人教版初中数学相交线与平行线基础测试题附答案

合集下载

(完整版)人教版初一数学下册相交线与平行线试题(带答案)解析

(完整版)人教版初一数学下册相交线与平行线试题(带答案)解析

一、选择题1.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒ 2.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 3.直线//AB CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG EF ⊥.若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒4.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10°5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 7.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒8.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个9.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒ 10.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对 二、填空题11.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.12.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.13.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.14.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.15.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.16.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.17.如图,已知直线l 1∥l 2,∠A =125°,∠B =85°,且∠1比∠2大4°,那么∠1=______.18.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.19.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.20.如图,在长方形ABCD 中,4AB =,6BC =,将长方形ABCD 沿着BC 方向平移得到长方形A B C D ''''.若ABB A ''是正方形,则四边形ABC D ''的周长是______.三、解答题21.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.22.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?24.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.25.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过P点作PM//AB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P点作PM//AB交AC于点M.∵CP平分∠ACD,∠ACD=68°,∠ACD=34°.∴∠4=12∵AB//CD,PM//AB,∴PM//CD,∴∠3=∠4=34°,∵AP⊥CP,∴∠APC=90°,∴∠2=∠APC-∠3=56°,∵PM//AB,∴∠1=∠2=56°,即:∠BAP的度数为56°,故选:A.【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.2.B解析:B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.3.B解析:B【分析】由对顶角相等得∠DFE =55°,然后利用平行线的性质,得到∠BEF =125°,即可求出2∠的度数.【详解】解:由题意,根据对顶角相等,则155DFE ∠=∠=︒,∵//AB CD ,∴180DFE BEF ∠+∠=︒,∴18055125BEF ∠=︒-︒=︒,∵EG EF ⊥,∴90FEG ∠=︒,∴21259035∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出125BEF ∠=︒.4.C解析:C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,∴∠=∠=︒,BAE DEF45∴∠=∠-∠=︒-︒=︒,CAE BAE BAC453015故选:C.【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.5.B解析:B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A”字型图中,两条直线AB、AC被DE所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.7.B解析:B【分析】记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B作BD∥l1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 8.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B =2∠CED ,∴∠CDA =2∠CED ,∵∠CDA =∠DCE +∠CED ,∴∠ECD =∠CED ,∴④正确;∵BC //AD ,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.9.A解析:A【分析】过G作GM//AB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G作GM//AB,∴∠2=∠5,∵AB//CD,∴MG//CD,∴∠6=∠4,∴∠FGC=∠5+∠6=∠2+∠4,∵FG、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=12∠EFG,∠3=∠4=12∠ECD,∵∠E+2∠G=210°,∴∠E+∠1+∠2+∠ECD=210°,∵AB//CD,∴∠ENB=∠ECD,∴∠E+∠1+∠2+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.10.C解析:C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.二、填空题11.【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.解:过点,做平行于,如下图:,,则,解析:153︒【分析】过点,,E F G ,做,,EH FK GJ 平行于AB ,根据平行线的传递性及性质得MEN BME DNE ∠=∠+∠,同理得出∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,通过等量关系先计算出18+=︒a b ,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,,E F G ,做,,EH FK GJ 平行于AB ,如下图://,//AB EH AB CD ,//EH CD ,则,∠=∠∠=∠BME HEM DNE HEN ,∴∠=∠+∠=∠+∠MEN HEM HEN BME DNE ,同理可得:∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,则5590∠=∠+∠=+=︒MEN BME DNE a b ,18∴+=︒a b ,1801803∠=︒-∠=︒-AMF BMF a ,1801803∠=︒-∠=︒-CNF DNF b , MG 平分AMF ∠,NG 平分CNF ∠,131390,902222AMG AMF a CNG CNF b ∴∠=∠=︒-∠=∠=︒-, 3180()1532∴∠=∠+=︒-+=︒MGN AMG CNG a b , 故答案是:153︒.本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.12.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.13.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.14.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.16.80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.17.【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.18.①④【分析】①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=12∠BOF,∠FOC=∠AOC=12∠AOF,从而计算出∠EOC=∠FOE+∠FOC=40°.③由∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,得出∠OCB:∠OFB=1:2.④由∠OEB=∠OCA=∠AOE=∠BOC,得到∠AOE-∠COE=∠BOC-∠COE,∠BOE=∠AOC,再得到∠BOE=∠FOE=∠FOC=∠AOC=14∠AOB=20°,从而计算出∠OCA=∠BOC=3∠BOE=60°.【详解】解:∵BC∥OA,∠B=∠A=100°,∴∠AOB=∠ACB=180°-100°=80°,∴∠A+∠AOB=180°,∴OB∥AC.故①正确;∵OE平分∠BOF,∴∠FOE=∠BOE=12∠BOF,∴∠FOC=∠AOC=12∠AOF,∴∠EOC=∠FOE+∠FOC=12(∠BOF+∠AOF)=12×80°=40°.故②错误;∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,∴∠OCB:∠OFB=1:2.故③错误;∵∠OEB=∠OCA=∠AOE=∠BOC,∴∠AOE-∠COE=∠BOC-∠COE,∴∠BOE=∠AOC,∴∠BOE=∠FOE=∠FOC=∠AOC=14∠AOB=20°,∴∠OCA=∠BOC=3∠BOE=60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.19.(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.20.28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.三、解答题21.(1)见解析;(2)902FME α∠=︒-,证明见解析. 【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 22.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q =∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠, PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩, 可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.23.(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.24.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED =360°-2∠BFD .【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG =∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG =∠CDE ,进而可得∠BED =∠ABE +∠CDE ;(2)图2中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,结合(1)的结论即可说明:∠BED =2∠BFD ;(3)图3中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,再结合(1)的结论即可说明∠BED 与∠BFD 之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.25.(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠, 12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.。

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。

(完整版)新人教版七年级下《相交线与平行线》单元测试题及答案

(完整版)新人教版七年级下《相交线与平行线》单元测试题及答案

订交线与平行线单元测试题班级姓名一、选择题(选择填空 2 分一题)1、假如一个角的补角是150°,那么这个角的度数是()A.30 °B. 60°C.90°D.120 °2、如图,已知直线a、 b 被直线 c 所截, a∥ b,∠ 1= 130°,则∠2=()A. 130 °B. 50°C.40°D.60°3、以下说法错误的选项是( )A . 内错角相等,两直线平行.B.两直线平行,同旁内角互补.C. 相等的角是对顶角.D.等角的补角相等.4、以下图中∠ 1 和∠ 2 是同位角的是()A. ⑴、⑵、⑶,B.⑵、⑶、⑷,C.⑶、⑷、⑸,D.⑴、⑵、⑸5、已知 :如图,∠1=∠2,则有()A.AB∥ CDB.AE∥DFC. AB∥ CD且AE∥ DFD.以上都不对6、如图 , 直线 AB与 CD交于点 O,OE⊥ AB于 O,图∠ 1 与∠ 2 的关系是 ( )A. 对顶角B.互余C.互补D相等7、如图, DH∥ EG∥ BC,且 DC∥ EF,那么图中和∠ 1 相等的角的个数是()A.2,B.4,C.5,D.68、如图, AB//CD, BC//DE,则∠ B+∠ D的值为()A.90 °B.150°C.180°D.以上都不对9、如图,直线AB与 CD订交于点 O, OB均分∠ DOE.若∠ DOE= 60 o,则∠ AOE的度数是() A.90° B.150° C.180° D.不可以确立10、一束光芒垂直照耀在水平川面,在地面上放一个平面镜,欲使这束光芒经过平面镜反射后成水平光芒,则平面镜与地面所成锐角的度数为()A.45 oB.60 oC.75 oD.80 o11、以下图形中,由 AB ∥ CD ,能获得 12 的是()A1 B A1BA 1 2BA B12C 2DCDCDD CA .B .2C .D .12、如图 , 已知∠ 1=∠ 2,∠ 3=80O ,则∠ 4=()OB. 70 OOD. 50 OA.80 C. 6013、如图,已知 AC ∥ ED ,∠ C =26°,∠ CBE =37°,则∠ BED 的度数是 ( ) A . 63°B . 83°C . 73°D . 53°21 AB34DCE15 题14 题13 题14、如图,在所表记的角中,同位角是( ).A . 1和2 B .1和3C . 1和4 D . 2 和 3ACD 55°15、如图, Rt △ ABC中,ACB90°DE ∥AB,若,DE 过点 C ,且,则∠ B 的度数( )A .35° B .45 C .55° D .65° AEF16、如图,把矩形 ABCD 沿 EF 对折后使两部分重合, 若 1 50°=(),则 A . 110°B. 115°C. 120°D. 130°A EDBF 1C二、填空1、黎老师家在小星家的北偏东 68 度,则小星家在黎老师家的南偏西 度 。

人教版初中数学相交线与平行线基础测试题附答案解析

人教版初中数学相交线与平行线基础测试题附答案解析

人教版初中数学相交线与平行线基础测试题附答案解析一、选择题1.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.2.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.3.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.4.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.5.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=o ,则1∠的大小为( )A .14oB .16oC .90α-oD .44o α-【答案】A【解析】 分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A .点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.6.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30°B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;7.如图,在下列四组条件中,不能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠ABD =∠BDCD .∠ABC+∠BCD =180°【答案】A【解析】【分析】 根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB 、CD 是否平行即可.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行),故A 不能判断;B 、∵∠3=∠4,∴AB ∥CD (内错角相等,两直线平行),故B 能判断;C 、∵∠ABD =∠BDC ,∴AB ∥CD (内错角相等,两直线平行),故C 能判断; D 、∵∠ABC +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行),故D 能判断, 故选A .【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.8.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.9.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D.10.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.11.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.【答案】B【解析】略12.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定【答案】A【解析】∵∠A与∠B是对顶角,∴∠A=∠B,又∵∠A与∠B互补,∴∠A+∠B=180°,可求∠A=90°.故选A.13.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.14.下列说法中不正确的是( )①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点A .①B .②C .③D .④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.16.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.19.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .20.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。

(常考题)人教版初中数学七年级数学下册第一单元《相交线与平行线》检测卷(答案解析)

(常考题)人教版初中数学七年级数学下册第一单元《相交线与平行线》检测卷(答案解析)

一、选择题1.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128°2.下列语句中,是命题的是( )A .两个相等的角是对顶角B .在直线AB 上任取一点C C .用量角器量角的度数D .直角都相等吗?3.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 5.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个6.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒7.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°8.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°9.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm10.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和11.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º12.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④二、填空题13.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.14.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___15.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.17.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .18.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.19.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.20.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.三、解答题21.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒22.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.23.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)24.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.25.已知:如图,//,12180EF CD ︒∠+∠=.(1)求证://GD CA .(2)若CD 平分,ACB DG 平分CDB ∠,且36A ︒∠=,求ACB ∠的度数. 26.如图,点A 、O 、B 在同一条直线上,∠AOC 比 ∠BOC 大100°,OE 平分∠AOC .求(1)直接写出∠AOC 、∠BOC 的度数;(2)从点O 出发画一条射线,使得∠COD=90°,求出∠EOD 的度数(可以直接使用第一问【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a),进一步求得∠BFC=154°-26°=128°(图b),进而求得∠CFE=128°-26°=102°(图c).【详解】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a),∴∠BFC=154°-26°=128°(图b),∴∠CFE=128°-26°=102°(图c).故选:A.【点睛】本题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.2.A解析:A【分析】根据命题的定义逐一判断即可.【详解】解:A.“两个相等的角是对顶角”做出了判断,是命题;B.“在直线AB上任取一点C”没有做出判断,不是命题;C.“用量角器量角的度数”没有做出判断,不是命题;D.“直角都相等吗?”没有做出判断,不是命题;故选:A.【点睛】此题主要考查了命题的含义和应用,解答此题的关键是要明确:判断一件事情的语句叫命题,许多命题都是由题设和结论两部分组成.3.D解析:D【分析】根据平行线的判定定理逐项判断即可.解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.4.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 5.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形; ③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B .【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.6.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++, 又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .7.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠,()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 8.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质9.C解析:C【分析】根据平移的性质可得DF=AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm ,∴50px=2cm ,400px=16cm ,∵△ABE 向右平移2cm 得到△DCF ,∴DF=AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE 的周长+AD+EF .∵平移距离为2cm ,∴AD=EF=2cm ,∵△ABE 的周长是16cm ,∴四边形ABFD 的周长=16+2+2=20cm .故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.11.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.12.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD ,∴∠4+∠5≠180°故错误,故选:C .【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.二、填空题13.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 14.130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH 是由直角梯形ABCD 平移得到的,∴梯形EFGH ≌梯形ABCD ,∴GH=CD ,BC=FG ,∵梯形EFMD 是两个梯形的公共部分,∴S 梯形ABCD -S 梯形EFMD =S 梯形EFGH -S 梯形EFMD ,∴S 阴影=S 梯形MGHD =12(DM+GH )•GM=12(28-4+28)×5=130(cm 2). 故答案是130cm 2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.15.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考 解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 16.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 18.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°, ∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.19.40【解析】根据平行线的性质先求出∠BEF 和∠CEF 的度数再求出它们的差就可以了解:∵AB ∥EF ∴∠BEF=∠ABE=70°;又∵EF ∥CD ∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB ∥EF ,∴∠BEF=∠ABE=70°;又∵EF ∥CD ,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题. 20.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E 作EG ∥AB 则EG ∥CD 由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°﹣30°=60°,因为EG ∥AB ,所以∠ABE =180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.三、解答题21.见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.22.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE ∥FG ,根据平行线的性质得出∠C=∠FGD ,求出∠FGD=∠EFG ,根据平行线的判定得出AB ∥CD ,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD ,∴CE ∥FG ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD ,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.23.见解析.【分析】先根据∠DGA=∠EGC 证出AE ∥BF ,再根据平行证明出∠F=∠FBC 即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC (已知)∴∠EGC=∠FHC (等量代换)∴AE ∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F (已知)∴∠F=∠FBC (等量代换)∴DF∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.24.BC∥DE;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE=∠BED,再根据平行线的判定即得结论.【详解】解:BC∥DE;理由如下:∠,因为BE平分ABC所以∠ABE=∠CBE,因为ABE BED∠=∠,所以∠CBE=∠BED,所以BC∥DE.【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.25.(1)证明见解析.(2)72°.【分析】(1)利用两直线平行,同旁内角互补可得∠1+∠ECD=180°,从而可得∠2=∠ECD,再根据内错角相等两直线平行可得GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=36°=∠ACD,由角平分线的性质可求得∠ACB的度数.【详解】解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=36°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=36°,∴∠ACD=∠2=36°,∵CD平分∠ACB,∴∠ACB=2∠ACD=72°.【点睛】本题考查角平分线的有关证明和平行线的性质和判定.能正确识别同位角、内错角、同旁内角是解题关键.26.(1)140°;40°;(2)160°或20°【分析】(1)根据∠AOC-∠BOC=100°得到∠AOC=∠BOC+100°,利用∠AOC+∠BOC=180°求出角的度数;(2)分情况讨论,如图2,射线OD在AB下方,∠COD=90°,根据角平分线的性质求出∠COE=12∠AOC =70°,求得∠EOD=∠COE+∠COD=160°;如图1,射线OD在AB上方,∠COD=90°,同理∠COE==70°,得到∠EOD=∠COD﹣∠COE =20°.【详解】解:(1)∵∠AOC-∠BOC=100°,∴∠AOC=∠BOC+100°,∵∠AOC+∠BOC=180°,∴∠BOC+100°+∠BOC=180°,∴∠BOC=40°,∴∠AOC=140°;(2)如图2,射线OD在AB下方,∠COD=90°,因为OE平分∠AOC ,∠AOC=140°,所以∠COE=12∠AOC =70°,所以∠EOD=∠COE+∠COD=160°,如图1,射线OD在AB上方,∠COD=90°,同理∠COE==70°,所以∠EOD=∠COD﹣∠COE =20°,答:∠EOD的度数是160°或20°.【点睛】此题考查邻补角的定义,角度的和差计算,角平分线的性质,垂直的定义,解题中注意分类思想的运用避免漏解.。

第五章 相交线与平行线(基础卷)(解析版)

第五章 相交线与平行线(基础卷)(解析版)

2020-2021学年下学期七年级数学单元提升卷【人教版】第五章相交线与平行线(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【答案】A【分析】根据同位角定义可得答案.【解答】解:∠1的同位角是∠2,故选:A.【知识点】同位角、内错角、同旁内角2.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=8cm,EC=5cm,那么平移距离为()A.3cm B.5cm C.8cm D.13cm【答案】A【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=8﹣5=3,进而可得答案.【解答】解:由题意平移的距离为BE=BC﹣EC=8﹣5=3(cm),故选:A.【知识点】平移的性质3.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°【答案】C【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF度数,由直角三角形的性质即可得出结论.【解答】解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.【知识点】平行线的性质4.如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为()A.90°﹣αB.90°+αC.90°﹣D.90°+【答案】C【分析】根据平行线的性质即可求解.【解答】解:如图,标出字母,∵AB∥CD,∴∠1+∠FBC+∠2=180°,∵纸条是对折,∴∠FBC=∠2,∴2∠2+∠1=180°,∵∠1=α,∴∠2=×(180°﹣α),∴∠2=90°﹣α,故选:C.【知识点】平行线的性质5.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)【答案】D【分析】根据平行线的判定与性质逐一进行推论即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行);所以A正确;B.∵AD∥BC,∴∠2=∠4(两直线平行,内错角相等);所以B正确;C.∵∠BAD+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);所以C正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),所以D错误.故选:D.【知识点】平行线的判定与性质6.一条公路修到湖边时,需拐弯绕道而过,第一次拐弯∠A的度数为α,第二次拐弯∠B的度数为β,到了点C后需要继续拐弯,拐弯后与第一次拐弯之前的道路平行,则∠C的度数为()A.α﹣βB.180°﹣β+αC.360°﹣β﹣αD.β﹣α【答案】B【分析】过B作BF∥AD,求出AD∥BF∥CE,根据平行线的性质得出∠ABF=∠A=α,∠C+∠FBC=180°,即可得出答案.【解答】解:过B作BF∥AD,∵CE∥AD,∴AD∥BF∥CE,∴∠ABF=∠A=α,∠FBC=180°﹣∠C,∵∠ABC=∠ABF+∠FBC=β,∴α+180°﹣∠C=β,∴∠C=180°﹣β+α故选:B.【知识点】平行线的判定与性质7.如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()A.①②B.①③C.①④D.③④【答案】A【分析】根据同位角相等两直线平行可得①②能判定a∥b.【解答】解:①∠1=∠5根据同位角相等两直线平行可得a∥b;②∠1=∠7再由∠5=∠7可得∠1=∠5根据同位角相等两直线平行可得a∥b;③∠2+∠3=180°不能判定a∥b;④∠4=∠7不能判定a∥b.故选:A.【知识点】平行线的判定8.如图,已知AB∥DF,DE和AC分别平分∠CDF和∠BAE,若∠DEA=46°,∠ACD=56°,则∠CDF的度数为()A.42°B.43°C.44°D.45°【答案】C【分析】过点C作CN∥AB,过点E作EM∥AB,易证∠DEA与∠FDE、∠EAB,∠ACD与∠BAC、∠FDC 间关系.再由角平分线的性质及角的和差关系计算得结论.【解答】解:过点C作CN∥AB,过点E作EM∥AB,∵FD∥AB,CN∥AB,EM∥AB,∴AB∥CN∥EM∥FD∴∠BAC=∠NCA,∠NCD=∠FDC,∠FDE=∠DEM,∠MEA=∠EAB.∴∠DEA=∠FDE+∠EAB,∠ACD=∠BAC+∠FDC.又∵DE和AC分别平分∠CDF和∠BAE,∴∠FDC=2∠FDE=2∠EDC,∠BAE=2∠BAC=2∠EAC∴56°=∠BAC+2∠FDE①,46°=∠FDE+2∠BAC②.①+②,得3(∠BAC+∠FDE)=102°,∴∠BAC+∠FDE=34°③.①﹣③,得∠FDE=22°.∴∠CDF=2∠FDE=44°.故选:C.【知识点】平行线的性质9.将每一个内角都是108°的五边形按如图所示方式放置,若直线m∥n,则下列结论中一定正确的是()A.∠1=∠2+36°B.∠1=∠2+72°C.∠1+∠2=90°D.2∠1+∠2=180°【答案】A【分析】延长BA交DF于C,由平行线的性质可得∠1=∠DCA,由三角形内角和定理可得∠DCA+∠CAD =∠E+∠EFD,即可求解.【解答】解:如图,延长BA交DF于C,∵m∥n,∴∠1=∠DCA,∵∠CDA=∠EDF,∴∠DCA+∠CAD=∠E+∠EFD,∴∠1+180°﹣∠BAD=∠E+∠2,∵∠E=∠BAD=108°,∴∠1=∠2+36°,故选:A.【知识点】平行线的性质10.下列命题是真命题的有()①两条直线被第三条直线所截,同位角的平分线互相平行;②直线外一点到这条直线的垂线段,就是这一点到这条直线的距离;③有限小数是有理数,无限小数是无理数;④在平面内,过一点有且只有一条直线与已知直线垂直;⑤在平面内,过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【答案】A【分析】根据平行线的判定、无理数的概念、点到直线的距离进行判断即可.【解答】解:①两条平行线被第三条直线所截,同位角的平分线互相平行,错误;②直线外一点到这条直线的垂线段的长度,就是这一点到这条直线的距离,错误;③有限小数是有理数,无限不循环小数是无理数,错误;④在平面内,过一点有且只有一条直线与已知直线垂直,正确;⑤在平面内,过直线外一点有且只有一条直线与已知直线平行,错误;故选:A.【知识点】命题与定理11.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【答案】B【分析】根据平行线的性质即可求解.【解答】解:过E作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.【知识点】平行线的性质12.如图,△ABC中,C、C′关于AB对称,B、B′关于AC对称,D、E分别在AB、AC上,且C′D∥BC∥B′E,BE,CD交于点F,若∠BFD=α,∠A=β,则α与β之间的关系为()A.2β+α=180°B.α=2βC.α=D.α=180°﹣【答案】B【分析】利用四边形内角和定理,三角形内角和定理,平行线的性质解决问题即可.【解答】解:在△ABC中,∵∠A=β,∴∠ABC+∠ACB=180°﹣β,∵C′D∥BC∥B′E,∴∠ABC=∠C′DB,∠ACB=∠B′EC,∵C、C′关于AB对称,∴AB垂直平分线段CC′,∴∠C′DB=∠CDB,同理∠B′EC=∠BEC,∴∠CDB+∠BEC=180°﹣β,∵∠ADC+∠CDB=180°,∠AEB+∠BEC=180°,∴∠ADC+∠AEB=180°+β,∵∠ADE+∠A+∠AEB+∠DFE=360°,∠DFE=180°﹣α,∴180°+β+β+180°﹣α=360°,∴α=2β,故选:B.【知识点】轴对称的性质、平行线的性质二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=57°,则∠2的度数是.【答案】33°【分析】根据平行线的性质即可求出答案.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠ABD=180°﹣∠ABC﹣∠1=33°.∵a∥b,∴∠2=∠ABD=33°,故答案为:33°.【知识点】垂线、平行线的性质14.如图,AB∥CD∥EF,且CF平分∠AFE,若∠C=20°,则∠A的度数是.【答案】40°【分析】由CD∥EF,利用“两直线平行,内错角相等”可得出∠CFE的度数,结合角平分线的定义可求出∠AFE,由AB∥EF,再利用“两直线平行,内错角相等”即可求出∠A的度数.【解答】解:∵CD∥EF,∠C=20°,∴∠CFE=∠C=20°.又∵CF平分∠AFE,∴∠AFE=2∠CFE=40°.∵AB∥EF,∴∠A=∠AFE=40°.故答案为:40°.【知识点】平行线的性质、角平分线的定义15.如图,直角梯形ABCD中,AD∥BC,AD⊥AB,BC=5,将直角梯形ABCD沿AB方向平移2个单位得到直角梯形EFGH,HG与BC交于点M,且CM=1,则图中阴影部分的面积为.【答案】9【分析】先根据图形平移的性质得出BC=GF=5,再根据直角梯形ABCD沿AB方向平移2个单位得到直角梯形EFGH,且CM=1得出BM的长,再根据S阴影=S梯形BFGM即可得出结论.【解答】解:∵直角梯形EFGH由直角梯形ABCD平移而成,∴BC=GF=5,∵直角梯形ABCD沿AB方向平移2个单位得到直角梯形EFGH,且CM=1,∴BM=BC﹣CM=5﹣1=4,BF=2,∴S阴影=S梯形BFGM=(BM+GF)•BF=×(4+5)×2=9.故答案为:9.【知识点】平移的性质16.如图,已如长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是.【答案】30°【分析】根据折叠,得出相等的线段和相等的角,根据中点得出DP=AP,进而得出∠DAP=30°,再根据折叠对称,得出答案.【解答】解:由折叠得,∠BAO=∠OAP,AB=AP,∵长方形纸片ABCD,∴AB=CD,∠D=∠DAB=∠B=90°,∵P为CD中点,∴PC=PD=CD=AP,在Rt△ADP中,∠DAP=30°,∴∠OAB=∠OAP=(90°﹣30°)=30°,故答案为:30°.【知识点】平行线的性质三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,AB⊥BF,CD⊥BF.∠BAF=∠AFE,求证:∠DCE+∠E=180°.【分析】由垂线的性质得出AB∥CD,由内错角相等得出AB∥EF,得出CD∥EF,由平行线的性质即可得出∠DCE+∠E=180°.【解答】证明:∵AB⊥BF,CD⊥BF,∴AB∥CD,∵∠BAF=∠AFE,∴AB∥EF,∴CD∥EF,∴∠DCE+∠E=180°.【知识点】平行线的判定与性质18.如图,AD是∠BAC的角平分线,点E是射线AC上一点,延长ED至点F,∠CAD+∠ADF=180°.(1)试说明AB∥EF.(2)若∠ADE=65°,求∠CEF的度数.【分析】(1)由角平分线的定义得∠CAD=∠DAB,根据内错角相等两直线平行证明AB∥EF;(2)由平行线的性质得ADE=∠DAB,∠CEF=∠CAB,根据角的等量代换得∠CEF=2∠ADE=2×65°=130°.【解答】解:如图所示:(1)∵AD是∠BAC的角平分线,∴∠CAD=∠DAB,又∵∠CAD+∠ADF=180°,∴∠DAB+∠ADF=180°,∴AB∥EF;(2)∵AB∥EF,∴∠ADE=∠DAB,∠CEF=∠CAB,∴∠CEF=2∠ADE,∵∠ADE=65°,∴∠CEF=2∠ADE=2×65°=130°【知识点】平行线的判定与性质19.如图,△ABD中,E,F,M分别在边AB,AD,BD上,BF,DE相交于点N,MN平分∠BND.(1)若∠A=62°,∠ADE=35°,∠ABF=20°,求∠MND的度数.(2)若MN∥AB,∠ADE=35°,求∠A的取值范围.【分析】(1)根据三角形的内角和定理,先求出∠NBD+∠NDB,再求得∠BND,最后根据角平分线求得结果;(2)根据平行线的性质与角平分线的定义得∠BND=2∠ABF,再由三角形的内角和定理得∠BND=∠A+∠ABF+∠ADE,进而根据∠BND<180°,得∠ABF<90°,由上面的关系便可求得∠A的取值范围.【解答】解:(1)∵∠A=62°,∠ADE=35°,∠ABF=20°,∴∠NBD+∠NDB=180°﹣62°﹣35°﹣20°=63°,∴∠BND=180°﹣(∠NBD+∠NDB)=117°,∵MN平分∠BND,∴∠MND=∠BND=58.5°;(2)∵MN∥AB,∴∠ABN=∠BNM,∵MN平分∠BND,∴∠BND=2∠ABF,∵∠NBD+∠NDB=180°﹣∠A﹣∠ABF﹣∠ADE,∴∠BND=180°﹣(∠NBD+∠NDB)=∠A+∠ABF+∠ADE,∵∠ADE=35°,∴2∠ABF=∠A+∠ABF+35°,∴∠A=∠ABF﹣35°,∵∠BND<180°,∴∠ABF<90°,∴∠A<55°,∴0°<∠A<55°.【知识点】平行线的性质20.如图,已知∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N,请补充说明过程,并在括号内填上相应的理由.解:∵∠BAE+∠AED=180°(已知),∴AB∥(),∴∠BAE=(两直线平行,内错角相等),∵∠1=∠2,∴∠BAE﹣∠1=﹣∠2,即∠MAE=,∴∥NE(),∴∠M=∠N().【答案】【第1空】CD【第2空】同旁内角互补,两直线平行【第3空】∠AEC【第4空】∠AEC【第5空】∠NEA【第6空】AM【第7空】内错角相等,两直线平行【第8空】两直线平行,内错角相等【分析】根据平行线的性质和判定,结合图形完成说理过程,并填写推理依据.【解答】解:∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∴∠BAE=∠AEC(两直线平行,内错角相等)∵∠1=∠2(已知),∴∠BAE﹣∠1=∠AEC﹣∠2,即∴∠MAE=∠AEN,∴AM∥NE(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等),故答案为:CD,同旁内角互补两直线平行,∠AEC,∠AEC,∠NEA,AM,内错角相等两直线平行,两直线平行内错角相等.【知识点】平行线的判定与性质21.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.【答案】【第1空】1470平方米【第2空】108米【分析】(1)结合图形,利用平移的性质求解;(2)结合图形,利用平移的性质求解;(3)结合图形,利用平移的性质求解.【解答】解:(1)将小路往左平移,直到E、F与A、B重合,则平移后的四边形EFF1E1是一个矩形,并且EF=AB=30,FF1=EE1=1,则草地的面积为:50×30﹣1×30=1470(平方米);故答案为:1470平方米;(2)小路往AB、AD边平移,直到小路与草地的边重合,则草地的面积为:(50﹣1)×(30﹣1)=1421(平方米);(3)将小路往AB、AD、DC边平移,直到小路与草地的边重合,则所走的路线(图中虚线)长为:30﹣1+50+30﹣1=108(米).故答案为:108米.【知识点】生活中的平移现象22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.【分析】(1)作EF∥AB,如图1,利用角平分线的定义得到∠ABE=25°,∠EDC=40°,利用平行线的性质得到∠BEF=∠ABE=25°,∠FED=∠EDC=40°,从而得到∠BED的度数;(2)作EF∥AB,如图2,利用角平分线的定义得到∠ABE=60°,∠EDC=40°,利用平行线的性质得到∠BEF=120°,∠FED=∠EDC=40°,从而得到∠BED的度数.【解答】解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.【知识点】平行线的性质、平移的性质23.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.【分析】(1)如图①,延长AB交DE于点F,根据平行线的性质即可得结论∠BED+∠D=120°;(2)设∠BEF=α,∠CDE=β,可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,结合(1)可知∠BED+∠CDE=120°,进而可得结论;(3)根据已知条件和三角形的外角可得∠G+30°=∠E+(120°﹣∠E),进而可得结论.【解答】解:(1)结论:∠BED+∠D=120°,证明:如图①,延长AB交DE于点F,∵AB∥CD,∴∠BFE=∠D,∵∠ABE=120°,∴∠BFE+∠BED=∠ABE=120°,∴∠D+∠BED=120°;(2)如图②,∵∠DEF=2∠BEF,∠CDF=∠CDE,即∠CDE=3∠CDF,设∠BEF=α,∠CDF=β,∴∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,由(1)知:∠BED+∠CDE=120°,∴3α+3β=120°,∴α+β=40°,∴2α+2β=80°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣(2α+2β)=180°﹣80°=100°,答:∠EFD的度数为100°;(3)如图③,∵BG⊥AB,∴∠ABG=90°,∵∠ABE=120°.∴∠GBE=∠ABE﹣∠ABG=30°,∵∠CDE=4∠GDE,∴∠GDE=∠CDE,∵∠G+∠GBE=∠E+∠GDE,∴∠G+30°=∠E+∠CDE,由(1)知:∠BED+∠CDE=120°,∴∠CDE=120°﹣∠E,∴∠G+30°=∠E+(120°﹣∠E),∴∠G=∠E,∴=.【知识点】平行线的性质、垂线。

最新人教版初中数学七年级数学下册第一单元《相交线与平行线》检测(含答案解析)

最新人教版初中数学七年级数学下册第一单元《相交线与平行线》检测(含答案解析)

一、选择题1.如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行2.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒3.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤4.下面的语句,不正确的是( ) A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40° B .∠1=50°,∠2=50° C .∠1=∠2=45°D .∠1=40°,∠2=40°6.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5 7.用反证法证明“m 为正数”时,应先假设( ).A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数8.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ; ②点C 的对应点是点B ; ③AC ∥EB ;④平移的距离等于线段BF 的长度. A .1B .2C .3D .49.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°10.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125°11.如图,下列说法错误的是( )A .若a ∥b ,b ∥c ,则a ∥cB .若∠1=∠2,则a ∥cC .若∠3=∠2,则b ∥cD .若∠3+∠5=180°,则a ∥c12.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于0二、填空题13.将长度为5cm 的线段向上平移3cm 后所得线段的长度为__.14.直线//,a b Rt ABC ∆的直角顶C 点在直线a 上,若135∠=︒,则2∠等于_______.15.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度. 16.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 17.地铁某换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口, 疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间()s12022016014020018.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.19.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.AD BC.20.如图,添加一个你认为合适的条件______使//三、解答题21.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)22.如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF⊥AE,求∠P的度数;(2)若点F是直线AE上一动点(点F与点A不重合),请直接写出∠P与∠AFB之间的数量关系.23.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.24.如图,直线AB 和CD 相交于点O .(1)∠1的邻补角是____________,对顶角是___________; (2)若∠1=40°,求出∠2,∠3,∠4的度数.25.如图,CD AB ⊥于D ,点F 是BC 上任意一点,FE AB ⊥于E ,且12∠=∠,380∠=︒.(1)证明://BC DG ;(2)若AD AG =,求ABC ∠的度数.26.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC 向右平移2个单位长度,再向下平移1个单位长度得到△EFG .(1)画出平移后的图形,并写出△EFG的三个顶点坐标.(2)求△EFG的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.2.D解析:D【分析】如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】CF AB,如图,过点C作//AB DE,//////∴,AB DE CF∴∠=∠∠+∠=︒,,180BCF B DCF D50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒, 故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键.3.D解析:D 【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF , 所以//BH EF ,AD BE =,DF ∥AC ,故①②正确; 所以C BHD ∠=∠,故④正确; 而BD 与CH 不一定相等,故③不正确; 因为2cm CH =,4cm EF BC ==, 所以BH=2cm , 又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤. 故选:D . 【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.4.B解析:B 【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案. 【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确. 故选:B . 【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.5.C解析:C 【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子. 【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误. 故选:C . 【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.6.C解析:C 【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可. 【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤. 故选:C . 【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.7.C解析:C 【分析】根据反证法的性质分析,即可得到答案. 【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.8.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.9.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质11.C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.考点:平行线的判定.12.D解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移对应点所连的线段平行且相等对应线段平行且相等对应角相等【详解】解:∵平移不改变图形的形状和大小∴线段长度不变还是5cm故答案为:解析:5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【详解】解:∵平移不改变图形的形状和大小∴线段长度不变,还是5cm.故答案为:5cm.【点睛】此题主要考查平移的基本性质,解题的关键是掌握平移的性质即可.14.【分析】先根据直角为90°即可得到∠3的度数再根据平行线的性质即可得出∠2的度数【详解】解:∵Rt△ABC的直角顶点C在直线a上∠1=35°∴∠3=90°-35°=55°又∵a∥b∴∠2=∠3=55解析:55【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°-35°=55°,又∵a∥b,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两个锐角互余的性质,解题时注意:两直线平行同位角相等.15.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B=180°①∠A=∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.16.假若a>b则a2>b2【分析】a2大于b2则a不一定大于b所以该命题是假命题它的逆命题是若a>b则a2>b2【详解】①当a=-2b=1时满足a2>b2但不满足a>b所以是假命题;②命题若a2>b2则解析:假若a>b则a2>b2【分析】a2大于b2则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a2>b2”.【详解】①当a=-2,b=1时,满足a2>b2,但不满足a>b,所以是假命题;②命题“若a2>b2则a>b”的逆命题是若“a>b则a2>b2”;故答案为:假;若a>b则a2>b2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.D【分析】利用同时开放其中的两个安全出口疏散1000名乘客所需的时间分析对比能求出结果【详解】同时开放AE两个安全出口疏散1000名乘客所需的时间为200s同时开放DE两个安全出口疏散1000名乘客解析:D【分析】利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.【详解】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故答案为:D.【点睛】本题考查推理能力,进行简单的合情推理为解题关键.18.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC 度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B=75°∴∠EFC=∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.20.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,//AD BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,//AD BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,//AD BC;故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题21.见解析.【分析】先根据∠DGA=∠EGC证出AE∥BF,再根据平行证明出∠F=∠FBC即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC(已知)∴∠EGC=∠FHC(等量代换)∴AE∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F(已知)∴∠F=∠FBC (等量代换)∴DF∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.22.(1)45°;(2)当E点在A点上方时,∠BPE=12∠AFB,当E点在A点下方时,∠BPE=90°﹣12∠AFB【分析】(1)过点P作PQ∥AB,过点F作FH∥AB,由平行线的性质得∠ABP+∠CEP=∠BPE,∠ABF+∠CEF=∠BFE,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F在EA的延长线上时,点F在线段AE上时,点F在AE的延长线上时,分别进行探究便可.【详解】解:(1)过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BF⊥AE,∴∠ABF+∠CEF=∠BFE=90°,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF)=45°,∴∠BPE=45°;(2)①当点F在EA的延长线上时,∠BPE=12∠AFB,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠CEP﹣∠ABP=∠EPQ﹣∠BPQ=∠BPE,∠CEF﹣∠ABF=∠EFH﹣∠BFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP﹣∠ABP=12(∠CEF﹣∠ABF)=12∠BFE=∠AFB,∴∠BPE=12∠AFB;②当点F在线段AE上(不与A点重合)时,∠BPE=90°﹣12∠AFB;理由如下:如备用图2,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF),∴∠BPE=12∠BFE∴∠BFE=180°﹣∠AFB,∴∠BPE=90°﹣12∠AFB;③当点F在AE的延长线上时,∠BPE=90°﹣12∠AFB,理由如下:如备用图3,过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PQ ∥FH ,∴∠ABP =∠BPQ ,∠CEP =∠EPQ ,180°﹣∠ABF =∠BFH ,∠AEC =∠EFH ,∴∠CEP +∠ABP =∠EPQ +∠BPQ =∠BPE ,∠BFH ﹣∠EFH =180°﹣∠ABF ﹣∠AEC =∠AFB , ∵BP 平分∠ABF ,EP 平分∠AEC ,∴∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ), ∴∠BPE =90°﹣12∠AFB ; 综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB . 【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.23.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键24.(1)∠2和∠4,∠3(2)∠2=140°,∠3=40°,∠4=140°【分析】(1)根据对顶角和邻补角的定义解答即可;(3)根据邻补角的定义列式求出∠2,再根据对顶角相等解答.【详解】(1)∠1的邻补角是∠2和∠4,对顶角是∠3;(2)∵∠1=40°,∴∠2=180°−∠1=180°−40°=140°,∴∠3=∠1=40°,∠4=∠2=140°.【点睛】本题考查了对顶角、邻补角,是基础题,熟记概念是解题的关键,要注意一个角的邻补角有两个.25.(1)证明见解析;(2)80︒【分析】(1)先根据CD ⊥AB 于D ,FE ⊥AB 得出CD ∥EF ,故可得出∠2=∠DCB ;由∠2=∠DCB ,∠1=∠2得出DG ∥BC ,由此可得出结论;(2)由(1)得B ADG ∠=∠,再证明380ADG ∠=∠=︒,最后由平行线的性质可得结论.【详解】(1)证明:∵CD AB ⊥,FE AB ⊥∴//CD EF∴2BCD ∠=∠.∵12∠=∠,∴1BCD ∠=∠,∴//BC DG(2) 由(1)得B ADG ∠=∠∵AD AG =∴380ADG ∠=∠=︒∵//DG BC∴80ABC ADG ∠=∠=︒【点睛】本题考查的是平行线的判定与性质,用到的知识点为:内错角相等,两直线平行. 26.(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S △EFG =5×9-12×1×9-12×5×2-12×4×7=21.5. 【点睛】 本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

相交线与平行线基础测试题含答案解析

相交线与平行线基础测试题含答案解析

相交线与平行线基础测试题含答案解析一、选择题1.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角2.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.3.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.4.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.5.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.7.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.8.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.9.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.10.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 的最小值为342=2348a ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC 23∵23a =14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =23a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵DE=3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=3a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.13.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.14.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.15.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..16.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.【详解】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直.故选:D.【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.20.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.。

第5章 相交线与平行线 人教版七年级数学下册过关测试基础卷(含答案)

第5章 相交线与平行线 人教版七年级数学下册过关测试基础卷(含答案)

第五章相交线与平行线(基础卷)考试时间:120分钟满分:120分一、单选题(每小题3分,共18分)1.(2022·北京·统考中考真题)如图,利用工具测量角,则的大小为()A.30°B.60°C.120°D.150°【答案】A【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,.故选A.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.2.根据语句“直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M.”画出的图形是()A.B.C.D.【答案】D【分析】根据直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M进行判断,即可得出结论.【详解】解:A.由于直线l2不经过点M,故本选项不合题意;B.由于点M在直线l1上,故本选项不合题意;C.由于点M在直线l1上,故本选项不合题意;D.直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M,故本选项符合题意;故选:D.【点睛】本题主要考查了相交线以及点与直线的位置关系,两条直线交于一点,我们称这两条直线为相交线.3.2022年北京冬奥会男子500米短道速滑冠军高亭玉在一次速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐52°,第二次向右拐52°B.第一次向左拐48°,第二次向左拐48°C.第一次向左拐73°,第二次向右拐107°D.第一次向左拐32°,第二次向左拐148°【答案】D【分析】两次转弯后行进的方向与原来相反,说明两次转弯的方向相同,而且一共转过了180°,由此求解即可.【详解】∵经过两次拐弯后的速滑方向与原来的方向相反,∴两次转弯的方向相同,而且一共转过了180°,∴A、两次转弯方向相反,故不符合题意;B、,故不符合题意;C、两次转弯方向相反,故不符合题意;D、两次转弯的方向相同,,一共转过了180°,符合题意.故选:D.【点睛】此题考查了平行线的性质和判定,解题的关键是熟练掌握平行线的性质和判定方法.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.4.如图,若图形A经过平移与下方图形阴影部分拼成一个长方形,则平移方式可以是()A.向右平移4个格,再向下平移4个格B.向右平移6个格,再向下平移5个格C.向右平移4个格,再向下平移3个格D.向右平移5个格,再向下平移4个格【答案】A【分析】根据平移的性质、结合图形解答即可.【详解】解:图形A向右平移个格,再向下平移个格可以与下方图形阴影部分拼成一个长方形,故选:.【点睛】本题考查的是平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.5.如图,直线,相交于点,.平分,.则的度数为()A.B.C.D.【答案】A【分析】根据先求出∠BOE的度数,再结合对顶角的性质得到∠BOD的度数,继而求得∠DOE的度数,结合角平分线的定义及角的和差即可求得答案.【详解】解:∵∴∠BOE=90°,∵∠BOD=∠AOC=46°,∴∠DOE=∠BOE-∠BOD=90°-46°=44°,∵平分,∴∠EOF=∠DOE=22°,∴∠FOB=∠BOE-∠EOF=90°-22°=68°,故选:A.【点睛】本题考查了与角平分线有关的角的计算,对顶角性质,垂直的定义,结合图形,掌握角的和差运算是解题的关键.6.下列是命题的是()A.作两条相交直线B.∠和∠相等吗?C.全等三角形对应边相等D.若a2=4,求a的值【答案】C【分析】根据命题的定义对各选项进行判断.【详解】解:A.“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B.“∠和∠相等吗?”为疑问句,它不是命题,所以B选项错误;C.全等三角形对应边相等,它是命题,所以C选项正确;D.“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(每小题3分,共18分)7.(2022春·江苏·七年级期末)如图,∠1=133°25′,AO⊥OB于点O,点C、O、D在一条直线上,则∠2的度数等于______.【答案】43°25′【分析】根据平角定义先求出∠AOD的度数,再根据垂直定义求出∠AOB=90°,从而求出∠2的度数.【详解】解:∵∠1=133°25′,∴∠AOD=180°-∠1=46°35′,∵AO⊥OB,∴∠AOB=90°,∴∠2=∠AOB-∠AOD=43°25′,故答案为:43°25′.【点睛】本题考查了垂线,度分秒的换算,根据题目的已知条件并结合图形分析是解题的关键.8.如图,O是直线上一点,,则___.【答案】##148度【分析】依据邻补角进行计算,即可得到∠1的度数.【详解】解:∵O是直线上一点,,∴,故答案为:.【点睛】本题主要考查了邻补角的概念,只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.邻补角互补,即和为.9.如图,直线、、相交于点,若,则______【答案】30【分析】根据平角的定义可以求出,再根据对顶角的性质求出即可.【详解】解:,.故答案为:.【点睛】本题考查了对顶角的性质,对顶角的性质:对顶角相等.邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.10.(2018·北京·统考中考真题)用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1【分析】根据不等式的性质3,举出例子即可.【详解】解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为,3,.【点睛】考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=________.【答案】135°##135度【分析】接利用平行线的性质结合邻补角的性质得出答案.【详解】解:如图,∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°-45°=135°.故答案为:135°.【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.12.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.三、解答题(每小题6分,共30分)13.如图,直线AB、CD被直线EF所截,GH是∠EGC的平分线,∠EGH=56°,∠EIB=68°,说明AB∥CD 的理由.解:因为GH是∠EGC的角平分线()所以∠EGH=∠HGC=56°()因为CD是条直线(已知)所以∠HGC+∠EGH+∠IGD=180°()所以∠IGD=68°因为∠EIB=68°(已知)所以__________=__________()所以AB∥CD()【答案】角平分线的意义,平角的意义,∠IGD,∠EIB,等量代换,同位角相等,两直线平行【分析】根据题意和图形,可以写出解答过程中空格中需要填写的内容,本题得以解决.【详解】解:因为GH是∠EGC的角平分线(已知)所以∠EGH=∠HGC=56°(角平分线的意义)因为CD是条直线所以∠HGC+∠EGH+∠IGD=180°(平角的意义)所以∠IGD=68°因为∠EIB=68°所以__∠IGD __=__∠EIB __(等量代换)所以AB∥CD(同位角相等,两直线平行)【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,已知,直线AB、CD相交于点O,过点O作,,若.求的度数.【答案】148°【分析】先根据垂直定义得到∠COE=∠AOF=90°,再根据周角是360°求解即可.【详解】解:∵,,∴∠COE=∠AOF=90°,∴∠EOF=360°-∠AOC-∠COE-∠AOF=360°-32°-90°-90°=148°.【点睛】本题考查垂直定义、周角,理解垂直定义,熟知周角等于360°是解答的关键.15.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB和CD被直线EF所截,∠2=∠3,AB CD 吗?说明理由.现请你补充完下面的说理过程:答:AB CD理由如下:∵∠2=∠3(已知)且()∴∠1=∠2∴AB CD()【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB CD(同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.16.如图,在边长为个单位的正方形网格中,经过平移后得到,点的对应点为,根据下列条件,利用网格点和无刻度的直尺画图并解答,保留痕迹:(1)画出,线段扫过的图形的面积为______;(2)在的右侧确定格点,使的面积和的面积相等,请问这样的点有______个?【答案】(1)10(2)4【分析】(1)根据平移的性质得出,线段扫过的面积用矩形面积减去周围个直角三角形面积即可;(2)根据平行线之间的距离处处相等可得答案.【详解】(1)解:如图,即为所求,线段扫过的面积为,故答案为:;(2)解:如图,作,则点即为所求,共有个,故答案为:.【点睛】本题主要考查了作图——平移变换,平行四边形的面积,平行线的性质等知识,准确画出图形是解题的关键.17.(2022秋·河北保定·七年级统考期末)如图,平面内有两条直线l1,l2点A在直线l1上,按要求画图并填空:(1)过点A画l2的垂线段AB,垂足为点B;(2)过点A画直线AC⊥l1,交直线l2于点C;(3)过点A画直线AD∥l2;(4)若AB=12,AC=13,则点A到直线l2的距离等于 .【答案】(1)见解析;(2)见解析;(3)见解析;(4)12.【分析】(1)根据垂线段的定义画出即可;(2)根据垂线的定义画出即可;(3)根据平行线的定义画出即可;(4)根据点到直线间的距离求解即可得到答案.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)点到直线间的距离,即垂线段的长度,所以,点A到直线l2的距离等于12,故答案为:12.【点睛】本题考查作图-复杂作图,垂线,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.四、解答题(每小题8分,共24分)18.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.19.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.【答案】(1)(2)【分析】(1)依据,即可得到∠DOB=∠AOC=70°,再根据角平分线的定义,即可得出∠DOE=∠DOB,即可得到;(2)依据OF⊥OE,可得∠EOF=90°,进而得到,再根据进行计算即可.【详解】(1)解:∵,∴∠AOC=,∴∠DOB=∠AOC=70°,又∵OE平分∠BOD,∴,∴,(2)∵,∴,∴,∴.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,垂直的定义,几何图形中角度的计算,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.20.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;【答案】(1)∠BOF=33°(2)∠AOC=72°【分析】(1)先根据对顶角相等求出∠BOD=76°,再由角平分线定义得∠DOE=∠BOE=38°,由邻补角得∠COE=142°,再根据角平分线定义得∠EOF=71°,从而可得结论.(2)利用角平分的定义得出,进而表示出各角求出答案.【详解】(1)∵∠AOC、∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°∴∠COE=142°,∵OF平分∠COE.∴∠EOF=∠COE=71°,又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴,∴设,则,故,,则,解得,故∠AOC=72°.【点睛】本题考查了角平分线的定义和对顶角的性质,解决本题的关键是掌握对顶角的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线).五、解答题(每小题9分,共18分)21.已知:如图,.求证:.分析:如图,欲证,只要证______.证明:,(已知)又,()__________.().(__________,____________)【答案】;对顶角相等;;等量代换;同位角相等,两直线平行.【分析】根据等量代换和同位角相等,两直线平行即可得出结果.【详解】分析:如图,欲证,只要证.证明:,(已知)又,(对顶角相等).(等量代换).(同位角相等,两直线平行)【点睛】本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.22.已知:如图,点D、E、F、G都在的边上,,且(1)求证:;(2)若EF平分,,求的度数.【答案】(1)见解析(2)70°【分析】(1)根据,得出∠1=∠CAE,又∠1+∠2=180°,得出∠2+∠CAE=180°,利用同旁内角互补即可推出;(2)根据,∠C=35°,得出∠BEF=∠C=35°,又因为EF平分∠AEB,得出∠AEB=70°,再根据两直线平行的性质即可得出.【详解】(1)解:证明:∵,∴∠1=∠CAE,∵∠1+∠2=180°,∴∠2+∠CAE=180°,∴;(2)解:∵,∠C=35°,∴∠BEF=∠C=35°,∵EF平分∠AEB,∴∠1=∠BEF=35°,∴∠AEB=70°,由(1)知,∴∠BDG=∠AEB=70°.【点睛】本题考查了两直线平行的判定及性质,角平分线的性质,解题的关键是掌握相应的判定定理及性质.六、解答题(本大题共12分)23.将一副三角板中的两块直角三角尺顶点C按照如图①方式叠放在一起(其中,,,)设.(1)若,说明;(2)将三角形CDE绕点C顺时针转动,若,求的度数.【答案】(1)见解析(2)或【分析】(1)根据内错角相等,两直线平行证明即可;(2)分两种情形:如图②中,当时,如图③中,当时,分别求解即可.【详解】(1)解:如图①中,∵∠,,∴∠ACE=∠A,∴;(2)解:如图②中,当时,则,;如图③中,当时,则,.综上所述,的值为15°或165°.【点睛】本题考查旋转的性质,平行线的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.。

初中数学相交线与平行线经典测试题附答案

初中数学相交线与平行线经典测试题附答案
14.如图, ,点 在 上,点 在 上,如果 , ,那么 的度数为()
A. B. C. D.
【答案】B
【解析】
【分析】
由 可得∠ABE+∠CEB=180°,∠BED= ,即∠CEB=130°,由 可得 ,设 =k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由 可得 =∠DEF即可解答.
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
5.如图,直线a∥b,直线 分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
A.50°B.70°C.80°D.110°
【答案】C
【解析】
【分析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
考点:平行线的性质.
9.如图,下列条件中能判定 的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;
对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;
对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.
【详解】
∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;
∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;
∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。

人教版初中数学相交线与平行线基础测试题含答案解析

人教版初中数学相交线与平行线基础测试题含答案解析

人教版初中数学相交线与平行线基础测试题含答案解析一、选择题1.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.2.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.3.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED =50°,那么∠BAF =( )A .10°B .50°C .45°D .40°【答案】A【解析】【分析】 先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∵DE ∥AF ,∠CED =50°,∴∠CAF =∠CED =50°,∵∠BAC =60°,∴∠BAF =60°﹣50°=10°,故选:A .【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.4.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.5.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°【答案】B【解析】【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.6.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )A.75°B.72°C.70°D.65°【答案】B【解析】【分析】如图,由折叠的性质可知∠3=∠4,已知AB∥CD,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°【详解】如图,由折叠的性质可知∠3=∠4,∵AB∥CD,∴∠3=∠1,∵∠1=2∠2,∠3+∠4+∠2=180°,∴5∠2=180°,即∠2=36°,∴∠AEF=∠3=∠1=72°故选B .【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.7.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.8.如图所示,b ∥c ,a ⊥b ,∠1=130°,则∠2=( ).A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.11.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【答案】C【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选C.【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()A.5 B.6 C.7 D.8【答案】C【解析】解:∵FM平分∠EFD,∴∠EFM=∠DFM=12∠CFE.∵EG平分∠AEF,∴∠AEG=∠GEF=12∠AEF.∵EM平分∠BEF,∴∠BEM=∠FEM=12∠BEF,∴∠GEF+∠FEM=12(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=12(∠BEF+∠CFE).∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF,∴∠FEM+∠EFM=12(∠BEF+∠CFE)=12(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.点睛:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.13.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .14.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.15.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角16.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,故①正确;②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.17.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..18.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.19.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A .左转80°B .右转80°C .左转100°D .右转100°【答案】B【解析】【分析】 如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.。

七年级下册数学相交线与平行线基础题人教版(含答案)

七年级下册数学相交线与平行线基础题人教版(含答案)

七年级下册数学相交线与平行线基础题人教版一、单选题(共13道,每道5分)1.如图,∠1和∠2是对顶角的是()A.B.C.D.答案:C试题难度:三颗星知识点:邻补角、对顶角2.下列说法正确的个数是()①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2;③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°.A.0个B.1个C.2个D.3个答案:B试题难度:三颗星知识点:邻补角、对顶角3.如图,直线AD、BC交于O点,∠AOB+∠COD=110°,则∠AOC的度数为()A.55°B.125°C.135°答案:B试题难度:三颗星知识点:邻补角、对顶角4.给出条件:①两条直线相交成直角;②两条直线互相垂直;③一条直线是另一直线的垂线,下列说法中正确的个数有()个(1)由①可以得到②③结论(2)由②可以得到①③结论(3)由③可以得到①②结论A.0个B.1个C.2个D.3个答案:D试题难度:三颗星知识点:垂线5.如图,P是直线L外一点,A,B,C在直线L上,且PB⊥L,那么下列说法中不正确的是()A.线段BP的长度叫做点P到直线L的距离B.PA,PB,PC三条线段中,PB最短C.PA是点P到直线L的垂线段D.线段AB的长是点A到直线PB的距离答案:C试题难度:三颗星知识点:点到直线的距离6.如图,下列说法正确的是()A.∠1和∠8互为内错角B.∠2与∠8互为同位角C.∠2和∠6互为同旁内角D.以上说法都不正确试题难度:三颗星知识点:同位角、内错角、同旁内角7.如图所示,当∠1+∠3=180°时,下列说法正确的是()A.a∥bB.l∥mC.l∥nD.m∥n答案:C试题难度:三颗星知识点:平行线的判定8.如图,AB//CD,BC//DE,则∠B+∠D的值为( ).A.50°B.40°C.130°D.180°答案:D试题难度:三颗星知识点:平行线的性质9.如图所示,已知∠1=∠2,则能够判定CD∥EF,我们判断的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行答案:B试题难度:三颗星知识点:平行线的判定10.下列说法中正确的是()A.两条相交的直线叫做平行线B.在直线外一点,只能画出一条直线与已知直线平行C.如果a∥b,b∥c,则a不与c平行D.两条不平行的射线,在同一平面内一定相交答案:B试题难度:三颗星知识点:平行公理11.下列语句中,是命题的是()A.有公共顶点的两个角是对顶角B.在一条直线上任取一点OC.过点O作直线MN的垂线D.两点确定一条直线吗答案:A试题难度:三颗星知识点:命题12.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线答案:B试题难度:三颗星知识点:命题与定理13.在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤D.①③④⑤答案:D试题难度:三颗星知识点:平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;
C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;
D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.
故选:D.
【点睛】
本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.
【详解】
解:∵
∴∠ABE+∠CEB=180°,∠BED=
∴∠CEB=130°


设 =k,则∠CEF=6k,∠FEB=7k,
∴6k+7k=130°
∴∠FEB=7k=70°
∴∠DEF=∠FEB+∠BED=120°

∴ =∠DEF=120°
故答案为B.
【点睛】
本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.
A. B. C. D.
【答案】A
【解析】
【分析】
先根据对顶角相等得到 ,再根据平行线的判定得到a∥b,再根据平行线的性质得到 即可得到答案.
【详解】
解: 标记为如下图所示,
∵ 是对顶角,
∴ (对顶角相等),
又∵ ,
∴ ,
∴a∥b(同旁内角互补,两直线平行),
∴ (两直线平行,内错角相等),
∴ ,
故A为答案.
7.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+zB.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°
【答案】B
【解析】
【分析】
过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
B.过一点有且只有一条直线与已知直线平行
C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离
D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
【答案】D
【解析】
【分析】
运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.
【详解】
A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;
故选:C.
【点睛】
此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.
4.如图,下列能判定 ∥ 的条件有几个()
(1) (2) (3) (4) .
A.4B.3C.2D.1
【答案】B
【解析】
【分析】
根据平行线的判定逐一判定即可.
【详解】
因为 ,所有AD∥BC,故(1)错误.
因为 ,所以 ∥ ,故(2)正确.
【点睛】
此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.
19.下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)不相交的两条直线叫做平行线;
(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.
6.如图 ∥ ,∠ = , 平分∠ ,则∠ 的度数为()
A. B. C. D.
【答案】B
【解析】
∵AD∥BC,
∴∠ADB=∠DBC,
∵DB平分∠ADE,
∴∠ADB=∠ADE,
∵∠B=30°,
∴∠ADB=∠BDE=30°,
则∠DEC=∠B+∠BDE=60°.
故选B.
【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.
【详解】
解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
∴∠ABC=x=∠1,∠2=∠CNE,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴x+y﹣z=90°.
故选:B.
【点睛】
本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
【详解】
A.两直线平行,同位角相等,故A是假命题;
B.对顶角相等,故B是假命题;
C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;
D.如果点的横坐标和纵坐标互为相反数,那么点 在直线 的图像上,故D是真命题
故选:D
【点睛】
本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.
8.如图,在下列四组条件中,不能判断AB∥CD的是( )
A.∠1=∠2B.∠3=∠4
C.∠ABD=∠BDCD.∠ABC+∠BCD=180°
【答案】A
【解析】
【分析】
根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.
【详解】
A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;
∵ 绕点 逆时针旋转 得到△AED
∴∠CAE=
∴∠CAB+∠BAE=
又∵∠CAB+∠ABC=
∴∠BAE=∠ABC
∴AE∥BC

∴AF=AC=2,FC=4
∴BF=
∴BE=EF= BF=
故选:B
【点睛】
本题考查了旋转的性质,平行线的判定和性质.
10.下列说法中,正确的是( )
A.不相交的两条直线是平行线
∴ = (等量替换)
故与 相等的角有7个,
故C为答案.
【点睛】
本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.
14.如图,直线 ,则 的大小是()
A. B. C. D.
【答案】D
【解析】
【分析】
把 的对顶角标记为 ,根据对顶角的性质得到 与 得关系,再根据直线平行的性质得到 与 得关系,最后由等量替换得到 得度数.
故选:C.
【点睛】
本题考查点到之间的距离,正确把握相关定义是解题关键.
2.下列命题是真命题的是()
A.同位角相等
B.对顶角互补
C.如果两个角的两边互相平行,那么这两个角相等
D.如果点 的横坐标和纵坐标互为相反数,那么点 在直线 的图像上.
【答案】D
【解析】
【分析】
根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.
13.如图 分别平分 则图中与 相等的角(不含它本身)的个数是()
A. B. C. D.
【答案】C
【解析】
【分析】
先根据平行线的性质得到 , ,再利用把角平分线的性质得到 ,最后对顶角相等和等量替换得到答案.
【详解】
解:如图,做如下标记,
∵ ,
∴ (两直线平行,内错角相等),
又∵ 分别平分
∴ ,
又∵ , , (对顶角相等),
A.1个B.2个C.3个D.4个
【答案】C
【解析】
(1)应强调过直线外一点,故错误;
(2)正确;
(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;
18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()
A.20°B.35°C.55°D.70°
【答案】B
【解析】
【分析】
根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.
【详解】
∵DE∥BC,
∴∠1=∠ABC=70°,
∵BE平分∠ABC,
∴ ,
故选:B.
9.如图,在 中, ,将 绕点 逆时针旋转 ,使点 落在点 处,点 落在点 处,则 两点间的距离为()
A. B. C. D.
【答案】B
【解析】
【分析】
延长BE和CA交于点F,根据旋转的性质可知∠CAE= ,证明∠BAE=∠ABC,即可证得AE∥BC,得出 ,即可求出BE.
【详解】
延长BE和CA交于点F
B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;
C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;
D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,
故选A.
【点睛】
本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO,∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO,∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.
A.30°B.35°C.40°D.45°
【答案】C
【解析】
【分析】
先根据等腰三角形的性质和三角形内角和可得 度数,由三角形外角的性质可得 的度数,再根据平行线的性质得同位角相等,即可求得 .
相关文档
最新文档