, 5.5AC =,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB 、AC 于点M 、N ,则AMN 的周长为_________.15. 如图,ABC 的面积为212cm ,AP 垂直B ∠的平分线BP 于点P ,则PBC △的面积为__________2cm .16. 如图,射线OA OB ,上分别截取11OA OB =,连接11A B ,在11B A 、1B B 上分别截取1212B A B B =,连接22A B ,…按此规律作下去,若11A B O α∠=,则20232023A B O ∠=______.17. 如图,7cm AB =,60CAB DBA ∠=∠=°,5cm AC =,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动,当点P 运动结束时,点Q 随之结束运动,当点P Q ,运动到某处时有ACP △与BPQ 全等,则Q 的运动速度是 ________________cm/s .18. 如图,在ABC 中,BA BC =,BD 平分ABC ∠,交AC 于点D ,点M N 、分别为BD BC 、上动点,若4BC =,ABC 的面积为6,则CM MN +的最小值为_______.在的三、解答题19. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC 关于直线l 成轴对称的A B C ′′′ .(2)ABC 的面积为__________.(3)在直线l 上找一点P (在答题纸上图中标出),使PB PC +的长最短.20. 如图,已知B 、E 、C 、F 在同一条直线上,AB DE =,AC DF =,BE CF =,AC 与DE 交于点G .(1)求证:ABC DEF ≌△△;(2)若50B ∠=°,60ACB ∠=°,求EGC ∠的度数.21. 麒麟某数学兴趣小组的同学用数学知识测一池塘的长度,他们所绘如图,点B ,F ,C (点F ,C 之间不能直接测量,为池塘的长度),点A ,D 在l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若100m 30m BE BF ==,,求池塘FC 的长. 22. 如图,四边形ABCD 中,BC CD =,AC DE =,90B DCE ∠=∠=°,AC 与DE 相交于点F .(1)求证:ABC ECD ∆≅∆(2)判断线段AC 与DE 的位置关系,并说明理由.23. 如图,在ABC 中,DM EN 、分别垂直平分AC 和BC ,交AB 于M N 、两点,DM 与EN 相交于点F .(1)若CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=°,求MCN ∠的度数.24. 如图,已知ABC ,点P 为BAC ∠的平分线上一点,PE AB ⊥,PF AC ⊥,垂足分别为E 、F(1)求证∶ PE PF =(2)若BE CF =,求证:点P 在BC 的垂直平分线上.25. 如图,已知ABC (AC AB BC <<),请用无刻度的直尺和圆规,完成下列作图(不写作法,保留作图痕迹);(1)如图1,在AB 边上寻找一点M ,使AMC ACB ∠=∠;(2)如图2,在BC 边上寻找一点N ,使得NA NB BC +=.26. 如图甲,已知在ABC 中,90ACB ∠=°,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)说明ADC CEB △≌△.(2)说明AD BE DE +=.(3)已知条件不变,将直线MN 绕点C 旋转到图乙位置时,若3DE =、 5.5AD =,则BE=_____.27. 阅读理解:【概念学习】定义①:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“形似三角形”.定义②:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“形似三角形”,我们把这条线段叫做这个三角形的“巧妙分割线”.【概念理解】(1)如图1,在ABC 中,36A ∠=°,AB AC =,CD 平分ACB ∠,则CBD △与ABC ______(填“是”或“不是”)互为“形似三角形”.的(2)如图2,在ABC 中,CD 平分ACB ∠,36A ∠=°,48B ∠=°,求证:CD 为ABC 的“巧妙分割线”;【概念应用】(3)在ABC 中,45A ∠=°,CD 是ABC 的巧妙分割线,直接写出ACB ∠的度数.28. 在ABC 中,,8AB AC BC ==,点M 从点B 出发沿射线BA 移动,同时点N 从点C 出发沿线段AC 的延长线移动,点M ,N 移动的速度相同,MN 与BC 相交于点D .(1)如图1,过点M 作//ME AC ,交BC 于点E ;①图中与BBBB 相等的线段________、_________;②求证:DME DNC ≌;(2)如图2,若60A ∠=°,当点M 移动到AABB 的中点时,求CCCC 的长度;(3)如图3,过点M 作MF BC ⊥于点F ,在点M 从点B 向点A (点M 不与点A ,B 重合)移动的过程中,线段BF 与CCCC 的和是否保持不变?若保持不变,请直接写出BF 与CCCC 的长度和;若改变,请说明理由.2024-2025学年江苏省南京师大附中树人学校八年级(上)第一次月考数学试卷一、选择题1. 下列图形中,不是轴对称图形的是( )A. B.C. D.【答案】C【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、B 、D 均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项C 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 如图,ABC DEF ≌△△,若100A ∠=°,47F ∠=°,则E ∠的度数为( )A. 100°B. 53°C. 47°D. 33°【答案】D【解析】 【分析】首先根据全等三角形的性质得到100D A ∠=∠=°,然后利用三角形内角和定理求解即可.【详解】解:∵ABC DEF ≌△△,100A ∠=°,∴100D A ∠=∠=°,在DEF 中,47F ∠=°,∴18033E D E ∠=°−∠−∠=°,故选:D .【点睛】此题考查了全等三角形的性质,三角形内角和定理,解题的关键是熟练掌握以上知识点. 3. 如图,ABC DEF ≌△△,点D ,E 在直线AB 上,4BE =,1AE =,则DE 的长为( )A. 5B. 4C. 3D. 2【答案】A【解析】 【分析】由ABC DEF ≌△△,可得DE AB =,由点D ,E 在直线AB 上,可得DE AB AE BE ==+,计算求解即可.【详解】解:∵ABC DEF ≌△△,∴DE AB =,∵点D ,E 在直线AB 上,∴5DE AB AE BE ==+=,故选:A .【点睛】本题考查了全等三角形的性质.解题的关键在于明确线段之间的数量关系.4. 等腰三角形的一边为4,一边为3,则此三角形的周长是( )A. 10cmB. 11cmC. 6cm 或8cmD. 10cm 或11cm 【答案】D【解析】【分析】分边4是底边和腰长两种情况讨论,再根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后求解即可.【详解】解:若4是底边,则三角形的三边分别为4、3、3,能组成三角形,周长43310=++=,若4是腰,则三角形的三边分别为4、4、3,能组成三角形,周长44311=++=,综上所述,此三角形的周长是10或11.故选:D .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并判断是否能组成三角形.5. A 、B 、C 三名同学玩“抢凳子”游戏.他们所站的位围成一个ABC ,在他们中间放一个木凳,谁先抢到凳子谁获胜,为保证游戏公平,则凳子应放的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三边中线的交点C. 三个内角角平分线的交点D. 三边高的交点【答案】A【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:利用线段垂直平分线的性质得:要放在三边垂直平分线的交点上.故选:A .【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.6. 如图1,已知三角形纸片ABC ,AB AC =,50A ∠=°,将其折叠,如图2所示,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,那么DBC ∠的度数为( )A. 10°B. 15°C. 20°D. 30°【答案】B【解析】 【分析】本题考查了等腰三角形的性质,折叠的性质,根据50A ∠=°,AB AC =可求得180652A ABC °−∠∠==°,结合折叠的性质,得到50ABD A ∠=∠=°根据15DBC ABC ABD ∠=∠−∠=°,选择即可.【详解】.∵50A ∠=°,AB AC =,∴180652A ABC °−∠∠==°, 折叠的性质,得到50ABD A ∠=∠=°, ∴15DBC ABC ABD ∠=∠−∠=°,故选B .7. 如图,已知ABC 的周长是36cm ,ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥于点D ,若3cm OD =,则ABC 的面积是( )A. 248cmB. 254cmC. 260cmD. 266cm【答案】B【解析】 【分析】过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F ,根据角平分线的性质定理可得OD =OE =OF =3cm ,再由ABC ABO CBO CAO S S S S =++ ,即可求解.【详解】解∶如图,过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F ,∵ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥,∴OD =OE ,OD =OF ,∴OD =OE =OF =3cm ,∵ABC 的周长是36cm ,∴AB +BC +AC =36cm ,∵ABC ABO CBO CAO S S S S =++ ,∴()21111136354cm 22222ABC S AB OE CB OD CA OF AB BC AC OD =⋅+⋅+⋅=++⋅=××= . 故选:B 【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上点到角两边的距离是解题的关键. 8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON 的面积不变;④MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据角平分线的性质,作PE OA PF OB ⊥⊥,,可得PE PF OE OF MPE NPF == ,,≌,由此可判定①②③,连接EF ,根据三角形三边关系可判定④,由此即可求解.【详解】解:∵点P 在AOB ∠∴AOP BOP ∠=∠,如图所示,过点P 作PE OA ⊥于点E ,作PF OB ⊥于点B ,∴90PEO PFO ∠=∠=°,PE PF =,OE OF =,∴在四边形PEOF 中,180EOF EPF ∠+∠=°,∵180AOB MPN ∠+∠=°,∴MPN EPF ∠=∠,即MPE EON EON NOF ∠+∠=∠+∠,∴MPE NPF ∠=∠,∴()MPE NPF SAS ≌,∴PM PN =,故①正确;由①正确可得,ME NF =,∴22OM ON OE EM OF NF OE OF +=++−==,故②正确;由MPE NPF ≌可得MPE NPF S S = ,∴MPE EPO OPN EPO OPN NPF PMON PEOF S S S S S S S S ++=++== 四边形四边形,∴四边形PMON 的面积是定值,故③正确;如图所示,连接EF ,由上述结论可得,PM PN PE PF ==,,MPN EPF ∠=∠,PM PE >,PN PF >,∴MN CD ≠,即MN 的长度发生变化,故④错误;综上所述,正确的有①②③,共3个,故选:C .【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,旋转的性质,四边形面积的计算方法等知识,掌握添加合理的辅助线,构造三角形全等是解题的关键.二、填空题9. 如图,已知AD BC =,要使ABC CDA △△≌,还要添加的一个条件可以是______.(只需填上一个正确的条件).【答案】AB CD =(答案不唯一)【解析】【分析】本题考查了全等三角形的判定,根据全等三角形的判定定理即可求解,掌握全等三角形的判定定理是解题的关键.【详解】解:ABC 与CDA 中,∵AB CD BC AD AC CA = = =,在∴()SSS ABC CDA △≌△,∴添加的一个条件可以是AB CD =,故答案为:AB CD =.10. 如图,在ABC 中,点D 、E 、F 分别是BC AB AC ,,上的点,若B C BF CD ∠=∠=,,54BD CE EDF =∠=°,,则A ∠=________.【答案】72°##72度【解析】【分析】由“SAS ”可证≌BDF CED ,可得BFD CDE ∠=∠,由外角的性质可得54B EDF ∠=∠=°,可求解.【详解】解:在BDF 和CED △中,===BF CD B C BD CE∠∠ ,∴()SAS BDF CED ≌ ,∴BFD CDE ∠=∠,∵FDC B BFD FDE EDC ∠=∠+∠=∠+∠,∴54B EDF ∠=∠=°,∴54C ∠=°∴180180545472A B C ∠=°−∠−∠=°−°−°=°,故答案为:72°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,掌握全等三角形的判定是本题的关键.11. 如图,把一个长方形纸条ABCD 沿EF 折叠,若154∠=°,则FGE ∠=_______.【答案】72°##72度【解析】【分析】先证明154DEF ∠=∠=°,AEG FGE ∠=∠,由折叠可得54DEF GEF ∠=∠=°,利用平角的含义可得18025472AEG ∠=°−×°=°,从而可得答案.【详解】解:∵154∠=°,AD BC ∥,∴154DEF ∠=∠=°,AEG FGE ∠=∠, 由折叠可得:54DEF GEF ∠=∠=°,∴18025472AEG ∠=°−×°=°,∴72FGE ∠=°.故答案为:72°【点睛】本题考查的是平行线的性质,轴对称的性质,熟记轴对称的性质与平行线的性质求解角度的大小是解本题的关键.12. 如图,在3×3的方格中,每个小方格的边长均为1,则1∠与2∠的数量关系是________.【答案】1290∠+∠=° 【解析】【分析】证明ABC DEF ≌△△得出2DEF ∠=∠,根据190DEF ∠+∠=°即可得出1290∠+∠=°. 【详解】解:根据网格特点可知,90ACB DFE ∠=∠=°,EF BC =,AC DF =,∴ABC DEF ≌△△,∴2DEF ∠=∠,∵190DEF ∠+∠=°,∴1290∠+∠=°.故答案为:1290∠+∠=°. 【点睛】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法.13. 如图所示.A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,1km BD =,1km DC =,村庄A 与C ,A 与D间也有公路相连,且公路AD 是南北走向,3km AC =,只有A ,B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得 1.2km AE =,0.7km BF =,则建造的斜拉桥长至少有____________km .【答案】1.1【解析】【分析】根据全等三角形的判定得出(SAS)ADB ADC ≌ ,进而得出3km AB AC ==,这样可以得出斜拉桥长度.【详解】解:由题意知:BD CD =,90BDA CDA ∠∠==°,∵在ADB 和ADC 中, DB DC ADB ADC AD AD = ∠=∠ =, ∴(SAS)ADB ADC ≌ ,∴3km AB AC ==,故斜拉桥至少有3 1.20.7 1.1km −−=,故答案为1.1.【点睛】此题主要考查了全等三角形的判定及其性质,根据已知得出(SAS)ADB ADC ≌ 是解题的关键. 14. 如图,在ABC 中,4AB =, 5.5AC =,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB 、AC 于点M 、N ,则AMN 的周长为_________.【答案】9.5【解析】【分析】根据角平分线定义、平行线的性质和可得ME MB NE NC ==,,进而求解. 【详解】解∶BE 平分ABC ∠,,ABE EBC ∴∠=∠MN BC ∥,MEB EBC ∴∠=∠,MEB ABE ∴∠=∠,MB ME ∴=同理可得∶NE NC =,9.5AMN C AM AN MN AM AN ME EN AM AN MB NC AB AC ∴=++=+++=+++=+= 故答案为∶9.5【点睛】本题考查等腰三角形的判定及性质,解题关键是掌握角平分线的定义,掌握平行线的性质. 15. 如图,ABC 的面积为212cm ,AP 垂直B ∠的平分线BP 于点P ,则PBC △的面积为__________2cm .【答案】6【解析】【分析】延长AP 交BC 于点D ,根据角平分线和垂线的定义,易证()ASA APB DPB ≌,得到12ABP DBP ABD S S S == ,AP DP =,进而得到12ACP DCP ACD S S S == ,即可求出PBC △的面积. 【详解】解:如图,延长AP 交BC 于点D ,BP 平分ABC ∠,ABP DBP ∴∠=∠,AP BP ⊥ ,90APB DPB ∴∠=∠=°,在APB △和DPB 中,ABP DBP BP BPAPB DPB ∠=∠ = ∠=∠, ()ASA APB DPB ∴ ≌,12ABP DBP ABD S S S ∴== ,AP DP =, ACP ∴△和DCP 等底同高,12ACP DCP ACD S S S ∴== , ()1122DPB DCP ABD ACD ABC PBC S S S S S S ∴=+=+= , ABC 的面积为212cm ,21126cm 2PBC S ∴=×= , 故答案为:6.【点睛】本题考查了角平分线的定义,全等三角形的判定和性质,三角形面积公式等知识,作辅助线构造全等三角形是解题关键.16. 如图,在射线OA OB ,上分别截取11OA OB =,连接11A B ,在11B A 、1B B 上分别截取1212B A B B =,连接22A B ,…按此规律作下去,若11A B O α∠=,则20232023A B O ∠=______.【答案】20222α【解析】 【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B = ,11A B O α∠=, 2212A B O α∴∠=, 同理332111222A B O αα∠=×=, 44312A B O α∠=, 112n n n A B O α−∴∠=, 2023202320222A B O α∴∠=, 故答案为:20222α. 【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.17. 如图,7cm AB =,60CAB DBA ∠=∠=°,5cm AC =,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动,当点P 运动结束时,点Q 随之结束运动,当点P Q ,运动到某处时有ACP △与BPQ 全等,则Q 的运动速度是 ________________cm/s .【答案】2或207【解析】【分析】本题考查了全等三角形的性质,由ACP △与BPQ 全等,分两种情况:AC BP =①,AP BQ =,AC BQ =②,AP BP =,建立方程组求得答案即可,熟练掌握知识点的应用及分情况分析是解题的关键.【详解】解:设它们运动的时间为s t ,点Q 的运动速度为cm /s x ,则2AP tcm =,()72cm PBt =−,cm BQ xt =,①若ACP BPQ △≌△,则AC PB =,AP BQ =,可得:572t =−,2t xt =,解得:2x =,1t =;②若ACP BQP △≌△,则AC BQ =,AP PB =,可得:5xt =,272t t =−, 解得:207x =,74t =; 综上:Q 的运动速度为2cm /s 或20cm /s 7, 故答案为:2或207. 18. 如图,在ABC 中,BA BC =,BD 平分ABC ∠,交AC 于点D ,点M N 、分别为BD BC 、上的动点,若4BC =,ABC 的面积为6,则CM MN +的最小值为_______.【答案】3【解析】【分析】本题考查了等腰三角形的性质,线段垂直平分线的性质,两点之间线段最短,垂线段最短,根据等腰三角形的性质可知,BBBB 垂直平分AC ,根据垂直平分线的性质得出CM AM =,由此可得CM MN AM MN +=+,又由“两点之间线段最短”和“垂线段最短”可得当A M N 、、三点共线且AN BC ⊥时AM MN +最短,根据三角形的面积公式可求出AN 的长,即CM MN +的最小值,熟练掌握知识点的应用是解题的关键.【详解】解:如图,连接AM ,∵在ABC 中,BA BC =,BD 平分ABC ∠,∴BD AC ⊥,AD CD =,∴BD 垂直平分AC ,∴CM AM =,∴CM MN AM MN +=+,如图,当A M N 、、三点共线且AN BC ⊥时, CM MN AM MN AN +=+=,此时AN 最小,即CM MN +的值最小,∵162ABC S BC AN =×= , ∴1462AN ××=, 解得3AN =,∴CM MN +的最小值为3,故答案为:3.三、解答题19. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC 关于直线l 成轴对称的A B C ′′′ .(2)ABC 的面积为__________.(3)在直线l 上找一点P (在答题纸上图中标出),使PB PC +的长最短.【答案】(1)图见解析(2)72(3)图见解析【解析】【分析】本题主要考查了轴对称作图,三角形面积计算,轴对称的性质,解题的关键是熟练掌握轴对称的性质.(1)先作出点B 、C 关于直线l 对称的点B ′、C ′,然后再顺次连接即可;(2)利用割补法求值三角形的面积即可;(3)连接BC ′,交l 于P ,点P 即为所求.【小问1详解】解:如图所示,A B C ′′′ 即为所求. 【小问2详解】解:111372412131481222222×−××−××−××=−−−=. 故答案为:72. 【小问3详解】解:连接BC ′,交l 于P ,点P 即为所求.连接PC ,根据轴对称可知:PC PC ′=,∴PB PC PB PC ′+=+,∵两点之间线段最短,∴当B 、P 、C ′在同一直线上时,BP PC ′+最小,即PB PC +最小.20. 如图,已知B 、E 、C 、F 在同一条直线上,AB DE =,AC DF =,BE CF =,AC 与DE 交于点G .(1)求证:ABC DEF ≌△△(2)若50B ∠=°,60ACB ∠=°,求EGC ∠的度数.【答案】(1)见解析 (2)70°【解析】【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由BE CF =得出BC EF =,再利用SSS 证明ABC DEF ≌△△即可;(2)由全等三角形的性质得出50DEF B ∠=∠=°,再由三角形内角和定理计算即可得出答案. 【小问1详解】证明:∵BE CF =,∴BE CE CF CE +=+,即BC EF =,在ABC 和DEF 中,AB DE AC DF BC EF = = =,∴()SSS ABC DEF ≌;【小问2详解】解:如图:,∵ABC DEF ≌△△,∴50DEF B ∠=∠=°, ∴180180506070EGC GEC GCE ∠=°−∠−∠=°−°−°=°.21. 麒麟某数学兴趣小组的同学用数学知识测一池塘的长度,他们所绘如图,点B ,F ,C (点F ,C 之间不能直接测量,为池塘的长度),点A ,D 在l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若100m 30m BE BF ==,,求池塘FC 的长. 【答案】(1)见解析 (2)FC 的长是40m【解析】【分析】(1)利用“ASA ”即可求证;(2)利用全等三角形的性质即可求解.【小问1详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 与DEF 中,ABC DEF AB DEA D ∠=∠ = ∠=∠∴(ASA)ABC DEF ≌ ;【小问2详解】解:∵ABC DEF ≌△△∴BC EF =∴BF FC EC FC +=+,∴BF EC =,∵100m30m BE BF ==, ∴100303040FC =−−=m .答:FC 的长是40m【点睛】本题考查了全等三角形的判定与性质.熟记相关定理内容是解题关键.22 如图,四边形ABCD 中,BC CD =,AC DE =,90B DCE ∠=∠=°,AC 与DE 相交于点F .(1)求证:ABC ECD ∆≅∆(2)判断线段AC 与DE 的位置关系,并说明理由.【答案】(1)见解析 (2)AC DE ⊥,理由见解析【解析】【分析】(1)根据HL 即可证明ABC ECD △△≌.(2)根据ABC ECD △△≌得到BCA CDE ∠=∠,结合90B DCE ∠=∠=°得到90DFC ∠=°,即可得结论.【小问1详解】解:在Rt ABC △和Rt ECD △中AC DE AB EC== , ∴ABC ECD △△≌..【小问2详解】解:AC DE ⊥.理由如下:∵ABC ECD △△≌,∴BCA CDE ∠=∠,∵90B DCE ∠=∠=°,∴90BCA ACD ∠+∠=°,∴90CDE ACD ∠+∠=°,∴180()90DFCCDE ACD ∠=°−∠+∠=°, ∴AC DE ⊥.【点睛】本题考查全等三角形的判定与性质,常用的判定方法有:SSS 、SAS 、ASA 、AAS 、HL 等,熟练掌握全等三角形的判定定理是解题的关键.23. 如图,在ABC 中,DM EN 、分别垂直平分AC 和BC ,交AB 于M N 、两点,DM 与EN 相交于点F .(1)若CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=°,求MCN ∠的度数.【答案】(1)15cm AB =(2)40°【解析】【分析】此题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,解题的关键是熟练掌握以上知识的应用及整体思想的应用.(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM CM =,BN CN =,然后求出CMN 的周长AB =;(2)根据三角形的内角和定理列式求出 MNF NMF ∠+∠,再求出A B ∠∠+,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,然后利用三角形的内角和定理列式计算即可得解.【小问1详解】解:∵DM 、EN 分别垂直平分AC 和BC ,∴AM CM =,BN CN =,∴CMN 的周长CM MN CN AM MN BN AB =++=++=,∵CMN 的周长为15cm ,∴15cm AB =;【小问2详解】解:∵70MFN ∠=°,∴18070110MNF NMF ∠+∠=°−°=°,∵AMD NMF ∠=∠, BNE MNF ∠=∠,∴110AMD BNE MNF NMF ∠+∠=∠+∠=°,∴909018011070A B AMD BNE ∠+∠=°−∠+°−∠=°−°=°,∵AM CM =,BN CN =,∴A ACM ∠=∠,B BCN ∠=∠,∴()180218027040MCN A B ∠=°−∠+∠=°−×°=°. 24. 如图,已知ABC ,点P 为BAC ∠的平分线上一点,PE AB ⊥,PF AC ⊥,垂足分别为E 、F(1)求证∶ PE PF =(2)若BE CF =,求证:点P 在BC 的垂直平分线上.【答案】(1)见解析 (2)见解析【解析】【分析】(1)通过证明APE APF ≌△△,即可求证;(2)连接PB 、PC ,通过证明BPE CPF △≌△,得到BP CP =,即可求证.【小问1详解】证明:∵点P 为BAC ∠的平分线上一点∴BAP FAP ∠=∠∵PE AB ⊥,PF AF ⊥∴90PEA PFA ∠=∠=°在APE 和APF 中BAP FAP PEA PFA AP AP ∠=∠ ∠=∠ =∴()AAS APE APF ≌∴PE PF =【小问2详解】证明:连接PB 、PC ,如下图:由(1)可得:90BEP CFP ∠=∠=°又∵PE PF =,BE CF =∴()SAS BPE CPF ≌∴BP CP =∴点P 在BC 的垂直平分线上【点睛】此题考查了全等三角形的判定与性质,垂直平分线的判定,解题的关键是熟练掌握全等三角形的判定方法与性质.25. 如图,已知ABC (AC AB BC <<),请用无刻度的直尺和圆规,完成下列作图(不写作法,保留作图痕迹);(1)如图1,在AB 边上寻找一点M ,使AMC ACB ∠=∠;(2)如图2,BC 边上寻找一点N ,使得NA NB BC +=.在【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用作一个角等于已知角的方法作图即可;(2)作AC 的垂直平分线,交BC 于点N 即可.【详解】解:(1);(2).【点睛】此题考查作图问题,关键是根据作一个角等于已知角和线段垂直平分线的作法解答. 26. 如图甲,已知在ABC 中,90ACB ∠=°,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)说明ADC CEB △≌△.(2)说明AD BE DE +=.(3)已知条件不变,将直线MN 绕点C 旋转到图乙的位置时,若3DE =、 5.5AD =,则BE=_____. 【答案】(1)见解析 (2)见解析(3)2【解析】【分析】本题考查了全等三角形判定与性质,垂线的定义,直角三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由垂线的定义得出90ADC CEB ∠=∠=°,再由同角的余角相等得出BCE =∠∠CAD ,最后利用AAS 证明ADC CEB △≌△即可;(2)由全等三角形的性质可得=AD CE ,BE CD =,即可得证;(3)由垂线的定义得出90ADC CEB ∠=∠=°,再由同角的余角相等得出BCE =∠∠CAD ,最后利用AAS 证明ADC CEB △≌△,得出 5.5CE AD ==,BE CD =,即可得解.【小问1详解】证明:∵AD MN ⊥于D ,BE MN ⊥于E .∴90ADC CEB ∠=∠=°,∴90DAC ACD ∠+∠=°,∵90ACB ∠=°,∴90BCE ACD ∠+∠=°,∴BCE =∠∠CAD ,∵AC BC =,∴()AAS ADC CEB ≌;【小问2详解】证明:∵ADC CEB △≌△,∴=AD CE ,BE CD =,∴AD BE CE CD DE +=+=;【小问3详解】证明:∵AD MN ⊥于D ,BE MN ⊥于E .∴90ADC CEB ∠=∠=°,∴90DAC ACD ∠+∠=°,∵90ACB ∠=°,∴90BCE ACD ∠+∠=°,∴BCE =∠∠CAD ,∵AC BC =,∴()AAS ADC CEB ≌,∴ 5.5CE AD ==,BE CD =,的∴ 5.532BE CD CE DE ==−=−=,故答案为:2.27. 阅读理解:【概念学习】定义①:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“形似三角形”.定义②:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“形似三角形”,我们把这条线段叫做这个三角形的“巧妙分割线”.【概念理解】(1)如图1,在ABC 中,36A ∠=°,AB AC =,CD 平分ACB ∠,则CBD △与ABC ______(填“是”或“不是”)互为“形似三角形”.(2)如图2,在ABC 中,CD ACB ∠,36A ∠=°,48B ∠=°,求证:CD 为ABC 的“巧妙分割线”;【概念应用】(3)在ABC 中,45A ∠=°,CD 是ABC 的巧妙分割线,直接写出ACB ∠的度数.【答案】(1)是;(2)证明见解析;(3)90°或105°或112.5°【解析】【分析】(1)由题意推出36BCD ∠=°,72ABC ∠=°,72BDC ∠=°,从而得出结论; (2)根据题意,通过计算得出BCD △是等腰三角形,36A A ∠=∠=°,48ACD B ∠=∠=°,96ADC ACB ∠=∠=°,从而得出结论;(3)根据题意,分为当ACD 是等腰三角形和BCD △是等腰三角形两类,当ACD 是等腰三角形时,再分为:AC AD =,AD CD =,AC CD =三种情形讨论;同样当BCD △是等腰三角形时,也分为三种情形讨论,分别计算出ACB ∠的度数即可.【详解】解:(1)∵在ABC 中,36A ∠=°,AB AC =, ∴180722A ABC ACB °−∠∠=∠==°, ∵CD 平分ACB ∠, ∴1362BCD ACB ∠=∠=°, ∴18072BDC BCD B =°−−=°∠∠∠,∴BCD A B B BDC ACB ===∠∠,∠∠,∠∠,∴CBD △与是互为“形似三角形”,故答案为:是;(2)∵在ABC 中,36A ∠=°,48B ∠=°,∴18096ACB A B =°−−=°∠∠∠,∵CD 平分ACB ∠, ∴1482ACD BCD ACB ===°∠∠∠, ∴18096ADC A ACD B BCD =°−−°=∠∠∠,∠∠,∴A A ACD B ADC ACB DC DB ====∠∠,∠∠,∠∠,,∴ACD 与ABC 是互为“形似三角形”,且BCD △是等腰三角形,∴CD 为ABC 的“巧妙分割线”;(3)(Ⅰ)当ACD 是等腰三角形,另一个三角形与原三角形是“形似三角形”时,①如图1所示:当AD CD =时,则45ACD A ∠=∠=°,90BDC A ACD ∴∠=∠+∠=°,此时,C ABC BD 、△△是“形似三角形”,可知45BCD A ∠=∠=°,∴9045B BCD A =°−=°=∠∠∠,∴90ACB ∠=°;②如图2所示:当AC AD =时,则1804567.52ACD ADC °−°∠=∠==°, 此时,C ABC BD 、△△是“形似三角形”,可知45BCD A ∠=∠=°,4567.5112.5ACB ∴∠=°+°=°;③当AC CD =时,这种情况不存在;(Ⅱ)当BCD △是等腰三角形,另一个三角形与原三角形是“形似三角形”时,①如图3所示:当CD DB =时,45B BCD ∠=∠=°,同理可知90ACB ∠=°;②如图4所示:当BC BD =时,BDC BCD ∠=∠,此时,ABC ACD 、是“形似三角形”,可知ACD B ∠=∠,45BCD BDC ACD A ACD ∴∠=∠=∠+∠=∠+°,在BCD △中,由三角形内角和可知2180B BDC ∠+∠=°,得()245180ACD ACD ∠+∠+°=°, 30ACD ∴∠=°,45230105ACB ACD BCD ∴∠=∠+∠=°+×°=°;③当CD CB =时,这种情况不存在;综上所述:ACB ∠的度数为90°或105°或112.5°.【点睛】本题主要考查了等腰三角形的性质与判定,角平分线的定义,三角形内角和定理和三角形外角的性质,解决问题的关键是利用分类讨论的思想求解.28. 在ABC 中,,8AB AC BC ==,点M 从点B 出发沿射线BA 移动,同时点N 从点C 出发沿线段AC 的延长线移动,点M ,N 移动的速度相同,MN 与BC 相交于点D .(1)如图1,过点M 作//ME AC ,交BC 于点E ;①图中与BBBB 相等的线段________、_________;②求证:DME DNC ≌;(2)如图2,若60A ∠=°,当点M 移动到AABB 的中点时,求CCBB 的长度;(3)如图3,过点M 作MF BC ⊥于点F ,在点M 从点B 向点A (点M 不与点A ,B 重合)移动的过程中,线段BF 与CCBB BF 与CCBB 的长度和;若改变,请说明理由.【答案】(1)①CN 、EM ; ②见解析;(2)CCBB 的长度为2;(3)保持不变;BF +CD =4.【解析】【分析】(1)①根据移动过程分析和等腰三角形的性质即可解答;②由平行的性质、等腰三角形的性质进行等边和等角转换,最后运用AAS 即可证明结论;(2)由(1)的结论和等边三角形的性质,通过等量转换即可得解;(3)首先过点M 作ME //AC ,由等腰三角形的性质以及全等三角形的性质,即可求得BF 与CD 的长度保持不变.【详解】(1) ①∵点M 、N 同时移动且移动的速度相同,∴BM =CN ,∵AB =AC ,∴∠B =∠ACB又∵ME//AC,∴∠N=∠DME,∠ACB=∠MEB,∴∠MEB=∠B,∴BM=ME,故答案是:CN、EM;②∵BM=ME,BM=CN∴ME=CN,∵MN与BC相交于点D,∴∠MDE=∠NDC,在△DME和△DNC中∠MDE=∠NDC,∠DME=∠N,ME=NC ∴△DME≌△DNC(AAS);(2) 如图:过点M作ME//AC,交BC于点E ∵∠A=60°,AB=AC,∴△ABC是等边三角形,∴∠B=∠ACB=60°∵ME//C,∴∠BEM=∠ACB=60°,∴△BEM是等边三角形,∴BE=BM.∵M是AB的中点,∴1122 BE BM AB BC ===∴BE=CE=4.由(1)可证△DME≌△DNC ∴DE=CD,∴CD=12CE=2,∴CD的长度为2;.。

江苏南京市联合体2024--2025学年上学期八年级数学月考试卷 (解析版)

江苏南京市联合体2024--2025学年上学期八年级数学月考试卷 (解析版)

2024—2025学年八年级数学第一次学科素养训练调查试卷一、选择题(共16分)1. 如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念判断即可.本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【详解】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.∠等于()2. 已知图中的两个三角形全等,则1A. 72°B. 60°C. 50°D. 58°【答案】D【解析】【分析】此题考查了全等三角形的性质,三角形内角和定理,根据全等三角形的性质和三角形内角和定理求解即可.【详解】∵图中的两个三角形全等,1∠是边a 和c 所夹的角∴1180507258∠=°−°−°=°. 故选:D .3. 下列条件中,不能判定两个直角三角形全等的是( )A. 两条直角边对应相等B. 斜边和一个锐角对应相等C. 斜边和一条直角边对应相等D. 一条直角边和一个锐角分别相等 【答案】D【解析】【分析】直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL ,根据定理逐个判断即可.【详解】解:A 、符合SAS 定理,根据SAS 可以推出两直角三角形全等,故本选项不符合题意; B 、符合AAS 定理,根据AAS 可以推出两直角三角形全等,故本选项不符合题意;C 、符合HL 定理,根据HL 可以推出两直角三角形全等,故本选项不符合题意;D 、当一边是两角的夹边,另一个三角形是一角的对边时,两直角三角形就不全等,故本选项符合题意; 故选D .【点睛】此题主要考查直角三角形的判定方法,解题的关键是熟知全等三角形的判定及直角三角形的全等判定.4. 如图, AD 是 ABC 的角平分线, DE AB ⊥ ,垂足为E , 9ABC S = , 2DE = , 5AB = ,则 AC 长为( )A. 5B. 4C. 3D. 2【答案】B【解析】 【分析】本题考查了角平分线的性质,三角形的面积,过点D 作DFAC ⊥于F ,然后利用ABC 的面积公式列式计算即可得解,熟练掌握角平分线的性质是解题的关键.【详解】如图,过点D 作DF AC ⊥于F ,∵AD 是ABC 的角平分线,DFAC ⊥,DE AB ⊥, ∴2DE DE ==,∵9ABC ABD ADC S S S =+= , ∴11922AB DE AC DF ×+×=, ∴11522922AC ××+×=, ∴4AC =,故选:B .5. 如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能是( )A. 5B. 6C. 7D. 8【答案】A【解析】 【分析】连接 112212,,,,OP PP OP PP PP ,根据轴对称的性质和三角形三边关系可得结论. 【详解】解:如图,连接 112212,,,,OP PP OP PP PP ,∵ P 1是 P 关于直线 l 的对称点,∴ 直线 l 是 PP 1的垂直平分线,∴ 1= 2.8OP OP =,∵ P 2是 P 关于直线 m 的对称点,∴ 直线 m 是 PP 2的垂直平分线,∴ 2= 2.8OP OP =,当 P 1,O ,P 2不在同一条直线上时, 121212OP OP PP OP OP <<−+即 120 5.6PP <<,当 P 1,O ,P 2在同一条直线上时, 1212 5.6PP OP OP =+=,∴1P ,2P 之间的距离可能是5,故选:A .【点睛】此题主要考查了轴对称变换,熟练掌握轴对称变换的性质是解答此题的关键.6. 如图,在AOB 中,60AOB ∠=°,OA OB =,动点C 从点О出发,沿射线OB 方向移动,以AC 为边向右侧作等边ACD ,连接BD ,则下列结论不一定成立的是( )A. 120OBD ∠=°B. //OA BDC. CB BD AB +=D. AB 平分CAD ∠【答案】D【解析】 【分析】根据已知可得AOB 是等边三角形,再证明AOC ABD ≅ ,可得结论.【详解】解:∵60AOB ∠=°,OA OB =,∴AOB 是等边三角形,∴60OAB ABO ∠=∠=°,OA OB AB ==, ∵等边ACD ,∴60OAB CAD °∠=∠=,CA AD CD ==,∴OAC BAD ∠=∠,∴AOC ABD ≅ ,∴60ABD AOC ∠=∠=°,CO BD =,∴+=120ABD OBD ABO ∠∠∠=°,==CB BD CB OC OB AB +=+,∴+=180OBD AOB ∠∠°,∴//OA BD ;选项A 、B 、C 一定成立,D 不一定成立,故选:D .【点睛】本题考查了等边三角形的性质和全等三角形的判定与性质,解题关键是熟练运用全等三角形判定定理证明全等.7. 如图,AOB ADC △≌△(O ∠和D ∠是对应角),90O ∠= ,若OAD α∠=,ABO β∠=.当BC OA ∥时,α与β之间的数量关系为( )A. αβ=B. 2αβ=C. 90αβ+=D. 2180αβ+=【答案】B【解析】 【分析】本题考查了全等三角形的性质,等边对等角,平行线的性质,熟练掌握相关性质并准确识图理清图中各角度之间的关系是解题的关键.根据AOB ADC △≌△,90O ∠= ,ABO β∠=,可知AB AC =,90CAD OAB β∠=∠=°−,结合BC OA ∥和等腰三角形性质可得90CAD OAB ABC ACB β∠=∠=∠=∠=°−,180OAC ACB ∠+∠=°,将OAC ACB ∠+∠展开为OAD ACB CAD ∠+∠+求解,即可解题.【详解】解:AOB ADC △≌△(O ∠和D ∠对应角),90O ∠= ,AB AC ∴=,90CAD OAB β∠=∠=°−,ABC ACB ∴∠=∠,BC OA ∥,90CAD OAB ABC ACB β∴∠=∠=∠=∠=°−,180OAC ACB ∠+∠=°,()290180OAC ACB OAD ACB CAD αβ∴∠+∠=∠+∠+∠=+°−=°,2αβ∴=,故选:B .8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON 的面积不变;④MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据角平分线的性质,作PE OA PF OB ⊥⊥,,可得PE PF OE OF MPE NPF == ,,≌,由此可判定①②③,连接EF ,根据三角形三边关系可判定④,由此即可求解.【详解】解:∵点P 在AOB ∠的角平分线上,∴AOP BOP ∠=∠,如图所示,过点P 作PE OA ⊥于点E ,作PF OB ⊥于点B ,是∴90PEO PFO ∠=∠=°,PE PF =,OE OF =,∴在四边形PEOF 中,180EOF EPF ∠+∠=°,∵180AOB MPN ∠+∠=°,∴MPN EPF ∠=∠,即MPE EON EON NOF ∠+∠=∠+∠,∴MPE NPF ∠=∠,∴()MPE NPF SAS ≌,∴PM PN =,故①正确;由①正确可得,ME NF =,∴22OM ON OE EM OF NF OE OF +=++−==,故②正确;由MPE NPF ≌可得MPE NPF S S = ,∴MPE EPO OPN EPO OPN NPF PMON PEOF S S S S S S S S ++=++== 四边形四边形,∴四边形PMON 的面积是定值,故③正确;如图所示,连接EF ,由上述结论可得,PM PN PE PF ==,,MPN EPF ∠=∠,PM PE >,PN PF >,∴MN CD ≠,即MN 的长度发生变化,故④错误;综上所述,正确的有①②③,共3个,故选:C .【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,旋转的性质,四边形面积的计算方法等知识,掌握添加合理的辅助线,构造三角形全等是解题的关键.二、填空题(共20分)9. 等腰三角形的一个外角的度数是80°,则它底角的度数为___________°.【答案】40【解析】【分析】根据三角形的内角和定理以及等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为18080100°−°=°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180100)240°−°÷=°. 故答案为:40.【点睛】本题考查三角形的内角和定理、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.10. 如图,点E F 、在BC 上,BF CE A D =∠=∠,.请添加一个条件______,使ABF DCE ≌△△.【答案】B DEF ∠=∠(答案不唯一)【解析】【分析】本题考查了全等三角形的判定.根据已知条件中的一边一角,再添加一组对角相等即可.【详解】解:∵BF CE A D =∠=∠,,再添加B DEF ∠=∠,根据“角角边”就能证明ABF DCE ≌△△.故答案为:B DEF ∠=∠(答案不唯一). 11. 小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”小明的做法,其理论依据是__【答案】在角的内部,到角两边距离相等的点在角的平分线上【解析】【分析】根据角平分线的性质即可证明.【详解】因为直尺的宽度一样,故点P 到AO 与BO 的距离相等,故可知PO 为角平行线.【点睛】此题主要考查角平行线的性质,解题的关键是熟知角平分线的性质.12. 如图,ABC 是等边三角形,D ,E 分别是AC BC ,上的点,若25AE AD CED =∠=°,,则BAE ∠=_____°.【答案】50【解析】【分析】利用等边三角形的性质可得60C BAC ∠=∠=°,从而利用三角形的外角性质可得85ADE ∠=°,然后利用等腰三角形的性质可得85AED ADE ∠=∠=°,从而利用三角形的内角和定理可得10DAE ∠=°,最后利用角的和差关系进行计算即可解答.【详解】解:∵ABC 是等边三角形,∴60C BAC ∠=∠=°,∵25CED ∠=°,∴85ADE CED C ∠=∠+∠=°,∵AE AD =,∴85AED ADE ∠=∠=°, ∴18010DAE AED ADE ∠=°−∠−∠=°,∴601050BAE BAC DAE ∠=∠−∠=°−°=°,故答案为:50.【点睛】本题考查了等边三角形的性质,三角形外角的性质,等腰三角形的性质,三角形内角和定理,熟练掌握等边三角形的性质是解题的关键.13. 如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,AB =9,AD =6,则△AED 的周长为 ___.【答案】15【解析】【分析】由平行线的性质和角平分线的定义可求得BE=DE,则可求得答案.【详解】解:∵ED∥BC,∴∠EDB=∠CBD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠EDB=∠ABD,∴DE=BE,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED的周长为15,故答案为:15.【点睛】本题主要考查了等腰三角形的判定和性质,证得DE=BE是解题的关键,注意角平分线、平行线的性质有应用.∠+∠=______度.14. 如图所示的网格是正方形网格,图形的各个顶点均为格点,则P O【答案】45【解析】∠=∠,结合正方形的对角线互相平分一组对角即可得到答案;【分析】根据图形得到P AQB【详解】解:由图像可得,在PCB 与QAB 中,CP AQ PCB QAB CB AB = ∠=∠ =∴(SAS)PCB QAB ≌ ,P AQB ∠=∠,∵AC 是正方形对角线,∴45AQC ∠=°, ∴45P BQC AQC ∠+∠=∠=°, 故答案为:45;【点睛】本题主要考查正方形的对角线平分一组对角,解题的关键是根据格点图形得到P AQB ∠=∠. 15. 在等腰ABC 中,8AB AC ==,点D ,E 分别是BC ,AC 边上的中点,那么DE =_____.【答案】4【解析】【分析】本题考查了三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半,根据三角形的中位线定理即可直接求解,理解定理是解题的关键.【详解】解:如图,∵点D,E分别是BC,AC边上的中点,∴DE是ABC的中位线,∴142DE AB==,故答案为:4.16.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=11,AC =5,则BE=______________.【答案】3【解析】【详解】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.17. 如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×5×5=12.5,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC ,∴∠D=∠ABE ,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB ,又∵AD=AB ,∴△ACD ≌△AEB (ASA ),∴AC=AE ,即△ACE 是等腰直角三角形,∴四边形ABCD 的面积与△ACE 的面积相等,∵S △ACE =12×5×5=12.5, ∴四边形ABCD 的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题18. 如图,在ABC 中,10AB AC ==,12BC =,8AD =,AD 是BAC ∠的角平分线,若E ,F 分别是AD 和AC 上的动点,则EC EF +的最小值是______.【答案】485【解析】【分析】本题主要考查了等腰三角形的性质,轴对称−最短路线问题,三角形的面积,垂线段最短,作F 关于AD 的对称点F ′,由对称性可知,点F ′在AB 上,当CF AB ′⊥时,EC EF +的最小值为CF ′,再利用面积法求出CF ′的长即可,熟练掌握知识点的应用是解题的关键.【详解】解:作F 关于AD 的对称点F ′,∵AD 是BAC ∠的平分线,∴点F ′在AB 上,∴EF EF ′=,∴当CF AB ′⊥时,EC EF +的最小值为CF ′,∵AB AC =,AD 是BAC ∠的平分线,∴AD BC ⊥, ∴1122ABC S BC AD AB CF ′=×=× , ∴12810CF ′×=×, ∴485CF ′=, ∴EC EF +的最小值为485, 故答案为:485. 三、解答题(共64分)19. 如图,在由长度为1个单位长度的小正方形组成的网格中,ABC 的三个顶点A ,B ,C 都在格点上,分别按下列要求在网格中作图:(1)画出与ABC 关于直线l 成轴对称的111A B C △;(2)在直线l 上找出一点P ,使得||PA PC −的值最大;(保留作图痕迹,并标上字母P ) (3)在直线l 上找出一点Q ,使得1QA QC +的值最小.(保留作图痕迹,并标上字母Q ) 【答案】(1)见解析 (2)见解析 (3)见解析【解析】【分析】(1)根据轴对称的性质解答即可;(2)连接1AC 并延长,交直线l 于点P ,点P 即为所求;(3)直线AC 与直线l 的交点Q 即为所求.【详解】解:(1)如图,111A B C △即所求.(2)如图,连接1AC 并延长,交直线l 于点P ,点P 即为所求.∵点C 1点C 关于直线l 对称,∴||PA PC −=AC 1,∴连接1AC 并延长,交直线l 于点P ,点P 即为所求.(3)如图,直线AC 与直线l 的交点Q 即为所求,∵点C 1点C 关于直线l 对称,∴1QA QC +=QA+QC=AC ,∴直线AC 与直线l 交点Q.【点睛】此题考查轴对称图形的作图方法,轴对称图形的性质,线段和差的作图,正确理解轴对称图形的性质是解题的关键.20. 如图,已知DE ∥AB ,∠DAE =∠B ,DE =2,AE =4,C 为AE 中点.求证:△ABC ≌△EAD .为的的【答案】见解析【解析】【分析】根据中点的定义,再根据AAS 证明△ABC ≌△EAD 解答即可.【详解】证明:∵C 为AE 的中点,AE =4,DE =2,∴AC =12AE =2=DE , 又∵DE ∥AB ,∴∠BAC =∠E ,△ABC 和△EAD 中,B DAE BAC E AC DE ∠=∠ ∠=∠ =, ∴△ABC ≌△EAD (AAS ).【点睛】此题考查全等三角形的判定,关键是根据AAS 证明△ABC ≌△EAD 解答.21. 如图,E 在AB 上,A B ∠=∠,AD BE =,AE BC =,F 是CD 的中点.(1)求证:EF CD ⊥;(2)80CEA ∠=°,=60B ∠°,求ECD ∠的度数.【答案】(1)见解析 (2)40°【解析】【分析】(1)由AD BE =、A B ∠=∠,AE BC =,根据全等三角形的判定定理“SSS ”证明AED BCE ≅ ,得DE EC =,即可根据等腰三角形的“三线合一”证明EF CD ⊥;(2)由80CEA ∠=°,=60B ∠°,得20BCE CEA B ∠=∠−∠=°,则20AED BCE ∠=∠=°,在100CED ∠=°,根据“等边对等角”及三角形的内角和定理得180100402ECD EDC °−°∠=∠==°. 【小问1详解】证明:在AED △和BCE 中,AD BE A B AE BC = ∠=∠ =, ∴AED BCE SAS ≅ (), ∴DE EC =,∵F 是CD 的中点,∴EF CD ⊥.【小问2详解】解:∵80CEA ∠=°,=60B ∠°,∴806020BCE CEA B ∠=∠−∠=°−°=°,∵AED BCE ≅ ,∴20AED BCE ∠=∠=°, ∴8020100CED CEA AED ∠=∠+∠=°+°=°,∵DE EC =, ∴180100402ECD EDC °−°∠=∠==°, ∴ECD ∠的度数是40°.【点睛】此题重点考查全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理及其推论等知识,证明AED BCE ≅ 是解题的关键.22. 已知:如图,A ,F ,E ,B 四点共线,AC CE ⊥,BD DF ⊥,=AF BE ,=AC BD .请问BC 和AD 有怎样的关系?说明理由【答案】=BC AD ,//BC AD ,理由见解析【解析】【分析】先根据“HL ”证明A C E B D F ≅ ,可得CE DF =,=A E C B FD ∠∠,进而得出=B E C A FD ∠∠,然后根据“SAS ”证明B C E A D F ≅ ,根据全等三角形的性质得出答案.【详解】∵A C C E ⊥,B D D F ⊥,∴90A C E B D F ∠=∠=°.∵AF BE =,∴A F E F B E E F +=+,即AE BF =.在Rt ACE 和R t B D F 中,AE BF AC BD = =∴()A C E B D F H L ≅ ,∴CE DF =,=A E C B FD ∠∠,∴E B C A FD ∠=∠.在BEC 和AFD △中,BE AF BEC AFD CE DF = ∠=∠ =∴()B C E A D F S A S ≅ ,∴BC AD =,CBE DAF ∠=∠.∴//BC AD【点睛】本题主要考查了全等三角形的性质和判定,灵活选择全等三角形的判定定理是解题的关键. 23. (1)如图1,在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行,请在直线l 上作出所有的点Q ,使得12AQC ACB ∠=∠.(要求:用直尺和圆规作图,保留作图痕迹.)(2)如图2,已知四边形ABCD ,请用直尺和圆规在边BC 上求作一点P ,使APB CPD ∠=∠(要求:用直尺和圆规作图,保留作图痕迹.)【答案】(1)见解析;(2)见解析【解析】【分析】本题考查了尺规作图,等腰三角形的性质与判定,轴对称的性质;(1)以A 为圆心,AC 的长度为半径作弧,交l 于点1Q ,以C 为圆心1CQ 的长度为半径作弧,交l 于点2Q ,则12,Q Q 即为所求;(2)作A 关于BC 的对称点A ′,连接A D ′交BC 于点P ,连接AP ,则点P 即为所求.【详解】(1)解:如图所示,以为圆心,AC 的长度为半径作弧,交l 于点1Q ,以C 为圆心1CQ 的长度为半径作弧,交l 于点2Q ,则12,Q Q 即为所求;∵1AC AQ =∴11ACQ AQ C ∠=∠ 又∵BC l ∥∴11AQ C Q CB ∠=∠∴11ACQ Q CB ∠=∠,即112AQ C ACB ∠=∠; ∵12CQ CQ =,∴12AQ C AQ C ∠=∠, 又∵11AQ C Q CB ∠=∠ ∴212AQ C ACB ∠=∠ (2)解:如图所示,作A 关于BC 的对称点A ′,连接A D ′交BC 于点P ,连接AP ,则点P 即为所求.∵A ,A ′关于BC 对称,∴APB A PB ′∠=∠又∵DPC A PB ′∠=∠,∴APB CPD ∠=∠.24. 如图,ABC 中,AD 是高,CE 是中线,点G 是CE 的中点,DG CE ⊥,点G 为垂足.(1)求证:DC BE =;(2)若78AEC ∠=°,求BCE ∠的度数.【答案】(1)见解析 (2)26°【解析】【分析】(1)由G 是CE 的中点,DG CE ⊥得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB △的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =. (2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠, 由此根据外角的性质来求BCE ∠的度数. 【小问1详解】连接ED .∵G 是CE 的中点,DG CE ,∴DG 是CE 的垂直平分线,∴DE DC =.∵AD 是高,CE 是中线,∴DE 是Rt ADB △的斜边AB 上的中线, ∴12DE BE AB ==. ∴DC BE =;【小问2详解】DE BE AE DC === ,BCE DEC ∴∠=∠,BAD ADE ∠=∠,2EDB BCE ∴∠=∠,18018078102222AEC DEC BCE BCE ADE °−∠−∠°−°−∠°−∠∠===. AD 是高, 90EDB ADE ∴∠+∠=°,即1022902BCE BCE °−∠∠+=°. 378BCE ∴∠=°,26BCE ∴∠=°.【点睛】本题考查直角三角形斜边的中线的性质,线段垂直平分线的性质,三角形外角的性质以及等腰三角形的性质.正确的连接辅助线是解题关键.25. 已知命题“直角三角形斜边上的中线等于斜边的一半”,它的逆命题是个真命题(1)请写出逆命题和已知、求证逆命题:______.已知:______.求证:______.(2)用两种方法证明逆命题是真命题【答案】(1)如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形;已知:如图,ABC 中,CD 是中线,且12CD AB =,求证:90ACB ∠=° (2)见解析【解析】【分析】(1)把命题“直角三角形斜边上的中线等于斜边的一半”的条件和结论互换即可得到命题“直角三角形斜边上的中线等于斜边的一半”的逆命题;(2)根据命题的条件和结论,写出已知,求证,证法1:利用等腰三角形的性质与判定结合三角形内角和定理证明;证法2:如图乙,延长CCCC 至E ,使DE CD =、连接AE BE 、,证明()SAS ADE BDC ≌,进而推出AE BC ∥,EAC ACB ∠=∠,进而根据平行线的性质,可得90EAC ACB ∠=∠=°. 【小问1详解】如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形;已知:如图,ABC 中,CD 是中线,且12CD AB =, 求证:90ACB ∠=°; 【小问2详解】证法1:如图:∵ABC 中,CD 是中线,12AD BD AB ∴==, ∵12CD AB =, AD BD CD ∴==,DCA A ∴∠=∠,DCB B ∠=∠,180DCA A DCB B ∠+∠+∠+∠=° ,22180DCA DCB ∴∠+∠=° 即90DCA DCB∠+∠=°, ∴90ACB ∠=°;证法2:如图,延长CCCC 至E ,使DE CD =、连接AE BE 、,12AD BD AB == ,12CD AB =, AD BD CD ∴==,在ADE 与BDC 中,AD BD ADE BDC DE DC = ∠=∠ =()SAS ADE BDC ∴ ≌EAD CBD ∴∠=∠,AE BC ∴∥,180EAC ACB ∴∠+∠=°BD CD = ,DCB DBC ∴∠=∠,EAD DCB ∴∠=∠,AD CD = ,DAC DCA ∴∠=,EAD DAC DCB DCA ∴∠+∠=∠+,即EAC ACB ∠=∠又180EAC ACB ∴∠+∠=°,90EAC ACB ∴∠=∠=°.【点睛】本题主要考查了写出一个命题的逆命题,直角三角形斜边上的中线,等腰三角形的性质与判定,三角形内角和定理,全等三角形的性质与判定,灵活运用所学知识是解题的关键.26. 已知在ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF 是等腰三角形,求A ∠的度数.【答案】(1)见解析 (2)①见解析;②45°或36°【解析】【分析】本题考查等腰三角形的判定及性质,三角形的内角和定理及外角的性质,结合图形分情况讨论是解决问题的关键.(1)根据等腰三角形的性质可得A ABC CB =∠∠,再利用三角形的外角性质可得∠BDC A ACD =∠+∠,从而可得BDC ACB ∠=∠,然后根据等量代换可得D ABC B C ∠=∠.再根据等角对等边可得CD CB =,即可解答;(2)①根据垂直定义可得90BEC ∠=°,从而可得90CBE ACB ∠+∠=°,然后设CBE α∠=,则90ACB α∠=°−,利用(190ACB ABC BDC α∠=∠=∠=°−,最后利用三角形内角和定理可得2BCD α∠=,即可解答;②根据三角形的外角性质可得3BFD α∠=,然后分三种情况:当BD BF =时;当DB DF =时;当FB FD =时;分别进行计算即可解答.【小问1详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BDC ∠是ADC △的一个外角,∴BDC A ACD ∠=∠+∠,∵ACB BCD ACD ∠=∠+∠,BCD A ∠=∠,∴BDC ACB ∠=∠,∴D ABC B C ∠=∠.∴CD CB =;【小问2详解】解:①∵BE AC ⊥,∴90BEC ∠=°,∴90CBE ACB ∠+∠=°,设CBE α∠=,则90ACB α∠=°−,∴90ACB ABC BDC α∠=∠=∠=°−,∴()()180********BCD BDC ABC ααα∠=°−∠−∠=°−°−−°−=, ∴2BCD CBE ∠=∠;②∵BFD ∠是CBF 的一个外角,∴23BFD CBE BCD ααα∠=∠+∠=+=,分三种情况:当BD BF =时,∴3BDC BFD α∠=∠=, ∵90ACB ABC BDC α∠=∠=∠=°−,∴903αα°−=,∴22.5α=°,∴245A BCD α∠=∠==°;当DB DF =时,∴3DBE BFD α∠=∠=, ∵90902DBE ABC CBE ααα∠=∠−∠=°−−=°−, ∴9023αα°−=,∴18α=°,∴236A BCD α∠=∠==°;当FB FD =时,∴DBE BDF ∠=∠,∵BDF ABC DBF ∠=∠>∠,∴不存在FB FD =,综上所述:如果BDF 是等腰三角形,A ∠的度数为45°或36°.。

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,点到x轴的距离为()A.4B.3C.D.2.下列图形中,具有稳定性的是()A. B. C. D.3.一次函数的值随x的增大而减小;则点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,≌,点B,E,C,F共线,已知,,则的度数为()A.B.C.D.5.如图,在平面直角坐标系,线段AB的两个端点坐标依次为,,将线段AB向右平移5个单位,再向上平移1个单位,得到对应线段CD,则四边形ABDC的面积为()A. B. C.15 D.186.一次函数中,当时,则函数y的取值范围为()A. B. C. D.7.下列条件能确定的形状与大小的是()A.,,B.,C.,,D.,,8.如图是一个不规则的“五角星”,已知,,,,则的度数为()A.B.C.D.9.同一平面直角坐标系中,一次函数与为常数的图象可能是()A. B. C. D.10.在中,,点D是BC边的中点,过点B作于点E,点F是DA延长线上一点,已知,下列结论不一定正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

11.把命题“全等三角形对应边的高相等”改写成“如果那么”的形式是______.12.在平面直角坐标系中,已知点和,且轴,则a的值为______.13.某数学兴趣小组利用全等三角形的知识测试某小河的宽度,如图,点A,B,C是小河两边的三点,在河边AB下方选择一点,使得,,若测得米,的面积为30平方米,则点C到AB的距离为______米.14.已知一次函数为常数且若该一次函数图象经过点,则______;当时,函数y有最大值11,则a的值为______.三、解答题:本题共9小题,共90分。

解答应写出文字说明,证明过程或演算步骤。

八年级月考数学试卷及答案

八年级月考数学试卷及答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. πC. √9D. √02. 下列函数中,定义域为全体实数的是()A. y = √xB. y = |x|C. y = 1/xD. y = √(x^2 - 1)3. 已知二次方程 x^2 - 4x + 3 = 0 的两个实数根为 a 和 b,则 a + b 的值为()A. 2B. 3C. 4D. 54. 在直角坐标系中,点 A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)5. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1二、填空题(每题5分,共25分)6. 若 a 和 b 是方程 x^2 - 5x + 6 = 0 的两个根,则 a^2 + b^2 的值为________。

7. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为 ________。

8. 在等腰三角形 ABC 中,AB = AC,若∠B = 50°,则∠A 的度数为 ________。

9. 下列式子中,正确的有(用序号表示)________。

(1)(a + b)^2 = a^2 + 2ab + b^2(2)(a - b)^2 = a^2 - 2ab + b^2(3)a^2 - b^2 = (a + b)(a - b)(4)(a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^410. 若 a、b、c 成等差数列,且 a + b + c = 12,a^2 + b^2 + c^2 = 42,则 b 的值为 ________。

三、解答题(每题10分,共30分)11. (1)已知二次函数 y = -2x^2 + 4x + 3,求该函数的顶点坐标。

(2)已知函数 y = 3x^2 - 2x - 1,求该函数的最大值。

12. (1)已知三角形 ABC 中,AB = 5,AC = 7,BC = 8,求三角形 ABC 的面积。

2023-2024学年重庆一中八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年重庆一中八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年重庆一中八年级(上)月考数学试卷(10月份)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个数中,3的相反数是()A.3B.C.D.2.下列图形不是轴对称图形的是()A. B. C. D.3.下列各式中,计算正确的是()A. B.C. D.4.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是()A.,,B.,,C.,,D.,,5.正比例函数的图象在第二、四象限,则一次函数的图象大致是()A. B.C. D.6.下列命题是真命题的是()A.在平面直角坐标系中,点在y轴上B.在一次函数中,y随着x的增大而增大C.同旁内角互补D.若,则7.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.以方程组的解为坐标的点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限9.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A. B. C. D.10.如图,在平面直角坐标系中,点P的坐标为,直线与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A.3B.4C.5D.611.如图,动点P从坐标原点出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点,第2秒运动到点,第3秒运动到点,第4秒运动到点,……则第2022秒点P所在位置的坐标是()A.B.C.D.12.下列说法中正确的有个①坐标平面内的点与有序实数对是一一对应的;②点位于第三象限;③点到y轴的距离为m;④点和点关于x轴对称,则的值为5;⑤若,则点在第一、三象限角平分线上.A.1B.2C.3D.4二、填空题:本题共6小题,每小题4分,共24分。

初二月考数学试卷及答案

初二月考数学试卷及答案

一、选择题(每题5分,共30分)1. 下列数中,绝对值最小的是:A. -3B. -2C. 0D. 12. 若x + y = 5,x - y = 1,则x² + y²的值为:A. 10B. 16C. 25D. 303. 在直角坐标系中,点A(2, 3)关于y轴的对称点坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)4. 若a² + b² = 25,a - b = 3,则a + b的值为:A. 4B. 6C. 8D. 105. 下列函数中,是二次函数的是:A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ - 2D. y = x + 1/x二、填空题(每题5分,共25分)6. 若a = 2,b = -3,则a² - b²的值为______。

7. 在等腰三角形ABC中,AB = AC,∠B = 40°,则∠A的度数为______。

8. 若x² - 5x + 6 = 0,则x的值为______。

9. 已知函数y = 2x - 1,当x = 3时,y的值为______。

10. 在直角坐标系中,点P(-4, 5)到原点O的距离为______。

三、解答题(每题15分,共45分)11. 解方程:2x² - 4x - 6 = 0。

12. 已知函数y = -3x² + 4x + 1,求该函数的顶点坐标。

13. 在等边三角形ABC中,边长为6cm,求三角形的高。

四、附加题(20分)14. 已知正方体ABCD-A1B1C1D1的边长为a,求正方体的体积V。

解答:一、选择题1. C2. C3. B4. C5. B二、填空题6. 77. 80°8. 2 或 39. 510. 5√2三、解答题11. 解:2x² - 4x - 6 = 0使用求根公式得:x = [4 ± √(16 + 48)] / 4x = [4 ± √64] / 4x = [4 ± 8] / 4x₁ = 3,x₂ = -112. 解:y = -3x² + 4x + 1顶点坐标公式为(-b/2a, f(-b/2a)),其中a = -3,b = 4x = -4 / (2 -3) = 2/3y = -3(2/3)² + 4(2/3) + 1 = 1/3顶点坐标为(2/3, 1/3)13. 解:等边三角形的高可以通过勾股定理求得高= √(边长² - (边长/2)²) = √(6² - (6/2)²) = √(36 - 9) = √27 = 3√3 cm四、附加题14. 解:正方体的体积V = a³,其中a为边长V = a³ = (2√3)³ = 8 3√3 = 24√3 cm³。

初二数学第一次月考试卷及答案

初二数学第一次月考试卷及答案

初二数学第一次月考试卷及答案八年级数学第一次月考试卷一、选择题:(本大题共12小题,每题3分,共36分)1、25的平方根是( )A 、5B 、5-C 、5±D 、5±2、下列说法错误的是 ( )A 、无理数的相反数依旧无理数B 、开不尽根号的数差不多上无理数C 、正数、负数统称有理数D 、实数与数轴上的点一一对应3、以下列各组数为边长,能组成直角三角形的是( )A .8,15,17B .4,5,6C .5,8 ,7D .8,39,404、有下列说法:(1)带根号的数是无理数;(2)不带根号的数一定是无理数;(3)负数没有立方根;(4)是17的平方根,其中正确的有( )A .0个B . 1个C .2个D .3个5、下列各式中, 差不多化简的是 ( ) A. 31 B. 20 C. 22 D. 121 6、假如一个数的立方根是那个数本身,那么那个数是( ) A 、1 B 、1- C 、1± D 、0,1±7、当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、41- D 、1 8、满足53<<-x 的整数x 是( ) A 、3,2,1,0,1,2-- B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-9、2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±610、小刚预备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A. 2m;B. 2.5m;C. 2.25m;D. 3m.11、已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为 ( )(A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cm12、若9,422==b a ,且0<ab ,则b a -的值为 ( )(A ) 2- (B ) 5± (C ) 5 (D ) 5-2a+2 二、填空题:(本大题共4小题,每题3分,共12分)13、5-的相反数是_________,绝对值是________,倒数是_________;14、2)3(-=________,327- =_________, 0)5(-的立方根是 ;15、比较大小:2_______2, -2________-4.2,3-π______016、若03)2(12=-+-+-z y x ,则z y x ++= 。

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。

苏州高新区第一初级中学校2024—2025学年上学期八年级数学月考试卷 (解析版)

苏州高新区第一初级中学校2024—2025学年上学期八年级数学月考试卷 (解析版)

初二数学练习一、选择题1. 下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对选项进行分析即可.【详解】解:A,B,C选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故不符合题意;D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,解本题的关键在寻找图形的对称轴,看图形两部分折叠后是否能够互相重合.2. 在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在的他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC()A. 三边中线的交点B. 三条角平分线交点C. 三边中垂线的交点D. 三边上高交点【答案】C【解析】【分析】本题考查了与三角形相关的线段以及线段的垂直平分线.当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质,即可求解.【详解】解:根据题意得:当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的到线段两端的距离相等,的三边中垂线的交点,∴凳子应放的最适当的位置是在ABC故选:C.3. 已知等腰三角形的一个角为80°,则该三角形的底角度数为()A. 80°B. 50°或80°C. 50°或30°D. 30°【答案】B【解析】【分析】分80°的角为顶角,80°的角为底角,利用三角形内角和定理和等腰三角形的性质求解即可.【详解】解:当80°的角为顶角时,则底角度数为18080502°−°=°,当80°的角为底角时,则底角度数为80°;综上所述,该三角形的底角度数为50°或80°,故选B.【点睛】本题主要考查了等边对等角,三角形内角和定理,利用分类讨论的思想求解是解题的关键.4. 如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A. 20°B. 40°C. 50°D. 70°【答案】C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.5. 如图,△ABC中,AC=8,点D,E分别在BC,AC上,F是BD的中点.若AB=AD,EF=EC,则EF 的长是()A. 3B. 4C. 5D. 6【答案】B【解析】 【分析】连接AF ,得到∠AFC =90°,再证AE=EF ,可得EF=AE=EC ,即可求出EF 的长.【详解】解:如图:连接AF ,∵AB=AD, F 是BD 的中点,∴AF ⊥BD,∵EF=EC ,∴∠EFC =∠C ,∵在Rt △AFC 中,∠AFC =90°,∴∠AFE +∠EFC =90°,∠F AC +∠C ∴∠AFE =∠F AC ,∴AE=EF ,∵AC =8,∴EF=AE=EC=12AC=4. 故选B .【点睛】本题主要考查等腰三角形的判定和性质,直角三角形的性质.解题的关键是正确的添加辅助线. 6. 已知:如图ABC 中,=60B ∠°,80C ∠=°,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分ACD 或BCD △为等腰三角形两种情况画出图形即可判断.【详解】解:如图:当BC BD =时,BCD △是等腰三角形;∵=60CBA ∠°,∴BCD △是等边三角形,∴BC BD CD ==;当1BC BD =时,BCD △是等腰三角形;当23AC AD AD ==,4CA CD =,当55CD D A =时,ACD 都是等腰三角形; 综上,符合条件的点D 的个数有6个.故选:B .【点睛】本题考查等腰三角形存在问题,如果题中没有说明等腰三角形的腰或者底分别是哪条线段,都要进行分类讨论,让三条线段分别两两相等,得出三种情况,再根据题意看有没有需要排除的情况,然后再一一分析符合条件的图形.7. 如图,在ABC 中,30BAD ∠=°,将ABD △沿AD 折叠至ADB ′ ,2ACB α∠=,连接B C ′,B C ′平分ACB ∠,则AB D ′∠的度数是( )A. 602α°+ B. 60α°+ C. 902α°− D. 90α°−【答案】D【解析】【分析】此题考查了全等三角形判定与性质,角平分线的性质,等边三角形的的判定与性质,叠的性质.连接BB ′,过B ′作B E BC ′⊥于点E ,B F AC ′⊥于点F ,由折叠性质可得AB AB ′=,的30BAD B AD ′∠=∠=°,BD B D ′=,从而证明BAB ′ 是等边三角形,证明()HL AFB BEB ′′ ≌,可证()AAS ACB BCB ′′ ≌,最后根据全等三角形的性质即可求解.【详解】如图,连接BB ′,过B ′作B E BC ′⊥于点E ,B F AC ′⊥于点F ,∵B C ′平分ACB ∠,∴B E B F ′′=,由折叠性质可知AB AB ′=,30BAD B AD ′∠=∠=°,BD B D ′=,∴60BAB ′∠=°,∴BAB ′ 是等边三角形,∴BB AB ,60BB A ′∠=°,∴()HL AFB BEB ′′ ≌,∴B AC B BC ′′∠=∠,∵B C ′平分ACB ∠, ∴122BCB ACB αα′′∠=∠=×=, 又∵BB AB ,∴()AAS ACB BCB ′′ ≌, ∴3603606015022AB B AB C BB C ′°−∠°−°′′∠=∠===°, ∴18030B AC B BC AB C ACB α′′′′∠=∠=°−∠−∠=°−,∴30DBB DB B B AC α′∠′=∠==′∠°−,∴603090AB D AB B BB D αα′′′∠=∠+∠=°+°−=°−,故选:D .二、填空题8. 如图,在锐角△ABC 中,BC =4,∠ABC =30°,∠ABD =15°,直线BD 交边AC 于点D ,点P 、Q 分别在线段BD 、BC 上运动,则PQ +PC 的最小值是__________.【答案】2【解析】【分析】作点Q 关于BD 的对称点M ,连接CM ,当C M A B ⊥时.此时PQ +PC 取得最小值.【详解】解:∵∠ABC =30°,∠ABD =15°,∴BD 是∠ABC 的平分线,作点Q 关于BD 的对称点M ,连接PM 、CM ,由对称的性质可知,PQ PM =,15QBP MBP ∠=∠=° ∴PQ PC PM PC CM +=+≥,∵15QBP MBP ∠=∠=°, ∴30QBP MBP∠+∠=°, ∵30ABC ∠=°,∴M 在AB 上,由垂线段最短可知:当C M A B ⊥时.CM 取得最小值,∴此时PQ +PC 也取得最小值.∵C M A B ⊥,∴90BMC ∠=°,∵30ABC ∠=°, ∴122CM BC ==,∴PQ +PC 的最小值为:2.故答案为:2.【点睛】本题考查了轴对称-最短路径问题、30°直角三角形的性质等知识,解题的关键是学会利用轴对称解决最短路径问题.9. 等腰三角形的两边长分别为3和6,则这个三角形的周长为___________.【答案】15【解析】【分析】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论并利用三角形三边关系判断是否能组成三角形.分3是腰长与底边长两种情况讨论求解.【详解】解:①3是腰长时,三角形的三边分别为3、3、6,336+= ,∴不能组成三角形,②3是底边时,三角形的三边分别为6、6、3,能组成三角形,周长66315=++=.综上所述,这个等腰三角形的周长为15.故答案为:15.10. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】3【解析】【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,的选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为3.考点:概率公式;轴对称图形.11. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.【答案】108°##108度【解析】【分析】本题考查了等边对等角、三角形外角定义及性质、三角形内角和定理,由等边对等角得出ABC ACB BAD ∠=∠=∠,结合三角形外角的定义及性质得出2CAD CDA ABD ∠=∠=∠,再由三角形内角和定理计算得出36ABC ACB BAD ∠=∠=∠=°,从而推出272DAC BAD ∠=∠=°,即可得解.【详解】解:∵AD BD =,∴ABD BAD ∠=∠,∵AB AC CD ==,∴A ABC CB =∠∠,CAD CDA ∠=∠,∴ABC ACB BAD ∠=∠=∠,∵2CDA BAD ABD ABD ∠=∠+∠=∠,∴2CAD CDA ABD ∠=∠=∠,∵225180CAD CDA ACD ABD ABD ACD ABD ∠+∠+∠∠+∠+∠∠°,∴36ABC ACB BAD ∠=∠=∠=°,∴272DAC BAD ∠=∠=°,∴108BAC DAC BAD ∠=∠+∠=°,故答案为:108°.12. 如图,在ABC 中,AB 的垂直平分线分别交AB 和BC 于点D 和点E ,若ABC 的周长30cm,的AEC △的周长21cm ,则AB 的长为_______cm .【答案】9【解析】【分析】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段垂直平分线的性质得到EA EB =,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 的垂直平分线,∴EA EB =,∵ABC 的周长30cm ,∴30cm AB AC BC ++=,∵AEC △的周长21cm ,∴21cm AC CE EA AC CE EB AC BC ++=++=+=,∴()30219cm AB =−=,故答案为:9.13. 如图,在ABC 中,BO 平分ABC ∠,OD BC ⊥于点D ,连接OA ,若3OD =,12AB =,则AOB 的面积是 _____.【答案】18【解析】【分析】本题主要考查了角平分线的性质,过点O 作OE AB ⊥于点E ,根据BO 平分ABC ∠,OD BC ⊥,得到3OEOD ==,根据面积公式求出三角形的面积,熟练掌握角平分线上的点到角的两边距离相等是解题的关键.【详解】解:如图,过点O 作OE AB ⊥于点E ,∵BO 平分ABC ∠,OD BC ⊥,∴3OE OD ==,∴AOB 的面积111231822AB OE =×=××=, 故答案为:18.14. 如图,在ABC 中,AB AC =,DE 垂直平分AB .若BE AC ⊥,AFBC ⊥,垂足分别为点E ,F ,连接EF ,则∠=EFC ________.【答案】45°##45度【解析】【分析】本题考查了线段垂直平分线性质,等腰三角形的性质与判定,根据三线合一证明,直角三角形斜边中线性质,运用等腰三角形三线合一证明是解题关键.根据题意可证ABE 是等腰直角三角形,45BAC ∠=°,根据等腰三角形三线合一可得22.5CAF ∠=°,根据同角的余角相等可得22.5CBE ∠=°,根据直角三角形斜边中线性质可证BFE △是等腰三角形,进而求出其外角EFC ∠的度数.【详解】解:∵DE 垂直平分AB ,BE AC ⊥,∴BE AE =,ABE 是等腰直角三角形,∴45BAE ABE ∠=∠=°.∵AB AC =,AF BC ⊥,∴22.5CAF ∠=°,BF CF =,∵在直角AFC 和直角BEC 中,CAF ∠和CBE ∠都和C ∠互余,∴22.5CBE CAF ∠=∠=°,∵12BF CF BC ==, ∴点F 是BC 中点,EF 是直角BEC 的中线, ∴12EF BC =, ∴BF EF =,∴22.5BEF CBE ∠=∠=°,∴22.522.545EFC CBE BEF ∠=∠+∠=°+°=°.故答案为:45°.15. 如图,ABC 中40ABC ∠=°,动点D 在直线BC 上,当ABD △为等腰三角形,ADB =∠__________.【答案】20°或40°或70°或100°【解析】【分析】画出图形,分四种情况分别求解.【详解】解:若AB AD =,则40ADB ABC ∠=∠=°;若AD BD =,则40DAB DBA ∠=∠=°,∴180240100ADB ∠=°−×°=°;若AB BD =,且三角形是锐角三角形,则()1180702ADB BAD ABC ∠=∠=°−∠=°;若AB BD =,且三角形是钝角三角形, 则1202BAD BDA ABC ∠=∠=∠=°.综上:ADB ∠的度数为20°或40°或70°或100°,故答案为:20°或40°或70°或100°.【点睛】本题考查了等腰三角形的性质,外角的性质,解题的关键是找齐所有情况,分类讨论. 16. 如图,在ABC 中,60ABC ∠=°,AAAA 平分BAC ∠交BC 于点D ,CCCC 平分ACB ∠交AAAA 于点E ,AD CE 、交于点F .则下列说法正确的有______.①120AFC ∠=°;②ABD S = ;③若2AB AE =,则CE AB ⊥;④CD AE AC +=.【答案】①③④【解析】【分析】本题考查了三角形全等的性质和判定,角平分线的定义,三角形的中线,等角对等边,①根据三角形内角和定理可得可得120ACB CAB ∠+∠=°,然后根据AAAA 平分BAC ∠,CCCC 平分ACB ∠,可得12FCA ACB ∠=∠,12FAC CAB ∠=∠,再根据三角形内角和定理即可进行判断;②当AAAA 是ABC 的中线时, ABD ADC S S = ,进而可以进行判断;③延长CCCC 至G ,使GE CE =,连接BG ,根据2AB AE =,证明()SAS ACE BGE ≌得ACE G ∠=∠,然后根据等角对等边进而可以进行判断;④作AFC ∠的平分线交AC 于点H ,可得60AFH CFH AFE ∠=∠=∠=°,证明()ASA AEF AHF ≌,()ASA CDF CHF ≌,可得AE AH =,CD CH =进而可以判断;熟练掌握知识点的应用是解题的关键.【详解】①在ABC 中, 60ABC ∠=°,∴120ACB CAB ∠+∠=°,∵AAAA 平分BAC ∠,CCCC 平分ACB ∠, ∴12FCA ACB ∠=∠,12FAC CAB ∠=∠, ∴()()11801801202AFC FCA FAC ACB CAB ∠=−∠+∠=−∠+∠=° ,故①正确; ②当AAAA 是ABC 的中线时,ABD ADC S S = ,而AAAA 平分BAC ∠, 故②错误;③如图,延长CCCC 至G ,使GE CE =,连接BG ,∵2AB AE =,∴AE BE =,∵AEC BEG ∠=∠,∴()SAS ACE BGE ≌,∴ACE G ∠=∠,CE GE =,∵CCCC 为角平分线,∴ACE BCE ∠=∠,∴BCE G ∠=∠,∴BC BG =,∵CE GE =,∴BE CE ⊥,故③正确;④如图,作ABC ∠的平分线交AC 于点H ,由①得120AFC ∠=°,∴60AFH CFH ∠=∠=°,∵18060AFE AFC ∠=°−∠=°,∴60AFH CFH AFE ∠=∠=∠=°,∴EAF HAF ∠=∠,DCF HCF ∠=∠, ∴()ASA AEF AHF ≌,()ASA CDF CHF ≌,∴AE AH =,CD CH =,∴CD AE CH AH AC +=+=,故④正确;综上:①③④正确,故答案为:①③④.三、解答题17. 下列四个图都是由16个相同的小正方形拼成的正方形网格,其中的两个小正方形被涂黑.请在各图中再将两个空白的小正方形涂黑使各图中涂黑部分组成的图形成为轴对称图形(另两个被涂黑的小正方形的位置必须全不相同)【答案】见解析【解析】【分析】本题主要考查了轴对称图形的作法,解题的关键是熟练掌握轴对称图形的性质,沿一条直线对折直线两旁部分完全重合.先找到合适的对称轴,然后再涂黑两个小正方形即可.【详解】解∶如图,18. 如图,在每个小正方形的边长为1的网格中,ABC 的三个顶点均在格点上,直线EF 经过网格格点.请完成下列各题:(1)画出ABC 关于直线EF 的对称的A B C ′′′ ;(2)ABC 的面积等于 .(3)利用网格,在直线EF 上画出点P ,使PA PB =.同时,在直线EF 上画出点Q ,使QA QB +的值最小.【答案】(1)画图见解析(2)14(3)画图见解析【解析】【分析】本题考查了两点之间线段最短,运用网格求三角形面积,垂直平分线的性质,轴对称作图,正确掌握相关性质内容是解题的关键.(1)分别作出点A B C ′′′,,,再依次连接,即可作答. (2)运用割补法求三角形面积,即可作答.(3)结合网格特征,作出线段AB 的垂直平分线,与直线EF 的交点,即为点P ,结合(1),连接A B ′,与直线EF 的交点,即为点Q ,即可作答.【小问1详解】解:A B C ′′′ 如图所示:【小问2详解】 解:1114824262814222ABC S =×−××−××−××= ; 【小问3详解】解:画AB 的垂直平分线交直线EF 于点P ,则PA PB =,如图所示:连接AB ′交直线EF 上于点Q ,则AQ BQ AQ B Q AB ′′+=+=,则QA QB +的值最小,如图所示:19. 已知:如图,ABC 中,D 是AB 中点,DE AC ⊥垂足为E ,DF BC ⊥垂足为F ,且ED FD =,求证:ABC 是等腰三角形.【答案】见解析【解析】【分析】本题考查的知识点是全等三角形的判定和性质、等腰三角形的判定,解题关键是熟练掌握全等三角形的判定和性质.由点D 是AB 中点,可得AD BD =,再证明Rt Rt ADE BDF ≌ 可得A B ∠=∠,然后根据等角对等边可得即可证明结论.【详解】证明:∵D 是AB 中点,∴AD BD =,,DE AC DF BC ⊥⊥ ,在Rt ADE 和Rt BDF △中,ED FD AD BD= = , ∴()Rt Rt ADE BDF HL ≌,∴A B ∠=∠,∴AC BC =,即ABC 是等腰三角形.20. 已知:如图,B ,D ,E ,C 在同一直线上,AB AC AD AE ==,.求证:BD CE =.【答案】见解析【解析】【分析】本题主要考查了等腰三角形三线合一,如图所示,过点A 作AFBC ⊥于F ,由三线合一定理得到BF CF =,DF EF =,再由线段的和差关系即可证明BD CE =.【详解】证明:如图所示,过点A 作AFBC ⊥于F ,∵AB AC =(已知), ∴BF CF =,又∵AD AE =(已知), ∴DF EF =,∴BF DF CF EF −=−,即BD CE =(等式的性质).21. 如图,90B C ∠=∠=°,AE 平分BAD ∠,DE 平分CDA ∠,且AE 与DE 交BC 于E .求证:(1)BE CE =;(2)AE DE ⊥.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查角平分线的性质,全等三角形的判定和性质:(1)过点E 作EF AD ⊥,根据角平分线的性质,即可得出结论;(2)分别证明DCE DFE ≌, ≌ABE AFE ,得到,CED FED AEB AEF ∠=∠∠=∠,根据平角的定义,得到90AED ∠=°,即可.【小问1详解】解:过点E 作EF AD ⊥,∵AE 平分BAD ∠,DE 平分CDA ∠,90B C ∠=∠=°, ∴CE EF =,BE EF =,∴BE CE =;【小问2详解】证明:在Rt ECD △和Rt EFD 中,DE DE EF CE = =, ∴Rt Rt ECD EFD ≌,∴CED FED ∠=∠, 同理:Rt Rt EBA EFA ≌,∴AEB AEF ∠=∠,∵180CED FED AEB AEF ∠+∠+∠+∠=°,∴()2180FED AEF ∠+∠=°,∴180FED AEF ∠+∠=°,即:90AED ∠=°,∴AE DE ⊥22. 如图,在ABC 中,90BAC ∠>°,AB 的垂直平分线分别交AB ,BC 于点E ,F ,AC 的垂直平分线分别交AC ,BC 于点M ,N ,直线EF ,MN 交于点P .(1)求证:点P 在线段BC 的垂直平分线上;(2)已知56FAN ∠=°,求FPN ∠的度数.【答案】(1)证明见解析;(2)62FPN ∠=°.【解析】【分析】(1)连接BP ,AP ,PB PA PC ==,从而证明结论即可;(2)先根据相等垂直平分线的性质证明FA FB =,NA NC =,90AEP AMP BEF CMN ∠=∠=∠=∠=°,再设B x ∠=,C y ∠=,然后根据三角形内角和定理,求出x y +,再根据直角三角形的性质求出BFE ∠和CNM ∠,再根据对顶角的性质求出PFN ∠,PNF ∠,最后利用三角形内角和定理求出答案即可.本题主要考查了线段的垂直平分线的性质,三角形内角和定理,直角三角形的性性质,对顶角相等,解题关键是熟练掌握知识点的应用.【小问1详解】证明:如图所示, 连接BP ,AP ,PC ,∵PE 垂直平分AB ,PM 垂直平分AC , ∴PA PB =,PA PC =,∴PB PC =,∴点P 在线段BC 的垂直平分线上;【小问2详解】解:∵PE 垂直平分AB ,PM 垂直平分AC , ∴FA FB =,NA NC =,90AEP AMP BEF CMN ∠=∠=∠=∠=°, ∴90B BFE C MNC ∠+∠=∠+∠=°,设B x ∠=,C y ∠=, ∴B BAF x ∠=∠=,C CAN y ∠=∠=,90BFE x ∠=°−, 90MNCy ∠=°−, ∴90PFN BFE x ∠=∠=°−,90PNF MNC y ∠=∠=°−, ∵180B C CAB ∠+∠+∠=°,56FAN =°,∴2256180x y ++°=°,即62x y +=°, ∵180PFN PNF FPN ∠+∠+∠=°,∴9090180x y FPN°−+°−+∠=°, ∴()18018062FPNx y ∠=°−°++=°. 23. 如图,在ABC 中,BD AC ⊥于点D ,CE AB ⊥于点E ,F 为BC 的中点,连接EF ,DF .(1)求证:EF DF =;(2)若60A ∠=°,6BC =.求DEF 的周长.【答案】(1)证明见解析.(2)9.【解析】【分析】本题考查了等边三角形的判定与性质、直角三角形斜边上的中线、等腰三角形的性质,利用等腰三角形的性质和三角形内角和定理求出是解题关键.(1)利用直角三角形斜边中线的性质即可解决问题.(2)由(1)可得EF DF BF CF ===,再可推导出60EFD ∠=°,再证明DEF 为等边三角形即可求解.【小问1详解】证明:∵BD AC ⊥于点D ,CE AB ⊥于点E ,∴BEC 与BDC 都为直角三角形,又∵F 为BC 的中点, ∴12EF BC =,12DF BC =, ∴EF DF =.【小问2详解】由(1)可知12EFDF BC ==, ∵F 为BC 的中点, ∴12BF FC BC ==, ∴3EF DF BF CF ====,∴FBE BEF ∠=∠,FCD CDF ∠=∠, ∵60A ∠=°,∴120ABF ACB ∠+∠=°,∴1801802BFE ABF BEF ABF ∠=°−∠−∠=°−∠,1801802CFD ACB CDF ACB ∠=°−∠−∠=°−∠,∴()36023602120120BFE CFD ABF ACB ∠+∠=°−∠+∠=°−×°=°, ∴18060EFD BFE CFD ∠=°−∠−∠=°,又∵EF FD =,∴EFD 为等边三角形,∴3EF FD ED ===,∴DEF 的周长为9EF FD ED ++=.24. 如图,ABC 中,点D 在边BC 延长线上,108ACB ∠=°,ABC ∠的平分线交AD 于点E ,过点E 作EH BD ⊥,垂足为H ,且54CEH ∠=°.(1)求ACE ∠的度数;(2)请判断AE 是否平分CAF ∠,并说明理由;(3)若10AC CD +=,6AB =,且15ACD S = ,求ABE 的面积.【答案】(1)36ACE ∠=°(2)AE 平分CAF ∠,理由见解析(3)ABE 的面积为9【解析】【分析】本题主要考查角平分线的判定与性质,三角形的内角和定理,三角形的面积.(1)由平角的定义可求解ACD ∠的度数,再利用三角形的内角和定理可求解36ECH ∠=°,进而可求解; (2)过E 点分别作EM BF ⊥于M ,EN AC ⊥与N ,根据角平分线的性质可证得EM EN =,进而可证明结论;(3)利用三角形的面积公式可求得EM 的长,再利用三角形的面积公式计算可求解.【小问1详解】解:108ACB ∠=° ,18010872ACD ∴∠=°−°=°,EH BD ⊥ ,90CHE ∴∠=°,54CEH ∠=°, 905436ECH ∴∠=°−°=°,723636ACE ∴∠=°−°=°;【小问2详解】解:AE 平分CAF ∠,理由如下:过E 点分别作EM BF ⊥于M ,EN AC ⊥与N ,BE 平分ABC ∠,EM EH ∴=,36ACE ECH ∠=∠=° ,CE ∴平分ACD ∠,EN EH ∴=,EM EN ∴=,AE ∴平分CAF ∠;【小问3详解】解:10AC CD += ,15ACD S = ,EMEN EH ==, 111()15222ACD ACE CED S S S AC EN CD EH AC CD EM ∴=+=⋅+⋅=+⋅= , 即110152EM ×⋅=, 解得3EM =,6AB = ,1163922ABE S AB EM ∴=⋅=××= . 25. 如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点(与A ,C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),连接PQ 交AB 于D .(1)设AP 的长为x ,则PC = ,QC = ;(2)当∠BQD =30°时,求AP 的长;(3)过点Q 作QF ⊥AB 交AB 延长线于点F ,过点P 作PE ⊥AB 交AB 延长线于点E ,则EP ,QF 有怎样的关系?说明理由;(4)在运动过程中,线段ED 的长是否发生变化?如果不变,求出线段ED 的长【答案】(1)6x −,6x + ;(2)2;(3)EP FQ =,//QF PE ;(4)不变,3ED =.【解析】【分析】(1)由线段和差关系即可得出答案;(2)由直角三角形中30°角所对的直角边等于斜边的一半可列方程()626x x +=−解方程即可得出答案;(3)作QF AB ⊥的延长线于点F ,利用AAS 证明AEP BFQ ≌,即可得出答案;(4)作QF AB ⊥的延长线于点F ,连接,EQ PF ,由全等三角形的性质可证AB EF =,由题意可证四边形PEQF 是平行四边形,可得12DEDF EF ==,即可得出答案. 【详解】解:(1)∵6AP x AC BC ===,又P 和Q 速度相同∴AP QB = ∴66PC x AQ x =−=+, 故答案为:6x −,6x + .(2)∵60ACB ∠=°,30BQD ∠=°∴90QPC ∠=° ∴2QC PC =∴()626x x +=−解得:xx =2∴2AP = .(3)EP FQ =,//QF PE理由如下:作QF AB ⊥的延长线于点F如图,∵PE AB QF AB ⊥⊥,∴//QF PE∴AEP QFB ∠=∠ ∵P 和Q 速度相同∴AP BQ =∵ABC 是等边三角形∴60A ABC FBQ ∠=∠=∠=° 又ABC QBF ∠=∠ ∴A QBF ∠=∠ 在AEP 和BFQ 中AP BQ AEP QFB A QBF = ∠=∠ ∠=∠()AEP BFQ AAS ≌∴QF EP =.(4)AACC 的长度不变作QF AB ⊥的延长线于点F ,连接,EQ PF∵AEP BFQ ≌∴AE BF =∴BE AE BF BE +=+∴6AB EF ==∵PE EP QF AB ⊥⊥,∴//QF PE 且QF PE =∴四边形PEQF 是平行四边形 ∴132DE DF EF ===. 【点睛】本题考查的是等边三角形的性质、全等三角形的判定定理及平行四边形的判定与性质,熟练掌握全等三角形的判定是解决本题的关键.26. 小普同学在课外阅读时,读到了三角形内有一个特殊点“布洛卡点”,关于“布洛卡点”有很多重要的结论.小普同学对“布洛卡点”也很感兴趣,决定利用学过的知识和方法研究“布洛卡点”在一些特殊三角形中的性质.让我们尝试与小普同学一起来研究,完成以下问题的解答或有关的填空.【阅读定义】如图1,ABC 内有一点P ,满足PAB PBC PCA ∠=∠=∠,那么点P 称为ABC 的“布洛卡点”,其中∠PAB 、PBC ∠、PCA ∠被称为“布洛卡角”.如图2,当QAC QCB QBA ∠=∠=∠时,点Q 也是ABC 的“布洛卡点”.一般情况下,任意三角形会有两个“布洛卡点”.【解决问题】(说明:说理过程可以不写理由)问题1:等边三角形的“布洛卡点”有 个,“布洛卡角”的度数为 度;问题2:在等腰三角形ABC 中,已知AB AC =,点M 是ABC 的一个“布洛卡点”,MAC ∠是“布洛卡角”.(1)AMB ∠与ABC 的底角有怎样的数量关系?请在图3中,画出必要的点和线段,完成示意图后进行说理.(2)当90BAC ∠=°(如图4所示),5BM =时,求点C 到直线AM 的距离. 【答案】问题1:1,30;问题2:(1)2AMB ABC ∠=∠,(2)52, 【解析】【分析】问题1:根据等边三角形的性质和“布洛卡点”的定义即可知其“布洛卡点”个数和角度; 问题2:(1)根据等腰三角形的性质可得ABC ACB ∠=∠,结合题意可知MAC ABM ∠=∠,则有BAC ABM BAM ∠=∠+∠,利用三角形内角和定理可得ABC ACB AMB ∠+∠=∠,即可得到2AMB ABC ∠=∠; (2)过C 点作CD AM ⊥与D ,根据可得90ADC ∠=°,且45ABC ACB ∠=∠=°,由题意得MAC MCB ABM ∠=∠=∠,求得180AMB ABM BAM ∠=°−∠−∠90=°,180BMC MBC MCB ∠=°−∠−∠135=°,则有ADC BMA ∠=∠和45CMD MCD ∠=∠=°,MD CD =,继而证明ADC BMA ≌,则有AD BM =和CD AM =,即可得到2BM CD =,可得点C 到直线AM 的距离.【详解】解:问题1:由题意知三角形中有两个“布洛卡点”,∵等边三角形每个角为60°,∴两个“布洛卡点”重合为一个,且每个角为30°,故答案为:1,30.问题2:(1)2AMB ABC ∠=∠,理由如下:∵AB AC =,∴ABC ACB ∠=∠,∵M 是ABC 的“布洛卡点”,MAC ∠是“布洛卡角”,∴MAC ABM ∠=∠,∴MAC BAM ABM BAM ∠+∠=∠+∠,即BAC ABM BAM ∠=∠+∠,∵180ABC ACB BAC ∠°−∠−∠=∠,180ABM BAM AMB ∠+∠=°−∠,∴ABC ACB AMB ∠+∠=∠,∵ABC ACB ∠=∠,∴2AMB ABC ∠=∠,(2)过C 点作CD AM ⊥与D ,如图,则90ADC ∠=°,∵90BAC AB AC ∠=°=,,∴45ABC ACB ∠=∠=°,∵MAC MCB ABM ∠=∠=∠,∴180AMB ABM BAM ∠=°−∠−∠180MAC BAM =°−∠−∠180BAC =°−∠90=°,180BMC MBC MCB ∠=°−∠−∠180MBC ABM =°−∠−180ABC =°−∠135=°,∴45ADC BMA ∠=∠=°,45CMD MCD ∠=∠=°,∴MD CD =,在ADC △和BMA △中,ADC BMA CAD ABM AC BA∠=∠ ∠=∠ = , ∴()AAS ADC BMA ≌,∴AD BM =,CD AM =,∴2AD CD =,∴2BM CD =,∵5BM =,∴52CD =. 【点睛】本题主要考查新定义下的三角形角度理解,涉及等边三角形的性质、等腰三角形的性质、全等三角形的判定和性质和三角形内角的应用,解得的关键是对新定义的理解,以及角度之间的转化.27. 在四边形ABDE 中,C 是BD 边中点.(1)如图1,若AC 平分BAE ∠,90ACE ∠=°,则线段AE AB DE ,,满足数量关系是 ; (2)如图2,AC 平分BAE ∠,EC 平分AED ∠,若120ACE ∠=°,则线段AB ,BD ,DE ,AE 之间存在怎样的数量关系?写出结论并证明;(3)如图3,8BC =,3AB =,7DE =,若120ACE ∠=°,则线段AE 长度的最大值是 .【答案】(1)AE AB DE =+(2)12AE AB DE BD =++,证明见解析 (3)18【解析】【分析】(1)在AE 上取一点F AF AB =,即可以得出ACB ACF ≌,就可以得出BC FC =,ACB ACF ∠=∠,就可以得出CEF CED △≌△.就可以得出结论;(2)在AE 上取点F ,使AF AB =,连接CF ,在AE 上取点G ,使EG ED =,连接CG .可以求得CF CG =,CFG △是等边三角形,就有12FG CG BD ==,进而得出结论; (3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG .同(2)可得CFG △是等边三角形,则8FG FC CG BC ====.当A ,F ,G ,E 共线时,AE 有最大值AF FG GE =++,即可求解.【小问1详解】解:在AE 上取一点F ,使AF AB =,连接CF .如图(1),∵AC 平分BAE ∠,的∴BAC FAC ∠=∠. 在ACB △和ACF △中, AB AF BAC FAC AC AC = ∠=∠ =, ∴()SAS ACB ACF ≌, ∴BC FC =,ACB ACF ∠=∠. ∵C 是BD 边的中点. ∴BC CD =, ∴CF CD =. ∵90ACE ∠=°, ∴90ACB DCE ∠+∠=°,90ACF ECF ∠+∠=°, ∴ECF ECD ∠=∠. 在CEF △和CED △中, CF CD ECF ECD CE CE = ∠=∠ =, ∴()SAS CEF CED ≌, ∴EF ED =. ∵AE AF EF =+, ∴AE AB DE =+; 故答案为:AE AB DE =+.【小问2详解】 解:结论:12AE AB DE BD =++. 证明:在AE 上取一点F ,使AF AB =,连接CF ,在AE 上取点G ,使EG ED =,连接CG .如图(2),∵C 是BD 边的中点, ∴12CB CD BD ==. ∵AC 平分BAE ∠,∴BAC FAC ∠=∠.在ACB △和ACF △中,AB AF BAC FAC AC AC = ∠=∠ =, ∴()SAS ACB ACF ≌,∴CF CB =,ACB ACF ∠=∠.同理可证:CD CG =,DCE GCE ∠=∠.∵CB CD =,∴CG CF =,∵120ACE ∠=°,∴18012060BCA DCE ∠+∠=°−°=°.∴60FCA GCE ∠+∠=°.∴60FCG ∠=°,∴FGC △是等边三角形. ∴12FG FC CG BD ===, ∵AE AF EG FG =++, ∴12AE AB DE BD =++. 【小问3详解】解:将ABC 沿AC 翻折得AFC ,将ECD 沿EC 翻折得ECG ,连接FG ,如图3,由翻折可得3AF AB ==,7GEED ==,8FC BC ==,CG CD =,BAC FAC ∠=∠,DEC GEC =∠∠,∵C 是BD 边的中点,∴8CD CB ==,∴8CG CD ==∵120ACE ∠=°,由(2)可得FGC △等边三角形,∴8FG FC BC ===.∵AE AF FG GE ≤++当A ,F ,G ,E 共线时,AE 有最大值38718AF FG GE =++=++=.故答案为:18.【点睛】本题考查了角平分线的定义,全等三角形的判定及性质,等边三角形的判定与性质,折叠的性质,是。

2024-2025学年八年级数学上学期第一次月考卷及答案

2024-2025学年八年级数学上学期第一次月考卷及答案

2024-2025学年八年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版八年级上册11.1-12.1。

5.考试结束后,将本试卷和答题卡一并交回。

6.难度系数:0.8。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.△ABC的三角之比是1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下列四个图形中,线段AD是△ABC的高的是()A.B.C.D.3.如图,在△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.284.如图,在△ABC中,AD是高,AE是角平分线,AF是中线.则下列结论错误的是()A.BF=CF B.∠BAE=∠EACC.∠C+∠CAD=90°D.S△BAE=S△EAC5.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A =60°,∠E=45°,若AB∥CF,则∠CBD的度数是()A.15°B.20°C.25°D.30°6.如图,把△ABC沿EF翻折,叠合后的图形如图,若∠A=60°,∠1=95°,则∠2的度数是()A.15°B.20°C.25°D.35°7.如图,将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,则下列说法正确的是()A.外角和减少180°B.外角和增加180°C.内角和减少180°D.内角和增加180°8.如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°9.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β10.如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC =α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为()A.30°B.45°C.60°D.75°第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷+答案解析

2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷+答案解析

2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,若点A的坐标是,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.函数中,自变量x的取值范围是()A. B. C. D.3.下列四个图形中,画出的边AB上的高的是()A. B.C. D.4.下面是雨伞在开合过程中某时刻的截面图,伞骨,点D、E分别是AB,AC的中点,DM、EM是连接弹簧和伞骨的支架,且,则判定“≌”的依据是()A.角边角B.角角边C.边边边D.边边角5.已知等腰三角形一腰上的中线将它的周长分成6cm和12cm两部分,则等腰三角形的腰长为()A.4cm或8cmB.4cmC.8cmD.2cm或10cm6.下列选项中,可以用来说明命题“若,则”是假命题的反例是()A.,B.,C.,D.,7.如图,在中,AD为高,AE平分,,,则的度数为()A.B.C.D.8.下列图中,表示一次函数与正比例函数其中a、b为常数,且的大致图象,其中表示正确的是()A. B.C. D.9.2023年5月21日,“锦绣太原激情太马”2023太原马拉松赛成功举行,万名选手沿汾河岸畔同场竞技,畅跑魅力并州.如图是甲、乙两人从起点出发一段时间内路程与时间的关系,则下列说法正确的是()A.在这段时间内,甲的平均速度为B.在这段时间内,乙的平均速度为C.在这段时间内,甲休息了D.出发时两人相遇10.如图所示,已知和都是等边三角形,且ABD三点在同一直线上.则下列结论:①;②;③;④BH平分;⑤其中正确的有()A.2个B.3个C.4个D.5个二、填空题:本题共4小题,每小题5分,共20分。

11.当时,一次函数的最小值为,则______.12.如图,直线与x轴、y轴分别交于A、B两点,点C是第二象限内一点,为等腰直角三角形且,则直线BC的解析式为______.13.如图,在中,,,,,则______.14.如图,在中,CE平分,BD平分,CE,BD相交于点O,点F是BE上一点,且满足若,,则______.若,,,则______.三、解答题:本题共9小题,共90分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页,共8页
第2页,共8页
………○…………○…………内…………○…………装…………○…………订…………○…………线…………○……………○…………○…………外…………○…………装…………○…………订…………○…………线…………○……考





姓 名
单 位
沙雅五中2018-2019学年第二学期八年级下册数学月考测试卷
(考试时间: 90 分钟 分值:100 分)
题号 一 二 三 总分 得分
说明:1.答卷前,请将密封线内的项目填写清楚,密封线内不要答题。

2.用蓝、黑色墨水或蓝、黑色笔芯圆珠笔在试卷上直接答题。

3.要求书写规范、工整、美观,卷面整洁。

一、选择题(10小题,每小题3分,共30分,请将正确答案按序号填入上面的答题卡中)
1.1、下列式子一定是二次根式的是 ( )
A .2--x
B .x
C .22+x
D .
22
-x 2.△ABC 中,a 、b 、c 为三角形的三边,化简﹣2|c ﹣a ﹣b|的结果为( )
A .3a+b ﹣c
B .﹣a ﹣3b+3c
C .a+3b ﹣c
D .2a 3.如果
,则( )
A . a <
B .
a ≤
C .
a >
D .
a ≥
4.下列二次根式是最简二次根式的是( )
A.21
B.4
C. 3
D. 8
5.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )
A .△ABC 是直角三角形,且AC 为斜边 B.△ABC 是直角三角形,且∠ABC =90° C.△ABC 的面积是60 D.△ABC 是直角三角形,且∠A =60° 6.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )
A .43-=a
B .3
4
=a C .a=1 D .a= —1
7.下列各式正确的是( ) A . B .
C .
D .
8.下列计算正确的是( ) A .
+= B .3﹣=3 C .×= D .÷
=4
9.在△ABC 中,∠BAC=90°,AB=3,AC=4.AD 平分∠BAC 交BC 于D ,则BD 的长为( ) A . B . C . D .
10.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .3cm
2
B .4cm 2
C .6cm 2
D .12cm 2
第9题图 第10题图 第16题图
二、填空题(每小题3分,共18分)
11、使代数式
4
3
--x x 有意义的x 的取值范围是_________. 12.比较大小:43_________ 5 2
13. 若实数c b a 、、在数轴的位置如图所示,则化简
()=--+||2c b c a ____________
14.已知
是正整数,则实数n 的最大值为 ____________ .
15.已知a 、b 为实数,且011=-++b a ,则2014
)
(ab 的值为 .
16如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行的距离为 . . 三、解答题(共52分) 18.化简计算(20分)
(1)4+﹣+4 (2)(﹣3)2+(﹣3)(+3)
(3)+﹣(﹣1)0 (4)÷﹣×﹣.
题号 1 2 3 4 5 6 7 8 9 10 答案
第3页,共8页
第4页,共8页
(5)+
﹣(
﹣1)0
19.(5分)已知:a ﹣=2+10,求(a+)2的值.
20.(4分)如图,在数轴上画出表示17的点(不写作法,但要保留画图痕迹).
21、(8分)如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9。

(1)求DC 的长。

(2)求AB 的长。

22.(7分)已知如图,四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.
23.(8分)一架方梯AB 长25米,如图所示,斜靠在一面上: (1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?
(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
D
A
B C
第5页,共8页
第6页,共8页
………○…………○…………内…………○…………装…………○…………订…………○…………线…………○……………○…………○…………外…………○…………装…………○…………订…………○…………线…………○……考





姓 名
单 位
沙雅五中2018-2019学年第二学期八年级下册数学月考答案
一、选择题(10小题,每小题3分,共30分,请将正确答案按序号填入上面的答题卡中)
二、填空题(每小题3分,共18分) 11. x ≧3且x ≠4 12. < 13. -a-b 14. 11 15. 1 16. 10m 三、解答题(共52分) 18.化简计算(20分) 解:(1)原式=4+3
﹣2
+4
=7
+2

(2)原式=5﹣6+9+11﹣9 =16﹣6

(3)原式=+1+3
﹣1
=4

(4)原式=﹣﹣2
=4﹣
﹣2
=4﹣3.
(5)原式=
+1+3
﹣1=4
. 19.(5分)解:∵a ﹣=1+

∴(a+)2=(a ﹣)2﹣4=(1+
)2﹣4=11+2
﹣4=7+2

20.(4分)解:所画图形如下所示,其中点A 即为所求.
21.(8分)解:(1)∵CD ⊥AB 于D,且BC=15,BD=9,AC=20
∴∠CDA=∠CDB=90∘ 在Rt △CDB 中,CD 2+BD 2=CB 2, ∴CD 2+92=152 ∴CD=12;
(2)在Rt △CDA 中,CD 2+AD 2=AC 2 ∴122+AD 2=202 ∴AD=16,
∴AB=AD+BD=16+9=25 22.(7分)解:在△ABC 中,
∵∠B=90∘,AB=3,BC=4, ∴AC=22B C AB +=5,
S △ABC=21AB ⋅BC=21×3×4=6,
在△ACD 中,
题号 1 2 3 4 5 6 7 8 9 10 答案
C
B
B
C
B
C
A
C
A
C
第7页,共8页 第8页,共8页
∵AD=13,AC=5,CD=12, ∴CD 2+AC 2=AD 2,
∴△ACD 是直角三角形,
∴S △ACD=21AC ⋅CD=2
1×5×12=30.
∴四边形ABCD 的面积=S △ABC+S △ACD=6+30=36.
25.(8分)解:。

相关文档
最新文档