同底数幂的乘法2(导学案)
同底数幂的乘法
CommandBut《同底数幂的乘法》导学案学情分析从学生的知识情况来看,一是指数概念早已学过,但由于时间和自身的原因,对指数概念中所含名称:底数、指数、幂的含义并不十分明确;二是再加上以前学过的系数的概念,增加了正确理解法则的困难;三是同底数幂的乘法法则容易与合并同类项混淆,这更给熟练掌握增添了障碍。
从学生的能力和情感来看,通过一学期的培养,已由原来的被动式接受学习向主动探究式学习转变,但由于时间和经验的限制,还不够成熟,方法欠灵活。
教学目标1、探究同底数幂的乘法法则。
2、会用式子和文字正确描述同底数幂的乘法法则。
3、熟练运用同底数幂的乘法法则进行计算。
教学重点和难点学习重点:同底数幂的乘法法则及其简单应用。
学习难点:理解同底数幂的乘法法则的推导过程。
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)学习过程:【知识回顾】1、我们可以把8×8×8×8×8写成85,这种求几个相同因数的积的运算叫做______,它的结果叫,在85中,8叫做,5叫做,85读作。
2、通常代数式an 表示的意义是什么?其中a、n、an分别叫做什么?3、把下列各式写成幂的形式,并写出它的底数、指数:(1) 3×3×3×3 ; (2) m·m·m ;4,中国奥委会为了把2008年北京奥运会办成一个环保的奥运会,做了一个统计:一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量。
那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?此题可列式___________________________。
探究一、自学课本P141-142页,小组合作完成自学提示【自学提示】1、103×102= a4×a3=5m×5n= am · an=_________________2、同底数幂的乘法法则:_________________________________________________。
《同底数幂的乘法》 导学案
《同底数幂的乘法》导学案一、学习目标1、理解同底数幂乘法的运算性质。
2、能够熟练运用同底数幂乘法的运算性质进行计算。
3、通过对同底数幂乘法法则的推导和应用,培养逻辑推理能力和数学思维。
二、学习重难点1、重点(1)同底数幂乘法的运算性质。
(2)正确、熟练地运用同底数幂乘法的运算性质进行计算。
2、难点(1)对同底数幂乘法运算性质的理解。
(2)底数互为相反数时的同底数幂乘法运算。
三、知识回顾1、幂的定义:求 n 个相同因数 a 的积的运算叫做乘方,乘方的结果叫做幂,记作 an ,其中 a 叫做底数,n 叫做指数。
2、指出下列各式的底数和指数:(1) 34 底数为 3 ,指数为 4 。
(2)( 2 ) 5 底数为 2 ,指数为 5 。
(3) 2 5 底数为 2 ,指数为 5 。
四、探究新知1、计算下列各式:(1) 23 × 22 =( 2 × 2 × 2 ) ×( 2 × 2 )= 2 × 2 × 2 × 2 × 2 = 25 。
(2) 102 × 103 =( 10 × 10 ) ×( 10 × 10 × 10 )= 10 × 10 ×10 × 10 × 10 = 105 。
(3) a3 × a2 =( a × a × a ) ×( a × a )= a × a × a × a × a =a5 。
观察上面三个式子,你能发现什么规律?2、同底数幂乘法法则同底数幂相乘,底数不变,指数相加。
即: am × an = am + n (m、n 都是正整数)3、法则的推导设 am 、an 是两个同底数幂,根据幂的定义:am = a × a ×× a (m 个 a 相乘)an = a × a ×× a (n 个 a 相乘)则 am × an =(a × a ×× a )×(a × a ×× a )= a × a ×× a (m + n 个 a 相乘)= am + n4、法则的应用(1)计算:① 105 × 106 = 1011② b7 × b = b8③ a3 × a6 = a9(2)计算:①( 2 ) 8 ×( 2 ) 7 =( 2 ) 15 = 215②( x + y ) 3 ×( x + y ) 4 =( x + y ) 75、拓展应用(1)已知 am = 2 , an = 3 ,求 am + n 的值。
《同底数幂的乘法》教学案例(精选4篇)
《同底数幂的乘法》教学案例(精选4篇)《同底数幂的乘法》教学案例篇1[课题]义务教育课程标准试验教科书数学(北师大)七班级下册第一章第3节一、教学目的:1、在肯定的情境中,经受探究同底数幂的乘法运算性质的过程,进一步体会幂的意义,进展推理力量和有条理的表达力量。
2、了解同底数幂的乘法运算性质,并能把解决一些简洁的实际问题。
二、教学过程实录:(铃响,上课)老师:在an这个表达式中,a是什么?n是什么?当an作为运算时,又读作什么?同学:a是底数,n是指数,an又读作a的n次幂。
老师:(多媒体投影出示习题)用学过的学问做下面的习题,在做题的过程中,仔细观看,乐观思索,相互讨论,看看能发觉什么。
计算:(1) 22 × 23 (2) 54×53(3) (-3)2 × (-3)2 (4) (2/3)2×(2/3)4(5) (- 1/2)3 × (- 1/2)4 (6) 103×104(7) 2m × 2n (8)(1/7)m×(1/7)n (m,n是正整数)(同学开头做题,相互讨论、争论,气氛热闹,老师巡察、教导,待同学充分争论有所发觉后,提问有何发觉)同学A:依据乘方的意义,可以得到:(1) 22 × 23 = 25(2) 54 × 53 =57(3) (-3)2 × (-3)2 = (-3)5……老师:刚才A同学说出了依据乘方的意义计算上面各题所得结果,计算是否精确?同学:计算精确。
老师:通过刚才的计算和讨论,发觉什么规律性的结论了吗?同学 B:不管底数是什么数,只要底数相同,结果就是指数相加。
老师:请你举例说明。
同学B到前边黑板上板书:22×23=(2×2)×(2×2×2)=2×2×2×2×2=25底数不变,指数2+3=5老师:其他几个题是否也有这样的规律呢?特殊是后两个?同学:都有这样的规律。
14.1.1 同底数幂的乘法 导学案
14.1.1同底数幂的乘法导学案一、目标:1.理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算.2.体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用.二、重、难点:重点:同底数幂的乘法的运算法则与性质.难点:同底数幂的乘法的运算性质的理解与推导.三、学习过程:新课导入(一)创设情境,导入新知引言:在七年级上册,我们已经学习了整式的加减,本章我们将学习整式的乘法及与整式的乘法密切相关的因式分解.为此,我们首先学习同底数幂的乘法.问题1一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?(1)如何列出算式?(2)1015的意义是什么?(3)怎样根据乘方的意义进行计算?(二)、小组合作,探究概念和性质问题2根据乘方的意义填空,观察计算结果,你能发现什么规律?(1)25×22 = 2( );(2) a3·a2 = a( );(3) 5m×5n = 5( ).追问1观察计算结果,你能发现规律并提出猜想吗?问题3你能将上面发现的规律推导出来吗?追问2:通过上面的探索和推导,你能用文字语言概括出同底数幂的乘法的运算性质吗?例1计算:(1) x²·x5;(2) a·a6;(3) x m·x3m+1 .探究当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?(4) (-2)×(-2)4×(-2)3;(5) (m-n)3 · (m-n)5 · (m-n)4 .总结:练一练1.计算下列各式(1) 32a×3b;(2) x2·(-x)4·x3;(3) (m-n)m+1·(m-n)5-m.三、课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?。
14.1.1同底数幂的乘法(2)导学案
C.(- a)3·(-a)2=-a5
D.(- a)3· 3=a6 (-a)
④如果 xm-3·n = x2,那么 n 等于( x A.m-1 B.m+5
C.4-m
D.5-m
(6)①10m·102= 102012,则 m= 归纳总结、学后反思
;②已知 10x=a, 10y=b,则 10x+y=
请你对照学习目标,谈一下这节课的收获及困惑。 ① 学到了哪些知识?②获得了哪些学习方法和学习经验?③与同学1.判断(每小题 3 分,共 18 分) (1) x5·5=2x5 x ( ) (2) m + m3 = m4 ) (5)y5 · 5 = 2y10 y ( ( ) ) (3) m· 3=m3 ( m (6)c · 3 = c3 ( c ) )
(4)x3(-x)4=-x7 (
课后反馈、巩固提升 1.计算:
(1) (a+b)(a+b)m(a+b)n
(2) (-a)2·3 a
(3) (x-2y)2• (x-2y)5
2.若 am+1·a2n-1=a8,且 b2m+1·bn+2=b10 求 mn 的值
3.已知 3X+3=a,则 3x 的值是多少?
子曰:“敏而好学,不耻下问,是以谓之„文‟也。” 《论语· 公冶长》
马 家 砭 中 学 导 学 稿
科 目 数学 韩伟 课题 课型 14.1.1 同底数幂的乘法(2) 新授 班 级
m n
授课时间 姓
m+n
2013-11-13
设计人 学 习 目 标 教师寄语 学法指导
名 .
1.能熟练地进行同底数幂的乘法运算. 会逆用公式 a a =a
同底数幂的乘法导学案教学设计
同底数幂的乘法导学案教学设计教学设计目标:1.理解同底数幂的乘法规则;2.通过实际生活中的例子和练习,运用同底数幂的乘法规则解决问题;3.培养学生的逻辑思维和解决问题的能力。
教学准备:1.教师准备黑板、彩色粉笔、同底数幂的乘法导学案副本,实际生活中的例子(如面积、体积等);2.学生准备笔记本、铅笔。
教学过程:引入部分:(10分钟)Step 1:教师出示一个实际生活中的问题,如一些房间的面积为4平方米,再有一个房间的面积是原房间的平方,问第二个房间的面积是多少?指导学生思考及讨论,并记录学生的回答。
Step 2:教师引导学生回顾指数的定义和乘法的概念,如何表示一个数的乘方。
提问,如果求一个数的乘方,指数相同的情况下,需要做什么操作?学生思考并回答。
Step 3:教师出示同底数幂的乘法规则,指导学生理解规则的含义,并进行讲解。
同底数幂相乘,底数不变,指数相加。
探究部分:(30分钟)Step 4:教师再次引导学生回顾刚才的问题,以及同底数幂的乘法规则。
学生尝试运用同底数幂的乘法规则解决问题,并在黑板上展示解题过程。
Step 5:教师指导学生观察和总结同底数幂的乘法规则及特点。
指导学生完成同底数幂相乘的练习题,强化理解。
Step 6:教师出示更复杂的实际生活中的例子,如一个饭店每天卖出200份汉堡,一个月的时间里总共卖了多少份汉堡?引导学生运用同底数幂的乘法规则解决问题。
巩固部分:(20分钟)Step 7:教师让学生自主完成同底数幂的乘法练习题,并相互交流讨论解题思路。
Step 8:教师出示一个新的问题,让学生运用同底数幂的乘法规则进行求解。
问题如下:有一个正方体,边长为2厘米,求该正方体的体积。
学生思考并回答。
Step 9:教师总结本节课的学习内容,并强调同底数幂的乘法规则在实际生活中的应用。
拓展部分:(10分钟)Step 10:教师设计一个小组活动,让学生分成小组,每个小组设计一个实际生活中的问题,并运用同底数幂的乘法规则进行求解,然后进行展示。
同底数幂的乘法(导学案)
《同底数幂的乘法》导学案一、基础练习1、应用《同底数幂的乘法》法则填空.(1)、2755⨯= = ;(2)、3172233⨯()()= = ; (3)、5b b ⋅= = ;(4)、26a a a ⋅⋅= = ;(5)、5333n n ⨯⨯= = ;解题反思(心得):2、选择(1)、下列各式能用“同底数幂的乘法法则”进行计算的式子是( )A. 23(5)(7)-⨯- B. 23()()x y x y +⋅- C. 53()()x y x y +-+ D. 32(2)(2)m m -⋅-3、计算下列各式,结果用幂的形式表示. (1)、43(5)5-⨯;(2)、73()()m m a b c a b c --+-⋅+-; (3)、2()()x y y x -⋅-解: 解: 解:解题反思(心得):4、辨析(1)、3222+= ; (2)、322-2= ; (3)、3222⨯= ; (4)、3222÷= ; 解题反思(心得):二、拓展提升5、填空(1)87777⨯⨯=( )( );(2)、若136n n xx x +-⋅=,则n = ; (3)、若8,5x y a a ==,则x y a += .题后反思:如何灵活应用法则解题?6、判断(1)、3332aa a ⨯=.( ) (2)、372162⨯=. ( )(3)、若62m x x x =⋅,则m =3.( )(4)、已知23,x a +=则39x a =.( ) 解题反思(心得):三、课堂小结(一) 知识:1、乘方(运算)是乘法(运算)的高级形式;2、对于na ,(1)表示运算时,读作“a 的n 次方”;(2)表示运算的结果时通常读作“a 的n 次幂”,其中a 叫做底数,n 叫作指数;3、“同底数幂的乘法”法则;……(二)思想方法:1、法则的得出过程是应用了“不完全归纳法”:2、转化思想:把底数不同的幂转化为底数相同的幂,再法则计算.3、整体思想:在应用“同底数幂的乘法法则”时,底数可以是单独的数字,也可以是单独的字母,还可以是一个式子(如单项式或多项式);4、同类项与合并同类项;5、公式可以正向用,也可以逆向用,应理解本质,灵活运用;……。
同底数幂的乘法导学案
第一章 整式的乘除第一节 同底数幂的乘法导学案姓名:一、预习:(认真看书第 1 页—第 3 页) (一)回顾旧知35= (-4)7= x11= (a+b )4=(二)公式的推导 23×25=2×2×2×2×2×2×2×2 = 2( )= 2( )(-2)4×(-2)6 a5×a7(m -n )7×(m -n )6公式:a m ∙a n= ;语言叙述为注意事项:1、a m和a n之间的运算是 ;2、底数a 可以是 ; 区别:(1)22a a +=⎽⎽⎽= ,这种运算是 ,法则是 (2)a 2∙a 4= ,这种运算是 ,法则是2、下面计算正确的是( ) A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m = (三)符号判定:1、思考下列运算中的符号怎么判定的?()4466-∙ ()5466-⨯- 55aa -⨯2、(1)填“+”或“-” ()x y y x -=⎽⎽⎽- ()()22x y y x -=⎽⎽⎽-推导:()()n n x y y x -=⎽⎽⎽-(n 为奇数), ()()n nx y y x -=⎽⎽⎽-(n 为偶数)。
(2)计算 ()()56x y y x -- ()()32a b b a --(四)公式的逆运用n m n m a a a +=∙ =∴+n m a 已知2a=3,2b =7,则2a+b=二、新课: (一)公式的运用1、531010⨯=⎽⎽⎽⎽, 5×56×53 231010100⨯⨯ 23x x x ⋅⋅ ()()3a a --=⎽⎽⎽⎽1nn y y +=⎽⎽⎽⎽ ()()()53222--- a 2n •a n+1()()410a b b a --=⎽⎽⎽⎽⎽⎽⎽⎽ 23()()()a b a b a b -⋅-⋅-()()()()2121m m m a b a b a b -++++=⎽⎽⎽⎽⎽⎽⎽⎽⎽ (x-y)5• (x-y)2 (-12)2×(-12)52、下列四个算式:①a 6•a 6=2a 6;②m 3+m 2=m 5;③x 2•x •x 8=x 10;④y 2+y 2=y 4.其中计算正确的有(• )A .0个B .1个C .2个D .3个 3、下列计算过程正确的是( )4、下列各式中,计算过程正确的是( )A .x 3+x 3=x 3+3=x 6B .x 3·x 3=2x 3C .x·x 3·x 5=x0+3+5=x 8 D .x 2·(-x )3=-x2+3=-x 5例1:81×27可记为( ) A.39 B.73 C.63 D.123练习;1、填空(1)8 = 2x ,则 x = ;(2) 8× 4 = 2x ,则 x = ;(3) 3×27×9 = 3x ,则 x = (4) 43981=⨯⨯ (5) 66251255=⨯⨯ 2、(1)62(0,1)xxp p p p p ⋅=≠≠,求x (2)如果,1112a a a n n =+-则n=例2:254242423a a a a a a a ⋅-⋅⋅+⋅ x 3·x 5+x ·x 3·x 4x m·x m+x 2·x 2m -2x •x 4+x 2•x 3 122333m m m x x x x x x ---⋅+⋅-⋅⋅4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5(二)符号的判定1、下列计算中,错误的是( )A .5a 3-a 3=4a 3B .2m •3n =6m+nC .(a-b )3•(b-a )2=(a-b )5D .-a 2•(-a )3=a 5 2、计算:(a-b+c)2(b-a-c)3=( )A .(a-b+c)5 B .(b-a+c)5 C .-(a-b+c)5 D .-(b-a-c)5 (x-y )3•(y-x )2•(y-x )5 (-x+y )(x-y )2(y-x )3 -22×(-2)20(a -b )2m -1·(b -a )2m ·(a -b )2m+1(a -2b )2·(2b -a )3·(2b -a )4(x -y )2·(y -x )3·(y -x )3 (-x )(-x 2)(-x 3)(-x )423324()2()x x x x x x -⋅+⋅--⋅(三)公式的逆运用1、已知24m=,216n=,求2m n+的值。
同底数幂的乘法(2)
初中部 八 年级 数学 (学科)导学案 学案编号: 班级: 姓名: 执笔: 陈懿 审核: 审批: 印数: 45 教师评价:课题:同底数幂的乘法(2)四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x xx x x x ---⋅+⋅-⋅⋅。
(5)(101)4·(101)3; (6)(2x-y )3·(2x-y )·(2x-y )4;(7)a 1=m ·a 3-2a m ·a 4-3a 2·a 2+m .3、计算并把结果写成一个底数幂的形式:(1) 43981=⨯⨯ (2) 66251255=⨯⨯4.已知321(0,1)x x aa a a ++=≠≠,求x5、62(0,1)x x p p p p p ⋅=≠≠,求x6.已知x n -3·x n +3=x 10,求n 的值.7.已知2m =4,2n =16.求2m +n 的值.8.若10,8a b x x ==,求a b x +9.一台电子计算机每秒可运行4×109次运算,它工作5×102秒可作多少次运算?10.水星和太阳的平均距离约为5.79×107km ,冥王星和太阳的平均距离约是水星和太阳的平均距离的102倍,那么冥王星和太阳的平均距离约为多少km ?五试一试1.已知a m =2,a n =3,求a 3m+2n 的值.2.试确定32011的个位数字.3.计算下列各式(1)x 5·x 3-x 4·x 4+x 7·x+x 2·x 6 (2)y 2·y m-2+y·y m-1-y 3·y m-34.已知:x=255,y=344,z=433,试判断x 、y 、z 的大小关系,并说明理由 .5.x m ·x m+1+x m+3·x m-2+(-x)2·(-x)2m-1。
4.2同底数幂的乘法导学案
同底数幂的乘法【学习目标】理解同底数幂相乘的法则并会运用。
【重点】同底数幂的乘法运算【难点】同底数幂的乘法法则的推导及应用【学习过程】一、自学指导:请认真阅读教材P88—90页的内容,在阅读过程中注意下列问题:1.a3表示什么意义?a2表示什么意义?2.想一想:如何计算a3·a2=?3.a n表示的意义是什么?其中a、n、a n分别叫做什么?4.若把a3·a2推广到a m·a n,如何计算?5.把下列各式写成幂的形式①10×10×10 ②3×3×3×3③a·a·a·a·a ④a·a·a…an个a■自学探究:探究同底数幂乘法法则1、做一做:(完成下表)(1)以上四个算式有什么共同的特点?答案:共同特征是:同底数的幂相乘。
(2)上述计算式中的底数与计算结果中的底数有什么关系?(3)上述计算式中的指数与计算结果中的指数有什么关系?(4)根据以上发现,你能直接写出以下各算式的结果吗?1012·108 =_______ (13)10×(13)7 =______ a 5·a 12=______ (-15)m ·(-15)n =_________ (5)得出结论:一般地,如果字母m 、n 都是正整数,那么a m ·a n = (a ·a ·a ·…·a)·(a·a·a …·a) (______的意义)___个a ___个a= a·a·a ·…·a (乘法的 律) = a m+n_____个a幂的运算法则a m ·a n = (m 、n 是正整数)你能用语言描述这个性质吗?___________________________(4)议一议:①m 、n 、p 是正整数,你会计算a m ·a n ·a p 吗?②公式中的a 可以表示一个数吗?可以表示一个字母吗?可以表示一个式子吗?三、小组合作,课堂展示1、 计算:(1)(-3)2×(-3)7 (2)106·105·10 (3)x 3m+1·x m(4)(a+b)4·(a+b) (5)x 3·(-x)2 (6)x 2·(-x)5注意:(1) (-x)2n+1=-x 2n+1 ;(2) (-x)2n =-x 2n(3) (y -x)2n+1=-(x -y)2n+1(4) (y -x)2n =(x -y)2n课时训练:计算:①105×103②x3·x4③32·33·34 ④y·y2·y4⑤(–a)·(–a)3⑥y n·y n+1思维点拨:认真思考下面三个问题,一定会帮助聪明的你顺利解决这六个小题(1)上述6个小题中,是否都是同底数幂相乘?哪些是?哪些不是?(2)不是同底数幂的题,底数有何特点?能否利用乘方的性质变形为同底数的幂进行计算呢?(3)在第(2)(4)题中的最后一因数10与(a+b)是否没有指数?特别提醒:计算要有必要的过程2、辨析:下列运算是否正确?不正确的,请改为正确的答案。
同底数幂的乘法
《同底数幂的乘法》导学案一、学习目标1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.3.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊──一般──特殊的认知规律.二、学习重点:正确理解同底数幂的乘法法则.学习难点:正确理解和应用同底数幂的乘法法则.三、知识链接问题:a n的意义a n 表示有个相乘,我们把这种运算叫做.乘方的结果叫;a叫做,•n是练习:83= 274 =问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?所以计算机工作103秒可进行的运算次数为1012×103如何计算呢?根据乘方的意义可知1012×103=(10×10 ×10)×(10×10×10)=10×10 ×10 =1015.通过观察大家可以发现1012、103这两个因数是相同,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.四、学法指导1.做一做计根据乘方的意义计算下列各式:(1)25×22 =(2)a3·a2 =(3)5m·5n(m、n都是正整数)=你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.我们可以发现下列规律:1、这三个式子都是相同的幂相乘.2、相乘结果的底数与原来底数,指数是原来两个幂的指数的3.问题a m · a n等于什么(m、n都是正整数),为什么?用语言来描述此法则即为:同底数幂相乘,例1、计算:(1)x2·x5 = x 2+5 = x7(2)a · a6 =(3)2×24×23 =(4)x m · x3m+1 =受例1(3)的启发,接下来我们来看例2.能自己解决吗?•与同伴交流一下解题方法.能找到什么规律吗?[例2] 计算a m·a n·a p解、a m ·a n ·a p =那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,•就一定是不变,相加用符号表示五、巩固练习1.计算(1)b5·b =(2)10×102×103 =(3)-a2·a6 =(4)y2n·y n+1 =2、判断(正确的打“∨”,错误的打“×”)(1)x3·x5 = x15()(2)x·x3 = x3()(3)x3+x5 = x8()(4)x2·x2 = 2x4()(5)(-x)2·(-x)3 =(-x)5 = -x5 ()(6)a3·a2 –a2·a3 = 0 ()(7)a3·b5 =(a b)8()(8)y7+y7 = y14()3、拓展(1)(x+2y)2n(x+2y)n+1(2) (a-b)3(b-a)2六、学习反思:七、课堂检测:1.计算:(1)a3·a4 =(2)x3·x=(3)y5·y3 =(4)105·10·103 =(5)x7·x·x n =(6)y·y2·y3·y =(7)a n+2·a n+1·a n =2 计算(1)35·(-3)3·(-3)2 =(2)(2a+b)2·(2a+b)3·(2a+b)x =(3)(x-y)2·(y-x)5 =。
1.1同底数幂的乘法2
例1、计算下列各题:(1) ;
(2)
(3) ;
例2、(1)已知=2,=5,试求的值?
(提示:逆用同底数幂的乘法法则计算。)
(2)若=64,求a的值?(注意4与64之间的关系,逆用同底数幂的乘法法则即可。)
课堂训练
1、填空:(1)8 = 2x,则x;(2)8×4 = 2x,则x;(3)3×27×9 = 3x,则x =。(4)若am=2, an=3则am. an=___,
七年级下册数学导学案
主备
合作
审核
课题
1.1同底数幂的乘法2
时间
编号
班级
姓名
组别
等级
使用说明
预习课本第2、3页的内容,完成相关习题。
学法指导
通过观察、应用新旧知识间的联系完成学习任务。
教学目标
理解同底数幂的乘法法则;运用同底数幂的乘法法则解决一些实际问题
教学
重难点
重点
正确理解同底数幂的乘法法则
难点
正确理解和应用同底数幂的乘法法则
2、计算(1)
(2)(x—y)2(y—x)5(3)
课堂小结
这节课你有什么收获?
当堂检测
1、计算并把结果写成一个底数幂的形式:
① ;② 。
2、求下列各式中的x:
① ;② 。
作业布置
习题1.1第2、4、5题。
反思
学后记(学生):
教后记(老师):
教学过程
活动板块
学生自主学习方案
课堂同
步导案
自主学习
情景导入
1、同底数幂的乘法法则是什么?
2、填空。
(1)·()=(2)a·()=
(3)·()=(4)·()=
3.1 同底数幂的乘法(2)
〖导学案〗 §3.1 同底数幂的乘法(2)班级_________ 姓名__________ 〘自主卡〙一、预学内容:七年级下册3.1同底数幂的乘法(2)P 62-64二、预学目标:1.理解幂的乘方法则。
2. 会运用幂的乘方法则计算幂的乘方。
3. 会综合运用同底数幂的乘方法则和幂的乘方法则进行简单的混合运算。
【预习新知】1、根据乘方的意义、乘法的运算律及同底数幂的乘法法则,请完成下列问题:(1) 24(___)(__)(___)(__)(__)(__)(3)(___)(___)(___)(___)33+++⨯=⨯⨯⨯==(2) 43(___)(__)(___)(__)(__)(10)(___)(___)(___)1010++⨯=⨯⨯==24(__)(__)(___)(___)(__)(__)()(___)(___)(___)(___)+++⨯=⨯⨯⨯==a a a你发现同底数幂乘方有什么规律吗?尝试写出你发现的规律,并再用几个具体例子进行检验。
2、同底数幂的乘方法则:幂的乘方,底数__________,指数__________。
()________m n a =(m ,n 都是正整数)。
【合作交流】(1)你能尝试推导幂的乘方法则吗?写出推导过程。
(2)想一想()m n a 与()n m a 相等吗?为什么?【尝试练习】例一:计算下列各式,结果用幂的形式表示。
(1)67(7) (2)34()y -(3)235()a a (4)2442()()b b + (5)52553()3()a a a -例二:(1)已知22n a =,求 643n n a a -的值;(2)已知552a =,443b =,334c =,试比较a ,b ,c 的大小;例三:太阳的半径是地球半径的210倍,那么太阳的体积是地球体积的多少倍?(太阳、地球可以近似的看作球,球的体积公式是343V r π= ) 。
【测评卡】1、用代数式表示“x 的相反数的3次幂的四次方”,则下列列式正确的是() A.()34x - B. 43[()]x - C. 34[()]x - D.34()x -2、下列各式中,运算正确的是( )A .459a a a +=B . 3711a a a a =C.324318()()a a a -=- D .326()a a -=-3、已知1221256m n n m a b a b a b ++-= ,则m+n 的值为( )A.1B.2C.3D.44、计算:(1)74(10) (2)3425()()x x (3)6333()m m m +-5、已知2m a = ,5n a =,求32m n a + 的值.【能力提升】已知129372x x +-= ,求x 的值.。
同底数幂的乘法教案7篇
同底数幂的乘法教案7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作报告、军训心得、学习心得、培训心得、条据文书、读后感、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work reports, military training experiences, learning experiences, training experiences, doctrinal documents, post reading feedback, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!同底数幂的乘法教案7篇教案的准备可以帮助我们更好地与学生进行互动和沟通,为了实现个性化教育,我们需要在教案中考虑学生的学习能力和学习需求,本店铺今天就为您带来了同底数幂的乘法教案7篇,相信一定会对你有所帮助。
同底数幂的乘法导学案
同底数幂的乘法导学案研究目标:理解同底数幂相乘的乘法法则的由来,掌握该法则的应用,能够熟练地进行计算,并解决简单的实际问题。
研究重点:同底数幂的乘法法则及其简单应用。
研究难点:理解同底数幂的乘法法则的推导过程。
研究过程:一、课前预任务一:同底数幂的乘法1.计算:10² × 10³ = 10⁵。
2.(-2)³ × (-2)² = (-2)⁵ × (-2)⁴。
3.发现同底数幂相乘时,底数和指数有什么规律?4.总结公式。
任务二:举例1.计算:(1) 3² × 3⁵ (2) (-5)³ × (-5)⁵。
二、课中实施一)预反馈以小组为单位交流展示预成果,初步解决预中的疑难问题。
二)精讲点拨探索发现】1.10³ × 10² = 10⁵。
2.同底数幂的乘法法则:底数相同的幂相乘,底数不变,指数相加。
3.想一想:1)等号左边是什么运算?乘法运算。
2)等号两边的底数有什么关系?相等。
3)等号两边的指数有什么关系?相加。
4)公式中的底数a可以表示什么?任何数字或变量。
5)当三个以上同底数幂相乘时,上述法则成立吗?成立。
6) a³ = a × a × a。
试一试】例1:求1) (-2)⁸ × (-2)⁷ (2) (a-b)² × (b-a) (3) (x+y)⁴ × (x+y)³当堂训练】1.练一练:1) 2 × 2² (2) (-3) × (-3)3) (-5)² × 5⁴ (4) (x+y)²拓展训练:1.如果an-2an+1=a¹¹,则n=?2、已知:$a_m=2$,$a_n=3$。
求$a_{m+n}$=?改写后:已知数列$a$的第$m$项为2,第$n$项为3.求第$m+n$项的值。
同底数幂的乘法教案(精选7篇)
同底数幂的乘法教案同底数幂的乘法教案(精选7篇)作为一位杰出的教职工,总归要编写教案,借助教案可以有效提升自己的教学能力。
那么应当如何写教案呢?以下是小编精心整理的同底数幂的乘法教案,欢迎大家分享。
同底数幂的乘法教案篇1教学目标1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力教学重点和难点幂的运算性质课堂教学过程设计一、运用实例,导入新课一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法。
(写出课题:第七章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法。
这与前面学过的整式的加减法一起,称为整式的四则运算。
学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1同底数幂的乘法)在此我们先复习乘方、幂的意义。
二、复习提问1.乘方的意义:求n个相同因数a的积的运算叫乘方,即2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢三、讲授新课1.利用乘方的意义,提问学生,引出法则计算103×102解:103×102=(10×10×10)+(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=1052.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2用字母m,n表示正整数,则有=am+n,即am·an=am+n3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么?(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加四、应用举例,变式练习例1计算:(1)107×104;(2)x2·x5.解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b;(5)a6·a6;(6)x5·x5.例2计算:(1)23×24×25;(2)y·y2·y5.解:(1)23×24×25=23+4+5=212.(2)y·y2·y5=y1+2+5=y8对于第(2)小题,要指出y的指数是1,不能忽略五、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字2.解题时要注意a的指数是1六、作业同底数幂的乘法教案篇2教学目标一、知识与技能1.掌握同底数幂的乘法法则,并会用式子表示;2.能利用同底数幂的乘法法则进行简单计算;二、过程与方法1.在探索性质的过程中让学生经历观察、猜想、创新、交流、验证、归纳总结的思维过程;2.课堂中教给学生“动手做,动脑想,多合作,大胆猜,会验证”的研讨式学习方法;三、情感态度和价值观1.在活动中培养乐于探索、合作学习的习惯,培养“用数学”的意识和能力;2.通过同底数幂乘法性质的推导和应用,使学生初步理解“特殊、一般、特殊”的认知规律和辨证唯物主义思想,体会科学的思想方法,激发学生探索创新精神;同底数幂乘法法则;教学难点同底数幂的乘法法则的灵活运用;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备练习本;课时安排1课时教学过程一、导入光在真空中的速度大约是3×108m/s.太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少?3×108×3×107×4.22=37.98×(108×107).108×107等于多少呢?通过呈现实际问题引起学生的注意,对同底数幂的乘法内容具体,便于引导学生进入相关问题的思考.二、新课在乘方意义的基础上,学生开展探究,采用观察分析、探究归纳,合作学习的方法,易使学生体会知识的形成过程,从而突破难点,同时也培养了学生观察、概括与抽象的能力。
同底数幂的乘法 —— 初中数学第二册教案
同底数幂的乘法——初中数学第二册教案一、教学目标1.让学生掌握同底数幂的乘法法则,能够熟练运用该法则进行计算。
2.培养学生的数学思维能力,提高解题技巧。
3.培养学生合作交流的能力,激发学习兴趣。
二、教学内容1.同底数幂的乘法法则2.同底数幂的乘法应用三、教学过程1.导入新课(1)复习旧知:引导学生回顾幂的定义、指数的定义以及同底数幂的概念。
(2)创设情境:教师提出问题:“同学们,你们知道如何计算2^3×2^2吗?”2.探索新知(1)引导学生观察2^3×2^2的计算过程,发现同底数幂相乘时,底数不变,指数相加。
(2)引导学生举例验证:让学生举例说明同底数幂的乘法法则,如3^4×3^5、5^2×5^3等。
3.应用新知(1)课堂练习:教师布置一些同底数幂的乘法题目,让学生独立完成,巩固所学知识。
(2)小组讨论:教师提出一些较复杂的同底数幂的乘法题目,让学生分组讨论,共同解决。
(3)全班交流:各小组汇报解题过程,全班交流,共同提高。
4.巩固提高(2)课后作业:布置一些同底数幂的乘法题目,让学生课后独立完成,巩固所学知识。
四、教学反思1.本节课通过导入、探索、应用、巩固等环节,让学生掌握了同底数幂的乘法法则,达到了预期的教学目标。
2.在教学过程中,注重引导学生自主探究、合作交流,提高了学生的数学思维能力。
3.课后作业的布置,有助于巩固所学知识,提高学生的解题技巧。
4.在今后的教学中,需进一步关注学生的学习情况,调整教学策略,提高教学效果。
五、教学评价1.课堂表现:观察学生在课堂上的参与程度、发言积极性、合作交流能力等。
2.作业完成情况:检查学生课后作业的完成质量,了解学生对同底数幂的乘法法则的掌握程度。
3.测试成绩:通过测试了解学生对本节课知识的掌握情况。
4.学生反馈:了解学生对本节课的教学满意度,以及对教学内容的掌握程度。
六、教学拓展1.引导学生进一步探究同底数幂的除法法则。
(完整版)同底数幂的乘法导学案
整式的有关概念 导学案学习目标:1、理解单项式的概念;2、能确定单项式的系数和次数3、由单项式与多项式归纳出整式概念。
学习重点:掌握单项式及单项式的系数、次数的概念,掌握多项式的项和次数概念学习过程一、知识链接 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4) 小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
(5) 一辆汽车的速度是v 千米/时,它t 小时行驶的路程为 千米。
二、自主导学请观察上述所列代数式包含哪些运算,有何共同运算特征1、单项式概念:通过特征的描述,概括单项式的概念:单项式即由 的乘积组成的代数式称为单项式.补充,单独一个 或一个 也是单项式.例如:a ,5。
判断下列各代数式哪些是单项式(1)21+x ; (2)abc; (3)b 2; (4)-5ab 2; (5)y ; (6)-xy 2; (7)-5。
2、单项式系数和次数:单项式是由数字因数和字母因数两部分组成的。
叫做单项式的系数; 单项式的次数。
三、典例分析:例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
答:① ,因为 ; ② ,因为 ;③ ,因为 ; ④ ,因为 。
例2:下面各题的判断是否正确①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-ab 3c 2的次数是0+3+2;④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
通过以上练习及例题,注意以下几点:①圆周率π是常数;②当一个单项式的系数是1或-1时,“1"通常省略不写,如x 2,-a 2b 等;③单项式次数只与字母指数有关,与系数无关.四、知识应用1、指出下列单项式的系数和次数.(1) y 9的系数是__ __次数是 ;单项式2512R π-的系数是_____ ,次数是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1.1 同底数幂的乘法
主备人:邵玲 审核:七年级数学备课组 班级: 姓名:
学习目标:
1.掌握同底数幂的乘法运算法则。
2.会运用同底数幂的乘法法则进行有关计算。
重、难点:同底数幂的乘法运算法则的推导过程以及相关计算。
课堂导学:
我们已经预学知道同底数幂的乘法公式是________________
同底数幂的乘法法则用语言表示为:________________________________ 公式的简单应用:
练习:________77)1(52=⋅ ____33)2(=⋅n m
_______)3(6=⋅a a _______)4(13=⋅+m m x
x
公式的转化应用:
例1.计算: 34)())(1(a a -⋅- 34))(2(a a ⋅-
34)())(4(m n n m -⋅- 解:
总结:底数________________可转化为同底数幂的乘法进行计算。
思考:n
m n m n m ))(---与(能用所学的公式求它们的乘积吗?
公式的推广运用:
当p n m ,,为正整数时候, a p n m a a a a a a a 个__________)(⋅⋅=⋅⋅ a a a a a 个_____________)(⋅⋅
a
a a a a 个_____________)(⋅⋅ =
a
a a a a 个___________⋅⋅=_______________ 结论:______________=⋅⋅p n m a a a
练习:计算: ______333)1(64=⨯⨯ _______)2(54=⋅⋅a a a
_____101010)3(=⨯⨯c b a _______)4(=⋅⋅c b a x x x
例2.计算:
732)()())(1(x x x -⋅-⋅- 732)()()2(x x x -⋅-⋅-
623)()())(3(x y y x y x -⋅-⋅- 是正整数)m m (1628)4(⨯⨯
.,777.326x x x 求例=⨯34)())(3(n m n m -⋅-
例4.计算:
33)1(x x + 223)2(x x x x ⋅+⋅
是正整数)m a a a a m m ()3(31323⋅+⋅- 2011
201122
)4(+
公式的逆向运用: 例5.已知m a =2, n a =3,求n m a +的值.
课堂练学:
一、判断(正确的打“√”,错误的打“×”)
1553)1(x x x =⋅ ( ) 33)2(x x x =⋅ ( )
853)3(x x x =+ ( ) 4222)4(x x x =⋅ ( )
5532)()())(5(x x x x -=-=-⋅- ( ) 0)6(423=⋅-⋅a a a a ( )
853)()7(b a b a ⋅=⋅ ( ) 1477)8(y y y =+ ( )
二、填空题 .
________,_______;,).4(______
1010100001001001001010010).3(.
______________)()).(2(.
_____________)6(6_______,1010).1(164433525411=====⨯⨯-⨯⨯+⨯⨯=++=-⨯-=⨯-+a x x x m a a a y x y x a m n m 则若则若
三、选择题
(1).下面计算正确的是 ( )
A .623b b b =⋅
B .;
633x x x =+ C .624a a a =+ D .65m m m =⋅ (2).可记为2781⨯ ( )
A .;39
B .;73
C .;63
D .123
(3).是则下面多项式不成立的若,0≠≠y x ( )
A .;22)()(y x x y -=-
B .;33)(x x -=-
C .;22)(y y =-
D .2
22)(y x y x +=+ (4). 计算等于20082009
22
- ( )
A .;20082
B .;2
C .;1
D .20092- 四、计算: 32)1(x x x ⋅⋅- 32)()())(2(b a b a b a --⋅-
42332)(2))(3(x x x x x x ⋅--⋅+⋅- 332213)4(---⋅-⋅+⋅m m m x x x x x
x
小结:你的收获有: n m n m n m n m a a a
n m a a a ⋅==⋅++右两边交换位置得都是正整数)的等号左、将(。