热力学与统计物理学 ppt课件
热力学统计物理-第五版-汪志诚-精ppt课件
描述).
单位:
1 m 3 1 0 3 L 1 0 3 d m 3
3 温度 T : 气体冷热程度的量度(热学描述).
单位:K(开尔文).
2020/4/29
.
20
简单系统:一般仅需二个参量就能确定的系统, 如PVT系统。
单相系:
复相系:
2020/4/29
.
21
§1.2 热平衡定律和温度
一、热力学第零定律 热交换:系统之间传热但不交换粒子
热平衡:两个系统在热交换的条件下达到了一 个共同的平衡态。
经验表明:如果两个系统A和B同时分别与第三个系 统C达到热平衡,则这两个系统A和B也处于热平衡。 称热力学第零定律(热平衡定律)
2020/4/29
.
22
为了描绘一个系统与另外一个系统处于 热平衡 需要一个物理量:温度
(1)日常生活中,常用温度来表示冷热的程度
在一定的宏观条件下,系统演化方向一般具有确 定的规律性。
研究热运动的规律性以及热运动对物质宏观性质 影响的理论统称为热学理论。按研究方法的不同可 分为热力学与统计物理等。其中,热力学是热学的 宏观理论,统计物理是热学的微观理论。
2020/4/29
.
7
2020/4/29
.
8
热力学理论的发展简介 Introduction to Development of
① 热学
② 分子运动论
③ 原子物理学
2020④/4/29量子力学
.
11
The Fundamental Laws of Thermodynamics
2020/4/29.Fra bibliotek12
目 录 Contents
热力学统计物理课件第1章ok
d W VEdD Vd (0E2 ) VEdP
2
4.磁介质的磁化功
dW
VHdB
Vd( 0 H 2 )
2
பைடு நூலகம்
0VHdM
5.一般情况下,准静态中,外界对系统做功
d W Yidyi
i
§1.5热力学第一定律
EV 0dE EVdP
Vd (0 E 2 ) EVdP
2
U
第一部分是激发电场作的功,第二部分是使介质
极化所作的功。当热力学系统不包括电场时,只
须考虑使介质极化作的功。
四、磁介质的磁化功
外界电源为克服反向电动势,在dt时间内对磁介 质作的功为
d W ' Idt [N d( AB)]( l H )dt AlHdB VHdB
C.实际气体的状态方程:
范德瓦耳斯方程: 昂尼斯方程:
an2 ( P V 2 )(V nb) nRT
p
nRT
1
n
B(T )
n
2
C(T )
n
3 D(T )
V V
V
V
B(T ),C(T ), D(T ) 第二、第三…位力系数
2.简单的固体和液体(已知:α、κT) V(T,P)=V0 (T0,P0)[1+ α(T-T0)- κT(P-P0)]
2.理想气体温标:
p T 273.16K lim( )
p pt 0 t
3.热力学温标:不依赖任何具体物质特性的温标。 4.在理想气体可以使用的范围内,理想气体温标与热
力学温标是一致的。
§1.3物态方程
一.物态方程是温度与状态参量之间的函数关系。对于简 单系统:有f(P,V,T)=0
热力学和统计物理的课件
热力学和统计物理的研究对象和任务宏观物质系统:由大量微观粒子组成的气、液、固体。
存在无规则运动——热运动。
运动:机械运动,如:质点的运动,刚体的平动和转动。
热运动:大量微观粒子的无规则运动(例如花粉的运动),有规律性,自身固有的。
为什么研究热运动?它决定了热现象(物性和物态),影响物质的各种宏观性质,如:力、热、电磁、凝聚态(固、液、气)、化学反应进行的方向和限度。
热力学和统计物理学的任务?研究热运动规律及其对宏观性质的影响。
热力学与统计物理的研究方法热力学和统计物理学的任务相同,但研究方法不同。
1.宏观唯象理论——热力学2.微观本质理论——统计物理宏观的观点 即观察一个固体,液体,气体的特性。
如:密度、温度、压力、弹性、传热等,不涉及物质的原子结构。
微观的观点 由物质的原子性质着手,来研究物质的宏观性质。
热力学的基本逻辑体系以可测宏观物理量描述系统状态;例如气体:压强p 、体积V 和温度T实验现象 热力学基本定律 宏观物性 其结论可靠且具有普适性;结合实验才能得到具体物性;物质看成连续体系,不能解释宏观物理量涨落。
例如:焦耳定律、玻意耳定律、阿伏伽德罗定律, 推理演绎为热力学基本定律:第一、第二、第三定律及推论。
再推理演绎为卡诺热机性质,热辐射理论,相变理论,化学反应理论亥姆霍兹方程,能态方程,焓态方程等。
统计物理基本逻辑体系从微观结构出发,深入热运动本质,认为宏观物性是大量微观粒子运动性质的集体表现; 微观粒子力学量 宏观物理量 热力学基本定律归结为一条基本统计原理,阐明其统计意义,可解释涨落现象; 借助微观模型,可近似导出具体物性。
例如:认为微观粒子遵从力学定律:牛顿定律或量子力学。
经典的 量子的应用统计原理:最概然统计法 或 系综统计法 微观运动 通过假设 宏观性质 如:分子与壁碰撞时动量的变化→气体压力概念。
分子运动动能→气体温度 典型应用实例:导出理想气体的物态方程PV=RT 理想气体分子速度分布律 普朗克热辐射定律 大气压随高度的变化关系等@@@第一章 热力学的基本规律热力学 thermodynamics 平衡态热力学equilibrium thermodynamics 经典热力学classical thermodynamics §1.1 平衡态及其描述 重点掌握几个新概念 一 系统、外界和子系统热力学系统 由大量微观粒子组成的宏观物质系统 外界 与系统发生相互作用的其它物质 二 系统分类系统与环境关系一般很复杂,多种多样。
热力学统计物理第三章PPT课件
S
U
pV
T
n
S
U
pV
T
n
根据熵的广延性,整个系统的熵变
SSS
UT 1T 1VT p T p nT T
CHENLI
14
整个系统达到平衡时,总熵有极大值,必有
δS = 0
因为δUα、δVα、δnα是可以独立改变的,这要求
T 1 T 1 0 ,
T p T p 0 ,
T T 0
G n
T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物 质的量n与摩尔吉布斯函数Gm(T,p)之积
因此
G(T,p,n) = nGm(T,p)
G n
T
,
p
Gm
即是说,化学势μ等于摩尔吉布斯函数。
由上面开系吉布斯函数的全微分可知,G是以T、p、n
为独立变量的特性函数。若已知G(T,p,n) ,则
即
Tα = Tβ(热平衡条件)
pα = pβ(力学平衡条件)
μα =μβ(相变平衡条件)
上式指出,整个系统达到平衡时,两相的温度、压强和化 学势必须分别相等。
这就是单元复相系达到平衡所要满足的平衡条件。
整个系统孤立,则总内能等应是恒定的,即 Uα + Uβ = 常量 Vα + Vβ = 常量 nα + nβ = 常量
设想系统发生一个虚变动。在虚变动中两相的内能、 体积和物质的量均有变化,但孤立条件要求
CHENLI
13
δUα + δUβ = 0
δVα + δVβ = 0
δnα + δnβ = 0
由上节内能全微分知,两相的熵变分别为
CHENLI
3
热力学与统计物理.ppt
违反热力学第二定律
第4页 共30页
大学物理
热力学第二定律并不意味着热不能完全转变为功
例:理想气体等温膨胀
T 0 其他影响
V 0
E 0
QA
T
不违反热力学第二定律
关键词:“无其他影响” 热完全转变为功,而且系统和外界均复原是不可能的。
第5页 共30页
热力学第二定律指出了热功转换的方向性 功 自发 热 100 % 转换 热 非自发 功 不能 100% 转换
大学物理
实际自发的热力学过程是不可逆的,总是沿着系统 热力学概率(无序性)增加的方向进行。
无序性减小的状态不是绝对不可能发生,而是发 生的可能性趋于零。
(猴子打字,恰好打出莎士比亚作品;狗与跳蚤 的故事……)
热力学第二定律是一个统计规律,对大量粒子 体系才有意义,对只含少数分子的系统不适用。
第20页 共30页
单向性:什么方向?
大学物理
功:与宏观定向运动相联系,有序运动 热:与分子无规则运动相联系
自 动
非 自 动
热传导 高温 低温 T 差别 无序性 自动
低温 高温 T 差别 无序性 非自动
自由膨胀 体积 可能位置 无序性 自动
体积 可能位置 无序性 非自动 真空 单向性:无序性增大的方向
所以,原过程不可逆。
造成不可逆的原因:存在摩擦
无摩擦,非静态进行
正向(快提)
m
Q1 A1
V2 PdV
V1
M RT ln V2
V1
T
第16页 共30页
逆向(快压)
大学物理
Q2 A2
V1 PdV
V2
M RT ln V2
热力学与统计物理学的建立PPT课件
• 在布莱克的帮助下,瓦特终于在1765年研制成了分离冷凝器,制成了一台“单动式蒸汽 机”。
• 1782年瓦特又将发动机从单动变为双动,可将汽缸的功率提高一倍。 • 1787年,瓦特又安装了离心式调速器,以保证发动机速度相对稳定。这样瓦特的双动旋转
第24页/共55页
五、焦耳对热功当量的测定
• 1849年6月21日,他通过法拉第把论文《论热的机械当量》送交皇家学会。在这篇论文 中,焦耳全面地整理了他用摩擦水、水银和铸铁的方法测量热功当量的实验结果,得出两 个重要结论:
• 第一,由物体的摩擦所产生的热量总是与消耗的力之量成正比; • 第二,要使一磅水(在真空中55F一60F时称量)的温度升高 1F,需要消耗相当于使
• 1851年,迈尔出版了《论热的机械当量》一文中,详细地阐述了热功当量的计算。
第22页/共55页
四、亥姆霍兹的工作
• 1847年,德国青年科学家亥姆霍兹(公元1821— 1894)提出了《论力的守恒》一文,总结出以下三 点结论:
• l.当自然界中的物体在既与时间无关、又与速度 无关的吸力和斥力的相互作用下,系统中活力和张力 的总和始终不变;所得到的功的最大值就是一个确定 的和有限的。
第11页/共55页
五、关于热之本性的研究
•第二,认为热是物体粒子的内部运 动。热质说的成功,使人们相信了 热质说是正确的学说,但是到了十 八世纪末,热质说受到了严重的挑 战。1798年,英国物理学家汤普森 (即伦福德伯爵,公元1753-1814) 在德国进行炮膛钻孔时,提出了大 量的热是从哪里来的这个问题。
第26页/共55页
第三节 热力学第二定律的建立
热力学统计物理-统计热力学课件第二章
p
Cp
p
p
Cp (T ,
p)
Cp (T ,
p0 )
T
p0
2V T 2
dp p
p0
T Cp0 Cp (T, p0),V V (T, p) 由实验测定, H H (T, p), S S(T, p) 即可确定。
2020/6/17
14
三、 简单系统的 Cp – CV =?
Cp
CV
第二章 均匀物质的热力学性质
根据热力学基本规律,利用数学方法(多 元函数微积分),求得热力学量之间关系,及 各种过程的规律。
2020/6/17
1
§2.1 内能、焓、自由能和吉布斯函 数的全微分
一、数学定义
2020/6/17
2
二、热力学函数U, H, F, G 的全微分
1、内能
U U(S,V )
F V
T
S
G T
p
,
V
G p
T
2020/6/17
6
§2.2 麦氏关系及应用
一、麦氏关系
内能
T U T (S, V ), p U p(S, V )
S V
V S
2U 2U VS SV
T p V S S V
2020/6/17
7
焓
T H T (S, p), S p
2. 焓
H U pV dH TdS Vdp
H H(S, p)
2020/6/17
3
dH TdS Vdp
3、自由能
F U TS
dF SdT pdV
F F (T , V ), dF F dT F dT
T V
V T
S
热力学统计物理_第一章_ppt课件
物质交换
系统
能量交换
孤立系统
仅有能量交换
系统
闭系
能量交换+物质交换
系统
物质交换
能量交换
开放系统
2. 平衡态:在不受外界的影响的条件下(孤立系统), 系统的宏观性质不随时间变化的状态。 不受外界影响,指系统不与外界进行能量和物质交换。
3. 关于平衡态的几点说明 (1)实际系统都要或多或少地受到外界影响,不受外 界影响的孤立系统,同质点模型、刚体模型、点电荷模 型和点光源模型一样都是一个理想化的概念;
(3)二者联系: 热力学对热现象给出普遍而可靠的结果,可以 用来验证微观理论的正确性; 统计物理学则可以深入热现象的本质,使热力 学的理论获得更深刻的意义。
第ห้องสมุดไป่ตู้章
热力学的基本规律
热力学是研究热现象的宏观理论——根据实验总结 出来的热力学定律,用严密的逻辑推理的方法,研 究宏观物体的热力学性质。 热力学不涉及物质的微观结构,它的主要理论基础 是热力学的三条定律。 本章的内容是热力学第一定律和热力学第二定律。
热平衡系统所具有的共同宏观性质
热平衡温度相同
T
p
A
B
T
p
2. 温度函数引入证明如下:
C
互为热平衡的两系统, 其状态参量不完全独立, A B 要被一定的函数关系所制约。 即热平衡条件为: F 若A与C达到热平衡: AC( pA,V A; p C,V C) 0 B与C达到热平衡:
F BC( p B,V B; p C,V C) 0
质的参量,如电场强度和磁场强度,极化强度和磁化
强度等,称为电磁参量。 2、状态参量的种类:力学参量、几何参量、化
学参量、电磁参量
热力学统计物理 第二章 课件
可得
S S dS dp dT T p p T
S S dH T V dp dT T T p p T 两式比较,即有 H S Cp T T T p p
上式给出两热容之差与物态方程的关系。由此处推导可知, 此式适用于任意简单系统。
对于理想气体,可得
Cp-CV = nR
雅可比行列式
在热力学中往往要进行导数变换的运算。 雅可比行列式是进行导数变换运算的一个有用的工具。
设u、v是独立变数x、y的函数 u = u(x,y), v = v(x,y) 雅可比行列式的定义是
H S T V p T p T 对此式,利用麦氏关系得 H V V T p T p T 此式给出温度不变时焓随压强的变化率与物态方程的关系。
对于定压热容Cp和定容热容CV,由前可得 S S C p CV T T T p T V 但由下述函数关系
例
U = U(S,V), H = H(S,p), F = F(T,V), G = G(T,p)
由自由能的全微分表达式
dF = -SdT – pdV 易知
F F , p T V 若已知F(T,V),求F 对T的偏导数即可得出熵S(T,V);求F S
对V的偏导数即可得出压强p(T,V),这就是物态方程。 根据自由能的定义F=U-TS,有
T、V参量
选取T、V为状态参量,则物态方程为
p = p (T, V ) 当然具体方程形式需由实验测定。 由第2节内容可知,内能全微分为
U U dU d T dV T V V T p CV dT T p dV T V
热力学统计物理_第五版_汪志诚_完整ppt课件
注意
1)理动态平衡。
2020/4/18
.
17
三、状态参量
定义:系统处于平衡态时,可以表征、描述系统状态的变量
状态参量
几何参量:体积 力学参量:压强 化学参量:摩尔数,浓度,摩尔质量 电磁参量:电场强度,电极化强度,磁场强度,磁化强度 热学参量:温度(直接表征热力学系统的冷热程度)
热力学第二定律 卡诺循环 热力学温标 克劳修斯等式和不等式 熵和热力学基本方程 理想气体的熵
热力学第二定律的数学 表达式
熵增加原理的简单应用 自由能和吉布斯函数
2020/4/18
.
13
§1. 1 热力学系统的平衡状态及其描述
一 、热力学系统(简称为系统)
定义:热力学研究的对象——宏观物质系统 系统分类: ⑴ 孤立系统:与外界没有任何相互作用的系统 ⑵ 封闭系统:与外界有能量交换,但无物质交换的系统 ⑶ 开放系统:与外界既有能量交换,又有物质交换的系统
处在平衡态的大量分子仍在作热运动,而且因 为碰撞,每个分子的速度经常在变,但是系统的宏 观量不随时间改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
2020/4/18
.
16
平衡态的特点
1)单一性( p , T 处处相等);
2)物态的稳定性—— 与时间无关; 3)自发过程的终点; 4)热动平衡(有别于力平衡).
2020/4/18
.
18
宏观量 表征系统宏观性质的物理量
如系统的体积V、压强P、温度T等,可直接测量 可分为广延量和强度量 广延量有累加性:如质量M、体积V、内能E等 强度量无累加性:如压强 P,温度T等
热力学与统计物理课件 统计物理部分 第一章 统计物理的基本概念
第一章统计物理的基本概念(The Fundamental Concepts of Statistical Physics)§1.1统计物理简介(Simple Introduction of Statistical Physics)历史:源于气体分子运动论(Kinetic Theory of Gases)1738年:第一个气体分子运动论模型由瑞士物理学家柏努利(Daniel Bernoulli)提出。
奥地利物理学家玻尔兹曼(Ludwig Bottzmann,1844~1906)、美国科学家吉布斯(J. Willard Gibbs,1839~1903)等人做了统计物理奠基性的工作,发展了统计系综理论,从而真正开创了统计物理的系统理论。
爱因斯坦(Einstein(1879~1955)), 普朗克(Planck (1858~1947))等发扬光大。
在20世纪(约1910年后)才被科学界广泛接受。
对这一事实确立起决定作用的是爱因斯坦的布朗运动的理论解释(1905年)和Jean Perrin (皮兰)的实验验证。
统计物理起源于气体分子运动论,分子运动论的主要思想有三点:(1)物质由大量原子、分子组成。
(2)原子、分子处于不断热运动中。
(3)原子、分子间有相互作用。
相互作用Æ有序热运动Æ无序这是一对矛盾。
热力学方法与统计物理方法的优缺点:热力学方法的优缺点:热力学以大量实验总结出来的几条定律为基础,应用严密的逻辑推理和严格的数学运算来研究宏观物体的热学性质以及和热现象有关的一切规律。
所以热力学的结果较普遍、可靠,但不能求特殊性质。
统计物理方法的优缺点:统计物理从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体的热学性质以及和热现象有关的一切规律。
所以统计物理方法可求特殊性质,但其可靠性依赖于结构的假设,计算较麻烦。
此二者体现了归纳与演译的不同应用,可互相补充。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究热运动的规律性以及热运动对物质宏观性质 影响的理论统称为热学理论。按研究方法的不同可 分为热力学与统计物理等。其中,热力学是热学的 宏观理论,统计物理是热学的微观理论。
02:37
7
02:37
8
热力学理论的发展简介 Introduction to Development of
② 分子运动论
③ 原子物理学
④ 02:37 量子力学
11
The Fundamental Laws of Thermodynamics
2021/4/14
12
目 录 Contents
热力学系统的平衡状态及 其描述
热平衡定律和温度 物态方程 功 热力学第一定律 热容量和焓 理想气体的内能 理想气体的绝热过程 理想气体的卡诺循环
注意
1)理想化;—— 实际中没有绝对的孤立系统;存在微小涨落 2)动态平衡。
2021/4/14
17
三、状态参量
定义:系统处于平衡态时,可以表征、描述系统状态的变量
状态参量
几何参量:体积 力学参量:压强 化学参量:摩尔数,浓度,摩尔质量 电磁参量:电场强度,电极化强度,磁场强度,磁化强度 热学参量:温度(直接表征热力学系统的冷热程度)
02:37
Onsager
Prigogine
10
预备知识
Preliminaries
1. 数学
① 多元复合函数的微分(附录A) a) 偏导数与全微分 b) 隐函数、复合函数 c) 雅克比行列式 d) 完整微分条件和积分因子 ② 概率基础知识(附录B)
统计物理学常用的积分形式(附录C)
2. 物理学
① 热学
19
气体的物态参量及其单位(宏观量)
1 气体压强 p :作用于容器壁上
单位面积的正压力(力学描述).
单位: 1Pa 1Nm2
p,V ,T
标准大气压: 45 纬度海平面处, 0C 时的大气压.
1atm 1.013105Pa
2 体积 V : 气体所能达到的最大空间(几何
描述).
单位:
1m3 103L 103dm3
经验表明:如果两个系统A和B同时分别与第三个系 统C达到热平衡,则这两个系统A和B也处于热平衡。 称热力学第零定律(热平衡定律)
2021/4/14
22
为了描绘一个系统与另外一个系统处于 热平衡 需要一个物理量:温度
(1)日常生活中,常用温度来表示冷热的程度
(2)在微观上,则必须说明,温度是处于热平衡
2021/4/14
18
宏观量 表征系统宏观性质的物理量
如系统的体积V、压强P、温度T等,可直接测量 可分为广延量和强度量 广延量有累加性:如质量M、体积V、内能E等 强度量无累加性:如压强 P,温度T等
微观量 描写单个微观粒子运动状态的物理量
一般只能间接测量 如分子的质量 m、大小 d等
2021/4/14
热力学与统计物理学
Thermodynamics and Statistical Physics
02:37
1
使用教材:
热力学.统计物理
汪志诚
02:37
2
参 考 资 料
02:37
3
参 考 资 料
02:37
4
02:37
5
02:37
6
热运动是自然界普遍存在的一种运动现象。热运 动对于单个粒子来说杂乱无章,但对于整个宏观物 体来说,在外界条件一定的情况下,大量微粒互相 影响的结果却表象现出具有确定的宏观规律性。
处在平衡态的大量分子仍在作热运动,而且因 为碰撞,每个分子的速度经常在变,但是系统的宏 观量不随时间改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
2021/4/14
16
平衡态的特点
1)单一性( p,T 处处相等);
2)物态的稳定性—— 与时间无关; 3)自发过程的终点; 4)热动平衡(有别于力平衡).
经典热力学特点:
A. 不涉及时间与空间;
02:3B7 . 以平衡态、准静态过程、可逆过程为模型。
9
二. 非平衡态热力学
1. 翁萨格(Onsager),线性非平衡态热力学,诺贝尔 奖(1968) 2. 普里高津(Prigogine)非线性非平衡态热力学,诺贝 尔奖(1977) 3. 近年来 • 有限时间热力学 • 工程热力学 •••
系统下的微观粒子热运动强弱程度的度量
温度相同是系统处于热平衡的充分且必要条件:
两个处于热平衡的系统
温度一定相同
两个温度相同的系统
一定处于热平衡
2021/4/14
3 温度 T : 气体冷热程度的量度(热学描述).
单位:K(开尔文).
2021/4/14
20
简单系统:一般仅需二个参量就能确定的系统, 如PVT系统。
单相系:
复相系:
2021/4/14
21
ቤተ መጻሕፍቲ ባይዱ
§1.2 热平衡定律和温度
一、热力学第零定律 热交换:系统之间传热但不交换粒子
热平衡:两个系统在热交换的条件下达到了一 个共同的平衡态。
热力学第二定律 卡诺循环 热力学温标 克劳修斯等式和不等式 熵和热力学基本方程 理想气体的熵
热力学第二定律的数学 表达式
熵增加原理的简单应用 自由能和吉布斯函数
2021/4/14
13
§1. 1 热力学系统的平衡状态及其描述
一 、热力学系统(简称为系统)
定义:热力学研究的对象——宏观物质系统 系统分类: ⑴ 孤立系统:与外界没有任何相互作用的系统 ⑵ 封闭系统:与外界有能量交换,但无物质交换的系统 ⑶ 开放系统:与外界既有能量交换,又有物质交换的系统
2021/4/14
14
二、平衡状态
定义:热力学系统在不受外界条件影响下,经过足够长时
间后,系统的宏观性质不随时间变化的状态
系统由初态达到平衡态所经历的时间称为弛豫时间。
孤立系统:外界对系统既不做功也不传热
p
真空
( p,V ,T)
*( p,V ,T )
o
V
2021/4/14
15
说明: •平衡态是一种热动平衡
Thermodynamics
一. 经典热力学 1. 1824年,卡诺(Carnot):卡诺定理 2. 1840’s,迈尔(Mayer),焦耳(Joule):第一定律(能量 守恒定律)
3. 1850’s ,克劳修斯(Clausius),(1850)开尔文( Kelvin)(1851):第二定律熵增加原理 4. 1906年,能斯特(Nernst)定理绝对零度不可达到 原理(1912)第三定律