多自由度系统的振动
第六讲--多自由度系统振动-2
解: 1)求柔度系数
m
31
k/5
m
21
k/3
P=1
2m k
11
32 4
P=1
22 4 12
P=1
33 9
23 4 13
11 1/ k 21 31 11
22
1 k
1 k /3
4
22
1 k
1 k/3
1 9
k /5
3.3.1 柔度法
1 1 1
柔度矩阵: [ ] 1 4 4
1 4 9
2)求频率
2 0 0
质量矩阵: [M] m 0 1 0
0 0 1
由频率方程: M I 0
2 1 1 m 2 4 4 0 ,
2 4 9
展开式为: 3 15 2 42 30 0
1 m m2
方程三个根为: 1 11.601 2 2.246 3 1.151
三个频率为:
1 0.2936
k m
4Y
4 4
3.4.1 主振型矩阵与正则坐标
(2)正则坐标 任意一个质点的位移 y 都可按主振型来组合:
y1 1Y11 2Y12 3Y13 y2 1Y21 2Y22 3Y23
yi 1Yi1 2Yi2 3Yi3
yn 1Yn1 2Yn2 3Yn3
nY1n nY2n
y1
y2
Y1 Y121
Y YYY132111
Y2 1
Y2 2
Y32
Y3 1
Y3 2
Y33
Y14 Y4
2
Y34
Y41
Y2 4
Y3 4
Y44
主 振
型 矩 阵
第一振型
1
多自由度系统的振动
m1x1 2kx1 kx2 0 2mx2 kx1 2kx2 0
5.1 两自由度系统的模态
m
0
0 2m
xx12
2k k
k
2k
xx12
5.1 两自由度系统的模态
主振动 x(t) u cos(t )
代入运动微分方程 Mx Kx 0
化简可得代数齐次方程组 (K 2M )u 0
k1+k2
-k2
2
m1
-k2
k2+k3
2m2
uu12
0 0
上式存在非零解的充要条件:系数行列式为零,即:
K 2M 0
k1+k2 2m1
两自由度系统的振动
多自由度系统的特点:
各个自由度彼此相互联系,某一自由度的振动往 往导致整个系统的振动。
运动微分方程的变量之间通常相互耦合,需要求 解联立方程。
返回首页
两自由度系统的振动
多自由度系统是指具有两个以上自由度以上的动力学系 统,二自由度系统是最简单的多自由度系统。
汽车左右对称,化为平面系统
5.1 两自由度系统的模态
再将初始条件(2)代入式,得
A(1) 1
0,
1 0,
A(2) 1
1,
2 0
x1(t) cos2t cos 3
kt m
(cm)
x2 (t) cos2t cos 3
k t (cm)
m
这表明,由于初始位移之比等于该系统的第二振幅比,因 此,系统按第二主振型以频率ω2作谐振动。
汽车振动基础第4章-多自由度(定稿)
k11 k1 x1 k2 x1 k1 k2
k21 k12 k2 x1 k2
k22 k2 x2 k3 x2 k2 k3
j2
k31 k13 0
k32 k23 k3 x2 k3
0 k1 k 2 k 2 K k 2 k 2 k3 k3 0 k3 k3
– 拉格朗日法
• 方程的形式
广义坐标
qi (i 1, 2,3,, n)
T:系统的总动能
d T T ( ) Qi 0 dt qi qi
i 1, 2,3, , n
对应于第i个广义 坐标的广义力
– 保守系统
» 系统作用的主动力仅为势力 Qi
d T T U ( ) 0 dt qi qi qi
m2 m22 m3 4
④柔度矩阵的影响系数法
F ij
柔度影响系数 ij 的意义是在第j个坐标上施加单位力作用时,在第i个坐 标上引起的位移。 例题4-8 用影响系数法求图示系统的柔度矩阵
11 F 21 31
12 22 32
13 23 33
也可写成 其中
或
或
MX KX 0
力方程 位移方程
K 1MX X 0
m x 0 或 x
称为柔度,而
FMX X 0
1 称为柔度矩阵
1 k
FK
②刚度矩阵的影响系数法
K kij
刚度影响系数 k 的意义是使系统的第j个坐标产生单位位移,而其它的 ij 坐标位移为零时,在第i个坐标上所施加的作用力的大小。
仅代表外部激励 广义力
第三章(多自由度系统的振动)
x
x1 1
节点
x3 1
3 2
k m
x2 1
理解固有振型
理解固有振型
理解固有振型
返回
固有振型的正交性
1.固有振型的归一化
2 r 1 3 2 r 1 3
都是固有振型向量 ① 按某一自由度的幅值归一化
( K 2 M ) 0
1 1 1 2 1 1
有非零
det( K 2 M ) 0
1
k (1 2 )k , 2 m m
多自由度系统的固有振动
u1 k1 m1 k2 m2 u2 k3
固有振动:
k (1 2 ) k 1 1 u1 (t ) sin t 2 m t 1 , u2 (t ) 1 sin m 1
固有振型的正交性
加权正交性的简洁表示
T r M s 0, r s
M s M r , r s
T r
rT M s M r rs
rs
def
1, r s 0, r s
rT K s 0, r s
rT K s K r , r s
【问题】在已知固有频率求固有振型时,所得到的N个线性方程中有几个是独
立的?
( K r2 M ) r 0
结论: 当 r 不是特征方程的重根时,上述方程只有N-1个方程是独立的(见 <<振动力学>>刘延柱第74页).
多自由度系统的固有振动
【例】设图中二自由度系统的物理参为 m1 m2 m, k 1 k 3 k , k 2 k , 0 1 ,确定系统的固有振动.
多自由度系统的振动模态分析
多自由度系统的振动模态分析振动是物体在受到外界作用力或受到初始扰动后产生的周期性运动。
在工程领域中,多自由度系统的振动模态分析是一项重要的研究内容。
本文将介绍多自由度系统的振动模态分析的基本原理和方法。
一、多自由度系统的定义多自由度系统是指由多个相互连接的质点组成的系统。
每个质点都可以在三个坐标方向上自由运动,因此系统的自由度就是质点的个数乘以每个质点的自由度。
多自由度系统的振动模态分析可以帮助我们了解系统的固有振动特性,为工程设计和结构优化提供依据。
二、振动模态的概念振动模态是指多自由度系统在固有频率下的振动形态。
每个固有频率对应一个振动模态,振动模态的数量等于系统的自由度。
振动模态分析可以帮助我们确定系统在不同频率下的振动特性,从而预测系统的响应和寻找可能的共振点。
三、振动模态分析的方法1. 模态分析方法模态分析是一种通过数学方法求解系统的固有频率和振动模态的方法。
常用的模态分析方法包括有限元法、模态超级位置法等。
有限元法是一种基于离散化的方法,将系统分割成有限个小单元,通过求解每个单元的振动特性,最终得到整个系统的振动模态。
模态超级位置法是一种基于物理原理的方法,通过测量系统在不同频率下的振动响应,推导出系统的振动模态。
2. 模态参数的计算模态参数是指描述振动模态特性的参数,包括固有频率、振型、振幅等。
模态参数的计算可以通过实验测量和数值模拟两种方法。
实验测量是通过激励系统,测量系统在不同频率下的振动响应,并通过信号处理和频谱分析等方法计算出模态参数。
数值模拟是通过建立系统的数学模型,利用计算机仿真软件求解系统的振动模态。
四、振动模态分析的应用振动模态分析在工程领域有广泛的应用。
首先,振动模态分析可以帮助工程师了解系统的固有振动特性,从而优化设计和改善结构。
其次,振动模态分析可以用于故障诊断和预测,通过对系统的振动模态进行监测和分析,可以判断系统是否存在异常或潜在故障。
此外,振动模态分析还可以应用于声学工程、航天工程、汽车工程等领域。
多自由度系统振动的研究
多自由度系统振动的研究1.建立系统的数学模型:多自由度系统的数学模型通常可以通过运动微分方程来描述,这些微分方程可以由拉格朗日方程或哈密顿方程获得。
建立系统的数学模型是研究多自由度系统的第一步,它能够定量描述系统的振动特性。
2.振动模态分析:振动模态是指各种独立振动模式对应的特征值及特征向量。
在多自由度系统中,有多个振动模态,每个振动模态都有对应的特征值和特征向量,它们描述了系统在不同振动模态下的振动特性。
振动模态分析可以帮助我们理解系统的振动特性、模式和共振现象,并为系统的设计和优化提供依据。
3.模态叠加方法:模态叠加方法是一种常用的分析多自由度系统振动响应的方法。
该方法将系统的初始条件和外力激励在模态基下展开,通过将各模态响应相加,得到系统的总体振动响应。
模态叠加方法可以简化计算,使得问题的求解更加方便,应用广泛。
4.模态分析与结构动力学:多自由度系统的模态分析与结构动力学密切相关。
结构动力学是研究结构体受外力激励下的振动响应的学科,它通常涉及到多自由度系统的模态分析、频率响应和时域分析等。
模态分析为结构动力学提供了基础,通过分析结构的振动模态,可以预测结构在不同激励下的振动响应。
5.数值模拟与实验验证:在研究多自由度系统的振动过程中,可以借助于数值模拟和实验验证相结合的方法。
数值模拟可以通过有限元、边界元或半经验法等方法,对系统的振动响应进行计算和预测。
实验验证可以通过振动台试验或实验模态分析等方式,对系统的振动特性进行实测,从而验证数值模拟的准确性。
总之,研究多自由度系统振动是一个复杂而又重要的课题。
通过建立数学模型、进行振动模态分析、应用模态叠加方法以及进行数值模拟和实验验证等手段,可以更深入地了解多自由度系统的振动特性,为实际工程问题的求解和优化提供科学依据。
结构动力学多自由度系统振动
运用功旳互等原理可知,刚度矩阵是对称阵,即有kij=kji, 于是上述刚度矩阵为:
k1 k2
k2
K 0
0
0
k2 k2 k3
k3 0
0
0 k3 k3 k4 k4
0
0 0 k4 k4 k5 k5
0
0
0
k5
k5
⒉ 柔度法 柔度系数aij定义为:
在第j个质量上作用单位力时在第i个质量上产生旳位移。
K12 k2 K22 k2 k3
K32 k3 K42 0 K52 0
K13 0 K23 k3 K33 k3 k4 K43 k4 K53 0
K14 0 K24 0 K34 k4 K44 k4 k5 K54 k5
K15 0 K25 0 K35 0 K45 k5 K55 k5
(a) m1 mi
mj mn
y1
yi yj yn
m1 y1
(b)
mi yi
1
i
j
m j y j
mn yn
ii
ji
1
(c)
ij
ij
jj
(a) m1
mi
mj mn
y1
yi yj yn
m1 y1
(b)
mi yi
1
i
j
m j y j
mn yn
ii
ji
1
(c)
ij
ij
jj
于是: 若在第j个质量上作用有力F,则在第i个质量上产
2
2
2
1 Mx 2 1 m[x 2 2Lx cos L2 2 ] 1 kx2 mgL(1 cos)
2
2
2
d dt
第三部分 多自由度系统的振动
q t uη(t) u r t
r
r 1
n
u11 u12 u1n u u u 21 22 2n 1 (t ) 2 (t ) n (t ) un1 un 2 unn
(r )
1
r
u
(r )
r u
( r )T
Mu( r )
正则振型
主振型 正则化因子
组成正则振型矩阵
u u
(1)
u
(2)
u
(n )
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的基本步骤: (4)用正则振型矩阵进行坐标变换(方程组解耦)
q t uη t 令 代入无阻尼自由振动系统,并用uT左乘方程
2 r t 2 rrr t r r t Nr (t )
r 1,2,, n
(5)按单自由度相关方法求各正则坐标下的响应 各正则坐标下单自由度自由振动系统,对初始条件的 响应 1)原坐标下的初始条件变换为正则坐标下的初始条件
η0 u q0 T η0 u Mq0 ,
u( s )T Ku(r ) 0
(r s )
u( r )T Ku(r ) r2
M r u Mu
T
K r uT Ku 12 2 2 Λ 2 n
1 1 I 1
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的类型: 无阻尼振动系统对初始条件的响应 无阻尼振动系统对任意激励的响应 有阻尼振动系统对各种激励的响应 (简谐激励、周期激励、任意激励)
第三章-多自由度系统振动6.19
第三章 多自由度系统振动多自由度系统和单自由度系统的振动特性是有区别的。
单自由度系统受初始扰动后,按系统的固有频率作简谐振动。
多自由度系统有多个固有频率,当系统按某一个固有频率作自由振动时,各独立坐标在振动过程中相互关系是固定的,这个关系叫振幅比,也叫作主振型或模态。
主振型是多自由度系统以及弹性体振动的重要特征。
多自由度系统的振动方程是多个二阶微分方程组,这些方程一般是耦合的。
多自由度振动的求解有两种方法:直接积分法和振型叠加法。
直接积分法可直接根据微分方程求出响应,涉及的概念不多且有应用软件,本章不做介绍。
振形叠加法要先求出系统的固有频率和振型,在此基础用叠加法求响应,物理概念清楚、并且是模态分析与参数识别的理论基础。
因此本章将先用较多的篇幅介绍多自由度系统的固有振动特性、振型叠加法和传递函数。
3.1 振动微分方程虽然一些多自由度系统数目较多,有些相当复杂,但建立多自由度系统振动微分方程并没有新理论和方法,都是动力学基本理论和方法,本节只通过例题介绍多自由度系统振动微分方程基本形式。
[例一] 试建立图3-1所示3自由度系统的运动微分方程。
三个质量只作水平方向的运动,并分别受到激振力()t P 1,()t P 2和()t P 3的作用,质量块的质量分别为1m ,2m 和3m ,弹簧刚度分别为1k ,2k 3k 和4k ,阻尼分别为1c ,2c 3c 和4c 。
图3-1 3自由度系统解:分别用三个独立坐标1x ,2x 和3x 描述三个质量块的运动,坐标原点分别取在1m ,2m 和3m 的静平衡位置。
质量块的速度分别为1x,2x 和3x ,加速度分别为1x,2x 和3x 。
每个质量块的受力图如3-2(a 、b 、c )所示,则由受力图根据牛顿第二定律,得系统的运动方程为:图3-2 (a) 图3-2(b)图3-2(c))()()(1212112121111t P x x c x c x x k x k xm +------= )()()()()(232321232321222t P x x c x x c x x k x x k x m +---+---= )()()(3343233432333t P x c x x c x k x x k xm +--+--= 或)()()(1221212212111t P x k x k k x c x c c xm =-++-++ )()()(23323212332321222t P x k x k k x k x c x c c x c x m =-++--++- )()()(3343233432333t P x k k x k x c c x c xm =++-++- 上述方程组可以用矩阵表示为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)()()(000032132143333222213214333322221321321t P t P t P x x x k k k k k k k k k k x x x c c c c c c c c c c x x x m m m三个二阶微分方程是耦合的,这是因为矩阵中有非零的非对角元素。
第2章——多自由度系统的振动——多自由度方程的建立
船体振动基础1第2章多自由度系统的振动第章多自由度系统的振一、引言二、两自由度系统的振动2上节课内容的回顾1.几个重要概念主振型第阶主振型第二阶主振型多自由度系统主振型,第一阶主振型,第二阶主振型基频,第一阶固有频率,第二阶固有频率,……主振动,模态个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P37)⎬⎫=++−=−++00)(2212111x k k x k xm x k x k k xm &&&&⎭)(2321222个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P41-43)m &&⎭⎬⎫=++−=−++0)(0)(23212222212111x k k x k xm x k x k k x&&①假设简谐形式的解振动时,两个质量按相同频率和相位角作简谐振动。
()()⎭⎬⎫+=+=θωθωt A x t A x n n sin sin 2211上节课内容的回顾将简谐振动解代入运动方程式上节课内容的回顾解特征方程式的根,可以得到:上节课内容的回顾将特征值代入②的振幅A1和振幅A2,得到对应于和的振幅A1和振幅A2之间的两个确定的比值:21ω上节课内容的回顾⑥主振动的确定。
z 系统以某一阶固有频率按其相应的主振型作振动,z 称为系统的主振动(1)(1)⎫第一阶主振动为:()1111(1)(1)(1)22111111sin()sin()sin x A t xA t A t ωθωθβωθ=+⎪⎬=+=+⎪⎭第二阶主振动为:(2)(2)1122sin()x A t ωθ⎫=+⎪()(2)(2)(2)22222122sin()sin x A t A t ωθβωθ⎬=+=+⎪⎭z 系统作主振动时,各点同时经过静平衡位置和到达最大偏离位置,z 以确定的频率和振型作简谐振动。
上节课内容的回顾⑦一般情况下自由振动的通解。
并非在任何情况下系统都会作主振动形式的运动,一般情况下系统运动方程的通解为上述两种主振动的叠加:o在一般情况下,系统的自由振动是两种不同频率的主振动的线性组合,其结果不一定是简谐振动。
多自由度系统振动理论及应用
对一些较简单的问题,用牛顿定律来建立振动微分方程是简便的.
图4-1所示为无阻尼三自由度弹簧质量系统,可参照二自由度系统的方
法,写出其微分方程:
下一页
返回
4.1
多自由度系统的振动微分方程
或更一般地写成
该式可简单地写成
式(4-2)称为用矩阵符号表示的作用力方程,它可以代表许多种运动方程
种心灵的孤独。
2. 与 个 别 人 难 以 相 处
一些学生能够与多数人保持良好的关系,但与个别人交往
不 良 。 因 此 ,常 会 影 响 情 绪 ,如 鲠 在 喉 。
上一页 下一页
返回
任 务 一了解自己与人交往的现状
3. 与 他 人 交 往 平 淡
一些学生虽然能与他人交往,但多属点头之交,没有关系
人际关系新起点
1
任 务 一 了解自己与人交往的现状
2
任 务 二 调整不良交际心态
任 务 一了解自己与人交往的现状
任 务 提 出 :了 解 自 己 与 人 交 往 的 现 状 。
任 务 目 标 :了 解 自 己 与 人 交 往 的 现 状 ,激 发 学 习 热 情 ,明 确 努
力方向。
喜欢独来独往。
(3) 嫉 妒 心 理 。 部 分 大 学 生 不 能 正 确 对 待 别 人 的 长 处 和 优
点,看到别人冒尖心里嫉妒,对比自己水平高的同学采取
讽 刺 、 挖 苦 、 打 击 、 嘲 笑 等 不 当 方 式 ,给 别 人 造 成 伤 害 ,严
重影响了同学之间的沟通。
上一页
多自由度系统的振动、响应和求解
D k vD
B Q2
A Q1
k vA
位移图
受力图
图(b) v21, v1v30时板的位移和受力图
(2)求刚度矩阵第二列 参见图 b,可得板的力平衡方程:
Q3 kvA kvD 0 Q1L (kvA kvD) L 0 Q1 Q2 kvE 0
;其中
k
12EI L3
解得 Q 1 2 k , Q 2 3 k , Q 3 0
微振动时, i ,
&
i
为小量,将以上能量保留到二阶小量,得
(注意:为了得到线性振动方程,能量表达式必须保留 到二阶微量)
T 12ml2[3&12 2&22 &32 4&1&2 2&2&3 2&3&1]
3
12ml2{&1,&2,&3}2
1
2 2 1
11&&12 1&3
V
1 2
mgl
(312
222
简支梁在横向集中力作用下的挠度公式为
P
f Pb(xl2x2b2), 0xa 6EIl
x
a
b
l
f Pb[l(xa)3(l2b2)xx3], axl
6EIlb
例4.1 写出图示梁的柔度矩阵,梁的抗弯刚度为EI。如果 将梁的质量按分段区间均分到区间的两个端点,写出梁的质
量矩阵,设梁单位长度的质量为 l。
;其中
k
12EI L3
Q1 Q2
2 2
(kvA
kvD
)
0
解得 Q 1 4 k , Q 2 2 k , Q 3 0
因此,刚度矩阵第一列为
第五章-多自由度系统的振动
0 M P1 ( t ) k 11 ... k 1 j ... k 1 n k 1 j P ( t ) k ... k ... k 0 k 2j 2n 2j 2 = 21 P (t ) = 1 = M .......... .......... . M 0 Pn ( t ) k n 1 ... k nj ... k nn M k nj 0
k11 = k1 + k 2
k12 = −k 2
k13 = 0
k 21 = − k 2
k 31 = 0
k 22 = k 2 + k 3 + k 5 + k 6
k 32 = −k 3
k 23 = −k 3
k 33 = k 3 + k 4
− k3 k3 &刚度矩阵:
&& MX + KX = P (t )
X ∈ Rn
确定后,系统动力方程即可完全确定。 当 M、K 确定后,系统动力方程即可完全确定。 那么M、K 该如何确定? 讨论刚度阵K 加速度为零。 && 假设外力是以准静态方式施加于系统, 加速度为零。X 假设外力是以准静态方式施加于系统, KX = P (t ) 则:
振动理论与声学原理
——刚度矩阵和质量矩阵 一、多自由度系统的动力学方程——刚度矩阵和质量矩阵
0 M P (t) k11...k1 j ...k1n k1 j 1 P (t) k ...k ...k 0 k 2 = 21 2 j 2n 1 = 2 j P(t) = M ..................... M 0 n P (t) kn1...knj ...knn M knj 0
第三章 多自由度系统振动
U = U ( q1 , q2 ,..., qn )
通常将静平衡位置作为势能零点, 并且以静平衡 通常将静平衡位置作为势能零点, 位置为坐标原点。 位置为坐标原点。 我们研究的是在静平衡位置附 近的微振动, 近的微振动,则将 U 在静平衡位置作泰勒展开有
∂U U = U0 + ∑ i =1 ∂qi
0
q
对应的广义力,阻尼力,耗散力。 对应的广义力,阻尼力,耗散力。系统的第 k 个 质点受到的阻尼力
& Rk = − β k ⋅ rk
与势能形式上对应存在一个耗散函数
m n 1 ∂rk dqi n ∂rk dq j 1 & & Φ = ∑ β k ⋅ rk ⋅ rk = ∑ β k ⋅ ∑ ⋅ ⋅∑ ⋅ dt j =1 ∂q j dt k =1 2 k =1 2 i =1 ∂qi
kn 2 − mn 2ωi2 ) ⋅ ϕ 2i + ... + ( knn − mnnωi2 ) ⋅ ϕ ni = ( mn1ωi2 − kn1 ) ϕ1i (
n − 1 个方程,n − 1 未知数, 个方程, 未知数, 最终可求出 ϕ2i ,..., ϕni 用 ϕ1i
表示,其余都与其成一定比例。 表示,其余都与其成一定比例。 与其成一定比例
系统的能量等于各阶主振动的能量之和不同阶之间能量不发生变换每一阶主振动的动能和势能在内部交换总和保持常数34多自由度系统的受迫振动mxcxkx1特征值分析求出无阻尼的各阶固有频率和各阶主振型2模态叠加方法分解解耦期望阻尼阵也和mk一样具有正交性即如果这样就可以使用模态叠加法进行解耦分析求解
结 构 动 力 学
1 n n ∂ 2U U = ∑∑ 0 qi q j 2 i =1 j =1 ∂qi ∂q j , 令
多自由度系统振动
的方法。
传递矩阵法适用于线性时不变系 统,能够处理多自由度系统的振
动问题,计算效率较高。
传递矩阵法的精度取决于系统参 数和边界条件的准确性,对于复 杂系统和非线性问题,需要采用
其他方法进行求解。
模态叠加法
模态叠加法是一种基于模态展开的数值 计算方法,通过将系统的振动表示为一 系列模态的线性组合,求解每个模态的
振动方程,得到系统的动态特性。
模态叠加法适用于线性时不变系统,能 够处理多自由度系统的振动问题,计算
精度较高。
模态叠加法需要选择合适的模态数目和 模态提取方法,对于大规模系统和复杂
未来研究方向
深入研究多自由度系统振动的 非线性特性,探索更精确的数
学模型和数值模拟方法。
针对复杂多自由度系统,研究 多因素耦合振动和多场耦合振
动的理论和方法。
发展多自由度系统振动主动控 制和智能控制技术,提高系统 振动控制精度和响应速度。
将多自由度系统振动理论应用 于实际工程领域,解决重大装 备和结构的振动问题,提高其 稳定性和安全性。
THANKS FOR WATCHING
感谢您的观看
02
它涉及到多个振动子之间的相互 作用和耦合,其动力学行为比单 自由度系统更为复杂。
研究背景和意义
随着科技的发展,多自由度系统在许多领域中得到了广泛应用,如大型机械装备、 精密仪器、高层建筑等。
由于多自由度系统在受到外部激励或内部参数变化时,会产生复杂的振动行为,这 不仅会影响系统的性能和稳定性,还可能引发安全问题。
航天器振动控制
总结词
多自由度系统的振动__1
多自由度系统的振动 / 拉格朗日法
d T T U ( ) 0 dt q q q
引入拉格朗日算子: 则:
保守系统
L T V
d L L ( ) Qi i qi dt q
多自由度系统的振动 / 拉格朗日法
: 如图所示
图 刚体微幅运动
多自由度系统的振动 / 拉格朗日法
————————
———————
多自由度系统的振动 / 坐标耦合与坐标变换
—————
———
多自由度系统的振动 / 坐标耦合与坐标变换
———
————————————
—————————————
多自由度系统的振动 / 坐标耦合与坐标变换
多自由度系统的振动 / 坐标耦合与坐标变换
多自由度系统的振动 / 坐标耦合与坐标变换
多自由度系统的振动 / 多自由度系统的运动微分方程
——————
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动 / 多自由度系统的运动微分方程
————————
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动
————————
——————————— —
———————— ————
——————————————————
多自由度系统的振动
线性变换 —— 将描述实际问题 的广义坐标用一组新的
坐标代替
多自由度系统与单自由度系统的一个重要区别是 它有多个固有频率和相应的振型。由此引出了特征值 —————————————— 问题及其解答(固有频率与主振型),这是模态分析 法的基础。
结构动力学之多自由度体系的振动问题ppt课件
448 (1 536)2
m1m2l 6 (EI )2
0
解得
21
23l3 (m1 m2 2 1 536EI
)
529(m1 m2 )2l6 41 5362 (EI )2
448m1m2l 6 1 5362 (EI )2
从而得第一和第二阶自振频率
1
1
1
2
1
2
为了确定第一阶振型,可将1代入平衡方程。
其展开式是关于λ的n次代数方程,先求出λi再求 出频率ωi
柔度法
(11m1 )
12m2
...
21m1 ( 22m2 ) ...
...
...
...
1n mn 2nmn 0
...
n1m1
n2m2 ... ( nnmn )
将λi代入 ( [δ] [M] - λi [I ] ){Y(i)}={0} 可求出n个主振型。
多个自由度体系的自由振动
结构在受迫振动时的动力响应与结构的动力特性 密切相关;另外,当用振型叠加法计算任意干扰力 作用下结构的动力响应时,往往要用到自由振动的 频率(frequency)和振型(mode)。
为此,要需要首先分析自由振动。
自振频率和振型的计算
m1
m2
mi
mn
y1(t) y2(t)
yi(t)
刚度法
其中最小的频率1 称为最低自振频率,或称
基本频率。 通常将上述每一个频率所对应的振动都称为
主振动,对应于每一个主振动的形状称为主振 型。
1)如果各质体的初速度为零,而初位移和某 一振型成比例,然后任其自然,则系统就按 这个振型作简谐自由振动,此解答就相应于 该振动的一组特解;
多自由度体系的振动
振动的基本概念
振动定义
振动是指物体在平衡位置附近进行的往复运动。在多自由度体系中,各质点间的振动相互 作用和能量传递使得整个体系呈现出复杂的振动行为。
振动分类
根据振动频率的不同,可以分为低频振动和高频振动;根据振动原因的不同,可以分为自 然振动和受迫振动。
振动分析方法
对多自由度体系的振动进行分析时,可以采用模态分析法、直接积分法、传递矩阵法等多 种方法。模态分析法是一种常用的简化分析方法,通过求解体系的特征值和特征向量来确 定体系的模态参数,进而分析其振动特性。
振动控制的方法
01
02
03
主动控制
通过向系统输入能量或信 号,主动改变系统的振动 状态,以达到减振的目的。
被动控制
通过吸收、隔离或阻尼系 统振动能量,被动地抑制 系统振动。
混合控制
结合主动和被动控制方法 的优点,以提高减振效果。
主动控制
主动控制利用外部能源向系统提供控 制力,通过实时监测和反馈系统振动 状态,主动调整控制力的大小和方向 ,以达到减振的目的。
将结构划分为有限个单元,通过建立单元 间的传递矩阵来描述振动能量的传递和散 射。
模态分析
模态振型
描述结构在不同频率下的振动 形态。
模态频率
结构的固有频率,对应于特定 的模态振型。
模态刚度和模态阻尼
描述模态的力学特性和能量耗 散特性。
模态分析的应用
用于结构的动力学特性分析、 振动控制和优化设计等。
响应分析
数据采集系统
将振动传感器采集到的信号进行放大、 滤波和模数转换,以便进行后续处理 和分析。
振动隔离技术
主动控制技术
通过传感器检测多自由度体系的 振动,并使用主动控制算法产生
第1章多自由度系统的固有振动特性
第一章多自由度系统的固有振动特性§1.1概述实际工程结构的振动往往用一个有限的多自由度振动系统来描述。
多自由度系统在数学上用一组常微分方程来描述,又称为集中参数系统。
因此研究多自由度系统振动特性是研究结构振动的基础和出发点。
§1.2 无阻尼系统的自由振动1.振动方程(1-1),为广义位移矢量2.质量矩阵物理意义动能(1-2)(1)质量矩阵反映了系统的动能(2)质量矩阵是正定的(3)质量矩阵是对称的例外:纯静态位移使(1-3)如在用有限元法建模时,采用非一致质量阵,则某些自由度上可能无质量项,此时质量阵不能保证正定。
即可以找到这样的一个位移向量使上式成立。
3.刚度矩阵的物理意义势能(1-4)(1)刚度矩阵反映了系统的势能(2)刚度矩阵是半正定的(刚体位移对应的势能为零)(3)刚度矩阵是对称的刚度矩阵的逆阵也有明确的物理意义——柔度矩阵使用刚度矩阵或柔度矩阵建立振动方程,分别称为“力法”、“位移法”4.特征方程各个自由度上的运动互不相同,但都是同频的简谐振动。
(1-5)求解上述方程是结构振动分析最基本的任务之一。
5.几个基本概念(1)固有频率特征方程的根为,即为固有频率,它反映了结构自由振动随时间的变化特性。
(2)固有模态或固有振型对应于特征方程根的特征矢量(1-6)它反映了结构自由振动在空间的变化特性。
(3)标准模态对固有模态归一化(1-7)则称为标准模态或归一化模态,模态归一化的方法有:1)置中某一分量为12)置中绝对值最大的分量为13)置模态质量为1,(1-8)(4)刚体模态:对应于(1-9)纯刚体模态:仅含有一种刚体运动(5)纯静态模态:使的模态,在非一致质量阵中,某些对角元素可以为零,可以找到一组位移使(1-10)(6)单频:称为单频。
(7)重频:称为重频,但相应有两个模态。
(8)密频或近频:通常当时,可以称为密频§1.3 固有频率与固有模态的特性1.正交性指模态对刚度矩阵[K]及质量阵[M]的加权正交性:(1-11)证明:由(1-12)分别前乘,然后相减并利用质量阵和刚度阵的对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章多自由度系统的振动
基本要点:
①建立系统微分方程的几种方法;
②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性;
③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。
引言
多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。
§2.1多自由度系统的振动方程
●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力
§2.2建立系统微分方程的方法
●影响系数:刚度影响系数、柔度影响系数
●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法
§2.3无阻尼系统的自由振动
●二自由度系统的固有振动:固有频率、固有振型。
●二自由度系统的自由振动
●二自由度系统的运动耦合与解耦
弹性耦合,惯性耦合;
振动系统的耦合取决于坐标系的选择;
●多自由度系统的固有振动
固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度;
固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性;
刚体模态;
●运动的解耦:模态坐标变换(主坐标变换)。
●多自由度系统的自由振动
§2.4无阻尼系统的受迫振动
●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反
共振问题。
●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速
度法。
§2.5比例阻尼系统的振动
●多自由度系统的阻尼:Rayleigh比例阻尼。
●自由振动
●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。
§2.6一般粘性阻尼系统的振动
●自由振动:物理空间描述,状态空间描述。
●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。
思考题:
①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解
释?
②为什么说模态质量、模态刚度的数值大小没有直接意义?
③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。
④在实际的多自由度系统振动分析中,为什么要进行模态截断?
参考书目
1.胡海岩,机械振动与冲击,航空工业出版社,2002
2.故海岩,机械振动基础,北京航空航天大学出版社,2005
3.季文美,机械振动,科学出版社,1985。
(图书馆索引号:TH113.1/1010)
4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。
(图书馆索引号:
TH113.1/1003-A)
5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引
号:TH113.1/WR32)。