成都七中育才学校初2019届八年级下期第4周周测数学试题(附答案)

合集下载

成都七中育才学校学道分校八年级数学下册第四单元《一次函数》检测卷(答案解析)

成都七中育才学校学道分校八年级数学下册第四单元《一次函数》检测卷(答案解析)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x分别交x轴、y轴于A、B两点.若C是x轴上的动点,则2BC AC+的最小值()A.236+B.6 C.33+D.42.甲,乙两车分别从A,B两地同时出发,相向而行.乙车出发2h后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x(h),甲,乙两车到B地的距离分别为y1(km),y2(km),y1,y2关于x的函数图象如图.下列结论:①甲车的速度是45akm/h;②乙车休息了0.5h;③两车相距a km时,甲车行驶了53h.正确的是( )A.①②B.①③C.②③D.①②③3.如图,一次函数443y x=-的图像与x轴,y轴分别交于点A,点B,过点A作直线l将ABO∆分成周长相等的两部分,则直线l的函数表达式为()A .26y x =-B .23y x =-C .1322y x =-D .3y x =- 4.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .18 5.在直角坐标系中,点P 在直线x +y -4=0上,O 为原点,则OP 的最小值为( )A .22B .2C .6D .10 6.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 7.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 8.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A.2,03⎛⎫⎪⎝⎭B.2,02⎛⎫⎪⎪⎝⎭C.10,010⎛⎫⎪⎪⎝⎭D.1,010⎛⎫⎪⎝⎭9.若点P在一次函数31y x=-+的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A.143xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩11.对函数22y x=-+的描述错误是()A.y随x的增大而减小B.图象经过第一、三、四象限C.图象与x轴的交点坐标为(1,0)D.图象与坐标轴交点的连线段长度等于5 12.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB段),小丽在图片中建立了坐标系,将AB段看作一次函数y kx b=+图象的一部分,则k,b的取值范围是( )A.0k>,0b<B.0k>,0b>C.0k<,0b<D.0k<,0b>二、填空题13.已知y+3与x成正比例,且x=2时,y=7,则y与x的函数关系式为______________________.14.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.15.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB +有最小值时,P 点的坐标为________.16.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.17.如图,平面直角坐标系中,点A 在直线333y x =上,点C 在直线142y x =-+上,点A ,C 都在第一象限内,点B ,D 在x 轴上,若AOB 是等边三角形,BCD △是以BD 为底边的等腰直角三角形,则点D 的坐标为____________.18.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.19.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______.20.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题21.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y ,图中的折线表示y 与x 之间的函数关系.(1)甲,乙两地之间的距离为 千米;图中点B 的实际意义是 ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 22.某超市预购进A 、B 两种品牌的T 恤共200件,已知两种T 恤的进价如表所示,设购进A 种T 恤x 件,且所购进的两种T 恤全部卖出,获得的总利润为W 元.品牌 进价/(元/件)售价/(元/件) A 5080 B40 65 x (2)如果购进两种T 恤的总费用为9500元,那么超市获得的总利润是多少? (提示:利润=售价-进价)23.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.24.如图,在平面直角坐标系中,直线AB 交坐标轴于点(0,6)A ,(8,0)B ,点C 为x 轴正半轴上一点,连接AC ,将ABC 沿AC 所在的直线折叠,点B 恰好与y 轴上的点D 重合.(1)求直线AB 的解析式;(2)点P 为直线AB 上的点,请求出点P 的坐标使94COP S =△. 25.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过36m 时,水费按每立方米1.1元收费,超过36m 时,超过部分每立方米按1.6元收费,设每户每月用水量为3m x ,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?26.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点, ∴()3,0A ,()0,3B , 3,3OA OB ∴==,∴()223323AB =+=,∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒,1123322AE AB ∴==⨯=, ()()22222333BE AB AE ∴=-=-=又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.A解析:A【分析】根据速度=路程÷时间即可算出甲的速度,由此可判断①,甲乙相遇时甲走路程为2akm ,计算出时间可判断②,分甲乙相遇前和相遇后两个时间段考虑甲乙相距akm 时的时间,可判断③.【详解】解:由函数图象可知,甲5小时到达,速度为4/5a km h ,故①正确; 甲与乙相遇时,时间为42 2.545a a h a -=,所以乙休息了2.520.5h -=,②正确; 乙的速度为:2/2a akm h =, 在2小时时,甲乙相距4242255a a a akm --⋅=, ∴在2小时前,若两车相距a km 时,445a a a a t t -=⋅+⋅,解得53t h =, 当两车相遇后,即2.5小时后,若两车相距a km 时,44(0.5)5a a a a t t +=⋅-+⋅, 解得5518t h =, ∴两车相距a km 时,甲车行驶了53h 或5518h ,故③错误; 故选:A .【点睛】 本题考查一次函数的应用.解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3.D解析:D【分析】设直线l 与y 轴交于点C ,由已知条件求出点C 的坐标后利用待定系数法可以得到直线l 的函数表达式.【详解】解:分别令x=0和y=0可得B 、A 的坐标为(0,-4)、(3,0),∴5=,则三角形OAB 的周长为12如图,设直线l 与y 轴交于点C (0,c ),则OA+OC=6,即3-c=6,∴c=-3,即C 的坐标为(0,-3),设l 的函数表达式为y=kx+b ,由l 经过A 、C 可得:033k b b =+⎧⎨-=⎩,解之得: 13k b =⎧⎨=-⎩, ∴l 的函数表达式为:y=x-3,故选D .【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象、勾股定理的应用及待定系数法求解析式的方法是解题关键.4.A解析:A【分析】根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<, ∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限,∴60a ->,∴6a <,∴36a<<,又∵a为整数,∴a=4或5,∴满足条件的所有整数a的和为4+5=9,故选:A.【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.5.A解析:A【分析】当OP垂直于直线x+y-4=0时,|OP|取最小值.根据直线方程得到该直线与坐标轴的交点坐标,则易得△AOB为等腰直角三角形,等腰直角三角形斜边上的中线等于斜边的一半,据此求得线段OP的长度.【详解】解:由直线x+y-4=0得到该直线与坐标轴的两交点坐标是A(0,4)、B(4,0),则△AOB是等腰直角三角形,如图,∴22224442OA OB+=+=当OP⊥AB时,线段OP最短.此时OP=12AB=22故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,垂线段最短.解题时,利用了直角三角形斜边上的中线等于斜边的一半求得OP的长度.6.A解析:A【分析】根据△ABC为等边三角形,得到∠A=∠C=∠ABC=60︒,利用DE//AC,证得△DEB是等边三角形,求出DE=BD=2-x,利用EF⊥DE,求出223DF DE=-,再根据面积公式求出函数解析式,依据函数的性质确定函数图象.【详解】∵△ABC 为等边三角形,∴∠A=∠C=∠ABC=60︒,∵DE //AC ,∴∠DEB=∠C=60︒,∠EDB=∠A=60︒,∴∠DEB=∠EDB=∠DBE=60︒,∴△DEB 是等边三角形,∴DE=BD=2-x ,∵EF ⊥DE ,∴∠DEF=90︒,∴∠DFE=30,∴DF=2DE=4-2x,∴,∴△DEF的面积为y=21(2))2)2x x x --=-(0<x<2), ∵此函数为二次函数,开口向上,对称轴为直线x=2,且0<x<2,故选:A .【点睛】此题考查等边三角形的判定及性质,平行线的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半,函数的性质,函数图象,根据题意分别求出DE 、EF ,由此得到函数解析式是解题的关键.7.D解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键.8.A解析:A【分析】作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭. 【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩, 解得:32k b =⎧⎨=-⎩, ∴y=3x -2, 当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.9.C【分析】根据一次函数图象与系数的关系解答.【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0,∴一次函数的图象经过第一、二、四象限,∵点P 在一次函数31y x =-+的图象上,∴点P 一定不在第三象限,故选:C .【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.10.C解析:C【分析】 先根据223y x =+可得B 、C 的坐标,进而确定OB 、OC 的长,然后根据3S △ABO =S △BOC 结合点A 在第二象限确定A 点的纵坐标,然后再根据点A 在y =23x+2上,可确定点A 的横坐标即可解答.【详解】 解:由223y x =+可得B (﹣3,0),C (0,2), ∴BO =3,OC =2,∵3S △ABO =S △BOC , ∴3×12×3×|yA|=12×3×2, 解得y A =±23, 又∵点A 在第二象限,∴y A =23, 当y =23时,23=23x+2,解得x =﹣2, ∴方程组0236kx y x y -=⎧⎨-=-⎩的解为223x y =-⎧⎪⎨=⎪⎩. 故答案为C .本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.11.B解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交点的连线段长度等于22125+=,故本选项说法正确,不符合题意;故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.12.A解析:A【分析】根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.二、填空题13.【分析】根据题意设把x =2时y =7代入求出k 的值即可求解【详解】解:根据题意可得把x =2时y =7代入可得解得∴故答案为:【点睛】本题考查正比例函数的定义根据题意求出k 的值是解题的关键解析:53y x =-【分析】根据题意设3y kx ,把x =2时,y =7代入求出k 的值,即可求解. 【详解】解:根据题意可得3y kx , 把x =2时,y =7代入可得732k +=,解得5k =,∴53y x =-,故答案为:53y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键. 14.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°,∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3), 设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253. 故答案为:y=-23x+253. 【点睛】本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键. 15.(20)【分析】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值则C (0-2)求出直线BC 的解析式即可得到答案【详解】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值解析:(2,0)【分析】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),求出直线BC 的解析式,即可得到答案.【详解】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),设直线BC 的解析式为y=kx+b ,将点B 、C 的坐标代入,得422k b b +=⎧⎨=-⎩,解得12k b =⎧⎨=-⎩, ∴直线BC 的解析式为y=x-2,当y=0时,得x-2=0,解得x=2,∴P (2,0),故答案为:(2,0)..【点睛】此题考查最短路径问题,待定系数法求函数解析式,正确理解最短路径问题作点A的对称点利用一次函数图象与x轴的交点求出答案是解题的关键.16.y=-2x【分析】由题意可设y=kx(k≠0)把xy的值代入该函数解析式通过方程来求k的值【详解】解:由题意可设y=kx(k≠0)则2=-k解得k=-2所以y关于x的函数解析式是y=-2x故答案为:解析:y=-2x【分析】由题意可设y=kx(k≠0).把x、y的值代入该函数解析式,通过方程来求k的值.【详解】解:由题意可设y=kx(k≠0).则2=-k,解得,k=-2,所以y关于x的函数解析式是y=-2x,故答案为:y=-2x.【点睛】本题考查了待定系数法求正比例函数解析式,利用待定系数法求得解析式是关键.17.【分析】过点A作AE⊥x轴于点E过点C作CF⊥x轴于点F由题意易得∠OAE=30°△CBF为等腰直角三角形则有BF=CF=DF设点A的坐标为点C的坐标为则有然后可列方程进行求解即可【详解】解:过点A解析:19,0 3⎛⎫ ⎪⎝⎭【分析】过点A作AE⊥x轴于点E,过点C作CF⊥x轴于点F,由题意易得∠OAE=30°,223AE OA OE OE=-=,△CBF为等腰直角三角形,则有BF=CF=DF,设点A的坐标为33a⎛+⎝,点C的坐标为1,42b b⎛⎫-+⎪⎝⎭,则有31,3,2,,42 32OE a AE a OB a OF b BF CF b b a ==+====-+=-,然后可列方程进行求解即可.【详解】解:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,如图所示:∵△AOB 是等边三角形,∴∠AOB=60°,OA=OB ,∴∠OAE=30°,∴OA=OB=2OE ,在Rt △AOE 中,223AE OA OE OE =-=,∵△CBD 是等腰直角三角形,∴∠CBD=45°,∴△CBF 为等腰直角三角形,∴BF=CF=DF ,由题意可设点A 的坐标为3,33a a ⎛+ ⎝,点C 的坐标为1,42b b ⎛⎫-+ ⎪⎝⎭, ∴31,3,2,,4232OE a AE a OB a OF b BF CF b b a ==+====-+=-, ∴333a =+ 解得:32a =, ∴OB=3, ∴1432b b -+=-, 解得143b =, ∴53DF BF ==, ∴193OD OF DF =+=,∴点D 的坐标为19,03⎛⎫ ⎪⎝⎭; 故答案为19,03⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查一次函数与几何综合及二次根式的运算,熟练掌握一次函数与几何综合及二次根式的运算是解题的关键.18.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.19.或【分析】先确定正比例函数的解析式利用分类思想用点M 的坐标表示△ABM 的面积求解即可【详解】∵正比例函数的图像经过点∴k=∴y=x ∵=<10∴点M 不可能在线段AO 上∴当点M 在点A 的左上时设M (-2a 解析:25,33⎛⎫-⎪ ⎭⎝或1435,33⎛⎫-⎪ ⎭⎝. 【分析】先确定正比例函数的解析式,利用分类思想,用点M 的坐标表示△ABM 的面积求解即可.【详解】∵正比例函数y kx =的图像经过点)(2,5A -,∴k= 52-,∴y=52-x ,∵12AOB A S OB y =⋅=152<10, ∴点M 不可能在线段AO 上,∴当点M 在点A 的左上时,设M (-2a,5a ), ∵ABM MOB AOB S S S =-,∴10=152a -152, ∴a=73, ∴M (143-,353); ∴当点M 在点O 的右下时,设M (2a,-5a ),∵ABM MOB AOB S S S =+,∴10=152a +152, ∴a=13, ∴M (23,53-); 综上所述,符合题意的M 的坐标为(23,53-)或(143-,353).故填(23,53-)或(143-,353).【点睛】本题考查了正比例函数的解析式和性质,三角形面积的表示法,数学的分类思想,合理设点M的坐标,并用点M的坐标表示已知三角形的面积是解题的关键.20.(0)【分析】过A和B分别作AF⊥OC于FBE⊥OC于E利用已知条件可证明△AFC≌△CEB再有全等三角形的性质和已知数据即可求出B点的坐标然后求出直线BC的解析式即可得到结论【详解】解:过A和B分解析:(0,83)【分析】过A和B分别作AF⊥OC于F,BE⊥OC于E,利用已知条件可证明△AFC≌△CEB,再有全等三角形的性质和已知数据即可求出B点的坐标,然后求出直线BC的解析式,即可得到结论.【详解】解:过A和B分别作AF⊥OC于F,BE⊥OC于E,∵∠ACB=90°,∴∠ACF+∠CAF=90°∠ACF+∠BCE=90°,∴∠CAF=∠BCE,在△AFC和△CEB中,90AFC CBECAF BCEAC AC︒⎧∠=∠=⎪∠∠⎨⎪=⎩=,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF﹣OC=4,OE=CE﹣OC=2﹣1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b,则420k bk b+=⎧⎨-+=⎩,∴4383kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为:y =43 x +83 , 当x =0时,y =83, ∴D (0,83). 故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题21.(1)900km ,4小时两车相遇;(2)()22590046y x x =-≤≤; (3)0.75小时【分析】(1)根据观察图象可得甲乙两地间的距离,根据图象中的点的实际意义即可得到答案; (2)根据观察图象先求得B 、C 两点的坐标,然后利用待定系数法求线段BC 的函数解析式即可;(3)求得第二列快车与慢车相遇所用的时间和此时第一列快车行驶的时间,即可求得第二列快车比第一列快车晚出发的时间.【详解】解:(1)由图象可知,甲乙两地间的距离是900km ;图中点B 的实际意义是:4小时两车相遇.(2)∵观察图象可得:慢车速度为9001275/km h ÷=;两车的速度和为9004225/km h ÷=∴快车的速度为22575150/km h -=∴两车相遇后快车到达乙地所用时间为90015042h ÷-=∴相遇后两小时两车行驶的距离和为2252450km ⨯=∴()4,0B ,()6,450C∴设线段BC 的解析式为:y kx b =+∴406450k b k b +=⎧⎨+=⎩∴225900k b =⎧⎨=-⎩∴线段BC 所表示的y 与x 之间的函数关系式为:()22590046y x x =-≤≤. (3)130min h 2= ∵相遇时快车行驶的路程为1504600km ⨯=∴第二列快车与慢车相遇时行驶的路程为160075562.52km -⨯= ∴第二列快车与慢车相遇时所用时间为562.5150 3.75h ÷=,此时快车行驶了14 4.52h += ∴4.5 3.750.75h -= ∴第二列快车比第一列快车晚出发了0.75小时.【点睛】本题主要考查了用一次函数模型解决实际问题的能力和读图能力,会根据图象得出所需要的信息是解题的关键.22.(1)55000W x =+;(2)5750元.【分析】(1)先根据总件数可得购进B 种T 恤的件数,再根据利润公式求出A 、B 两种T 恤的利润的和即可得;(2)先根据进价和总费用可建立一个关于x 的一元一次方程,解方程可求出x 的值,再根据(1)的结论即可得.【详解】(1)由题意得:购进B 种T 恤()200x -件,则总利润为()()()80506540200W x x =-+--,即55000W x =+;(2)由题意得:()50402009500x x +-=,解得150x =,将150x =代入(1)的结论得:515050005750W =⨯+=,答:超市获得的总利润是5750元.【点睛】本题考查了一次函数的实际应用、一元一次方程的实际应用,依据题意,正确建立函数关系式和方程是解题关键.23.(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+,2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.24.(1)364y x =-+;(2)36,2P ⎛⎫ ⎪⎝⎭或310,2⎛⎫- ⎪⎝⎭ 【分析】(1)利用待定系数法设直线AB 的解析式为:y =kx +b ,把A (0,6)、B (8,0)代入解析式,求出k 、b ,即可得到结论;(2)根据勾股定理得到AB =10,由折叠性质得AD =AB =10,求出OD ,设OC =x ,则BC =CD =8−x ,根据勾股定理列方程可得OC ,再由三角形的面积公式列方程1393?6244m ⨯⨯-+=,求出m 即可得到P 点坐标. 【详解】解:(1)设直线AB 的解析式为:y kx b +=(k≠0),根据题意得:680b k b =⎧⎨+=⎩, 解得:3k 4b 6⎧=-⎪⎨⎪=⎩.∴直线AB 的解析式为:364y x =-+. (2)∵点(0,6) A 、(8,0)B ,∴6OA =,8OB =.∴10AB ==.由折叠性质得10AD AB ==,∴4OD AD OA =-=.设OC x =,则8BC CD x ==-,∴在OCD 中,由勾股定理得2224(8)x x +=-,解得3x =.即OC =3.∵点P 为直线AB 上的点,∴设点P 的坐标为:3,?64m m ⎛⎫-+ ⎪⎝⎭. ∵94COP S =△, ∴1393?6244m ⨯⨯-+=. ∴364m -+=32. ∴m 6=或10m =. ∴P 点的坐标为36,2⎛⎫ ⎪⎝⎭或310,2⎛⎫-⎪⎝⎭. 【点睛】本题考查了待定系数法求一次函数解析式及其应用,熟练掌握一次函数的图象与性质,以及正确的理解题意,根据勾股定理、折叠性质与三角形的面积计算公式建立等量关系求出相应线段的长度或点的坐标是解题的关键.25.(1) 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩;(2)这两户家庭这个月的用水量分别为35m 和38m 【分析】(1)由题意可分06x ≤≤,x>6两种情况写出y 与x 之间的函数表达式;(2)首先判断消费是否大于1.1×6,若不大于,则采用(1)中06x ≤≤的函数关系式求解,若大于,则采用x>6的函数关系式求解.【详解】解:(1)当06x ≤≤时, 1.1y x =;当6x >, 1.16 1.6(6)y x =⨯+⨯-即 1.63y x =-,所以y 与x 之间的函数表达式为 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩, (2)因为5.5 1.16<⨯所以用水量不超过6立方米,所以当 5.5y =时,5.5 1.1x =,解得5x =.因为9.8 1.16>⨯所以用水量超过6立方米,所以当9.8y =时,9.8 1.63x =-,解得8x =.答:这两户家庭这个月的用水量分别为35m 和38m【点睛】本题考查一次函数的应用,熟练掌握分段函数的特点和解决方法是解题关键 .26.(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可; (2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同. (3)当2400x =时,14240032003y =⨯=(元), 222400100026003y =⨯+=(元),12y y >, 所以,当每月行驶的路程为2400千米时,选择出租车公司合算.【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.。

2019-2020成都七中育才学校学道分校中考数学试卷含答案

2019-2020成都七中育才学校学道分校中考数学试卷含答案
9.A
解析:A 【解析】 【分析】 本题可以根据三棱柱展开图的三类情况分析解答 【详解】 三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形 另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这 两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的 那个长方形.此题目中图形符合第 2 种情况
2019-2020 成都七中育才学校学道分校中考数学试卷含答案
一、选择题
1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )
A.
B.
C.
D.
2.下列关于矩形的说法中正确的是( ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分 3.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.abc>0
B.b2﹣4ac<0
C.9a+3b+c>0
D.c+8a<0
4.若一组数据 2,3, ,5,7 的众数为 7,则这组数据的中位数为( )
A.2
B.3
C.5
D.7
5.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该
球员平均每节得分为( )
A.7 分
B.8 分
A 在反比例函数 y= 2 的图像上,则菱形的面积为_______. x
16.当直线 y 2 2k x k 3经过第二、三、四象限时,则 k 的取值范围是_____.
17.某品牌旗舰店平日将某商品按进价提高 40%后标价,在某次电商购物节中,为促销该 商品,按标价 8 折销售,售价为 2240 元,则这种商品的进价是______元. 18.正六边形的边长为 8cm,则它的面积为____cm2. 19.对于有理数 a、b,定义一种新运算,规定 a☆b=a2﹣|b|,则 2☆(﹣3)=_____.

四川省成都七中育才学校八年级数学下学期期末模拟试题(含解析) 北师大版

四川省成都七中育才学校八年级数学下学期期末模拟试题(含解析) 北师大版

四川省成都七中育才学校2014-2015学年八年级数学下学期期末模拟试题一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2 D.﹣4﹣b23.若分式的值为0,则()A.x=±1B.x=1 C.x=﹣1 D.x=04.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.85.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=39.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2= .12.函数的自变量x的取值范围是.13.若=,则= .14.关于x的方程x2﹣mx+4=0有两个相等实根,则m= .15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.17.先化简,再求值已知:,求的值.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)= .22.若关于x的分式方程﹣1=无解,则m的值.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC= .25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.2014-2015学年四川省成都七中育才学校八年级(下)期末数学模拟试卷(2)参考答案与试题解析一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2 D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选D.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.3.若分式的值为0,则()A.x=±1B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.4.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选D.【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【考点】规律型:图形的变化类.【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=3【考点】一元二次方程的解.【专题】压轴题.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=0代入方程式即可解.【解答】解:关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,把x=0代入得到m2﹣2m﹣3=0,解得m=3或﹣1,因为m+1≠0,则m≠﹣1,因而m=3.故本题选D.【点评】本题主要考查了方程的根的定义,就是能使方程左右两边相等的未知数的值,本题特别要注意一元二次方程的二次项系数不等于0.9.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对【考点】相似三角形的判定.【分析】已知平行四边形的对边平行,平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似.【解答】解:∵AD∥BC∴△ADG∽△ECG,△ADG∽△EBA,△ABC∽△CDA,△EGC∽△EAB;所以共有四对故选C.【点评】本题考虑平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似,注意要找全,不可漏掉任何一个.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2= .【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式,将已知代入求出即可.【解答】解:∵2x﹣y=,xy=2,∴2x2y﹣xy2=xy(2x﹣y)=2×=.故答案为:.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.函数的自变量x的取值范围是x>2 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.若=,则= .【考点】比例的性质.【分析】根据比例的性质,即可解答.【解答】解:∵,∴7m=11n,∴,故答案为:.【点评】本题考查了比例的性质,解决本题的关键是熟记比例的性质.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m= ±4.【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,求出m的值即可.【解答】解:∵关于x的方程x2﹣mx+4=0有两个相等实根,∴△=(﹣m)2﹣4×4=0,解得m=±4.故答案为:±4.【点评】本题考查的是根的判别式,根据题意得出关于m的方程是解答此题的关键.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为81 .【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】压轴题.【分析】作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.【解答】解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,∵正方形ABCD,∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,∴PE=PF,∴四边形AEPF是正方形,∴AE=PE=PF=AF,∵AP=2,由勾股定理得:AE2+PE2=,∴AE=PE=PF=AF=2,∴PG=BF,且∠PFB=∠PGQ=90°;∵∠FBP+∠FPB=90°,∴∠FBP=∠GPQ,在△PQG和△BPF中,∴△PQG≌△BPF,则QG=PF=2,∴AB=BC=CD=2+2+5=9,则大正方形的边长是9,即面积是81;故答案为81.【点评】此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.【考点】解一元一次不等式组;因式分解-提公因式法;解一元二次方程-公式法;一元一次不等式组的整数解.【分析】(1)利用提公因式法分解,然后利用公式法即可分解;(2)利用求根公式即可求解;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:(1)原式=4a(a﹣1)2+(a﹣1)=(a﹣1)【4a(a﹣1)+1】=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2;(2)∵a=2,b=4,c=﹣1,b2﹣4ac=16+8=24>0,∴x=,则x1=,x2=;(3),解①得x<,解②得:x≥﹣5.则不等式组的解集是﹣5≤x<.则整数解是:﹣5,﹣4,﹣3,﹣2,﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.17.先化简,再求值已知:,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再=,设x=2k,y=3k(k≠0),再代入进行计算即可.【解答】解:原式=[﹣]×=×==;解法一:∵ =,不妨设x=2k,y=3k(k≠0),∴原式==;解法二: =∵=,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【专题】作图题.【分析】(1)根据关于原点对称的点的坐标特征,画出点A、B、C的对应点A′、B′、C′,即可得到△A′B′C′;(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A″,B″、C″,即可得到△A″B″C″;(3)分类讨论:分别以AB、BC和AC为对角线作出平行四边形,然后写出第四个顶点D的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所作,点B的对应点B″的坐标的坐标为(0,﹣6);(3)如图,四边形ABCD′、四边形ADBC和四边形ABD″C为所作,第四个顶点D的坐标为(3,3)或(﹣7,3)或(﹣5,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的性质.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.【考点】菱形的性质.【专题】计算题.【分析】(1)菱形的四边相等,周长是20,则边长为5;根据菱形对角线互相垂直平分,可得OC=AC,OD=3.运用勾股定理求出OC便可求出AC.(2)利用等积法求解:S△ABD=AB•DE=BD•OA.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=.∵BD=6,∴OD=3.在Rt△DOC中==4.∴AC=2OC=8.(2)∵S△ABD=AB•DE=BD•OA,∴5•DE=6×4∴DE=.【点评】此题考查了菱形的性质:对角线互相垂直平分;四边相等.问题(2)亦可运用菱形面积的两种表达式求解.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.20.如图,△A BC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【考点】菱形的判定;矩形的判定.【分析】(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得OE=OC,同理可证OC=OF,则可证得OE=OF=OC;(2)根据平行四边形的判定以及矩形的判定得出即可.(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直,进而分析求出即可.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.【点评】本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)= 15 .【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a变形后求出a+=3,两边平方求出a2+的值,原式第一个因式利用平方差公式化简,变形后将各自的值代入计算即可求出值.【解答】解:∵a2﹣3a+1=0,∴a+=3,两边平方得:(a+)2=a2++2=9,即a2+=7,则原式=(a+)(a﹣)2=3(a2+﹣2)=15.故答案为:15.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.【点评】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第三象限.【考点】一次函数与一元一次不等式.【分析】根据关于x的一元一次不等式组有解即可得到b的范围,即可判断直线经过的象限.【解答】解:根据题意得:b+2<3b﹣2,解得:b>2.当b>2时,直线经过第一、二、四象限,不过第三象限.故填:三.【点评】根据不等式组的解集的确定方法首先确定b的范围是解决本题的关键.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC= .【考点】相似三角形的判定与性质;梯形.【分析】在梯形ABCD中,由于AD∥BC,于是得到△ADO∽△BCO,求出,即可得到结论.【解答】解:在梯形ABCD中,∵AD∥BC,∴△ADO∽△BCO,∴,∴,∴==,故答案为:【点评】本题考查了梯形的性质,相似三角形的判定和性质,知道等高三角形的面积的比等于底的比是解题的关键.25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是﹣1 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C 取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【考点】根与系数的关系;根的判别式;勾股定理;矩形的性质.【分析】(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.【点评】解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?【考点】分式方程的应用.【分析】(1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得: =+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.则x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元【点评】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.【考点】相似三角形的判定与性质;根的判别式.【专题】综合题;分类讨论.【分析】(1)由于EF∥x轴,则S△PEF=EF•OE.t=15时,OE=15,关键是求EF.易证△BEF∽△BOA,则,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴当t=15时,OE=BE=15,OA=40,OB=30,∴∴S△PEF=EF•OE=(平方单位)(2)∵△BEF∽△BOA,∴∴整理,得t2﹣30t+240=0∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于160(平方单位)的t值(3)当∠EPO=∠BAO时,△EOP∽△BOA∴,即解得,t=12当∠EPO=∠ABO时,△EOP∽△AOB∴,即解得,∴当t=12或时,△EOP∽△BOA【点评】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。

2019-2020学年四川省成都七中育才学校水井坊校区八年级(下)期中数学试卷

2019-2020学年四川省成都七中育才学校水井坊校区八年级(下)期中数学试卷

2019-2020学年四川省成都七中育才学校水井坊校区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式:,,,x+y,,其中分式有()A.1个B.2个C.3个D.4个2.(3分)下列从左到右的变形是因式分解的是()A.x2+1=x(x+)B.a3﹣a=a(a+1)(a﹣1)C.a2﹣3a﹣4=(a+4)(a﹣1)D.ax﹣ay+1=a(x﹣y)+13.(3分)如果x>y,则下列式子错误的是()A.>B.﹣3x<﹣3y C.x﹣2<y﹣2D.1﹣x<1﹣y4.(3分)如果把分式中的x,y都扩大4倍,那么分式的值()A.不变B.扩大2倍C.扩大3倍D.扩大4倍5.(3分)已知分式的值为0,那么x的值是()A.﹣1B.3C.1D.3或﹣16.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直且平分的四边形是菱形C.矩形的对角线相等且互相平分D.对角线相等的四边形是矩形7.(3分)如果2a﹣3是多项式4a2+ma﹣9的一个因式,则m的值是()A.0B.6C.12D.﹣128.(3分)矩形具有而菱形不一定具有的性质是()A.对角线互相平分B.邻角互补C.对角相等D.对角线相等9.(3分)若不等式x≤m的解都是不等式x≤2的解,则m的取值范围是()A.m≤2B.m≥2C.m<2D.m>210.(3分)如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,DE⊥AB,且AC=6cm,AB=8cm,则△ADE的周长为()A.8cm B.10cm C.12cm D.14cm二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)函数y=+中,自变量x的取值范围是.12.(4分)计算:=.13.(4分)菱形的面积是24,一条对角线长是6,则菱形的边长是.14.(4分)如图所示,将矩形ABCD沿对角线BD折叠,使点C落在C'处,BC'交AD于点E,AD=8,AB =4,那么△BDE的面积=.三、解答题(共6小题,满分0分)15.计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:=+116.化简:(1)÷(2)(x﹣1﹣)÷17.先化简,再求值:(﹣)÷,其中a是方程x2﹣2x﹣2=0的解.18.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.19.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?20.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC边的中点,过点B作BF⊥AB交AD的延长线于点F,CE平分∠ACB交AD于点E.(1)求证:判断四边形CEBF的形状,并证明;(2)若AD=,求BF及四边形CEBF的面积.四、填空题(本大题共5小题,每小题0分,共20分)21.如果a+4=b,那么8b﹣b2+a2=.22.若关于x的方程=﹣1的解为正数,则m的取值范围是.23.如图,函数y=3x和y=ax+4的图象相交于点A(m,3),则不等式0≤3x<ax+4的解集是.24.对于两个不相等的实数a、b,我们规定符号M ax{a,b}表示a、b中的较大值,例如:M ax{2,4}=4,按照这个规定,求方程M ax{x,﹣x}=的解.25.在Rt△ABC中,BC=12,AB=26,点D为斜边AB的中点,P为AC边一动点,△BDP沿着PD所在的直线对折得到△EDP.若△EDP与△ADP重合部分的面积为△EDP的面积一半,此时CP=.五、解答题(本大题共3小题,共30分)26.平价大药房准备购进KN95、一次性医用两种口罩.两种口罩的进价和售价如表.已知:用1800元购进一次性医用口罩的数量是用2000元购进KN95口罩的数量的5倍.KN95口罩一次性医用口罩进价(元/个)m+10.2m售价(元/个)15 2.5(1)求m的值;(2)要使购进的KN95、一次性医用两种口罩共1000个的总利润不少于1560元,且不超过1603元,问该药店共有多少种进货方案?27.如图1,在边长为6的菱形ABCD中,AC=BC,点M、N分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN,若MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由;(2)如图1,当BM=CM时,求MN的长;(3)如图2,在(2)的条件下,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AF的长;若不存在,请说明理由.28.如图,点O为平面直角坐标系的原点,在矩形OABC中,两边OC、OA分别在x轴和y轴上,且点B (a,b)满足:+(b+4)2=0.(1)求点B的坐标(,);(2)若过点B的直线BP与矩形OABC的OC边交于点P,且将矩形OABC的面积分为1:3两部分,①求直线BP的解析式;②在直线BP确定一点Q,使得△ACQ的面积等于矩形OABC的面积,求点Q的坐标;(3)D在线段AB上,AD=AB,M在坐标轴上,N为(2)中直线BP上一动点,若四点O、D、M、N构成平行四边形,直接写出M的坐标.。

成都七中育才学校八年级下期期末数学模拟试题

成都七中育才学校八年级下期期末数学模拟试题

八年级下期期末数学模拟试题A 卷(共100分)1. 不等式250x +>的解集是( )A .52x <B .52x >C .52x >-D .52x <-2. 下列多项式能用完全平方公式进行分解因式的是( )A .21x +B .224x x ++C .221x x -+D .21x x ++3. 若分式||11x x -+的值为0,则( ) A .1x =± B .1x = C .1x =- D .0x =4. 要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .0x ≠C .1x ≠D .1x > 5. 计算:22()ab a b-的结果是( )A .aB .bC .b -D .16. 如图,已知直线1y ax b =+与2y mx n =+相交于点A (2,1-),若12y y >,则x 的取值范围是( )A .2x <B .2x >C .1x <-D .1x >-7. 如图,在ABC △中,D 、E 分别是BC 、AC 边的中点,若3DE =,则AB 的长是( )A .9B .5C .6D .4 8. 下列一元二次方程中,无实数根的是( )A .2440x x -+=B .2(2)1x -=C .2x x =-D .2220x x -+=9. 解关于x 的方程311x mx x -=--产生增根,则常数m 的值等于( ) A .2-B .1-C .1D .210. 如图,在ABC △中,75CAB ∠=,在同一平面内,将ABC△绕点A 旋转到AB C ''△的位置,使得CC AB '∥,则BAB '∠=( )A .30B .35C .40D .50二、填空题:(每小题4分,共20分)(第6题图)B C(第7题图) ABCB 'C '(第10题图)11. 已知关于x 的方程27x a x +=-的解为正数,则实数a 的取值范围是 。

2023-2024学年四川省成都七中初中学校八年级(下)期末数学模拟试卷(含答案)

2023-2024学年四川省成都七中初中学校八年级(下)期末数学模拟试卷(含答案)

2023-2024学年四川省成都七中初中学校八年级(下)期末数学模拟试卷一、选择题(本大题共8小题,每小题4分,共32分)1.下列标志中,既是中心对称图形,也是轴对称图形的是( )A. B. C. D.2.若a>b,则下列结论不成立的是( )A. 2a>2bB. a2>b2C. a+m>b+mD. −4a>−4b3.若分式x−1x+1的值为0,则x=( )A. −1B. 1C. ±1D. 04.下列各式从左到右的变形中,属于因式分解的( )A. x2+x−2=(x+2)(x−1)B. 2(x−3y)=2x−6yC. (x+2)2=x2+4x+4D. ax+bx+c=x(a+b)+c5.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑色皮块的内角和是( )A. 180°B. 360°C. 540°D. 720°6.下列命题是假命题的是( )A. 到线段两端点距离相等的点在该线段的垂直平分线上B. 有一个角等于60°的等腰三角形是等边三角形C. 一个锐角和一条边分别相等的两个直角三角形全等D. 三角形三条角平分线交于一点,并且这一点到三条边的距离相等7.若函数y=ax和函数y=bx+c的图象如图所示,则关于x的不等式ax−bx>c的解集是( )A. x<2B. x<1C. x>2D. x>18.为了贯彻落实“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”的发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程正确的是( )A. 90x −90(1+25%)x =30B. 90(1+25%)x −90x =30C. 90x −9025%x =30D. 90(1−25%)x −90x =30二、填空题(本大题共5小题,每小题4分,共20分)9.分解因式:a 3−9a = .10.如图,将一根有弹性的皮筋AB 自然伸直固定在水平面上,然后把皮筋中点C 竖直向上拉升5cm 到点D ,如果皮筋自然长度为24cm(即AB =24cm),则此时AD = ______cm .11.若关于x 的方程m−1x−1−x x−1=0有增根,则m 的值是______.12.如图,在等腰△ABC 中,AB =AC ,∠C =25°,将△ABC 绕点B 逆时针旋转至△DBE 且点A 的对应点D 落在CA 延长线上,则∠CBE = ______.13.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连结CD.若CD =AC ,∠A =48°,则∠ACB =______.三、解答题(共98分)14.(12分)(1)解不等式组:{2x−5x+12≤1①5x−1<3(x+1)②;(2)解方程:x−2x−3=2−13−x.15.(8分)先化简,再求值:(xx−1−1)÷x2−xx2−2x+1,再从不等式−1≤x≤1的整数解中选择一个适当的数代入求值.16.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(−4,1),B(−1,1),C(−2,3).(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)直接写出以C1、B1、B2为顶点的三角形的形状是______.17.(10分)四边形ABCD中,DE⊥AC,BF⊥AC,且DE=BF,AF=CE.(1)求证:四边形ABCD是平行四边形;(2)若DE=4,CF=3,EF=5,求四边形ABCD的周长.18.(10分)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=5,点D为平面内任意一点,将线段CD绕点C逆时针方向旋转90°得到线段CE,连接AE.(1)若点D为△ABC内部任意一点时.①如图1,判断线段AE与BD的数量关系并给出证明;②如图2,连接DE,当点E,D,B在同一直线上且BD=2时,求线段CD的长;(2)如图3,直线AE与直线BD相交于点P,延长AC到点F,使得CF=AC,连接PF,请求出PF的取值范围.19.(4分)若多项式x2−mx+6(m是常数)分解因式后,有一个因式是x−2,则m的值为______.20.(4分)若关于x的分式方程x−2x−1=mx1−x有正整数解,则整数m为______.21.(4分)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,称为平面图形的镶嵌.某工人师傅把四块完全相同的平面图形按如图所示的方式进行镶嵌,经测量,CD=30cm,BC=50cm,B、D两点之间的距离为40cm,则图中阴影部分的面积为______cm2.22.(4分)在Rt△ABC中,BC=12,AB=26,点D为斜边AB的中点,P为AC边一动点,△BDP沿着PD所在的直线对折得到△EDP.若△EDP与△ADP重合部分的面积为△EDP的面积一半,此时CP=______.23.(4分)如图,已知Rt△ABC中,∠B=90°,点E为BC上一动点,DC⊥BC,连接AE,DE.DE与AC交于点F,∠DFC=45°,AC=215,CE=33,若BE=DC,则AE=______.24.(8分)某超市用1200元购进一批甲玩具,用500元购进一批乙玩具,所购甲玩具件数是乙玩具件数的2倍,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多40件,求该超市用不超过1400元最多可以采购甲玩具多少件?25.(10分)如图1,直线y=−2x+b(b为常数)交x轴的正半轴于点A(2,0).交y轴正半轴于点B.(1)求直线AB的解析式;(2)点C是线段AB中点,点P是x轴上一点,点Q是y轴上一点,若以A、C、P、Q为顶点的四边形恰好是平行四边形,请直接写出点P的坐标;(3)如图2,若点P是x轴负半轴上一点,设点P的横坐标为t,以AP为底作等腰△APM(点M在x轴下方),过点A作直线l//PM.过点O作OE⊥AM于E,延长EO交直线l于点F,连接PF、OM,若2∠PFO+∠AFE=180°,请用含t的代数式表示△PMO的面积.26.(12分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=15,BC=20,CD⊥AB,垂足为D,点E是点D关于AC的对称点,连接AE,CE.(1)求CD和AD的长;(2)若将线段AE沿着射线AB方向平移,当点E平移到线段AC上时,求此时CE的长;(3)如图,将△ACE绕点A顺时针旋转一个角α(0°<α<2∠CAB),记旋转中的△ACE为△AC′E′,在旋转过程中,设C′E′所在的直线与直线BC交于点P,与直线AB交于点Q,若存在这样的P,Q两点,使△BPQ为等腰三角形,请求出此时AQ的长,若不存在,请说明理由.参考答案1.A2.D3.B4.A5.C6.C7.D8.A9.a(a+3)(a−3)10.1311.212.80°13.108°14.解:(1)解不等式①得,x≥−3,解不等式②得,x<2,所以不等式组的解集是−3≤x<2;(2)原分式方程可化为x−2 x−3=2+1x−3,方程两边乘x−3得,x−2=2(x−3)+1,解得x=3,检验:当x=3时,x−3=0,因此x=3不是原分式方程的解,所以,原分式方程无解.15.解:原式=(xx−1−x−1x−1)⋅(x−1)2x(x−1)=1x−1⋅x−1x=1x,在−1≤x≤1的整数解中,x为−1、0、1,由题意得:x≠0和1,当x=−1时,原式=1−1=−1.16.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.(3)等腰直角三角形.17.(1)证明:∵DE⊥AC,BF⊥AC,∴∠CED=∠AFB=90°,在△ABF和△CDE中,{AF=CE∠AFB=∠CEDBF=DE,∴△ABF≌△CDE(SAS),∴AB=CD,∠BAF=∠DCE,∴AB//CD,∴四边形ABCD是平行四边形;(2)解:∵CF=3,EF=5,∴EC=CF+EF=3+5=8,∵∠CED=90°,∴CD=DE2+EC2=42+82=45,由(1)可知,△ABF≌△CDE,∴BF=DE=4,∵BF⊥AC,∴∠BFC=90°,∴BC=BF2+CF2=42+32=5,∵四边形ABCD是平行四边形,∴AB=CD=45,AD=BC=5,∴平行四边形ABCD的周长=2(AB+BC)=2×(45+5)=85+10.18.解:(1)①AE=BD,理由如下:∵将线段CD绕点C逆时针方向旋转90°得到线段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACE=∠BCD,又∵AC=BC,∴△ACE≌△BCD(SAS),∴AE=BD;②∵△ABC是等腰直角三角形,∠ACB=90°,BC=5,∴AB=2BC=52,∵△ACE≌△BCD,∴∠CAE=∠CBD,AE=BD=2,∴∠CAE+∠BAC+∠ABE=∠CAB+∠ABE+∠CBD=90°,∴∠AEB=90°,∴BE=AB2−AE2=50−4=46,∴DE=46−2,∵CD=CE,∠DCE=90°,(46−2)=23−2;∴CD=22(2)∵△ACE≌△BCD,∴∠E=∠CDB,∠ACE=∠DCB,∵∠BCD +∠CDB +∠CBD =90°,∴∠CBD +∠E +∠BCD =180°,∵∠E +∠EPB +∠PBC +∠BCD +∠ECD =360°,∴∠EPB =90°,∴点P 在以AB 为直径的圆上运动,如图3,取AB 的中点O ,过点O 作OH ⊥AF 于H ,当点O 在线段PF 上时,PF 有最大值与最小值,∵△ABC 是等腰直角三角形,∠ACB =90°,BC =5,∴AB =5 2,AO =BO =522,∵OH ⊥AC ,BC ⊥AC ,∴OH//BC ,∴AO AB =OH BC =AH AC =12,∴CH =AH =OH =52,∵CF =AC =5,∴HF =152,∴OF = OH 2+HF 2= (52)2+(152)2=5 102,∴PF 的最大值为5 102+5 22,PF 的最小值为5 102−5 22,∴5 102−5 22≤PF ≤5 102+5 22.19.520.021.120022.523.1524.解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x−1)元,根据题意得:1200x =500x−1×2,解得:x=6,经检验,x=6是原方程的解,∴x−1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+40)件,根据题意得:6y+5(2y+40)≤1400,解得:y≤75,∵y为整数,∴y最大值=75,答:该超市用不超过1400元最多可以采购甲玩具75件.25.解:(1)∵直线y=−2x+b(b为常数)交x轴的正半轴于点A(2,0),∴0=−4+b,∴b=4,∴直线AB解析式为:y=−2x+4;(2)∵直线y=−2x+4(b为常数)交y轴正半轴于点B,∴点B(0,4),∵点C是线段AB中点,∴点C(1,2),∵点P是x轴上一点,点Q是y轴上一点,∴设点P(x,0),点Q(0,y),当AC为边时,若四边形ACQP是平行四边形时,∴CQ//AP,CQ=AP,∴y =2,∴CQ =1=AP ,∴点P(1,0),若四边形ACPQ 是平行四边形时,∴AP 与CQ 互相平分,∴1+02=x +22,∴x =−1,∴点P(−1,0),当AC 为对角线时,若四边形APCQ 是平行四边形时,∴AC 与PQ 互相平分,∴1+22=0+x 2,∴x =3,∴点P(3,0);综上所述:点P 坐标为(1,0)或(−1,0)或(3,0);(3))∵△AMP 是等腰三角形,MP =MA ,∴∠MAP =∠MPA ,设∠MAP =α,∵直线l//MP ,∴∠FAP =∠MPA =α,∴∠FAE =2α,∵FE ⊥AM ,∴∠FEA =90°,∴∠AFE =90°−2α,又∵∠NFP +∠PFO +∠AFE =180°,2∠PFO +∠AFE =180°,∴∠NFP =∠PFO =12(180°−∠AFE)=12[180°−(90°−2α)]=45°+α,又∵∠NFP =∠FPA +∠FAP ,∴45°+α=∠FPA +α,∴∠FPA =45°,过点P 作PN ⊥x 轴于点P ,交直线l 于点N ,过点M 作MQ ⊥x 轴于点Q ,交直线l 于点T ,如图2所示,∴∠NPA=90°,∴∠FPN=45°,在△NFP和△OFP中{∠NFP=∠PFOPF=PF∠NPF=∠OPF,∴△NFP≌△OFP(ASA)∴NP=OP,∵PN//MT,MP//直线l,∴四边形NPMT是平行四边形,∴NP=MT,又∵∠TAQ=∠MAQ,AQ=AQ,∠AQT=∠AQM,∴PN=MT=2MQ=2QT,∵点P的横坐标为t,点P是x轴负半轴上一点,∴QM=−12t,OP=−t,∴△PMO的面积=12×(−12t)×(−t)=14t2.26.解:(1)∵∠ACB=90°,AC=15,BC=20,∴AB=AC2+BC2=152+202=25,∵S△ABC=12×AC×BC=12×AB×CD,∴15×20=25×CD,∴CD=12,∴AD=AC2−CD2=152−122=9;(2)如图,连接ED交AC于O,设点E平移到线段AC上于点H,∵点E是点D关于AC的对称点,∴EO=DO,AC⊥DE,AE=AD=9,CD=EC=12,∵将△ACE沿射线AB方向平移,∴EH//AB,∴∠HEO=∠ADO,又∵∠EOH=∠AOD,∴△AOD≌△HOE(ASA),∴EH=AD=9,同理可得DO=AD⋅CDAC =365;∴HO=AO=AD2−DO2=275,∴AH=2×275=545,∴CH=15−545=215,即平移后的CE为215;(3)由(2)可知AE=AD=9,CD=EC=12,①旋转的过程中,C′E′和线段BC相交,AB的延长线相交时,如图,由旋转得,AC′=AC=15,∠CAE′=∠BAC′,∵∠AE′C′=∠C=90°,∠AFE′=∠PFC,∴∠CAE′=∠CPF,∴∠BAC′=∠CPF,∵∠CPF=∠BPQ,∴∠BAC′=∠BPQ,∵△BPQ为等腰三角形,且∠CBQ是钝角,∴BP=BQ,∴∠BPQ=∠BQP,∴∠BAC′=∠BQP,∴C′Q=AC′=15,在Rt△AE′Q中,AE′=AE=AD=9,E′Q=EC+C′Q=E′C′+AC′=15+12=27,∴AQ=AE′2+E′Q2=910;②如图,∵△BPQ为等腰三角形,∴∠PBQ=∠BPQ,∵∠BPQ+∠E′FA=90°,∠E′AF+∠E′FA=90°,∴∠E′AF=∠ABC,由旋转得,AC′=AC=15,AE=AE′=9,EC=E′C=12,∠CAE′=∠BAC′,∠CAE′=∠ABC=∠C′AB,∴AC′//BC,∴∠CAC′=∠BCA=90°,∠P=∠C′=∠ABC=∠C′AB,∴AQ=C′Q,∠QAF=∠QFA,∴AQ=QF=C′Q,∵AF2=C′F2−C′A2,AF2=E′F2+E′A2,∴C′F 2−C′A 2=E′F 2+E′A 2,∴(12+E′F )2−152=E′F 2+81,∴E′F =274,∴C′F =754,∴AQ =12C′F =758;③如图,旋转的过程中,C′E′和线段BC ,AB 相交时,当∠BQP =∠PBQ 时,∵∠PBQ =∠AC′E′,∠BQP =∠AQC′,∴∠AC′E′=∠AQC′,∴AQ =AC′=AC =15;当∠BPQ =∠BQP 时,∵∠PBQ =∠AC′E′,∴∠C′AQ =∠C′QA ,∴C′Q =C′A =15,∴QE′=C′Q−C′E′=15−12=3,根据勾股定理得AQ = AE′2+E′Q 2= 92+32=3 10,即满足条件的AQ 的长为9 10或758或3 10或15.。

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题含解析

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题含解析

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )A .等腰梯形B .直角梯形C .菱形D .矩形2.已知点(-2,y 1),(-1,y 2),(4,y 3)在函数y =的图象上,则( )A .y 2<y 1<y 3B .y 1<y 2<y 3C .y 3<y 1<y 2D .y 3<y 2<y 13.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE4.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为D ,CD =1,则AB 的长为( )A .3B .23C .31+D .231+5.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm6.平行四边形具有的特征是( )A .四个角都是直角B .对角线相等C .对角线互相平分D .四边相等7.下列计算正确的是 ()A .822-=B .()236-=C .42232a a a -=D .()235a a -=8.在矩形ABCD 中,下列结论中正确的是( )A .AB CD = B .AC BD = C .AO OD = D .BO OD =-9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,下列条件中,不能使四边形DBCE 成为菱形的是( )A .AB =BE B .BE ⊥DC C .∠ABE =90°D .BE 平分∠DBC10.在二次根式2a -中,a 能取到的最小值为( )A .0B .1C .2D .2.5二、填空题(每小题3分,共24分)11.函数19y x =-自变量的取值范围是______. 12.某物体对地面的压强()2/p N m 随物体与地面的接触面积()2S m 之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为20.24m ,那么该物体对地面的压强是__________()2/N m .13.平行四边形ABCD 中,∠A -∠B =20°,则∠A =______,∠B =_______.14.已知一元二次方程2816x x -=-,则根的判别式△=____________.15.已知正方形的一条对角线长为22,则该正方形的边长为__________cm .16.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y (米)与王艳出发时间x (分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.17.如图,已知直线l 1:y =k 1x +4与直线l 2:y =k 2x ﹣5交于点A ,它们与y 轴的交点分别为点B ,C ,点E ,F 分别为线段AB 、AC 的中点,则线段EF 的长度为______.18.如图,已知矩形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,若3AB =,4BC =,则阴影部分的面积是______.三、解答题(共66分)19.(10分)如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠BAC 的平分线AE 交C 于F ,EG ⊥AB 于G ,请判断四边形GECF 的形状,并证明你的结论.20.(6分)如图,一次函数y kx b =+与反比例函数m y x =的图象交于A (1,4),B (4,n )两点. (1)求反比例函数和一次函数的解析式; (2)点P 是x 轴上的一动点,当PA+PB 最小时,求点P 的坐标;(3)观察图象,直接写出不等式m kx b x+≥的解集.21.(6分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h (m )与摆动时间t (s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数?(2)结合图象回答:①当t=0.7s 时,h 的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.(8分)解不等式组:2(1)421142x x x x <-+⎧⎪⎨+-≥⎪⎩,并在数轴上表示出它的解集.23.(8分)根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程x2-2x+1=0的解为________________________;②方程x2-3x+2=0的解为________________________;③方程x2-4x+3=0的解为________________________;…… ……(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________________________;②关于x的方程________________________的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.24.(8分)如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.25.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)求证:a1+b1=c1.26.(10分)直线y=x+b与双曲线y=mx交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=,m=;(2)根据图象直接写出不等式x+b<mx的解集为;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】首先作出图形,根据三角形的中位线定理,可以得到1EF BD2=,1GH BD2=,1EH AC2=,1FG AC.2=再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【题目详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是ABD的中位线.1EF BD2∴=,同理:1GH BD2=,1EH AC2=,1FG AC2=.又等腰梯形ABCD中,AC BD=.EF FG GH EH∴===.∴四边形EFGH是菱形.OP是EFG的中位线,∴EF EG ,PM //FH ,同理,NM EG ,∴EF NM ,∴四边形OPMN 是平行四边形.PM //FH ,OP //EG , 又菱形EFGH 中,EG FH ⊥,OP PM ∴⊥∴平行四边形OPMN 是矩形.故选:D .【题目点拨】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH 和四边形OPMN 的边的关系.2、A【解题分析】把x 的取值分别代入函数式求y 的值比较即可.【题目详解】解:由 y =得,y 1==-4, y 2==-8, y 3==2 ,∴y 2<y 1<y 3 .故答案为:A【题目点拨】本题考查了函数值的大小比较,已知自变量值比较函数值有3种方法,①根据函数解析式求出函数值直接比较;②根据函数性质比较;③画出函数图像进行比较,其中①是最容易掌握的方法.3、B【解题分析】根据三角形法则计算即可解决问题.【题目详解】解:原式()()AB BE CD DE =+-+AE CE =-AE EC =+ AC =,故选:B.【题目点拨】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.4、C【解题分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【题目详解】在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则,故.故选C.【题目点拨】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.5、D【解题分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【题目点拨】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.6、C【解题分析】根据平行四边形的性质进行选择.【题目详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C【题目点拨】本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.7、A【解题分析】A. ==,故正确;-=,故不正确;B. ()239C. 4232与不是同类项,不能合并,故不正确;a aD. ()236-=,故不正确;a a故选A.8、C【解题分析】根据相等向量及向量长度的概念逐一进行判断即可.【题目详解】相等向量:长度相等且方向相同的两个向量.A. AB CD=-,故该选项错误;=,但方向不同,故该选项错误;B. AC BD=,故该选项正确;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO ODD. BO OD=,故该选项错误;故选:C.【题目点拨】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.9、A【解题分析】根据菱形的判定方法一一判断即可;【题目详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.故选A.【题目点拨】本题考查了平行四边形的判定以及菱形的判定,正确掌握菱形的判定与性质是解题关键.10、C【解题分析】根据二次根式的定义求出a的范围,再得出答案即可.【题目详解】a-2≥0,即a≥2,所以a能取到的最小值是2,故选C.【题目点拨】本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.二、填空题(每小题3分,共24分)x>11、9【解题分析】根据分式与二次根式的性质即可求解.【题目详解】依题意得x-9>0,x>解得9故填:9x >.【题目点拨】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.12、500【解题分析】首先通过反比例函数的定义计算出比例系数k 的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值【题目详解】 根据图象可得120P S =当S=0.24时,P=1200.24 =500,即压强是500Pa. 【题目点拨】此题考查反比例函数的应用,列方程是解题关键13、100°, 80°【解题分析】根据平行四边形的性质得出AD ∥BC ,求出∠A+∠B=180°,解方程组求出答案即可.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∠B=80°,故答案为:100°,80°.【题目点拨】本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行. 14、0【解题分析】根据一元二次方程根的判别式24b ac =-,将本题中的a 、b 、c 带入即可求出答案.【题目详解】解:∵一元二次方程2816x x -=-,整理得:28160x x -+=,可得:a 1,b 8,c 16==-=,∴根的判别式()2248411664640b ac =-=--⨯⨯=-=; 故答案为0.【题目点拨】本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.15、2【解题分析】根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【题目详解】解:∵正方形的对角线长为,设正方形的边长为x,∴2x² 解得:x=2∴正方形的边长为:2故答案为2.【题目点拨】本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.16、1.【解题分析】根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为503秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果. 【题目详解】解:设王艳骑自行车的速度为xm /min ,则爸爸的速度为:(5x +152⨯x )÷5=32x (m /min ), 由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×12x +(50103-)×3(2)2x⋅=5500,解得,x=200(m/min),∴爸爸的速度为:33002x=(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣(50103-)×300=1(m).故答案为:1.【题目点拨】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.17、.【解题分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【题目详解】解:∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=1.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.18、1【解题分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.【题目详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.在△AOE和△COF中,∵AEO CFOOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影= S△COF +S△EOD =S△AOE+S△EOD∵S △AOD 14=BC •AD =1,∴S 阴影=1. 故答案为:1.【题目点拨】本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的14,是解决问题的关键.三、解答题(共66分)19、四边形GECF 是菱形,理由详见解析.【解题分析】试题分析:根据全等三角形的判定定理HL 进行证明Rt △AEG ≌Rt △AEC (HL ),得到GE=EC ;根据平行线EG ∥CD 的性质、∠BAC 平分线的性质以及等量代换推知∠FEC=∠CFE ,易证CF=CE ;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF 是菱形,理由如下:∵∠ACB=90°,∴AC ⊥EC .又∵EG ⊥AB ,AE 是∠BAC 的平分线,∴GE=CE .在Rt △AEG 与Rt △AEC 中,{GE CE AE AE==, ∴Rt △AEG ≌Rt △AEC (HL ),∴GE=EC ,∵CD 是AB 边上的高,∴CD ⊥AB ,又∵EG ⊥AB ,∴EG ∥CD ,∴∠CFE=∠GEA ,∵Rt △AEG ≌Rt △AEC ,∴∠GEA=∠CEA ,∴∠CEA=∠CFE ,即∠CEF=∠CFE ,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.考点:菱形的判定.20、(1)反比例函数的解析式为4yx=;一次函数的解析式为y=-x+5;(2)点P的坐标为(175,0);(3)x<0或1≤x≤4【解题分析】(1)将点A(1,4)代入myx=可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式mkx bx+≥的解集即可。

2021-2022学年四川省成都七中育才学校八年级(下)期中数学试卷

2021-2022学年四川省成都七中育才学校八年级(下)期中数学试卷

2021-2022学年四川省成都七中育才学校八年级(下)期中数学试卷一、选择题(每小题4分,共32分,每小题只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A.戴口罩讲卫生B.勤洗手勤通风C.有症状早就医D.少出门少聚集2.(4分)如果a<b,那么下列各式中错误的是()A.3+a<3+b B.3﹣a<3﹣b C.3a<3b D.<3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2﹣3x+1=x(x﹣3)+1B.x2﹣2x+1=x(x﹣2+)C.x2﹣1=(x+1)(x﹣1)D.(x﹣1)2=x2﹣2x+14.(4分)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.OB=OD,OA=OC B.AD∥BC,AB=CDC.AB∥CD,AD∥BC D.AB∥CD,AB=CD5.(4分)一个多边形的每一个外角都是72°,这个多边形的内角和为()A.360°B.540°C.720°D.900°6.(4分)下列说法中,错误的是()A.角平分线上的点到角两边的距离相等B.平行四边形的对角线互相平分C.三角形的三边分别为a、b、c,若满足a2﹣b2=c2,那么该三角形是直角三角形D.如果两个三角形全等,那么这两个三角形一定成中心对称7.(4分)在平面直角坐标系xOy中,直线l1:y1=k1x+5与直线l2:y2=k2x的图象如图所示,则关于x的不等式k2x<k1x+5的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>38.(4分)如图,将直角三角形ABC沿着点B到点C的方向平移3cm得到三角形DEF,且DE交AC于点H,AB=6cm,BC=9cm,DH=2cm,那么图中阴影部分的面积为()A.9cm2B.10cm2C.15cm2D.30cm2二、填空题(每小题4分,共20分,答案写在答题卡上)9.(4分)等腰三角形的一个底角为50°,则该等腰三角形的顶角度数为度.10.(4分)关于x的二次三项式x2+mx+6因式分解的结果是(x+3)(x+2),则m=.11.(4分)一次环保知识竞赛共有25道题,规定答对1道题得4分,答错或不答1道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),则小明至少答对道题.12.(4分)如图,在△ABC中,∠C=90°,分别以点A、点B为圆心,大于AB的长为半径画弧交于两点,过这两点的直线交BC于点D,连接AD,若AB=5cm,AC=3cm,则△ACD的周长为cm.13.(4分)如图,在直角三角形ABC和直角三角形ABD中,∠ACB=∠ADB=90°,AB=10,M是AB 的中点,连接MC,MD,CD,若CD=6,则三角形MCD的面积为.三、解答题(共48分,14题每题4分,15题每题4分,16题9分,17题9分,18题10分)14.(8分)(1)计算:+()﹣1+|﹣2|﹣;(2)求不等式组的解集:.15.(12分)分解因式:(1)3x2﹣6xy;(2)ax2+6ax+9a;(3)m2﹣2m﹣3.16.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于原点对称的△A1B1C1并写出点C1的坐标;(2)请画出△ABC绕点A顺时针旋转90°后的△AB2C2;(3)在△ABC旋转到△AB2C2的过程中,点C经过的路径长度为.17.(9分)如图,在平行四边形ABCD中,E、F分别是AD、BC边上的点,且∠ABE=∠CDF.(1)求证:四边形BEDF是平行四边形;(2)连接CE,若CE平分∠DCB,CF=3,DE=5,求平行四边形ABCD的周长.18.(10分)如图1,在△ABC中,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接DC,点P、Q、M分别为DE、BC、DC的中点,连接MQ、PM.(1)求证:PM=MQ;(2)当∠A=50°时,求∠PMQ的度数;(3)将△ADE绕点A沿逆时针方向旋转到图2的位置,若∠PMQ=120°,判断△ADE的形状,并说明理由.一、填空题(每小题4分,共20分)19.(4分)已知关于x的不等式组的解集为﹣1≤x≤2,则n+m=.20.(4分)已知实数a、b满足(a2+b2)2﹣(a2+b2)﹣2=0,则a2+b2=.21.(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点C落在点C'处,线段BC'与线段AD交于点E,已知∠AEB=60°,∠BDC=45°,CD=,则线段BC的长为.22.(4分)如图,在平面直角坐标系xOy中,△ABC为等腰三角形,AC=AB=5,BC=8,点A与坐标原点重合,点C在x轴正半轴上,将△ABC绕点C顺时针旋转一定的角度后得到△A1B1C,使得点B对应点B1在x轴上,记为第一次旋转,再将△A1B1C绕点B1顺时针旋转一定的角度后得到△A2B1C1,使得点A1对应点A2在x轴上,以此规律旋转,则点B的坐标为,第2023次旋转后钝角顶点坐标为.23.(4分)如图,△ABC为等腰直角三角形,∠C=90°,AC=,点D是直线BC上的一个动点,连接AD,将线段AD绕点D顺时针旋转90°,得到线段DM,连接BM,取BM中点N,若DN=1,则线段BD的长为.二、解答题(共30分)24.(8分)2022年成都市中考新体考从总分50分调整为总分60分,增加了体育素质综合评价考核10分,统一考试项目由3项调整为4类,其中一类为自主选考三选一:足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.我校为了备考练习,准备购买一批新的排球、篮球,若购买10个排球和15个篮球,共需1500元;若购买12个排球和10个篮球,共需1160元.(1)求排球与篮球的单价;(2)学校决定购买排球和篮球共80个,且排球的数量超过篮球的数量,但不多于篮球数量的1.5倍,请问有多少种购买方案?最低费用是多少元?25.(10分)如图1,在平面直角坐标系xOy中,已知四边形ABCO的顶点A,C分别在y轴和x轴上.直线AE与x轴交于点E.已知∠B=90°,∠OAB=120°,∠AEO=30°,OA=3,EC=2.(1)AE的长为,点E的坐标为;(2)如图2,CF平分∠OCB,交AB于点F.若点G是平面内任意一点,当以A、E、F、G为顶点的四边形为平行四边形时,求点G的坐标;(3)如图3,点P、Q分别是线段CF、线段AE上的动点,点P与点Q分别同时从点C和点A出发,已知点P每秒运动4个单位长度,点Q每秒运动3个单位长度,连结PQ、FQ、PB、BQ.问:在运动过程中,是否存在这样的点P和点Q,使得△PFQ的面积与△PBQ的面积相等.若存在,请直接写出相应的点P的坐标,若不存在,请说明理由.26.(12分)在平行四边形ABCD中,AE⊥DC于点E,AE=AB,(1)如图1,若∠DAE=30°,DE=,求平行四边形ABCD的周长;(2)如图2,作∠ABC的平分线交AE于点F,交AD于点M.求证:DE+AF=BC;(3)如图3,在(1)的条件下,将△ADE绕点E顺时针旋转一定的角度α(0°<α<90°),得到△A'D'E,当∠A'=∠A'EA时停止旋转,此时边A'D'与边AE交于点P,点G是边DC上一动点,连接GB,在线段GB右侧作等边△GBN.连接PN,求PN的最小值.。

2019年四川省成都七中育才学校中考数学一诊试卷 解析版

2019年四川省成都七中育才学校中考数学一诊试卷  解析版

2019年四川省成都七中育才学校中考数学一诊试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是( )A.B.C.D.3.(3分)下列等式成立的是( )A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a24.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=( )A.45°B.50°C.55°D.60°5.(3分)当k<0时,一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( )A.众数B.中位数C.平均数D.方差7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )A.20B.16C.12D.88.(3分)分式方程=1的解是( )A.x=﹣2B.x=2C.x=3D.无解9.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是( )A.1B.2C.3D.4二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:x3﹣9x= .12.(4分)函数y=+中自变量x的取值范围是 .13.(4分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,AB=2AE,若△ADE的面积为2,则四边形BCED的面积为 .14.(4分)如图,在▱ABCD中,AB=6,BC=8,以C为圆心适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AE+AF的值等于 .三.解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°(2)先化简,再求值:(1﹣)÷,其中a=+216.(6分)已知方程组,当m为何值时,x>y?17.(8分)为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.18.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)19.(10分)如图,直线y=2x+6与反比例函数y=(￿>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?20.(10分)如图,F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求MF、FG、EG之间的数量关系,并说明理由.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,且x1﹣x2=2,则m的值是 .22.(4分)已知a n=1﹣(n=1,2,3,……),定义b1=a1,b2=a1•a2…,b n=a1•a2…•a n,则b2019= .23.(4分)如图,点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,连接OE并延长交反比例函数y=(x>0)的图象于点C,过点C作CD⊥x轴于点D,点D关于直线AB的对称点恰好在反比例函数图象上,则OE﹣EC= .24.(4分)在△ABC中,∠BAC=90°,AC=AB=4,E为边AC上一点,连接BE,过A作AF⊥BE于点F,D是BC边上的中点,连接DF,点H是边AB上一点,将△AFH沿HF翻折.点A落在M点,若MH∥AF,DF=,则MH2= .25.(4分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b.当a<b时,min{a,b}=a.若当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,则实数m的取值范围是 .二、解答题(本大题共3个小题,共30分)26.(8分)某工厂生产一批竹编笔筒,该批产品出厂价为每只4元,按要求在20天内完成,工人小薛第x天生产的笔筒为y只,y与x满足如下关系:y=(1)小薛第几天生产的笔筒数量为320只?(2)如图,设第x天生产的每只笔筒的成本是P元,P与x的关系可用图中的函数图象来刻画,若小薛第x天创造的利润为W元,求W与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?27.(10分)已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+,分别交x轴于A与B点,交y轴于点C点,顶点为D,连接AD.(1)如图1,P是抛物线的对称轴上一点,当AP⊥AD时,求P的坐标;(2)在(1)的条件下,在直线AP上方、对称轴右侧的抛物线上找一点Q,过Q作QH⊥x轴,交直线AP于H,过Q作QE∥PH交对称轴于E,当▱QHPE周长最大时,在抛物线的对称轴上找一点,使|QM﹣AM|最大,并求这个最大值及此时M点的坐标.(3)如图2,连接BD,把∠DAB沿x轴平移到∠D′A′B′,在平移过程中把∠D′A′B′绕点A′旋转,使∠D′A′B′的一边始终过点D点,另一边交直线DB于R,是否存在这样的R点,使△DRA′为等腰三角形,若存在,求出BR的长;若不存在,说明理由.2019年四川省成都七中育才学校中考数学一诊试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,.故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)下列等式成立的是( )A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】解:A、x2+3x2=4x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项错误;故选:C.【点评】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键.4.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=( )A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,a∥b求出∠3的度数,再由AB⊥BC即可得出答案.【解答】解:∵a∥b,∠1=35°,∴∠3=∠1=35°.∵AB⊥BC,∴∠2=90°﹣∠3=55°.故选:C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.5.(3分)当k<0时,一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.6.(3分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( )A.众数B.中位数C.平均数D.方差【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )A.20B.16C.12D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)分式方程=1的解是( )A.x=﹣2B.x=2C.x=3D.无解【分析】分式方程去分母转化为整式方程,求出整式方程的解确定出x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)2﹣6=x2﹣1解得:x=2经检验x=2是分式方程的解,故选:B.【点评】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)【分析】先求得直线AB解析式为y=x﹣1,即可得出P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点公式,即可得到点A′的坐标.【解答】解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A.【点评】本题考查了中心对称,等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是( )A.1B.2C.3D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:x3﹣9x= x(x+3)(x﹣3) .【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).【点评】本题考查了因式分解,利用了提公因式法与平方差公式,注意分解要彻底.12.(4分)函数y=+中自变量x的取值范围是 x≥1且x≠2 .【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(4分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,AB=2AE,若△ADE的面积为2,则四边形BCED的面积为 6 .【分析】由△ADE∽△ACB,推出相似比==,推出=()2,由此即可解决问题;【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴相似比==,∴=()2,∵S△ADE=2,∴S△ABC=8,∴S四边形BCED=8﹣2=6,故答案为6.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(4分)如图,在▱ABCD中,AB=6,BC=8,以C为圆心适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AE+AF的值等于 4 .【分析】先根据角平分线的性质得出∠BCE=∠DCE,再由平行四边形的性质得出AB∥CD,AD∥BC,故可得出∠DCE=∠F,∠BCE=∠AEF,故可得出BF=BC,∠F=∠AEF,进而可得出结论.【解答】解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠DCE=∠F,∠BCE=∠AEF,∴BF=BC,∠F=∠AEF,∴AF=AE.∵AB=6,BC=8,∴AF=AE=8﹣6=2,∴AE+AF=4.故答案为:4.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三.解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°(2)先化简,再求值:(1﹣)÷,其中a=+2【分析】(1)原式利用乘方的意义,负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣1+4﹣2+2+4×=5;(2)原式=•=,当a=+2时,原式===1+.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(6分)已知方程组,当m为何值时,x>y?【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.【点评】此题提高了学生的计算能力,解题的关键是把字母m看做常数,然后解一元一次方程组与一元一次不等式.17.(8分)为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 40 ;(2)图1中∠α的度数是 54° ,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 7000 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.【分析】(1)由统计图可得:B级学生12人,占30%,即可求得本次抽样测试的学生人数;(2)由A级6人,可求得A级占的百分数,继而求得∠α的度数;然后由C级占35%,可求得C级的人数,继而补全统计图;(3)首先求得D级的百分比,继而估算出不及格的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:=40(人);故答案为:40;(2)根据题意得:∠α=360°×=54°,C级的人数是:40﹣6﹣12﹣8=14(人),如图:(3)根据题意得:35000×=7000(人),答:不及格的人数为7000人.故答案为:7000;(4)画树状图得:∵共有12种情况,选中小明的有6种,∴P(选中小明)==.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.18.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)先过点A作AH⊥PO,根据斜坡AP的坡度为1:2.4,得出=,设AH=5k,则PH=12k,AP=13k,求出k的值即可.(2)先延长BC交PO于点D,根据BC⊥AC,AC∥PO,得出BD⊥PO,四边形AHDC是矩形,再根据∠BPD=45°,得出PD=BD,然后设BC=x,得出AC=DH=x﹣14,最后根据在Rt△ABC中,tan76°=,列出方程,求出x的值即可.【解答】解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,∴=,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PO的距离为10米.(2)延长BC交PO于点D,∵BC⊥AC,AC∥PO,∴BD⊥PO,∴四边形AHDC是矩形,CD=AH=10,AC=DH,∵∠BPD=45°,∴PD=BD,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.01.解得x≈19.答:古塔BC的高度约为19米.【点评】此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡角与坡角等,关键是做出辅助线,构造直角三角形.19.(10分)如图,直线y=2x+6与反比例函数y=(￿>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.20.(10分)如图,F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求MF、FG、EG之间的数量关系,并说明理由.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,由切线的性质结合等角的余角相等可得出∠MFG=∠AGH,结合∠MGF=∠AGH可得出∠MFG=∠MGF,进而可证出△MFG为等腰三角形;(2)由MD∥AB可得出∠M=∠B,连接EF,则∠EFG=∠B,进而可得出∠M=∠EFG,结合∠MGF=∠FGE可得出△MGF∽△FGE,利用相似三角形的性质可得出FG2=EG•MG,结合MF=MG 可得出FG2=EG•MF;(3)由∠M=∠B,tan∠M=可得出若设AH=3k,则HB=4k,AB=5k,连接FO,OB,由∠MHD=∠OFD=90°,∠D=∠D可得出∠FOD=∠M,结合FD=6,可得出FO=8=OB=OA,进而可得出OH=8﹣3k,在Rt△OHB中,利用勾股定理可求出k值,由MD∥AB可得出∠MFG=∠BAF,进而可得出∠BGA=∠BAG,由等角对等腰可得出AB=GB=5k,结合BH=4k可得出GH=k,结合AH=3k利用勾股定理可求出AG=k,再代入k值即可求出结论.【解答】(1)证明:连接OF,如图1所示.∵DF为⊙O的切线,∴OF⊥DM,∴∠MFG+∠AFO=90°.∵BH⊥AD,∴∠AHG=90°,∴∠AGH+∠GAH=90°.∵OA=OF,∴∠OAF=∠OFA,∴∠MFG=∠AGH.又∵∠MGF=∠AGH,∴∠MFG=∠MGF,∴△MFG为等腰三角形.(2)解:FG2=EG•MF,理由如下:∵MD∥AB,∴∠M=∠B.连接EF,如图2所示.∵∠EFG=∠B,∴∠M=∠EFG.又∵∠MGF=∠FGE,∴△MGF∽△FGE,∴=,即FG2=EG•MG,∴FG2=EG•MF.(3)解:∵∠M=∠B,tan∠M=,∴设AH=3k,则HB=4k,AB=5k.连接FO,OB,如图3所示.∵∠MHD=∠OFD=90°,∠D=∠D,∴∠FOD=∠M.∵FD=6,∴FO=8=OB=OA,∴OH=8﹣3k.在Rt△OHB中,OH2+HB2=OB2,即(4k)2+(8﹣3k)2=82,解得:k=.∵MD∥AB,∴∠MFG=∠BAF,∴∠BGA=∠BAG,∴AB=GB=5k,∴GH=k,∴AG==k,∴AG=.【点评】本题考查了切线的性质、三角形内角和定理、等腰三角形的判定与性质、相似三角形的判定与性质、解直角三角形以及勾股定理,解题的关键是:(1)由等角的余角相等结合对顶角相等,证出∠MFG=∠MGF;(2)利用相似三角形的性质,找出FG2=EG•MG;(3)利用勾股定理,求出k 值.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,且x1﹣x2=2,则m的值是 0或﹣2 .【分析】由韦达定理得出x1+x2=﹣2(m﹣1),x1x2=﹣4m,结合x1﹣x2=2知,代入x1x2=﹣4m可得关于m的方程,解之可得答案.【解答】解:∵关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,∴x1+x2=﹣2(m﹣1),x1x2=﹣4m,又∵x1﹣x2=2,∴,解得:,代入x1x2=﹣4m得﹣m(﹣m+2)=﹣4m,解得:m=0或m=﹣2,故答案为:m=0或m=﹣2.【点评】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x1﹣x2=2得出关于m的方程是解题的关键.22.(4分)已知a n=1﹣(n=1,2,3,……),定义b1=a1,b2=a1•a2…,b n=a1•a2…•a n,则b2019= .【分析】根据题目要求分别求出b1、b2、b3…等数据的结果分别为…从而发现,分别逐渐加2;分子逐渐加1;从而列出计算规律式子,再把n=2019代入式子中.【解答】解:∵a n=1﹣(n=1,2,3,……),b1=a1,b2=a1•a2…,b n=a1•a2…•a n,∴b1=,b2=,b3=,从中发现:式子中分子比第n个式子的n多2;式子中的分母2•(n+1)∴当n=2019,bn=.【点评】这题主要考查数学类的规律;需要学生认真算出每个式子的结果,找出分子分母与n之间的关系;23.(4分)如图,点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,连接OE并延长交反比例函数y=(x>0)的图象于点C,过点C作CD⊥x轴于点D,点D关于直线AB的对称点恰好在反比例函数图象上,则OE﹣EC= .【分析】由题意可得直线OC的解析式为y=x,设C(a,a),由点C在反比例函数y=(x>0)的图象上,求得C(1,1),求得D的坐标,根据互相垂直的两条直线斜率之积为﹣1,可设直线AB的解析式为y=﹣x+b,则B(b,0),BD=b﹣1.由点D和点F关于直线AB对称,得出BF=DB=b﹣1,那么B(b,b﹣1),再将F点坐标代入y=,得到b(b﹣1)=1,解方程即可求得B的坐标,然后通过三角形相似求得OE,根据OE﹣EC=OE﹣(OC﹣OE)=2OE﹣OC即可求得结果.【解答】解:∵点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,∴直线OC的解析式为y=x,设C(a,a),∵点C在反比例函数y=(x>0)的图象上,∴a2=1,∴a=1,∴C(1,1),∴D(1,0),∴设直线AB的解析式为y=﹣x+b,则B(b,0),BD=b﹣1.∵点B和点F关于直线AB对称,∴BF=BD=b﹣1,∴F(b,b﹣1),∵F在反比例函数y=的图象上,∴b(b﹣1)=1,解得b1=,b2=(舍去),∴B(,0),∵C(1,1),∴OD=CD=1,∴OC=,易证△ODC∽△OEB,∴=,即=,∴OE=,∴OE﹣EC=OE﹣(OC﹣OE)=2OE﹣OC=﹣=.故答案为:.【点评】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,互相垂直的两条直线斜率之积为﹣1,设直线l的解析式为y=﹣x+b,用含b的代数式表示B点坐标是解题的关键.24.(4分)在△ABC中,∠BAC=90°,AC=AB=4,E为边AC上一点,连接BE,过A作AF⊥BE于点F,D是BC边上的中点,连接DF,点H是边AB上一点,将△AFH沿HF翻折.点A落在M点,若MH∥AF,DF=,则MH2= 8﹣2 .【分析】如图,作DK⊥DF交BE于K.首先证明AF=BK,设AF=BK=x,在Rt△AFB中,利用勾股定理构建方程求出x,再证明HM=AF即可解决问题.【解答】解:如图,作DK⊥DF交BE于K.∴AF⊥BE,∴∠AFB=90°,∴AC=AB=4,∠BAC=90°,DC=DB,∴AD⊥BC,BC=4,∴DA=DB=DC,∴∠AFB=∠ADB=90°,∴A,F,D,B四点共圆,∴∠DFB=∠DAB=45°,∵∠FDK=90°,∴∠DFK=∠DKF=45°,∴DF=DK=,∴FK=2,∵∠FDK=∠ADB=90°,∴∠ADF=∠BDK,∵DF=DK,DA=DB,∴△FDA≌△KDB(SAS),∴AF=BK,设AF=BK=x,在Rt△AFB中,则有:x2+(x+2)2=42,解得x=﹣1+或﹣1﹣(舍弃),∴AF=﹣1+,∵HM∥AF,∴∠AFH=∠FHM=∠AHF,∴AH=AF=HM,∴四边形AFMH是平行四边形,∴HM=AF=﹣1+,∴HM2=8﹣2.故答案为8﹣2.【点评】本题考查翻折变换,全等三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.25.(4分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b.当a<b时,min{a,b}=a.若当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,则实数m的取值范围是 ﹣3≤m≤7 .【分析】根据题意可以得到关于m的一元一次不等式组,从而可以求得m的取值范围.【解答】解:∵当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,∴x2﹣2x﹣15≤m(x+1),∴x2﹣(2+m)x﹣(15+m)≤0,,解得,﹣3≤m≤7,故答案为:﹣3≤m≤7.【点评】本题考查二次函数的性质、一次函数的性质、解不等式,解答本题的关键是明确题意,列出相应的不等式组.二、解答题(本大题共3个小题,共30分)26.(8分)某工厂生产一批竹编笔筒,该批产品出厂价为每只4元,按要求在20天内完成,工人小薛第x天生产的笔筒为y只,y与x满足如下关系:y=(1)小薛第几天生产的笔筒数量为320只?(2)如图,设第x天生产的每只笔筒的成本是P元,P与x的关系可用图中的函数图象来刻画,若小薛第x天创造的利润为W元,求W与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?【分析】(1)把y=320代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;【解答】解:(1)设小薛第x天生产的竹编笔筒数量为320只,由题意可知:20x+80=320,解得x=12.答:第12生产的竹编笔筒数量为320只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×36x=72x,当x=6时,w最大=432(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣2<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.27.(10分)已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.【分析】(1)根据勾股定理求出BE,证明△ABE∽△ECF,根据相似三角形的性质列出比例式,计算即可;(2)作FM⊥BC交BC的延长线于M,作GN⊥BC于N,连接GM,证明△ABE≌△EMF,根据全等三角形的性质得到AB=EM,BE=FM,根据直角三角形的性质、勾股定理计算,即可得出结论;(3)连接EG,作OP⊥BE于P,作OQ⊥AG于Q,由矩形的性质得出BC=AD=5,∠ABC=90°,BE=BC+CE=6,由勾股定理求出AE==2,证出△AGE是等腰直角三角形,得出AE=AG,求出AG=,证明A、B、E、G四点共圆,由圆周角定理得出∠GBE=∠GAE=45°,得出△OBP是等腰直角三角形,OP=BP,设OP=BP=x,由tan∠AEB===,求出PE=x,由BP+PE=BE得出方程x+x=6,解得:x=,得出OP=,PE=,由勾股定理求出OE==,得出AO=,在Rt△AOQ中,由等腰直角三角形的性质得出OQ=OA=,即可求出△AOG的面积.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=∠C=∠D=90°,CD=AB=4,∵AD=AE,AD=5,∴AE=5,在Rt△ABE中,由勾股定理得,BE==3,∴EC=2,在Rt△AEF和Rt△ADF中,,∴Rt△AEF≌Rt△ADF(HL),∴EF=DF,设DF=EF=x,则CF=4﹣x,在Rt△CEF中,由勾股定理得:22+(4﹣x)2=x2,解得:x=,即DF的长为;(2)AB+BE=BG.理由如下:作FM⊥BC交BC的延长线于M,作GN⊥BC于N,连接GM,如图②所示:在△ABE和△EMF中,,∴△ABE≌△EMF(AAS)∴AB=EM,BE=FM,∵AB⊥BC,FM⊥BC,GN⊥BC,∴AB∥GN∥FM,又点G为AF的中点,∴点N为BM的中点,GN=(AB+FM),∴GN=BM,∴GB=GN,∠BGM=90°,∴BM=BG,∴AB+BE=BG.(3)连接EG,作OP⊥BE于P,作OQ⊥AG于Q,如图③所示:∵四边形ABCD是矩形,∴BC=AD=5,∠ABC=90°,∴BE=BC+CE=6,∴AE===2,∵△AEF是等腰直角三角形,G是AF的中点,∴∠GAE=45°,EG⊥AF,∴△AGE是等腰直角三角形,∠AGE=90°,。

成都七中育才学校 2019届八年级数学下册 代数部分综合试卷【名校学案】

成都七中育才学校 2019届八年级数学下册 代数部分综合试卷【名校学案】

成都七中育才学校 2019届八年级数学下册代数部分综合试卷班级:____________ 姓名:____________ 学号:_____________ 一.选择题1.下列各式可以分解因式的是()A.x2﹣(﹣y2)B.4x2+2xy+y2C.﹣x2+4y2D.x2﹣2xy﹣y22.下列分解因式错误的是()A.15a2+5a=5a(3a+1)B.﹣x2﹣y2=﹣(x2﹣y2)=﹣(x+y)(x﹣y)C.k(x+y)+x+y=(k+1)(x+y)D.a3﹣2a2+a=a(a﹣1)23.若多项式x2+ax+b分解因式的结果为a(x﹣2)(x+3),则a,b的值分别是()A.a=1,b=﹣6 B.a=5,b=6 C.a=1,b=6 D.a=5,b=﹣6二.填空题4.a、b、c是三角形的三条边长,则代数式a2﹣2ab+b2﹣c2的值的符号为.5.已知a,b为自然数,且a2﹣b2=45,则a,b可能的值有对.6.已知x2﹣x﹣1=0,那么代数式x3﹣2x+1的值是.7.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.8.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=,b=.9.若2x3+x2﹣12x+k有一个因式为2x+1,则k为.三.解答题10.因式分解:(1)4m2n﹣8mn2﹣2mn (2)m2(m+1)﹣(m+1)(3)16(a﹣b)2﹣9(a+b)2;(4)(x+y)(m+n)2﹣(x+y)(m﹣n)211.因式分解:(1)x2﹣2xy+y2+2x﹣2y﹣3.(2)a2(b﹣c)+b2(c﹣a)+c2(a﹣b).12.已知a ﹣b=3,b ﹣c=﹣1,求a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值.13.(1)已知6412=-y x ,xy=2,求2x 4y 3﹣x 3y 4的值.(2)已知(a +b )2=17,(a ﹣b )2=13,求a 2+b 2与ab 的值.14.利用因式分解计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-222222111011911411311211n Λ15.阅读下面的解答过程,求y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4≥4,∵(y +2)2≥0即(y +2)2的最小值为0,∴y 2+4y +8的最小值为4.仿照上面的解答过程,求m 2+m +4的最小值和4﹣x 2+2x 的最大值.16.已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x >y ?17.在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A 地运往D 地a 立方米(a 为整数),B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地哪几种方案?(3)已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:A 地B 地C 地运往D 地(元/立方米) 22 2020 运往E 地(元/立方米) 2022 21 在(2)的条件下,请说明哪种方案的总费用最少?。

【三套打包】成都七中实验学校八年级下学期期中数学试题含答案

【三套打包】成都七中实验学校八年级下学期期中数学试题含答案

最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。

每小题都有四个选项,其中有且只有一个选项正确)1.若二次根式a―2有意义,则a的取值范围是()A.a≥0 B.a≥2 C.a>2 D.a≠22.根据下列条件,不能判定四边形是平行四边形的是()A.一组对边平行且相等的四边形 B.两组对边分别相等的四边形C.对角线相等的四边形 D.对角线互相平分的四边形3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是( ) A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC ;B.OA=OC,OB=OD;C.AD=BC,AB∥CD;D.AB=CD,AD=BC5.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm6.化简(3―2)2018•(3+2)2019的结果为()A.―1 B.3+2 C.3―2 D.―3―27.实数a、b在数轴上对应的位置如图,则=()A.b﹣a B.2﹣a﹣b C.a﹣b D.2+a﹣b8.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A 1的坐标是( )A .()B .()C .()D .()9.如图,在△ABC 中,∠C=90°,AC=2,D 在BC 边上,∠ADC=2∠B ,AD=,BC 长为 ( )A .﹣1 B .+1 C .﹣1 D .+110.如图,DE 是△ABC 的中线,F 是DE 的中点,CF 的延长线交AB 于点G ,若△CEF 的面积为18cm 2,则SDGF 等于( )二、填空题(本大题共6小题,每小题3分,共18分) 11.计算的结果是 .12.如图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若∠CAE=15°,则CE= .13.在ABC ∆中,=90C ∠︒,分别以AB 、AC 为边向外作正方形,面积分别记为12,S S .若91621==S S ,,则BC=______.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 中点,若CD=5,则EF 长为 .15.如图,ABCD 是对角线互相垂直的四边形,且OB=OD ,请你添加一个适当的条件 ,使ABCD 成为菱形(只需添加一个即可)16. a 的取值范围为 . 三、解答题(本大题共9小题,共72分) 17.计算:(1)(3+)(3﹣) (2)(﹣3)-2+﹣|1﹣2|﹣(﹣3)0(32(1.-18.在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A 、B ,在公路另一侧的开阔地带选取一观测点C ,在C 处测得点A 位于C 点的南偏西45°方向,且距离为100米,又测得点B 位于C 点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒,请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数)19.如图,在 ABCD中,点E,F分别是边AB,CD的中点,(1)求证:△CFB≌△AED;(2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由;20.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM ⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.21.如图,在□ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)试说明:AB=CF;(2)连接DE,若AD=2AB.试说明:DE⊥AF.22. 若1x =+,1y =,求代数式22x y -的值。

成都市七中育才学校初中数学八年级下期末阶段测试(答案解析)

成都市七中育才学校初中数学八年级下期末阶段测试(答案解析)

一、选择题1.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥3.(0分)[ID :10219]均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.(0分)[ID :10214]要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.(0分)[ID :10142]如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠6.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .7.(0分)[ID :10137]下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .函数图象经过第一、二、四象限D .图象经过点(1,5)8.(0分)[ID :10135]若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .9.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差10.(0分)[ID :10190]下列计算中正确的是( )A .325+=B .321-=C .3333+=D .3342= 11.(0分)[ID :10188]如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )A .1B .2C .3D .4 12.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定13.(0分)[ID :10161]如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10328]如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.17.(0分)[ID :10324]若x=2-1, 则x 2+2x+1=__________.18.(0分)[ID :10318]长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.19.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.20.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.21.(0分)[ID :10283]如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.22.(0分)[ID :10257]如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为_____.23.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .24.(0分)[ID :10250]如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.25.(0分)[ID :10248]已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.三、解答题26.(0分)[ID :10420]先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中21a =-.27.(0分)[ID :10387]已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .求证:∠EBF =∠EDF .28.(0分)[ID :10369]如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.29.(0分)[ID :10358]如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点 ()1判断ABC 的形状,并说明理由.()2求BC边上的高.30.(0分)[ID:10353]如图,在平行四边形ABCD中,已知点E在AB上,点F在CD =.上,且AE CF求证:DE BF=.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.A4.C5.B6.D7.D8.C9.D10.D11.C12.B13.C14.A15.C二、填空题16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△B AE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD ∴∠BAE=∠E17.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式18.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a219.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二20.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D21.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=3022.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD 是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD是等腰三角形∴DQ =AD23.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差24.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m ∴AC=25.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x 尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt △AB'C 中,82+(x-2)2=x 2,解之得:x=17,即芦苇长17尺.故选C .【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.4.C解析:C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.5.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.6.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.故选:D .【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.9.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 如果,那么下列各式中正确的是( )A. B. C. D.3. 下列各式从左到右的变形中,是因式分解的是( )A. B.C. D.4. 点向左平移3个单位,向上平移2个单位到点Q,则点Q的坐标为( )A. B. C. D.5. 平行四边形ABCD中,,则的度数为( )A. B. C. D.6. 下列说法错误的是( )A. 对角线互相平分的四边形是平行四边形B. 角平分线上的点到角的两边的距离相等C. 两个全等的三角形,一定成中心对称D. 等边三角形是轴对称图形,且有三条对称轴7. 不等式组的解集在数轴上表示为( )A. B.C. D.8.如图,在等腰直角三角形ABC中,,将沿BC方向平移得到,若,,则( )A. B. C. D.9. 分式有意义则x的取值范围是______ .10. 化分式方程为整式方程时,方程两边同乘的最简公分母为______ .11. 关于x的二次三项式因式分解的结果是,则______.12. 如图,在正方形网格中,绕某点旋转一定的角度得到,则旋转中心是点______ 请从点O、Q、P、M中选择13. 如图,在中,分别以点A、C为圆心,大于长为E,若半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、,的周长为13cm,则的周长为______14. 分解因式:;分解因式:;解方程:;求不等式组的解集.15. 先化简,再求值:,其中16. 正方形网格中网格中的每个小正方形边长是,的顶点均在格点上,请在所给的直角坐标系中解答下列问题;请画出与关于原点对称的;请画出绕点A逆时针旋转得到的,并写出点的坐标______ ;求绕点A逆时针旋转后,线段AB扫过的图形面积.17. 如图,在平行四边形ABCD中,对角线AC、BD交于点O,,,垂足分别为E、求证:四边形AECF是平行四边形;若,,求四边形AECF的面积.18. 如图1,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,现将绕点O顺时针旋转到,使得,垂足为D,此时D点坐标为,动点E从原点出发,以一个单位每秒的速度沿x轴正方向运动,设运动时间为t秒.请求出A点的坐标;如图2,当时,DE交y轴于点M,求出此时点M的坐标;为中的点,当点E在运动过程中,直线上有一点Q,是否存在以M、E、B、Q为顶点的四边形是平行四边形,若存在,请求出对应的t的值;若不存在,请说明理由.19. 若关于x的方程有增根,则m的值是______.20. 已知▱ABCD中,,,过点B作交CD所在的直线于H,若,则______21. 因式分解是中学数学中最重要的恒等变形之一,是解决许多数学问题的有力工具,七中育才帅虎同学设计了一种“因式分解密码”:对多项式进行因式分解得到,若取,,则,,,,可得密码为212714,对于代数式,若取,,可能得到的密码是______写出满足条件的一个答案即可22. 已知直线:经过点,直线:经过点,且直线与关于第一,三象限角平分线所在直线对称,则关于x的不等式的解集是______ .23. 如图,是边长为3的等边三角形,延长AC至点P,使得,点E在线段AB上,且,连接PE,以PE为边向右作等边,过点E作交FA的延长线于点M,点N为MF的中点,则四边形AEPN的面积为______ .24. 位于四川省广汉市的“三星堆”,被称为20世纪人类最伟大的考古发现之一,被誉为“长江文明之源”,昭示了长江流域与黄河流域一样,同属中华文明的母体,七中育才八年级学生计划下周前往此处开展文史探究活动,下面是两位同学对于出行方案的讨论:请根据以上信息,求出每辆甲种和每辆乙种大巴的座位数;为保证顺利出行,大巴车司机计划近期加油两次,打算采用两种加油方式:方式一:每次均按照相同油量升加油;方式二:每次均按照相同金额元加油.若第一次加油单价为x元/升,第二次加油单价为y元/升,请分别写出每种加油方式的平均单价用含x、y的代数式表示,并根据你所学知识帮助大巴车司机选择上述哪种加油方式更合算.25. 已知长为a、b、c、d的四条线段,以a、b为边构造,其中,;以c、d为边构造,其中,判断和的形状并证明;将和按照图1方式放置,当B、C、E共线时,取BE的中点M,连接AM、若,请猜想与之间的数量关系,并证明;如图2,当B、C、E不共线时,连接BE并取其中点M,连接AM、DM、若,中的猜想是否仍然成立?若成立请证明,若不成立请说明理由.26.如图1,在中,,,将线段AB绕点B逆时针旋转得线段BD,旋转角为,连接①若,则______ ;②若,求的度数.如图2,当时,过点B作于点E,CD与BE相交于点F,请探究线段CF与线段BE之间的数量关系;当时,作点A关于CD所在直线的对称点,当点在线段BC所在的直线上时,求的面积.答案和解析1.【答案】D【解析】解:A、该图形是中心对称图形,不是轴对称图形;故A不符合题意;B、该图形既不是轴对称图形,也不是中心对称图形;故B不符合题意;C、该图形是中心对称图形,不是轴对称图形;故C不符合题意;D、该图形既是轴对称图形又是中心对称图形;故D符合题意.故选:根据轴对称图形与中心对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:A、两边都加或减同一个数或减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;故选:根据不等式的性质,两边都加或减同一个数或减同一个整式,不等号的方向不变;不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向改变,可得答案.本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数时,不等号的方向改变.3.【答案】C【解析】解:A、,是整式乘法,故此选项不合题意;B、,不符合因式分解的定义,故此选项不合题意;C、是分解因式,符合题意;D、,不符合因式分解的定义,故此选项不合题意;故选:直接利用因式分解的定义得出答案.此题主要考查了因式分解的意义,正确分解因式是解题关键.4.【答案】A【解析】解:根据题意,点Q的横坐标为:;纵坐标为;即点Q的坐标是故选:让P的横坐标减3,纵坐标加2即可得到点Q的坐标.本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5.【答案】A【解析】解:在▱ABCD中,,若,则,故选:根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,再根据已知即可求解.本题考查平行四边形的性质,在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.6.【答案】C【解析】解:A、对角线互相平分的四边形是平行四边形,正确,故A不符合题意;B、角平分线上的点到角的两边的距离相等,正确,故B不符合题意;C、两个全等的三角形,不一定成中心对称,故C符合题意;D、等边三角形是轴对称图形,且有三条对称轴,正确,故D不符合题意.故选:由平行四边形的判定,角平分线的性质,中心对称的定义,等边三角形的性质,即可判断.本题考查平行四边形的判定,角平分线的性质,等边三角形的性质,中心对称,掌握以上知识点是解题的关键.7.【答案】B【解析】解:,解不等式①得:,解不等式②得:,不等式组的解集是表示在数轴上,如图所示:故选:根据不等式解集的表示方法即可判断.本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来向右画;<,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.【答案】B【解析】解:是等腰直角三角形,,沿BC方向平移得到,,是等腰直角三角形,,的面积,,,故选:由等腰直角三角形的性质得到,由平移的性质,得到是等腰直角三角形,由三角形的面积公式求出PC长,即可求出的长,从而求出的长.本题考查平移的性质,等腰直角三角形,关键是掌握平移的性质,等腰直角三角形的性质.9.【答案】【解析】解:根据题意得,解得,即x的取值范围是根据分式有意义的条件得到,然后解不等式即可.本题考查了分式有意义的条件:分式有意义的条件是分母不等于零.10.【答案】【解析】解:化分式方程为整式方程时,方程两边同乘的最简公分母为故答案为:根据最简公分母的定义即可得出答案.本题考查了解分式方程,最简公分母,要注意:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母,掌握最简公分母是解题的关键.11.【答案】5【解析】解:关于x的二次三项式因式分解的结果是,则,故故答案为:直接利用多项式乘法进而得出m的值.此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.12.【答案】P【解析】如图,连接,可得其垂直平分线相交于点P,故旋转中心是P点.故答案为:根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.13.【答案】19【解析】解:由作图得MN垂直平分AC,,,的周长为13cm,,,即,的周长故答案为:先利用基本作图得到MN垂直平分AC,,,然后利用等线段代换计算的周长.本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质.14.【答案】解:;;,方程两边都乘,得,解得:,检验:当时,,所以是增根,即分式方程无解;,解不等式①,得,解不等式②,得,所以不等式组的解集是【解析】根据提取公因式法分解因式即可;根据完全平方公式分解因式即可;方程两边都乘得出,求出方程的解,再进行检验即可;先根据不等式的性质求出不等式的解集,再关键求不等式组解集的规律求出不等式组的解集即可.本题考查了分解因式,解分式方程和解一元一次不等式组等知识点,能选择适当的方法分解因式是解的关键,能把分式方程转化成整式方程是解的关键,能根据求不等式组解集的规律求出不等式组的解集是解的关键.15.【答案】解:原式,当时,原式【解析】根据分式的减法法则、除法法则把原式化简,把x的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.16.【答案】【解析】解:如图,即为所求.如图,即为所求.点的坐标为故答案为:由勾股定理得,,线段AB扫过的图形面积为根据中心对称的性质作图即可.根据旋转的性质作图,即可得出答案.利用勾股定理求出AB的长,再利用扇形面积公式计算即可.本题考查作图-旋转变换、中心对称、扇形面积公式,熟练掌握旋转和中心对称的性质、勾股定理、扇形面积公式是解答本题的关键.17.【答案】证明:四边形ABCD是平行四边形,,,,,,,,在和中,,≌,,四边形AECF是平行四边形;解:,,,,,,由可知,≌,,,四边形AECF是平行四边形,,【解析】由平行四边形的性质得,,则,再证,然后证≌,得,即可得出结论;由含角的直角三角形的性质得,则,再由全等三角形的性质得,则,然后由平行四边形面积公式即可得出结论.本题考查了平行四边形的判定与性质、全等三角形的判定与性质、含角的直角三角形的性质以及勾股定理等知识,熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.18.【答案】解:把代入得:,解得,,在中,令得:,解得,点的坐标为;如图:在中,令得,,,,由旋转可得,,,,,,,,,,点M是OB中点,;存在以M、E、B、Q为顶点的四边形是平行四边形,理由如下:过作于K,如图:,,,,,,≌,,,,由知,,直线DM的函数解析式为,由设直线的解析式为,把代入得:,解得,直线的解析式为;设,,又,,①若QE,MB为对角线,则QE,MN的中点重合,,解得,的值为;②若QM,EB为对角线,则QM,EB的中点重合,,解得,的值为;③若QB,EM为对角线,则QB,EM的中点重合,,解得,的值为;综上所述,t的值为或或【解析】把代入得,即得,令可得A点的坐标为;在中,得,由和旋转可得,有,从而可得,,故点M是OB中点,得;过作于K,证明≌,可得,由,,可知直线DM的函数解析式为,从而可得直线的解析式为;设,,分三种情况:①若QE,MB为对角线,则QE,MN的中点重合,,②若QM,EB为对角线,则QM,EB的中点重合,,③若QB,EM为对角线,则QB,EM的中点重合,,分别解方程组可得答案.本题考查一次函数的综合应用,涉及待定系数法,函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是方程思想的应用.19.【答案】2【解析】解:方程两边都乘,得,方程有增根,最简公分母,即增根是,把代入整式方程,得故答案为:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出未知字母的值.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.【答案】5或11【解析】解:如图1,,,,,,四边形ABCD是平行四边形,,;如图2,,,,,,四边形ABCD是平行四边形,,;综上所述,或11cm,故答案为:5或分两种情况:如图1,如图2,根据勾股定理和平行四边形的性质即可得到结论.本题考查了平行四边形的性质,勾股定理,分类讨论是解题的关键.21.【答案】315311【解析】解:当,时,即,,,,可得密码为本题通过对多项式进行因式分解,然后分别求出每个式子的值,然后组成密码.本题考查了因式分解的应用,通过因式分解,得到对应的结果.22.【答案】【解析】解:直线与关于第一,三象限角平分线所在直线对称,点关于直线的对称点一定在直线上,点关于直线的对称点一定在直线上,把,两点代入中得,,,,直线:,把,两点代入中得,,,,直线:,由得,,故答案为:分别求出点和点关于直线的对称点的坐标,利用待定系数法求出直线,直线的解析式,再解不等式即可.本题考查了一次函数与一元一次不等式的关系,待定系数法求解析式,直线的对称变换等知识,掌握点的对称变换特征是解题关键.23.【答案】【解析】解:作交AB的延长线于点G,是边长为3的等边三角形,,,,,是等边三角形,点P在AC的延长线上,,,是等边三角形,,,,在和中,,≌,,,,,,,是等边三角形,,,,在和中,,≌,,点N为MF的中点,,,作于点H,于点D,则,,,,,,故答案为:作交AB的延长线于点G,则,,,,所以是等边三角形,,而是等边三角形,则,,所以,即可证明≌,得,所以,,再证明是等边三角形,则,,可证明≌,得,则,,作于点H,于点D,则,,由勾股定理得,所以,于是得到问题的答案.此题重点考查等边三角形的判定与性质、全等三角形的判定与性质、勾股定理、根据转化思想求图形的面积等知识与方法,正确地作出所需要的辅助线是解题的关键.24.【答案】解:设每辆甲种大巴车的座位数为个,则每辆乙种大巴车的座位数为个,根据题意可得:,解得:,经检验,为原方程的解,则,每辆甲种大巴车的座位数有45个,每辆乙种大巴车的座位数有54个;按照方式一加油的平均单价为元/升,按照方式一加油的平均单价为元/升,按方式二加油的平均单价-按方式二加油的平均单价得:元/升,,,且,,,即,选择方式二加油更合算.【解析】设每辆甲种大巴车的座位数为个,则每辆乙种大巴车的座位数为个,根据“都租同一种车辆,甲种大巴车比乙种大巴车多3辆”列出方程,求解即可;根据“加油费用=加油量加油单价”分别算出两种加油方式的平均单价,再利用作差法比较两种加油方式的平均单价的大小即可求解.本题主要考查分式方程的应用、列代数式.解题关键是:正确理解题意,找准等量关系列出方程,并进行正确的求解;利用“加油费用=加油量加油单价”列出代数式,熟练掌握用作差法比较代数式大小.25.【答案】解:结论:,都是等腰三角形;理由:,,,,,都是等腰三角形;猜想:理由:延长AM 到T ,使得,连接AD ,DT ,ET ,延长AC 交ET 的延长线于点,,,≌,,,,,,,,,,≌,,,,,猜想仍然成立.理由:延长AM 到Q ,使得,连接AD ,DQ ,EQ ,延长AC 交EQ 于点,,,≌,,,,,,,,,≌,,,,,【解析】利用非负数的性质证明,,可得结论;猜想:延长AM到T,使得,连接AD,DT,ET,延长AC 交ET的延长线于点证明≌,推出,,推出,推出,再证明≌,推出,可得结论;猜想仍然成立,证明方法类似本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,四边形内角和定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.26.【答案】45【解析】解:①将线段AB绕点B逆时针旋转得线段BD,,,是等边三角形,,,,,,故答案为:45;②将线段AB绕点B逆时针旋转得线段BD,,,,;,理由如下:如图2,过点C作直线BE于H,,,,,,是等腰直角三角形,,,,,又,,≌,,;如图3,当点在点B的左侧时,,,,点A关于CD所在直线的对称点,,,,,,,,;如图4,当点在点B的右侧时,同理可求;综上所述:的面积为或①由旋转的性质可得,由等腰三角形的性质可求,即可求解;②由旋转的性质和等腰三角形的性质可求解;由“AAS”可证≌,可得,由等腰直角三角形的性质可求解;分两种情况讨论,由勾股定理可求,即可求解.本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.。

成都七中育才学校初2019届八年级下期第7周周测数学试题(附答案)

成都七中育才学校初2019届八年级下期第7周周测数学试题(附答案)

成都七中育才学校初2019届八年级下期第7周周测数学试题班级____ ;姓名________ _ ;学号____A 组(100分)一、选择题(30分)1、在线段、等边三角形、平行四边形、圆中,是中心对称图形又是轴对称图形的有( ). A .1个 B.2个 C.3个 D.4个 2、函数y =)A .2x ≥-B .2x >-C .2x <-D .2x ≤-3 、分式28,9,12z yx xy z x x z y -+-的最简公分母是( ) A . 72xyz 2B . 108xyz C. 72xyz D. 96xyz 24、用分组分解法将x y xy x 332-+-分解因式,下列的分组方式中不恰当的是( ) A .)3()3(2xy y x x -+- B.)33()(2x y xy x -+- C. )33()(2y x xy x --- D.y x xy x 3)3(2+-- 5、 如果把分式yx x 23y2-中的x,y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 不变C. 缩小3倍D. 扩大2倍 6、 若分式222)(+-x x 的值为0,则x 的值为( )A .2 B. -2 C .2或-2 D .2或37、把不等式组的解在数轴上表示出来,正确的是( )8、化简aba b a +-222的结果为( )A.a b a 2- B.a b a - C.a b a + D.ba ba +- 2010x x -≥⎧⎨+<⎩9 、 如果0<<b a ,那么不等式b ax <的解是( ) A 、a b x <B 、a b x >C 、a b x -<D 、ab x -> 10、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( )A 、100B 、150C 、200D 、250 题号 1 2 3 4 5 6 7 8 9 10 答案二 填空(16分)11、当m ___________时,不等式8)2(<-x m 的解集为mx ->28。

成都七中育才学校八年级(下)期末数学试卷(含答案)

成都七中育才学校八年级(下)期末数学试卷(含答案)

2014-2015学年四川省成都七中育才学校八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称但不一定是轴对称图形的是()A.等边三角形B.矩形C.菱形D.平行四边形2.使分式有意义的x的取值范围是()A.x≥B.x≤C.x>D.x≠3.一元二次方程x2﹣4x﹣1=0配方后正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x﹣4)2=1 D.(x﹣4)2=54.在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)5.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是正方形D.两条对角线相等且互相垂直平分的四边形一定是正方形6.如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③D.①②③④(第6题) (第13题)7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.279.甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程()A.B.﹣=C.﹣=D.﹣=10.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形二、填空题11.当x=时,分式的值为0.12.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+5=.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为.14.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是cm2.(第14题) (第15题)15.如图,▱ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为.三、解答题:16.解方程:﹣1.17.解方程:(2x+3)2=3(2x+3)18.先化简,再求值:,其中.四、解答题19.如图,方格纸中的最小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C坐标为(0,﹣1)①画出△ABC向上平移3个单位后得到的△A1B1C1;②画出△ABC绕点C顺时针旋转90°后得到的△A2B2C2;③画出△ABC关于点C中心对称后得到的△A3B3C3.20.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?21.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.矩形ABCD中,M是BC的中点,DE⊥AM,E是垂足.(1)求证:△ABM∽△DEA;(2)求证:DC•AE=DE•MC;(3)若AB=4,BC=6,求ME的长.五、填空题(共5小题,每小题3分,满分15分)23.若关于x的方程的解为正数,则a的取值范围是.24.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.(第24题) (第26题) (第27题)25.若关于x的一元二次方程x2+kx+4k2﹣3=0的两个实数根x1,x2,且满足x1+x2=x1•x2,则k的值为.26.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C 落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个B.2个C.3个D.4个27.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).二、解答题28.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.29.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ 之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.30.如图,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,说明理由.(2)若正方形GFED绕D旋转到如图3的位置(F在线段AD上)时,延长CE交AG于H,交AD 于M,①求证:AG⊥CH;②当AD=4,DG=时,求CH的长.(3)在(2)的条件下,在如图所示的平面上,是否存在以A、G、D、N为顶点的四边形为平行四边形的点N?如果存在,请在图中画出满足条件的所有点N的位置,并直接写出此时CN的长度;若不存在,请说明理由.参考答案一、选择题1.下列图形中,是中心对称但不一定是轴对称图形的是()A.解:A、等边三角形是轴对称图形,不是中心对称图形.故错误;B、矩形是轴对称图形,也是中心对称图形.故错误;C、菱形是轴对称图形,也是中心对称图形.故错误;D、平行四边形不一定是轴对称图形,是中心对称图形.故正确.故选D.2.解:根据题意得2x﹣1≠0,解得x≠,故选:D.3.解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5.故选B.4.解:如图,点A′的坐标为(﹣3,2).故选B.5.解:A、一组对边相等,且这组对边平行的四边形一定是平行四边形,所以A选项错误;B、对角线相等的平行四边形一定是矩形,所以B选项错误;C、两条对角线相等且互相垂直平分的四边形一定是正方形,所以C选项错误;D、两条对角线相等且互相垂直平分的四边形一定是正方形,所以D选项正确.故选D.6.解:∵AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,∴DE=DF,且AD上任一点到AB、AC的距离相等;又AB=AC,根据三线合一的性质,可得AD垂直平分BC∴BD=CD,AD上任一点到B、C的距离相等.故选D.7.解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.8.解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,解得n=9,∴9﹣3=6.故选:A.9.解:设乙每小时走x千米,则甲每小时走(x﹣3)千米,由题意得:﹣=,故选:A.10.解:A、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺,故此选项不合题意;B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺,故此选项不合题意;C、正五形的每个内角是108°,正十边形的每个内角是144°,∵2×108°+144°=360°,能密铺,故此选项不合题意;D、正六边形的每个内角是120°和正十二边形的每个内角是150°,120m+150n=360°,m=3﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满,符合题意.故选:D.二、填空题11.解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.12.解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴2a2﹣4a=2,∴2a2﹣4a+5=2+5=7.故答案为7.13.解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案为:15.14.解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.15.解:∵在平行四边形ABCD中,AB∥CD,∠ABC=60°,∴∠DCF=60°,又∵EF⊥BC,∴∠CEF=30°,∴CF=CE,又∵AE∥BD,∴AB=CD=DE,∴CF=CD,又∵∠DCF=60°,∴∠CDF=∠DFC=60°,∴CD=CF=DF=DE=2,∴在Rt△CEF中,由勾股定理得:EF====.故答案为2.三、解答题:16.解:去分母得:1=﹣2x﹣x+3,解得:x=,经检验x=是分式方程的解.17.解:方程整理得:(2x+3)2﹣3(2x+3)=0,分解因式得:(2x+3)(2x+3﹣3)=0,解得:x1=﹣,x2=0.18.解:==,当时,原式=.四、解答题19.解:①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;③如图,△A3B3C3为所作.20.解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.21.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.22.(1)证明:∵四边形ABCD为矩形,∴∠B=90°,AD∥BC,∴∠DAE=∠AMB,∵DE⊥AM∴∠B=∠AED=90°,∴△ADE∽△MAB;(2)∵△ADE∽△MAB,∴AB•AE=DE•MB,∵四边形ABCD为矩形,∴AB=CD,∵M是BC的中点,∴BM=MC,∴DC•AE=DE•MC;(3)解:∵M是BC中点,AD=BC=6∴BM=BC=3,在Rt△ABM中,AB=4,∴AM==5,∵△ADE∽△MAB,∴=,即=,∴AE=,∴EM=AM﹣AE=5﹣=.五、填空题(共5小题,每小题3分,满分15分)23.解:解方程,得x=,∵关于x的方程的解为正数,∴x>0,即>0,当x﹣1=0时,x=1,代入得:a=﹣1.此为增根,∴a≠﹣1,解得:a<1且a≠﹣1.故答案为:a<1且a≠﹣1.24.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为(0,1).25.解:由根与系数的关系,得x1+x2=﹣k,x1x2=4k2﹣3,又∵x1+x2=x1x2,所以﹣k=4k2﹣3,即4k2+k﹣3=0,解得k=或﹣1,因为△≥0时,所以k2﹣4(4k2﹣3)≥0,解得:≤k≤,故k=﹣1舍去,∴k=.故答案是:.26.解:∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF==,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°﹣∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°==,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°﹣∠MBC=60°,∠NMP=90°﹣∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选:C.27.解:∵△ABC∽△ADE,AB=2AD,∴=,∵AB=2AD ,S△ABC=,∴S△ADE=,如图,在△EAF中,过点F作FH⊥AE交AE于H,∵∠EAF=∠BAD=45°,∠AEF=60°,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.又∵S△ADE=,作CM⊥AB交AB于M,∵△ABC 是面积为的等边三角形,∴×AB×CM=,∠BCM=30°,设AB=2k,BM=k,CM=k,∴k=1,AB=2,∴AE=AB=1,∴x+x=1,解得x==.∴S△AEF=×1×=.故答案为:.二、解答题28.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得:x2+3x﹣1.75=0,解得:x1=0.5,x2=﹣3.5(舍去).答:每年市政府投资的增长率为50%;(2)到2012年底共建廉租房面积=9.5÷=38(万平方米).答:到2012年的共建设了38万平方米廉租房.29.解:①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;故答案为:AD,90.②FQ=EP,理由如下:∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,又∵AF=AC,∴△AFQ≌△CAG,∴FQ=AG,同理EP=AG,∴FQ=EP.③HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°,又AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:E A.同理△ACG∽△FAQ,∴AG:FQ=AC:F A.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.30.解:(1)成立.如图2,∵∠CDE+∠EDA=∠ADG+∠ADE=90°,∴∠ADG=∠CDE,在△ADG和△CDE中,,∴△ADG≌△CDE(SAS),∴AG=CE;(2)如图3,过点E作EP⊥CD于点P,连接AC,①同(1)可证△ADG≌△CDE,∴∠DAG=∠DCE,∵∠DCM+∠DMC=90°,∴∠DAG+∠AMH=90°,∴AG⊥CH;②∵∠EDF=∠EDC=45°,DG=,∴DP=EP=1,∵CD=AD=4,∴CP=3,∴CE=,∴AG=,∵∠DAC=∠ADG=45°,∴DG∥AC,∴S△AGC=S△ADC==8,∵,∴;(3)①如图4,NADG是平行四边形,此时,CN=CA+AN=CA+DG==;②如图5,ANDG是平行四边形,此时,CN=CA﹣AN=CA﹣DG==;③如图6,GADN是平行四边形,延长CD交GN于点R,则CR=CD+RD=4+1=5,RN=GN﹣GR=4﹣1=3,∴CN==.。

2018-2019学年成都育才学校八年级(下)期中数学试卷(含解析)

2018-2019学年成都育才学校八年级(下)期中数学试卷(含解析)

2018-2019学年成都育才学校八年级(下)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2 D.x2+2x﹣1=(x﹣1)22.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.53.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或224.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45°B.60°C.90°D.120°5.若方程=有增根,则m的值为()A.2 B.1 C.﹣1 D.06.下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形7.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°8.如图,▱ABCD中,∠B=70°,点E是BC的中点,点F在AB上,且BF=BE,过点F作FG⊥CD于点G,则∠EGC的度数为()A.35°B.45°C.30°D.55°9.不等式组的解集是x>4,那么m的取值范围是()A.m≥4 B.m≤4 C.m<4 D.m=410.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.3 C.D.二、填空题(每小题3分,共15分)11.当x=时,分式的值为零.12.如果(m+3)x>2m+6的解集为x<2,则m的取值范围是.13.顺次连结菱形各边中点所得的四边形必定是.14.已知关于x的方程=2的解为正数,则实数m的取值范围是.15.如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图1所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图1中的△ACB绕点C顺时针方向旋转到图2的位置,点E在AB边上,AC交DE于点G,则线段FG的长为cm(保留根号).三、解答题(共55分)16.(12分)解答下列各题:(1)因式分解:9(m+n)2﹣16(m﹣n)2.(2)解不等式组,并把它的解集在数轴上表示出来.17.(12分)解答下列各题:(1)解方程:;(2)先化简,再求值:,其中a满足a2+2a﹣7=0.18.(9分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点对称的三角形△A'B'C';(2)将三角形A、B、C绕坐标原点O逆时针旋转90°,画出图形,直接写出B的对应点的坐标.19.(10分)如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求∠CBD的度数.20.(12分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为矩形时,请判断四边形EFGH的形状(不要求证明).(2)如图2,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°)①试用含α的代数式表示∠HAE,写出解答过程;②求证:HE=HG,并判断四边形EFGH是什么四边形?请说明理由.B卷(50分)一、填空题(每小题4分,共20分)21.若关于x的方程无解,则k=.22.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ的最小值为.23.若不等式组有4个整数解,则a的取值范围是.24.如图,边长为1的菱形形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°,连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°…,按此规律推测,所作的第2015个菱形的边长是.25.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连结DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDFE不可能为正方形;③四边形CDFE的面积保持不变;④DE长度的最小值为4;⑤△CDE面积的最大值为8,其中正确的结论是.二、解答题(30分,解答时每小題必须给出必要的演算过程或推理步骤)26.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?27.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证△A'CD是等边三角形;(2)如图2,设AC中点为E,A'B'中点为P,AC=a,连接EP.在旋转过程中,线段EP的长度是否存在最大值?如果存在,请求出这个最大值并说明此时旋转角θ的度数,如果不存在,请说明理由.28.如图,将一个三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC交于点Q.探究:设A、P两点间距离为x.(1)当点Q在边CD上时,线段PB与PQ之间有怎样的数量关系?请证明你的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出自变量的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ为等腰三角形的点Q的位置,并求出相应x的值.如果不可能,请说明理由.参考答案与试题解析一、选择题1.【解答】解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选:B.2.【解答】解:中的分母含有字母是分式.故选A.3.【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.4.【解答】解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.故选:C.5.【解答】解:方程两边都乘x﹣2,得x﹣3=m∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=﹣1,故选:C.6.【解答】解:A、错误,例如等腰梯形;B、错误,例如对角线互相垂的梯形;C、正确;D、错误,例如矩形.故选:C.7.【解答】解:∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=30°.故选:A.8.【解答】解:延长GE交AB的延长线于点H.∵▱ABCD中AB∥CD,∴∠H=∠EGC,在△BEH和△CEG中,,∴△BEH≌△CEG(AAS),∴HE=EG,又∵AB∥CD,FG⊥CD,∴FG⊥AB,即∠HFG=90°,∴EF=EH,∴∠H=∠BFE,∵BF=BE,∴∠BFE=∠BEF===55°.∴∠EGC=∠H=∠BFE=55°.故选:D.9.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.故选:B.10.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为4,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.∴所求最小值为2.故选:A.二、填空题(每小题3分,共15分)11.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.12.【解答】解:∵(m+3)x>2m+6的解集为x<2,∴m+3<0,解得m<﹣3,故答案为:m<﹣3.13.【解答】解:如图,四边形ABCD是菱形,且E、F、G、H分别是AB、BC、CD、AD的中点,则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故答案为:矩形.14.【解答】解:=2方程两边同时乘以x﹣5,x+m=2(x﹣5),x=10+m,∵方程的解是正数,∴x=10+m>0,即m>﹣10,又∵x≠5,∴10+m≠5,即m≠﹣5,∴实数m的取值范围是m>﹣10且m≠﹣5.故答案为:m>﹣10且m≠﹣5.15.【解答】解:由题意知,在Rt△ABC中,∠A=30°,∠B=60°,由旋转的性质知图(2)中,CB=CE,∴△BCE为等边三角形.∴∠ECB=60°,∠ECG=30°.而∠FED=60°.∴∠EGC=90°,∠ECG=30°,∴EG=EC=ED=×10=,FG==.三、解答题16.【解答】解:(1)原式=[3(m+n)+4(m﹣n)][3(m+n)﹣4(m﹣n)] =(7m﹣n)(﹣m+7n);(2),由①得:x≤4,由②得:x>0,∴不等式组的解集为0<x≤4,17.【解答】解:(1)∵,∴(x﹣2)2=(x+2)2+16,∴x2﹣4x+4=x2+4x+4+16,∴﹣4x=4x+16,∴x=﹣2,经检验,x=﹣2是方程的增根,故原分式方程无解.(2)原式=[﹣]•=•=,∵a2+2a﹣7=0,∴a2+2a=7,∴原式=18.【解答】解:(1)如图,△A'B'C'为所作;(2)如图,△A″B″C″为所作;B的对应点B″的坐标为(0,﹣6).19.【解答】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行);又∵AM丄BC(已知),∴AM⊥AD;∵CN丄AD(已知),∴AM∥CN,∴AE∥CF;∴∠ADE=∠CBD,∵AD=BC(平行四边形的对边相等),在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AE=CF(全等三角形的对应边相等),∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形);(2)如图,连接AC交BF于点0,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD(平行四边形的对角线相互平分),∴AC与BD互相垂直平分,∴▱ABCD是菱形(对角线相互垂直平分的平行四边形是菱形),∴AB=BC(菱形的邻边相等);∵M是BC的中点,AM丄BC(已知),∴AB=AC(等腰三角形的性质),∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°.20.【解答】(1)解:结论:四边形EFGH是正方形.理由:∵△AHD是等腰直角三角形,∴∠HDA=∠HAD=45°,同理:∠EAB=∠EBA=45°,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠EAH=∠EAB+∠BAD+∠DAH=180°,∴E,A,H共线,同理E,B,F共线,F,C,G共线,G,D,H共线,∵∠E=∠H=∠G=∠F=90°∴四边形EFGH是矩形,∵△AHD是等腰直角三角形,∴HA=HD,在矩形ABCD中,AB=CD,在△AEB和△DGC中,,∴△AEB≌△DGC(ASA),∴AE=DG,∴HE=HG,∴矩形EFGH是正方形.(2)①解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∴∠BAD=180°﹣α,∵△AHD,△EAB都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠EAH=360°﹣∠EAB﹣∠BAD﹣∠HAD=90°+α.②结论:四边形ABCD是正方形;理由:∵△AEB和△DGC是等腰直角三角形,∴AE=AB,DG=CD,在平行四边形ABCD中,AB=CD,∴AE=DG,∵△AHD和△DGC是等腰直角三角形,∴∠HDA=∠CDG=45°,∴∠HDG=∠HDA+∠ADC+∠CDG=90°+∠ADC=∠HAE,∵△AHD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG(SAS),∴HE=HG.同理可得:GH=GF,FG=FE,∵HE=HG,∴GH=GF=EF=HE,∴四边形EFGH是菱形,∵△HAE≌△HDG,∴∠DHG=∠AHE,∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.一、填空题(每小题4分,共20分)21.【解答】解:方程两边都乘(x+1)(x﹣1)得:k(x﹣1)+3(x+1)=7,∴kx﹣k+3x+3=7,∴(k+3)x=k+4,当k+3=0时,方程无解;当k+3≠0时,x=,∵关于x的方程无解,∴(x+1)(x﹣1)=0,就x=﹣1或x=1,当x=﹣1时,=﹣1,解得:k=﹣;当x=1时,=1,此时无解;∴k=﹣3或﹣.故答案为:﹣3或﹣.22.【解答】解:设AC、PQ交于点O,如图所示:∵四边形PAQC是平行四边形,∴AO=CO,OP=OQ,∵PQ最短也就是PO最短,∴过O作OP′⊥AB于点P′,∵∠BAC=45°,∴△AP′O是等腰直角三角形,∵AO=AC=×8=4,∴OP′=AO=2,∴PQ的最小值=2OP′=4,故答案为:4.23.【解答】解:∵解不等式①得:x≥a,解不等式②得:x<1,∴不等式组的解集为a≤x<1,∵不等式组有4个整数解,∴﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.24.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=,AG=AE=3=,按此规律所作的第n个菱形的边长为,则所作的第2015个菱形的边长是.故答案为:.25.【解答】解:①连接CF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵F是AB边上的中点,∴CF=AF=BF,CF⊥AB,∠ACF=∠BCF=45°,∴∠AFC=90°,∴∠A=∠BCF,在△ADF和△CEF中,∵,∴△ADF≌△CEF(SAS),∴DF=EF,∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC=90°,即∠DFE=90°,∴△DEF是等腰直角三角形,所以此结论正确;②当D、E分别为AC、BC中点时,四边形CDFE是正方形.如图2,∵E是BC的中点,F是AB边上的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=AC=CD,∴四边形CDFE是平行四边形,∵CD=AC,CE=BC,AC=BC,∴CD=CE,∵∠C=90°,∴四边形CDFE是正方形,所以此结论不正确;③∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC.∴四边形CDFE的面积保持不变;所以此结论正确;④由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4;所以此结论不正确;⑤当△CDE面积最大时,此时△DEF的面积最小,∵∠C=90°,AC=BC=8,∴AB==8,∴AF=CF=4,此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=×4×4﹣×4×4=16﹣8=8.则结论正确的是①③⑤.故答案为:①③⑤.二、解答题(30分,解答时每小題必须给出必要的演算过程或推理步骤)26.【解答】解:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x﹣0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1﹣2%)+200(1﹣3%)]y﹣400﹣700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.27.【解答】(1)证明:∵AB∥CB',∴∠BCB'=∠ABC=30°,∵将△ABC绕顶点C顺时针旋转,∴∠ACA'=30°.又∵∠ACB=90°,∴∠A'CD=60°.又∵∠CA'B'=∠CAB=60°,∴△A'CD是等边三角形.(2)当θ=120°时,EP的长度最大,EP的最大值为a.解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA′=120°,∵∠B′=30°,∠A′CB′=90°,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=a.28.【解答】解:探究:(1)PQ=PB,理由如下:如图1中,过P点作MN∥BC分别交AB、DC于点M、N,∵四边形ABCD是正方形,∴AB=AD=CD=BC,AD∥BC,AB∥CD,∠BAC=ACB=45°,∵MN∥BC,∴MN∥AD∥BC,∴四边形ADNM,四边形BMNC是平行四边形,∵∠DAM=∠MBC=90°,∴四边形ADNM,四边形BMNC都是矩形,∴BM=NC,AM=DN,MN=AD=BC,∵∠BAC=45°,∠AMN=90°,∴AM=PM,又∵AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠BPM+∠NPQ=90°,又∵∠MBP+∠BPM=90°,∴∠MBP=∠NPQ,在Rt△MBP和Rt△NPQ中,,∴△MBP≌△NPQ(ASA),∴PB=PQ.(2)∵S四边形PBCQ=S△PBC+S△PCQ,∵AP=x,∴AM=x,∴CQ=CD﹣2NQ=1﹣x,又∵S△PBC=BC•BM=•1•(1﹣x)=﹣x,S△PCQ=CQ•PN=(1﹣x)•(1﹣x),=x2﹣x+,∴S四边形PBCQ=x2﹣x+1.(0≤x≤).(3)△PCQ可能成为等腰三角形.①当点P与点A重合时,点Q与点D重合,∴PQ=QC,此时,x=0.②如图2中,当点Q在DC的延长线上,且CP=CQ时,∵CP=CQ,∠ACD=45°,∴∠PQN=∠CPQ=22.5°,∴∠QPN=∠APB=67.5°,∵∠ABP=180°﹣∠BAP﹣∠APB=67.5°=∠APB,∴AP=AB=1,∴x=1,综上所述:△PCQ为等腰三角形时,x的值为0或1。

成都七中育才学校初2019届八年级下期第四周周测【名校学案+详细解答】

成都七中育才学校初2019届八年级下期第四周周测【名校学案+详细解答】

成都七中育才学校初2019届八年级下期第四周周测班级_______姓名________学号________A 卷(100分)一.选择题(每题3分,共30分)1.在下面的汽车标志图形中,是中心对称但不是轴对称有( )A .2 个B .3个C .4个D .5个2.下列各式从左到右的变形中,是因式分解的为( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+-C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)( 3.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且AOC ∠的度数为100°,则DOB ∠的度数为( )A.36°B.38°C.34°D.40°4. 将a 2b ﹣ab 2提公因式后,另一个因式是( )A .a+bB .a+2bC .a ﹣bD .a ﹣2b5.如图,在等边△ABC 中,点O 在AC 上,且AO=3,CO=6,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A.4B.5C.6D.86.如图,函数x y 2=和4+=ax y 的图象相交于点A (m ,3),则不等式x 2<4+ax 的解集为( ) A.32x > B.3x >C.3x<D. 23<x 7. 如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于E,BC=5,DE=2,则△BCE 的面积等于( ) A.5 B.7 C.10 D.38.若1124n n a a -+-的公因式是M,则M 等于 ( )A.1n a -B.2n aC.12n a -D.12n a +9.若0<a ,则不等式a x a <的解集是( )A .1<xB .1>xC .1->xD .1-<x如图,在△ABC 中,∠C=90°,∠B=30°,以A 为第5题 第6题 第3题 第7题 第10题圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是△BAC 的角平分线 ②∠ADC=60° ③点D 在AB 的中垂线上 ④S △DAC :S △ABC =1:3.A . 1个B . 2个C . 3个D . 4个题号1 2 3 4 5 6 7 8 9 10答案 二.填空题(每小题4分,共20分)11. 在函数12x y x -=+中,自变量x 的取值范围是__________. 12. 已知312=-y x ,2=xy ,则222x y xy -= 13.在平面直角坐标系中,以坐标原点为中心,把点A(4,5)逆时针旋转90°,得到的点A 1的坐标为14.矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,设折痕为EF ,则重叠部分△AEF 的面积等于__________.15.如图,在□ABCD 中,AD=2,AB=4,°=∠30A ,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,则阴影部分面积是 (结果保留π)三.解答题(50分)16.分解因式(每小题4分,共16分) (1)3222245954a b c a bc a b c +- (2) 324322693x y z x y z x y -+-(3) 2(1)(1)x a x a -+- (4) 433()()()a b a a b b b a -+-+-17.(8分)已知关于x,y 的方程组212x y x y m +=⎧⎨-=⎩的解都小于1. ⑴ 求m 的取值范围 .⑵ 化简:13-++m m18.(6分) 如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).第14题第15题(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A 的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标为.19.(10分) 某工厂有一种材科,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成.并要求每人只加工一种配件.根据下表提供的信息。

2019年四川省成都七中育才学校中考数学三诊考试试卷(解析版)

2019年四川省成都七中育才学校中考数学三诊考试试卷(解析版)

A.2019B.-2019C.12019年四川省成都七中育才学校中考数学三诊试卷一、选择题(每小题3分,共30分)1.实数2019的相反数是()2019D.−2.下面几个平面图形中为左侧给出圆锥俯视图的是()1 2019A.B.C.D.3.将6120000用科学记数法表示应为()A.0.612×107B.6.12×106C.61.2×105D.612×1044.函数y=x5中,自变量x的取值范围是()A.x>5B.x<5C.x≥5D.x≤55.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列运算正确的是()A.a2+a3=a5B.(2a3)2=2a6C.a3•a4=a12D.a5÷a3=a27.有一组数据:1,2,3,6,这组数据的方差是()A.2.5B.3C.3.5D.48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为()A.9cm2B.16cm2C.56cm2D.24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是()A.1000(1-x%)2=640 C.1000(1-2x%)=640B.1000(1-x%)2=360 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.15.(1)计算: ⎪ - | 3 - 2 | -3tan 30 ︒ + + π ⎪ ; ⎩2( x + 1) < x + 5三、解答题(共 54 分)⎛ 1 ⎫-1 ⎛ 2019 ⎫0 ⎝ 2 ⎭ ⎝ 2018 ⎭⎧3x -1 > 2(2)解不等式组: ⎨16.解方程: 2 x+ 1 =x 2 - 1 x - 117.某商场为了方便顾客使用购物车,将自动扶梯由坡角 30°的坡面改为坡度为 1:3 的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面 AC 长为 6 10米,求改动后电梯水平宽度增加部分 BC 的长.(结果保留整数,参考数据: 2 ≈1.4,3≈1.7)18.某校为了解全校 2400 名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)((1)这次调查中,样本容量为,请补全条形统计图;(2)小明在上学的路上要经过 2 个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率. 请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数 y=k 1x+b (k 1≠0)与反比例函数 y= k x(k 2≠0)的图象交于 A (-1,-4)和点 B (4,m )(1)求这两个函数的解析式;(2)已知直线 AB 交 y 轴于点 C ,点 P (n ,0)在 x 轴的负半轴上,若△BCP 为等腰三角形,求 n 的值.20.如图 1,以 △R t ABC 的直角边 BC 为直径作⊙O ,交斜边 AB 于点 D ,作弦 DF 交BC 于点 E .(1)求证:∠A=∠F ;(2)如图 2,连接 CF ,若∠FCB=2∠CBA ,求证:DF=DB ;(3)如图 3,在(2)的条件下,H 为线段 CF 上一点,且BH ⊥DF ,若 AD=1△,求 BFE 的面积.FH 1 HC 2,连接 BH ,恰有一、填空题(每小题4分,共20分)21.已知x=3-1,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3mx-1=x-1x-1有正整数解的概率为.k25.如图,点P在第一象限,点A、C分别为函数y=(x>0)图象上两点,射线P A交xxP A125轴的负半轴于点B,且P0过点C,=,PC=CO△,若PAC的面积为,则k=.AB234二、解答题(共30分)12 26.某种蔬菜每千克售价y(元)与销售月份x之间的关系如图1所示,每千克成本y(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x之间满足的函数表达式,并直接写出x的取值范围;(2)求出y2与x之间满足的函数表达式;(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D、E、F分别为△ABC三边BC、AB、AC上的点,且∠B=∠C=∠EDF=a△.BDE△与CFD相似吗?请说明理由;(2)模型应用:△ABC为等边三角形,其边长为8,E为AB边上一点,F为射线AC上一点,将△AEF沿EF翻折,使A点落在射线CB上的点D处,且BD=2.①如图2,当点D在线段BC上时,求AEAF的值;②如图3,当点D落在线段CB的延长线上时,求△BDE△与CFD的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作△R t ABC,且∠ACB=90°,tanA=3,点B 位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;n(3)在(2)的条件下(如图 2),AB 交 x 轴于点 D ,点 E 为直线 AB 上方抛物线上一动点,过点 E 作 EF ⊥BC 于 F ,直线 FF 分别交 y 轴、AB 于点 G 、H ,若以点 B 、G 、H 为顶点的三角形与△ADC 相似,求点 E 的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数 2019 的相反数是:-2009.故选:B .【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数 2019 的相反数是:-2009.故选:B .【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当 原数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数.【解答】解:6120000=6.12×106.故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4. 【分析】根据二次根式的性质,被开方数大于或等于 0,列不等式求范围.【解答】解:根据题意得:x -5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7.【分析】先求平均数,再代入公式S2=即可.【解答】解:x=(1+2+3+6)÷4=3,1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2, (x)n的平均数为x,则方差S2=1 n2019年四川省成都七中育才学校中考数学三诊考试试卷(解析版)[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9.【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10.【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11.【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,2019 年四川省成都七中育才学校中考数学三诊考试试卷(解析版)解得 x 1=0,x 2=-3.故答案为 0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由 AB ∥CD 得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB ∥CD ,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与 x 轴的交点得出 y >0 时 x 的取值范围.【解答】解:如图所示:y >0,则 x 的取值范围是:x <-2.故答案为:x <-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接 EA ,如图,利用基本作图得到 MN 垂直平分 AC ,根据线段垂直平分线的性质得到 EA=EC=5,然后利用勾股定理计算出 AD ,从而得到矩形的周长.【解答】解:连接 EA ,如图,由作法得 MN 垂直平分 AC ,∴EA=EC=5,在 △R t ADE 中,AD= 5232 =4,所以该矩形的周长=4×2+8×2=24.故答案为 24.(2) ⎨( )【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.15. 【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式= 2 - (2 - 3) - 3 ⨯3 3+ 1=1⎧3x -1>2① ⎩2 x + 1 <x + 5②解①得:x >1解②得:x <3∴不等式组的解集为:1<x <3【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16. 【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论求解可得.【解答】解:方程两边都乘以(x+1)(x -1),得:2+(x+1)(x -1)=x (x+1),解得:x=1,检验:x=1 时,(x+1)(x -1)=0,则 x=1 是分式方程的增根,所以分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17. 【分析】根据题意可得:AD :CD=1:3,然后根据 AC=6 10 米,求出 AD 、CD 的长度,然后在△ABD 中求出 BD 的长度,最后 BC=CD -BD 即可求解.【解答】解:由题意得,AD :CD=1:3,设 AD=x ,CD=3x ,则 AC = x 2 + (3x)2 = 10 x = 6 10 ,解得:x=6,则AD=6,CD=18,在ABD中,△∵∠ABD=30°,∴BD=63,则BC=CD-BD=18-63≈8(m).答:改动后电梯水平宽度增加部分BC的长约为8米.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据题意构造直角三角形,利用三角函数的知识求解.18.【分析】(1)根据自行车的人数和所占的百分比求出总人数,再用总人数乘以步行所占的百分比求出步行的人数,从而补全统计图;(2)画树状图列出所有等可能结果和小明在两个路口都遇到绿灯的情况数,然后根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人),则样本容量为80;步行的人数有80×20%=16(人),补图如下:故答案为:80;(2)画树状图如下:【解答】解:(1)∵点 A (-1,4)在反比例函数 y= 2 (k 2≠0)的图象上,⎨ ⎩ 1 ∴ ⎨ 1b = - 3由树状图知,共有 9 种等可能结果,其中两个路口都遇到绿灯的结果数为 1,1所以两个路口都遇到绿灯的概率为 .9【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19. 【分析】(1)先将点 A 坐标代入反比例函数解析式中求出 k2,进而求出点 B 坐标,最后将点 A ,B 坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出 BC 2=32,CP 2=n 2+9,BP 2=(n -4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.kx∴k 2=-1×(-4)=4,∴反比例函数解析式为 y= 4 x,将点 B (4,m )代入反比例函数 y= 4 x中,得 m=1,∴B (4,1),将点 A (-1,-4),B (4,1)代入一次函数 y=k 1x+b 中,得⎧-k + b = - 414k + b=1,⎧k =1⎩,∴一次函数的解析式为 y=x -3;(2)由(1)知,直线 AB 解析式为 y=x -3,∴C (0,-3),∵B (4,1),P (n ,0),∴BC 2=32,CP 2=n 2+9,BP 2=(n -4)2+1,∵△BCP 为等腰三角形,∴①当 BC=CP 时,( 根据 BDBD,可得∠F=∠BCD ,从而证明结论. (∴32=n 2+9,∴n= 23 (舍)或 n=- 23 ,②当 BC=BP 时,32=(n -4)2+1,∴n=4+ 31 (舍)或 n=4- 31 ,③当 CP=BP 时,n 2+9=(n -4)2+1,∴n=1(舍),即:满足条件的 n 为- 23 或(4- 31 ).【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.20. 【分析】1)连接 CD ,由 BC 为直径可知 CD ⊥AB ,根据同角余角相等可知∠A=∠BCD ,» »(2)连接 OD 、OF ,易得∠OBD=∠ODB ,由∠BDF=∠FCB=2∠CBA 可得∠FDO=∠ODB ,进而可证△BOD ≌△FOD ,即可得到 DF=DB .(3)取 CH 中点 M ,连接 OM ,所以 OM 是△BHC 的中位线,OM ∥BH ,又 BH ⊥DF ,由垂径定理可知 FN=DN ,设 FH=x ,则 FC=3x ,OD=OC=OB=2x ,设∠CBA=α,则∠CBD=∠DCA=α,由勾股定理可知 BF= 7 x ,继而得出 tan α=BD 、BF 、BG 、EF 长,再求三角形面积即可.【解答】 1)证明:连接 CD , 1 7,由 AD=1,即可计算 CD 、∵BC 为直径,∴∠CDB=90°,∵ BD = BD ,∵ BF = BF ,∴∠A+∠DCA=90°,∵∠C=90°,∴∠BCD=∠A ,» »∴∠F=∠BCD ,∴∠F=∠A .(2)连接 OD 、OF ,∵OB=OD=OF ,∴∠OBD=∠ODB ;∠ODF=∠OFD ,» »∴∠BDF=∠FCB=2∠CBA ,∴∠OBD=∠ODB=∠ODF=∠OFD ,又∵OD=OD ,∴△BOD ≌△FOD (AAS ),∴DF=DB .(3)取 CH 中点 M ,连接 OM ,交 FD 于 N 点,设∠CBA=α,则∠CBD=∠DCA=α,∵CD=CD,⎨FN=DN⎪∠ONM=∠MNF∴tanα=x∵HM=MC,BO=CO,∴ON∥BH,OM=12BH,∵BH⊥FD,∴FN=DN,»»∴∠DBO=∠DFC,由(2)得∠OBD=∠ODF,在△ODN和△MFN中,⎧∠DFC=∠ODF⎪,⎩△ODN≌△MFN(ASA),∴FM=OD,设FH=x,则FC=3x,OD=OC=OB=2x,∴在Rt△BFC中,BF=BC2-FC2=7x,∵BH⊥FD,∠BFH=90°,∴∠FBH=∠CFD=α,1=,7x7∴CD=DADA1==7,tan∠DCA tanα∴BD=FD=CDS△BEF=1777==7,tan∠CBD tanα∴BC=BD2+CD2=72+(7)2=214.∴x=14 2,∴BF=72 2,∴BG=77 4,∵OD∥FC,∴FC EF3==,OD ED2321∴EF=FD×=,55211477⨯⨯=.24540【点评】本题是一道有关圆的几何综合题,难度较大,主要考查了圆周角定理,三角形中位线定理、全等三角形性质及判定,相似三角形的判断和性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形,利用角相等解三角形.21.【分析】根据完全平方公式即可求出答案.【解答】解:∵x=3-1,∴x+1=3,∴(x+1)2=3,∴x2+2x+1=3,∴x2+2x=2,故答案为:2【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.22.【分析】首先根据二次函数的解析式求得其对称轴,然后写出该点关于对称轴的对称点的坐标即可.3603,SV ABC = ⨯ 2 3 ⨯1 = 3 ; 所以图案面积=S 半圆 CBF +S △ABC -S 扇形 ACB = 3π+ 3 - = + 3 ⎪ cm 2,6 + 3 .24. 【分析】解方程 3【解答】解:二次函数 y=ax 2+4ax+5 的对称轴为 x=-4a2a=-2,∴点点 P (2,17)关于 l 的对称点的坐标为(-6,17),故答案为:(-6,17).【点评】本题考查了二次函数的性质,解题的关键是求得二次函数的对称轴,难度不大.23. 【分析】由图可知:图案的面积=半圆 CBF 的面积+△ABC 的面积-扇形 ABC 的面积,可根据各自的面积计算方法求出图案的面积.【 解 答 】 解 : ∵ S=4π半 圆 CBF=1 3π1π ⨯ ( 3) 2 = , S 2 224π ⎛ π ⎫ 2 3 ⎝ 6 ⎭故答案为:π【点评】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.mx 4- 1 =得 x = ,当 m=1 时,该方程有正整数解,据此 x - 1 x - 1 m + 1依据概率公式求解可得.【解答】解:解方程 3 mx 4- 1 = ,得: x = ,x - 1 x - 1 m + 1当 m=1 时,该方程有正整数解,所以使关于 x 的方程 3 mx 1- 1 = 有正整数解的概率为 ,x - 1 x - 1 5故答案为: 15.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.25. 【分析】作 PQ ⊥x 轴于 Q ,AM ⊥x 轴于 M ,CN ⊥x 轴于 N ,根据平行线分线段成比例定理表示出 A 、C 、P 的坐标,然后 S △PAC =S 梯形 APQM -S 梯形 AMNC -S 梯形 PQNC ,列式计算即可.【解答】解:作 PQ ⊥x 轴于 Q ,AM ⊥x 轴于 M ,CN ⊥x 轴于 N ,∴ AM ∴ A ⎛ 3k 2 ⎫ , n ⎪ , C , n ⎪ ,n + n ⎪ - - n + n ⎪ - - n + n ⎪⋅ = , ⎭ ⎝ n2n ⎭ 2 ⎝ 3 2 ⎭ ⎝ n 2n ⎭ 2 ⎝2 ⎭ n 24∴PQ ∥AM ∥CN ,AB2 CN OC 1= = , = = ,PQ PB 3 PQ OP 2设 PQ=n ,∴ AM = 2 1n , CN = n ,3 2k∵点 A 、C 分别为函数 y= (x >0)图象上两点,x⎛ 2k 1 ⎫⎝ 2n 3 ⎭ ⎝ n 2 ⎭∴ON= 2k n,4k∴OQ=2ON= ,n4k∴P ( ,n ),n∵S △PAC =S 梯形 APQM -S 梯形 AMNC -S 梯形 PQNC ,∴ 1 ⎛ 2 2 ⎝ 3 ⎫ ⎛ 4k 3k ⎫ 1 ⎛ 2 1 ⎫ ⎛ 2k 3k ⎫ 1 ⎛ 1 ⎫ 2k 35 ⎪ ⎪整理得,7k=35,解得 k=5.故答案为 5.【点评】本题考查了反比例图象上点的坐标特征,图象上点的坐标适合解析式.26. 【分析】(1)利用待定系数法求 y 1 与 x 之间满足的函数表达式,并根据图 1 写出自变量 x 的取值范围;(2)利用顶点式求 y 2 与 x 之间满足的函数表达式;(3)根据收益=售价-成本,列出函数解析式,利用配方法求出最大值.⎧3k+b=5⎪k=-⎩6k+b=3∴y1=-2(3)由题意得:w=y-y=-x+7-⎢(x-6)2+1⎥,3⎣3⎦=-1【解答】解:(1)设y1=kx+b,∵直线经过(3,5)、(6,3),⎧2⎨,解得:⎨3,⎪⎩b=73x+7(3≤x≤6,且x为整数),(2)设y2=a(x-6)2+1,把(3,4)代入得:4=a(3-6)2+1,解得a=1 3,∴y2=13(x-6)2+1,2⎡1⎤121017x2+x-6=-(x-5)2+,33337当x=5时,y最大值=.3故5月出售这种蔬菜,每千克收益最大.【点评】本题主要考查二次函数的应用,考查了利用待定系数法求二次函数和一次函数的解析式以及二次函数的最值问题,并注意实际问题中的x的取值范围.27.【分析】(1)利用等式的性质判断出∠BED=∠CDF,即可得出结论;(2)①同(1)的方法判断出△BDE∽△CFD,得出比例式,再设出AE=x,AF=y,进而表示出BE=8-x,CF=8-y,CD=6,代入比例式化简即可得出结论;②同①的方法即可得出结论.【解答】解:(1△)BDE∽△CFD,理由:∠B=∠C=∠EDF=a,△在BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°-∠B=180°-α,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°-∠EDF=180°-α,∴∠BED=∠CDF,∴ BD∴2 ⎧∵∠B=∠C ,∴△BDE ∽△CFD ;(2)①设 AE=x ,AF=y ,∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=8,由折叠知,DE=AE=x ,DF=AF=y ,∠EDF=∠A=60°,△在 BDE 中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°-∠B=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°-∠EDF=120°,∴∠BED=∠CDF ,∵∠B=∠C=60°,∴△BDE ∽△CFD ,BE DE = = CF CD FD∵BE=AB -AE=8-x ,CF=AC -AF=8-y ,CD=BC -BD=6,8 - x x = = , 8 - y 6 y∴ ⎨2 y = x(8 - y) ⎩ 6 x = y(8 - x),∴∴ x 10 5 = = ,y 14 7AE 5 = ; AF 7 ②设 AE=x ,AF=y ,∵△ABC 是等边三角形,∴∠A=∠ABC=∠ACB=60°,AB=BC=AC=8,由折叠知,DE=AE=x ,DF=AF=y ,∠EDF=∠A=60°,△在 BDE 中,∠ABC+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°-∠ABC=120°,∴BD ∴ 2∴ ⎨10 x = y(8 - x) . ∴△BDE △与 CFD 的周长之比为 DE(∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°-∠EDF=120°,∴∠BED=∠CDF ,∵∠ABC=∠ACB=60°,∴∠DBE=∠DCF=120°,∴△BDE ∽△CFD ,BE DE = = CF CD FD ∵BE=AB -AE=8-x ,CF=AF -AC=y -8,CD=BC+BD=10,8 - x x = = y - 8 10 y⎧2 y = x( y - 8) ⎪ ⎪ ⎩x 1 ∴ = y 3∵△BDE ∽△CFD ,x 1 = = . DF y 3【点评】此题是相似三角形综合题,主要考查了折叠的性质,等边三角形的性质,相似三角形的判定和性质,等式的性质,判断出△BDE ∽△CFD 是解本题的关键.28. 【分析】 1)由∠ACB=90°可联想到构造 K 字形相似.即可得△CNB ~△AMC ,由相似比=tan ∠BAC= BC AC=3,即可求出 BN 、NC ,从而得到 B 的坐标. 1 (2)以 A 为顶点可设为 y=a (x+1)2+2,将 C 点代入即可求出 a=− ,然后将 B 代入解析 2式也成立即可判定抛物线经过点 B ,(3)由直线 AC 解析式可知∠ACD=45°,由 EF ⊥BC 可知 AC 平行 HG ,以点 B 、G 、H为顶点的三角形与△ADC 相似,有两种情况:Ⅰ.∠HGB=45°,即 BG ⊥y 轴,G 点坐标(0,-6),即可求出直线 EG 解析式,进而求出 E 点.Ⅱ.).∠HBG=∠ACD=45°时,∴G坐标为(0,−13 3 ),同理可求此时 E 点坐标. 【解答】解:(1)过 C 点作 MN 垂直 x 轴.过 A 、B 两点分别作 AM ⊥MN ,垂足为 M ,BN⊥MN ,垂足为 N ,∴BC∵∠ACB=90°,∴∠CBN=∠ACM,∴△CNB~△AMC,BN CN==AC CM AM,∵A(-1,2)、C(1,0),∴AM=2,CM=2,又∵tanA=BCAC=3,∴BN=6,CN=6,∴B点坐标为(-5,-6).(2)设以A(-1,2)为顶点的抛物线为y=a(x+1)2+2,∵抛物线经过C(1,0)∴a(1+1)2+2=0,∴a=−1,2∴函数解析式为y=−12(x+1)2+2,当x=-5时,y=−1(−5+1)2+2=-6,2∴以A为顶点,且过点C的抛物线为y=−(3)∵点A(-1,2)、C(1,0),∴直线yAC =-x+1,∠ACD=45°,12(x+1)2+2经过点BB(-5,-6).= ⎪⎩ 2 解得 ⎨ (不合题意舍去),得 ⎨ 2 ⎪ y = - 15 - 6 ⎪ y = 15 - 6 ⎪ ⎪∵EF ⊥BC ,∴∠BHC=DAC ,∴以点 B 、G 、H 为顶点的三角形与△ADC 相似,有两种情况:Ⅰ.如图 2(1).∠HGB=45°,∵EG ∥AC ,∴BG ∥CD ,即 BG ⊥y 轴,∴G 坐标为(0,-6)∴直线 y EG -x -6,⎧ y = - x - 6 ⎪ 依题意得: ⎨ 1 y = - ( x + 1)2 + 2 ,⎧ x = 15 ⎧ x = - 15 1 1 2,∴当∠HGB=∠ACD=45°时△HBG ∽ADC ,即:E 点坐标为 (- 15, 15 - 6) .Ⅱ.如图 2(2).∴直线y EG=−x−,⎪⎪3依题意得:⎨,⎪y=-(x+1)2+2⎪1⎪2⎧⎪⎩⎩⎪23,3⎛,3∠HBG=∠ACD=45°时,△HBG∽△ACD,∵过B点作BP⊥y轴,∴P点(0,-6)∵∠CBP=45°,∴∠GBP=∠ABC,又∵tan∠GBP=GP1,tan∠ABC=,BP=5,BP355∴GP=,即G点坐标为(0,−),33133⎧13y=-x-1⎪⎩2⎧105105x=x=-⎪33解得⎨,(不合题意舍去),得⎨,⎪y=-105-6⎪y=105-6⎪133⎛105105⎫即E点为 --6⎪,⎝⎭综上所述:E点坐标为(-15,15-6)或 -⎝105105⎫3-6⎪⎪,⎭【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中育才学校初2019届八年级下期第4周周测数学试题
班级_______姓名________学号________
A 卷(100分)
一.选择题(每题3分,共30分)
1.在下面的汽车标志图形中,是中心对称但不是轴对称有( ) A .2 个 B .3个 C .4个 D .5个
2.下列各式从左到右的变形中,是因式分解的为( ) A 、bx ax b a x -=-)(
B 、222)1)(1(1y x x y x ++-=+-
C 、)1)(1(12-+=-x x x
D 、c b a x c bx ax ++=++)(
3.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且AOC ∠的度数为100°,则DOB ∠的度数为( )
A.36°
B.38°
C.34°
D.40° 4. 将a 2
b ﹣ab 2
提公因式后,另一个因式是( )
A .a+b
B .a+2b
C .a ﹣b
D .a ﹣2b
5.如图,在等边△ABC 中,点O 在AC 上,且AO=3,CO=6,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( ) A.4 B.5 C.6 D.8
6.如图,函数x y 2=和4+=ax y 的图象相交于点A (m ,3),则不等式x 2<4+ax 的解集为( )
A.3
2
x > B.3x > C.3x < D. 23<
x 7. 如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于E,BC=5,DE=2,则△BCE 的面积等于( ) A.5 B.7 C.10 D.3 8.若1
124n n a
a -+-的公因式是M,则M 等于 ( )
A.1n a -
B.2n a
C.12n a -
D.12n a + 9.若0<a ,则不等式a x a <的解集是( )
A .1<x
B .1>x
C .1->x
D .1-<x
第3题
二.填空题(每小题4分,共20分) 12. 已知3
1
2=
-y x ,2=xy ,则222x y xy -= 13.在平面直角坐标系中,以坐标原点为中心,把点A(4,5)逆时针旋转90°,得到的点A 1的坐标为 14.矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,设折痕为EF ,则重叠部分△AEF 的面积等于__________.
15.如图,在□ABCD 中,AD=2,AB=4,°=∠30A ,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,则阴影部分面积是 (结果保留π) 三.解答题(50分)
16.分解因式(每小题4分,共16分)
(1)3222245954a b c a bc a b c +- (2) 324322
693x y z x y z x y -+-
(3) 2
(1)(1)x a x a -+- (4) 4
3
3
()()()a b a a b b b a -+-+-
17.(8分)已知关于x,y 的方程组21
2x y x y m +=⎧⎨-=⎩
的解都小于1.
第14题
第15题
⑴ 求m 的取值范围 .⑵ 化简:13-++m m
18.(6分) 如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).
(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为 (0,-4),画出平移后对应的△A 2B 2C 2;
(2)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标为 .
20.(10分) 如图(1),已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE 、BG .
(1)试猜想线段BG 和AE 的关系(位置关系及数量关系),请直接写出你得到的结论: (2)将正方形DEFG 绕点D 逆时针方向旋转一角度a 后(0°<a <90°),如图(2),通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由; (3)若BC=DE=m ,正方形DEFG 绕点D 逆时针方向旋转角度a (0°<a <360°)过程中,当AE 为最大值时,求AF 的值.
B 卷(20分)
一.填空题(每小题4分,共12分)
21. 如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到B A O '''∆,点A 的对应点在直线x y 4
3
=上一点,
则点B 与其对应点B '的距离是
22. 已知关于x 的不等式组0
320x a x ->⎧⎨
->⎩
的整数解共有6个,则a 的取值范围是____________
二.解答题(8分)
24.如图,直线1l 与坐标轴分别交于点A 、B,经过原点的直线2l 与AB 交于点C ,与过点A 且平行于y 轴的直线交于点D ,已知点C (3,
15
4
),且OA=8.在直线AB 上取点P ,过点P 作y 轴的平行线,与CD 交于点Q, 以PQ 为边向右作正方形PQEF.设点P 的横坐标为t. (1)求直线1l 的解析式;
(2)当点P 在线段AC 上时,用t 表示正方形PQEF 与△ACD 重叠部分(阴影部分)的面积; (3)设点M 坐标为(4,9
2
),在点P 的运动过程中,当点M 在正方形PQEF 内部时,请直接写出t 的取值范围.。

相关文档
最新文档