巨磁阻抗效应及其应用_董延峰

合集下载

巨磁阻抗效应在传感器领域的应用

巨磁阻抗效应在传感器领域的应用

1、 易 升 降 机 的介 绍 和 现 状 简
简 易升 降 机 常 用 的有 三 种 门架 型 式 : 字架 、 式 井 门 架 ( 称 龙1 架 ) 自升 架 , 地 区基本 上使 用的都 是 1 俗 ' ] 和 本 ]
基 片上 。其 中 C u为导 体层 , 有两 个 电流 、 电压 电极 :i SO 用 于避免 涡流损 耗和 介 电击 穿 ; F 层 厚 5 n 沉 积时 Nie 0 m,
向膜 面 外 加 数 k / 直 流 磁 场 , 生 单 轴 各 项 异 性 场 , Am 产 大 ( ) 车 里 程 表 测 速 传 感 器 ;b) 喷 发 动 机 测 速 传 a汽 ( 电 感 器 ; C 线 性 位 移 传 感 器 ; d 齿 轮 速 度 传 感 器 () ()
在 用于 磁敏 开关 类型 的传 感器 时 , 电路 中可 无需 放 大 电路 , 因而 具 有高 稳 定和 抗 干扰 特性 , 用 上述 巨 磁 利 阻抗磁 敏器 件研 制成 几种 汽车 用的传 感器 , 如汽 车里程
流 传感器 、 字磁 罗盘 和三 维磁 强计 等 。使用 巨磁 阻抗 数
阻抗材 料在 实际 中 已得 到了广 泛的 应用 。ቤተ መጻሕፍቲ ባይዱ
利 用纳米材 料 的巨磁 阻抗效 应… 制 了各种 型号 的 研 磁敏 开关 元件 , 广 泛 用于 汽车 里 程 表计数 、 可 电喷 发动 机 测速 、 防盗报 警等方 面 。其性 能指标 为 : () 1 灵敏度 : 触发磁 场小于 o5毫特斯 拉 ( . mT)
良好 的线性关 系 。利 用此原 理 , 设计 了量程 从 0 5 ~2mm
型化、 高灵 敏 度 、 高速 响 应 、 度 稳 定 性 和低 功 耗 于 一 温

巨磁电阻效应及在物理实验中的应用

巨磁电阻效应及在物理实验中的应用
M电R阻:的=相苎对丛变化学率=为三:二坚竺与j铲=lo· .98%
图5中可以看出,线性最佳范围应在外磁感应强 度0.15~1.0 mT,精确测量时可选外磁感应强度在该 范围内。从图5所显示的巨磁电阻R(B)与磁感应强 度日关系数据可知:①当磁感应强度曰增加时,巨磁 电阻阻值R(日)减小;②当磁感应强度B增加到某一 值B。时,巨磁电阻中所有磁矩方向均与外磁场方向一 致,这时就达到了电阻阻值饱和,外磁场增加,巨磁电 阻阻值不变。上述这两个特点只能用多层膜巨磁电阻 的自旋电子学理论才能解释。
它是由4个相同的巨磁电阻(R。=R:=R,=R。=R)组
成的直流电桥结构,R:和R。由高导磁率的材料(坡莫 合金层)覆盖屏蔽,阻值对外磁场无响应。U+端和U.
端间开路,∥。。和0端为待测电阻的两端,当传感器处 于外磁场时,R2=R4=R;Rl=R3=R+AR,AR为外磁 场磁感应强度为口时,单个巨磁电阻的电阻改变量;
万方数据
地急剧增加。他们认为,巨磁电阻效应是一种全新的 物理现象,其物理根源可能归因于磁性导体中传导电 子的自旋相关散射口-。巨磁电阻效应的发现极大地 推动了凝聚态物理学和信息存储领域的发展,并逐渐 形成了一门新的学科——磁电子学(又称自旋电子 学)。巨磁电阻效应的研究不仅在学术界引起了广泛 的关注,在经济领域也取得了巨大的成功,计算机上使 用的巨磁电阻(GMR)读出磁头在多媒体信息库、网络 服务等方面已经产生了巨大的商业价值和深远的影 响,利用磁电阻效应制成的各类磁传感器,也将在汽 车工业、国防、航天等方面创造出巨大的社会财富。
万方数据
"//////缁////////////L
0,,,,,\,似f,,?f,一fff |{f…l始㈨I\撇I}}“一J
V -一
(b)郐铁磁层磁矩平行排列 图2电子受散射示意图

巨磁电阻的应用

巨磁电阻的应用

参考文献

[1] 钟喜春,曾德长,魏兴钊,顾正飞. 巨磁电阻材料的研究 与应用[J]. 金属功能材料. 2002(03) [2] 赵燕平,由臣,宁保群. 巨磁电阻材料及应用[J]. 天津理 工学院学报. 2003(03) [3] 于广华,朱逢吾,赖武彦. 巨磁电阻材料及其在汽车传感 技术中的应用[J]. 新材料产业. 2003(08)
三巨磁电阻材料的应用现状1巨磁电阻传感器2巨磁阻磁记录读出磁头3巨磁电阻随机存储器mram1巨磁电阻传感器巨磁电阻传感器采用惠斯登电桥和磁屏蔽技术传感器基片上镀了一层很厚的磁性材料这层材料对其下方的巨磁电阻形成屏蔽不让任何外加磁场进入屏蔽的电阻器
一、巨磁电阻效应的定义
所谓巨磁电阻效应,是指材料的电阻率将受磁化状态 的变化而呈现显著改变的现象。一般定义为 GMR=[(P0-PH)/P0]×100% 其中,PH为在磁场H作用下材料的电阻率,P0指无外磁场作 用下材料的电阻率.
三、巨磁电阻材料的应用现状
1、巨磁电阻传感器 2、巨磁阻磁记录读出磁头 3、巨磁电阻随机存储器(MRAM)
1、巨磁电阻传感器
巨磁电阻传感器采用惠斯登 电桥和 磁屏蔽技术,传感器基 片上镀了一层很厚的磁性材料, 这层材料对其下方的巨磁电阻形 成屏蔽,不让任何外加磁场进入 屏蔽的电阻器。惠斯材料上方,受外加磁 场影响是电阻减少,而R2和R4 在磁性材料下方,被屏蔽阻值不 变。


巨磁电阻传感器由于具有巨大的GMR值和较大的磁场 灵敏度,表现出更强的竞争能力。 它大大提高传感器的分辨率,灵敏度、精确性等指标, 特别是在微弱磁场的传感方面,如可用于伪钞识别器等方 面,则显出更大的优势。更广泛的应用是各类运动传感器, 如对位置、速度、加速度、角度、转速等的传感,在机电 自动控制、汽车工业和航天工业等方面有广泛的应用。

【2017年整理】巨磁阻效应的原理及应用

【2017年整理】巨磁阻效应的原理及应用

【2017年整理】巨磁阻效应的原理及应用巨磁阻效应(Giant Magnetoresistance, GMR)是一种物理现象,指在特定条件下,铁磁或亚铁磁材料中的磁电阻发生显著变化的现象。

这种现象在工业和科研领域具有广泛的应用价值,因此了解其原理及在各领域的应用十分重要。

一、巨磁阻效应的原理巨磁阻效应主要由以下几个因素决定:1.交换耦合:当两个磁性材料之间有耦合作用时,它们的磁矩会互相影响。

在特定的条件下,这种耦合作用会使材料的磁电阻发生显著变化。

2.层状结构:巨磁阻材料通常采用多层膜结构,其中每一层都可以作为电流通道。

当电流垂直于膜面流动时,各层中的磁矩会相互作用,导致电阻发生变化。

3.钉扎场:钉扎场是指材料内部由于杂质、缺陷或其他因素引起的局部磁场。

当电流在材料中流动时,钉扎场会对电流产生散射作用,导致电阻增加。

二、巨磁阻效应的应用巨磁阻效应在多个领域具有广泛的应用价值,以下是几个主要应用领域:1.硬盘读取头:巨磁阻材料制成的硬盘读取头是现代计算机和数据中心的核心组件之一。

由于其具有高灵敏度和低噪音的特性,使得硬盘读取头的读取速度和准确性得到大幅提升。

2.磁传感器:巨磁阻材料制成的磁传感器在医疗、工业和科研领域得到广泛应用。

例如,在医疗领域中,磁传感器可用于检测人体内的金属物体和进行磁场导航;在工业领域中,磁传感器可用于检测电动机和发电机的转子位置;在科研领域中,磁传感器可用于研究物质的磁性和电磁场分布。

3.磁场探测器:巨磁阻材料制成的磁场探测器可用于检测弱磁场和高精度测量磁场方向和大小。

例如,在地球物理勘探、生物医学和核磁共振等领域,磁场探测器具有重要应用价值。

4.磁记忆材料:巨磁阻材料制成的磁记忆材料具有高密度、高速度和高可靠性等优点,可用于数据存储和逻辑运算等领域。

与传统的半导体存储器相比,磁记忆材料具有更高的存储密度和更长的使用寿命。

5.磁场调控:巨磁阻效应还可以用于调控磁场分布和方向,从而在多个领域具有潜在的应用价值。

巨磁阻材料

巨磁阻材料

生活中的功能材料——巨磁阻材料摘要:本文简要的介绍了巨磁阻效应的发现及概念、巨磁阻材料的原理、性能以及在生活中的应用,并对巨磁阻材料未来发展的进行展望。

关键词:巨磁阻;磁性材料;磁头;储存材料1.前言让硬盘内存更大,让商品更加轻薄短小,已成为现代信息产业不变的志业。

曾几何时,人们想要的只是能存几首歌的磁带,只是几十兆的软盘。

而现代人对动辄可保存上千首歌曲的mp3早已习以为常,计算机硬盘近年来的“瘦身”尤其显著,家用计算机硬盘的容量已经高达1TB。

藏在书桌下方的笨重计算机主机即将成为明日黄花,取而代之的是单手就可以拿着到处跑的手持式计算,且数据保存量远超过体积大上好几倍的老旧电脑。

将这些现实的,都要离不开巨磁阻材料扮演的重要角色。

瑞典皇家科学院指出,荣获诺贝尔物理学奖的费尔和格伦贝格,在将近廿年前分别发现的巨磁阻效应,奠定了今日硬盘读取磁头科技的基础。

利用该技术,相同的单位面积能容纳更多数据,相对的读写头也要更加灵敏才能增加读取效率。

因此在2007年10月,这两位科学家因分别独立发现了巨磁阻效应而共同获得了2007年的诺贝尔物理学奖。

2.巨磁阻效应发现及现象早在1988年费尔就发现了这一特殊现象:非常弱小的磁性变化就能导致磁性材料发生非常显著的电阻变化。

那时,法国的费尔在铁、铬相间的多层膜电阻中发现,微弱的磁场变化可以导致电阻大小的急剧变化,其变化的幅度比通常高十几倍,他把这种效应命名为巨磁阻效应(Giant Magneto-Resistive,GMR)。

有趣的是,就在此前3个月,德国优利希研究中心格林贝格尔教授领导的研究小组在具有层间反平行磁化的铁/铬/铁三层膜结构中也发现了完全同样的现象。

他们发现,该材料的电阻率在有外磁场作用时较之无外磁场作用时大幅度减小, 电阻相对变化率比各向异性磁电阻高一到两个数量级。

磁场的微弱变化将导致巨磁阻材料电阻值产生明显改变,从而能够用来探测微弱信号。

3.巨磁阻效应概念及巨磁阻材料的原理巨磁阻材料的关键结构是在两个磁性金属层之间有一个非金属隔离层。

巨磁阻效及应用报告

巨磁阻效及应用报告

巨磁阻效及应用报告巨磁阻效应是一种在外加磁场作用下发生显著磁电阻变化的物理现象。

这种效应是在1992年由巴黎莱旺研究机构的阿尔贝特罗蒂埃教授和他的团队首次发现的。

巨磁阻效应的应用前景巨大,因此引起了广泛的关注和研究。

巨磁阻效应基于磁电阻效应,即磁场对材料电阻的影响。

一般情况下,材料的电阻对磁场的变化不敏感。

然而,当材料中存在特殊的磁性结构时,如磁共振等,电阻对磁场的变化就会显著地变化,这就是磁电阻效应。

而巨磁阻效应是磁电阻效应中最明显的一种。

巨磁阻效应以具有巨大磁电阻变化的磁性材料为基础。

当这些材料处于没有外加磁场时,它们的电阻是最小的,可以达到几个百分点。

然而,当外加磁场作用于这些材料时,它们的电阻会迅速增加,甚至可以增加到几十个百分点。

这种磁电阻的巨大变化使得巨磁阻效应具有很大的应用潜力。

巨磁阻效应的应用非常广泛,尤其在磁存储技术中具有重要地位。

巨磁阻材料可以用来制造磁头,这是计算机硬盘驱动器中不可或缺的部分。

通过利用巨磁阻效应,磁头可以以非常小的尺寸来探测和读取硬盘上的磁场信息。

巨磁阻材料还可以用于制造磁阻随机存储器(MRAM),这是一种新兴的存储技术,具有快速的读写速度和非易失性的特点。

此外,巨磁阻效应还可以应用于传感器技术中。

例如,巨磁阻材料可以用于制造磁传感器,用来检测和测量磁场强度和方向。

磁传感器广泛应用于导航、地震监测、医疗诊断等领域。

此外,巨磁阻效应在自动控制领域也具有重要的应用。

例如,巨磁阻材料可以用于制造磁阻变结构,这种结构可以根据外界磁场的变化实时调节其电阻,从而实现对电路的精确控制和调节。

尽管巨磁阻效应在磁存储、传感器和自动控制等领域有着广泛的应用,但是该效应的原理和机制还需要进一步研究和理解。

目前,巨磁阻材料的性能还有待进一步提高和优化,以满足不同领域的应用需求。

随着材料科学和纳米技术的不断发展,相信巨磁阻效应的应用前景会越来越广阔。

巨磁电阻效应的研究与应用①

巨磁电阻效应的研究与应用①
颗粒膜 中 的 巨 磁 电 阻 效 应 类 似 于 多 层 膜 的 情 况 ,也是起源 于自 旋相 关 的杂 质 粒子 的 散 射。不 同
图 2 两种方法的比较结果
图中 :横坐标 P 表 示极 化 率 ;纵坐 标 TMR 表 示 磁性隧道结的电阻变化率。
可见 ,隧穿方 法的 计 算结 果 要 比隧 道 哈密 顿 方 法大得多 ,这主要是因为在利用隧 穿方法计 算时 ,为 了确保平行于界 面方 向上 的 动量 守 恒 ,只 有部 分 费 米面上的电子参与了隧穿过程 ,隧 穿电流减 小 ,导 致 了电阻计算结果偏大。由于两种方法在 应用时均 只 能和部分实验结果相符合 ,所以都 不够完善 ,因此 对
Abstract : The Giant Magneto-Pesistance (GMR) effect is the primary research direction of condensed matter physics , thus it attracts more and more attention of researchers .The theory and status of GMR effect is introduced .And its application is reviewed ;the basic characteristic ,operating theory ,applying area and existing problems of GMR sensor are analyzed .The applying prospect of GMR sensor is discussed at last . Key words : giant magneto - resistance effect ;sensor ; condensed matter physics

巨磁电阻效应

巨磁电阻效应

巨磁电阻效应巨磁电阻效应是一种材料的特殊电学性质,它在磁场的作用下,导致材料电阻发生变化。

这种效应最早于1857年被法国物理学家埃米尔·埃德蒙·皮卡尔发现,并在20世纪80年代得到了进一步的研究和应用。

一、巨磁电阻效应的原理巨磁电阻效应的原理主要基于磁电阻效应和自旋极化效应。

当电流通过材料时,自由电子会受到周围磁场的影响而发生偏转。

当磁场垂直于电流方向时,自由电子的自旋方向和运动方向会发生关联,这也被称为自旋阻尼。

在自旋阻尼的作用下,自由电子的速度和自旋方向会发生变化,导致电子在材料中碰到来自其他自由电子的阻力。

这种阻力会导致材料电阻的增加,从而出现巨磁电阻效应。

二、巨磁电阻效应的应用1. 磁存储技术巨磁电阻效应被广泛应用于磁存储器中,例如硬盘驱动器和磁存储芯片。

在磁存储器中,巨磁电阻效应可以使得读取电路能够更加准确地检测到磁场的变化,从而实现数据的读取和写入。

2. 磁传感器由于巨磁电阻效应的敏感性和可控性,它在磁传感器领域得到了广泛的应用。

磁传感器利用巨磁电阻效应可以测量磁场的强度和方向,广泛应用于导航、车辆安全和医疗设备等领域。

3. 电子设备巨磁电阻效应还被应用于电子设备中,例如磁传感器、扬声器和微波器件等。

这些设备利用巨磁电阻效应可以实现电阻的调节和信号的处理。

三、巨磁电阻效应的优势和展望与传统电阻相比,巨磁电阻效应有以下几个优势:1. 效应大:巨磁电阻效应的变化幅度可达到几十倍甚至上百倍。

2. 快速响应:巨磁电阻效应的响应速度可以达到纳秒级别。

3. 高稳定性:巨磁电阻效应是一种内禀的性质,不受温度和时间的影响。

随着科技的不断进步和应用场景的拓宽,巨磁电阻效应在各个领域都有很大的发展潜力。

未来,随着材料科学和纳米技术的进一步发展,相信巨磁电阻效应将有更加广泛的应用,为人们的生活带来更多便利和创新。

巨磁电阻效应的原理及应用

巨磁电阻效应的原理及应用

巨磁电阻效应的原理及应用1. 巨磁电阻效应的介绍巨磁电阻效应(Giant Magnetoresistance,GMR)是一种描述材料电阻随外加磁场变化的现象。

GMR的发现被认为是短距离存储技术的突破,对磁敏感材料和磁传感器的发展具有重要意义。

2. 巨磁电阻效应的原理巨磁电阻效应的产生与磁性多层膜结构中存在的顺磁性层和铁磁性层之间的相互作用有关。

当外加磁场改变时,磁性多层膜中的磁性层会发生磁矩的重排和旋转,从而导致电子的自旋定向与电子传输方向的关系发生变化。

这种变化会导致电阻的变化,即巨磁电阻效应的产生。

3. 巨磁电阻效应的应用巨磁电阻效应的应用非常广泛,主要包括以下几个方面:3.1 磁存储器巨磁电阻效应在磁存储领域发挥着重要作用。

由于巨磁电阻效应的出现,磁存储器的读写速度得到了显著提高。

传统磁存储器需要通过读写头的接触来读取数据,而采用巨磁电阻效应材料制成的磁存储器只需通过测量电阻值的变化来完成数据读取,大大提高了读取速度和数据存取密度。

3.2 磁传感器巨磁电阻效应材料常常被用于制作磁传感器。

巨磁电阻效应材料的电阻值随外加磁场的变化而变化,因此可以利用巨磁电阻效应材料制成的传感器来测量磁场的强度和方向。

磁传感器在航空航天、交通运输、医疗设备等领域中得到了广泛应用。

3.3 磁电阻随机存取存储器(MRAM)巨磁电阻效应也被应用于磁电阻随机存取存储器(Magnetoresistive Random Access Memory,MRAM)的制造。

MRAM是一种新型的非易失性存储器,兼具闪存和DRAM的优点。

相比传统存储器技术,MRAM具有读取速度快、功耗低、抗辐射等优势。

3.4 理论研究与材料改进巨磁电阻效应的研究也对材料科学领域有着重要意义。

科学家们通过对巨磁电阻效应的原理和机制的研究,不断改进巨磁电阻材料的性能和稳定性,以实现更高的电阻变化率和更佳的传感特性。

4. 结论巨磁电阻效应作为一种重要的磁电效应,具有广泛的应用前景。

巨磁阻效应及其在自旋电子学方面的应用

巨磁阻效应及其在自旋电子学方面的应用

巨磁阻效应及其在自旋电子学方面的应用巨磁阻效应(GMR)是指在引入薄膜和多层膜晶体学领域中,利用磁性材料的巨磁阻效应来实现高灵敏度的磁传感器和高容量的存储技术。

巨磁阻效应是一种基本的物理现象,它能够改变材料电导率,从而使材料的电阻率随磁场变化。

它得到了广泛的应用,在磁性材料的测量、传感、存储以及自旋电子学等方面具有广阔的应用前景。

巨磁阻效应的应用1. 磁传感器巨磁阻效应可用于制造磁传感器,如磁阻计、磁导弹波传感器和磁触头等。

这些传感器可以用于检测磁场的变化,包括用于测量和控制电机和发电机的磁场、磁卡读头以及其他磁场测量和控制应用。

这些传感器具有高精度、高速度和低噪音等特点。

2. 存储器巨磁阻效应可用于制造高密度磁存储器。

从最初的几百兆字节到现在的几百千兆字节,磁存储器的容量已经有了巨大的提高。

随着存储芯片的微型化和集成化,巨磁阻效应在存储器方面的应用变得更加有效。

3. 自旋电子学自旋电子学是一种奇近效应现象,是一种可以利用操纵电子自旋的电学和磁学技术的新型电子学。

自旋最根本的特征是它自身具有磁矩,可以与晶体中的磁场相互作用。

不同于传统的基于电子电荷的电子学技术,自旋电子学技术的研究将有望在未来的纳米电子学和计算机中得到广泛应用。

巨磁阻效应将成为未来自旋电子学的重要组成部分,可以用于制造自旋电子学器件,如磁性电阻、磁隧道结、自旋阻抗和自旋导体等。

自旋电子学也受到了越来越多的关注,它可能会打破德鲁德电子传导中的阻抗序列,提高信息处理的速度,解决低功耗、高速度和高容量存储器的问题。

总结巨磁阻效应从上个世纪90年代开始逐渐得到关注并得到了广泛的应用,其首次在高密度磁盘驱动器中被使用并取得了巨大的成功。

随着技术的不断发展和深入研究,巨磁阻效应展现出了越来越多的潜力,将成为未来高精度和高容量磁传感器、存储器以及自旋电子学器件的重要组成部分。

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用1. 引言巨磁阻效应(Giant Magneto Resistance,简称GMR)是一种材料特性,是指在外加磁场下,材料电阻发生大幅度变化的现象。

由于其在信息存储、传感器等领域具有广泛的应用,因此对其原理及应用进行深入研究和了解具有重要意义。

2. 巨磁阻效应的原理巨磁阻效应源于磁性多层结构材料中的自旋阻尼效应和磁性交换效应。

当多层结构材料中的两个磁性层之间被非磁性层隔开时,自旋极化电流通过这些层会引起阻尼之间的传递,导致电阻发生变化。

巨磁阻效应的原理可以用以下几点进行解释:•磁性多层结构:采用多层薄膜结构,其中包含不同磁性层和非磁性层。

•自旋极化电流:施加自旋极化电流时,电子的自旋会对电子传输产生影响。

•自旋阻尼效应:自旋极化电流通过磁性层时,会与该层磁矩发生相互作用,引起自旋的阻尼。

•磁性交换效应:自旋极化电流引起的自旋阻尼会与相邻磁性层之间的磁性交换作用产生耦合,导致电阻变化。

3. 巨磁阻效应的应用3.1 磁存储器巨磁阻效应在磁存储器中有广泛应用。

磁存储器利用外加磁场的变化,改变磁性多层结构材料中的电阻,从而存储和读取信息。

巨磁阻效应的高灵敏度和可控性,使得磁存储器具有更高的容量和更快的速度。

3.2 磁传感器巨磁阻效应也可以应用于磁传感器中。

磁传感器利用材料的电阻变化来感应磁场的变化。

巨磁阻传感器具有高灵敏度、宽工作范围和低功耗的特点,广泛应用于磁测量、地磁导航和磁生物学等领域。

3.3 磁电阻头巨磁阻效应还可以用于磁电阻头的制造。

磁电阻头是读取硬盘驱动器中存储信息的装置,利用材料电阻的变化来感知磁场中的数据。

巨磁阻效应的高灵敏度和稳定性,使得其在磁电阻头中有广泛的应用。

3.4 其他应用领域除了上述应用领域,巨磁阻效应还可应用于磁生物学、磁传导等领域。

例如,巨磁阻效应可以用于生物传感器中,实现对生物磁场的检测和分析。

此外,巨磁阻效应还可以用于磁传导器件中,实现磁传导的控制和调节。

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用【实验目的】1、了解GM效应的原理2、测量GM模拟传感器的磁电转换特性曲线3、测量GM的磁阻特性曲线4、用GM传感器测量电流5、用GM梯度传感器测量齿轮的角位移,了解GM转速(速度)传感器的原理【实验原理】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。

称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。

电阻定律R二I/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ,可以忽略边界效应。

当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3 nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。

;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。

在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。

施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。

电流的方向在多数应用中是平行于膜面的。

图3是图2结构的某种GM材料的磁阻特性。

由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。

当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。

磁阻变化率△ R/R达百分之十几,加反向磁场时磁阻特性是对称的。

注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。

有两类与自旋相关的散射对巨磁电阻效应有贡献。

其一,界面上的散射。

无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。

巨磁阻效应及其应用实验报告

巨磁阻效应及其应用实验报告

巨磁阻效应及其应用实验报告篇一:巨磁阻效应实验报告数据数据处理实验一线圈电流由零开始变化测得输出电压V和磁场B的关系如下图示由上图可以看出2mT以下部分传感器的输出电压和磁场变化情况接近线性变化,其灵敏度K= 相关系数为由RB/R0=/ 计算出不同磁感应强度下的RB/R0值,绘制RB/R0-B关系图如下可以看出RB/R0的值随磁场B增大而逐渐减小,在2mT以后趋于饱和,RB/R0的饱和值约为。

则该传感器的电阻相对变化率/R0的最大值约为=-=-10% 实验二测量时,巨磁阻传感器工作电压V+为,线圈电流为。

利用实验所得数据作V输出—COSθ关系图如下示:从图中可以看出在COSθ=附近有一个瑕点外,具有较良好的线性关系V=θ,相关系数为,即传感器的输出电压与传感器敏感轴—磁场间夹角θ成余弦关系。

问题思考1.如何避免地磁场影响,并解释原因。

本次实验中亥姆霍兹线圈产生磁场来验证材料在有无磁场的情况下电阻的变化,必然会受到地磁场的影响,故我们在实验过程中每次旋转角度后,应重新调零,减小每次旋转角度地磁场对实验误差的积累。

篇二:巨磁电阻效应及其应用研究性实验报告北京航空航天大学基础物理实验巨磁电阻效应及其应用研究性实验报告摘要本报告研究了巨磁电阻效应及其应用。

报告详细的阐述了该实验的实验背景、实验原理、实验仪器及实验内容。

数据处理部分,报告将原始数据绘制成表格,并将用Matlab绘制成图像,能够较清晰的表示出物理量之间的关系。

另外,本报告对巨磁电阻的应用进行了大量的探究,列举了一些巨磁电阻于当今时代的应用,阐述了巨磁电阻的应用前景。

关键字巨磁电阻、传感器、磁感应强度、电压、电流目录摘要................................................................. . (1)关键字................................................................. (1)一、实验背景................................................................. (5)二、实验原理................................................................. (5)三、实验仪器................................................................. (7)1、实验仪主机................................................................. .. (7)2、基本特性组件模块................................................................. .. (8)3、电流测量组件................................................................. . (9)4、角位移测量组件................................................................. (9)5、磁读写组件................................................................. .. (9)四、实验内容................................................................. (10)1、GMR模拟传感器的磁电转换特性测量 (10)2、GMR磁阻特性测量............................................................... .. (11)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (12)4、用GMR模拟传感器测量电流............................................................135、GMR梯度传感器的特性及应用 (14)6、磁记录与读出................................................................. .. (15)五、数据处理................................................................. . (15)1、GMR模拟传感器的磁电转换特性测量 (15)2、GMR磁阻特性测 (17)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (18)4、用GMR模拟传感器测量电流............................................................195、GMR梯度传感器的特性及应用 (20)6、磁记录与读出................................................................. .. (21)六、实验思考................................................................. . (22)1、推导公式????????=????????????????? ................. . (22)2、实验感想................................................................. . (23)七、GMR传感器在有关领域的应用231、基于GMR传感器阵列的生物检测 (23)2、将GMR用于导航及高速公路的车辆监控系统 (24)3、GMR磁敏传感器在磁性介质的探测和磁性油墨鉴伪点钞机中的应用............................................................. .................................................................25八、实验总结................................................................. . (25)图 1 多层膜GMR结构图............................................................... . (6)图 2 某种GMR材料的磁阻特性............................................................... . (6)图 3 自旋阀SV-GMR结构图............................................................... (7)图4巨磁阻实验仪操作面板................................................................. .. (8)图 5 基本特性组件................................................................. .. (8)图 6 电流测量组件................................................................. .. (9)图7 角位移测量组件................................................................. . (9)图8 磁读写组件................................................................. (9)图9 GMR模拟传感器结构图............................................................... .. (10)图10 GMR模拟传感器的磁电转换特性........................................................10图11模拟传感器磁电转换特性实验原理图...................................................11图12磁阻特性测量原理图................................................................. .. (11)图13 GMR开关传感器............................................................... (12)图14 GMR开关传感器磁电转换特性............................................................12图15模拟传感器测量电流实验原理图...........................................................13图16 GMR梯度传感器结构图............................................................... (14)图17 用GMR梯度传感器检测齿轮位移......................................................14图18 磁电转换特性曲线................................................................. .. (16)图19 磁阻特性曲线................................................................. . (18)图20 GMR开关传感器磁电转换特性曲线....................................................19图21 输出电压与待测电流的关系曲线..........................................................20图22 用GMR梯度传感器检测齿轮位移的电压和转角关系图..................21图23 电路连接图................................................................. .. (22)图24 直接标记法................................................................. .. (23)图25 两部标记法................................................................. (24)表格 1 电流随磁感应强度变化表................................................................. (15)表格 2 磁阻随磁感应强度变化表................................................................. (17)表格 3 电平随励磁电流变化表................................................................. . (18)表格 4 输出电压随待测电流变化关系表........................................................19表格 5 电压和齿轮转角间的关系................................................................. (21)表格 6 二进制数的写入与读出................................................................. . (22)篇三:巨磁电阻效应及其应用数据处理五、实验数据及处理模拟传感器的磁电转换特性测量实验数据及由公式B = μ0nI算得的(n=24000匝/m)磁感应强度如下表所示:以B为横坐标,输出电压U为纵坐标,作图得:误差分析:(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负以内,反应在图像上就是最低处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;(3)使用Excel表格处理数据的过程中可能会有精度损失;2. GMR的磁阻特性曲线的测量根据实验数据由公式B = μ0nI算得的磁感应强度,由R=U/I算得的电阻如下表所示:(磁阻两端电压U=4V)作图如下:误差分析:(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负以内,反应在图像上就是最高处的输出都在y 轴上,实际上应当是分别分布在y轴左右两侧的;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;(3)使用Excel表格处理数据的过程中可能会有精度损失;。

巨磁电阻效应及其应用(全)

巨磁电阻效应及其应用(全)

巨磁电阻效应及其应用本实验介绍多层膜GMR效应的原理,并通过实验让学生了解GMR传感器的结构、特性及应用。

一、实验目的1. 了解GMR效应的原理。

2. 测量GMR的磁阻特性曲线。

3. 了解GMR模拟传感器的结构、特点,采用GMR传感器测量电流。

二、实验仪器巨磁阻实验测试仪基本特性组件电流测量组件三、实验原理1 GMR效应的原理根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。

称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。

电阻定律R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是忽略了边界效应。

当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。

电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。

早在1936年,就有理论指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。

总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。

在图1所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。

施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。

电流的方向在多数应用中是平行于膜面的。

有两类与自旋相关的散射对巨磁电阻效应有贡献。

其一,界面上的散射。

无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。

巨磁电阻效应及其应用(2)

巨磁电阻效应及其应用(2)

巨磁电阻效应及其应用(2)实验十七巨磁电阻效应及其应用20xx年诺贝尔物理学奖授予了巨磁电阻(Rianr magneto resistance,简称GMR)效应的发现者,法国Paris-Sud大学的物理学家阿贝尔·费尔(Albert Fert)和德国尤里希研究中心物理学家彼得·格伦贝格尔(Peter Grunberg)。

他们于19xx年独立作出的发现巨磁阻效应。

诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它计算机硬盘的容量从几百兆,几千兆,一跃而提高几百倍,达到几百G乃至上千G。

”凝聚态物理研究原子,分子在构成物质时的微观结构,他们之间的互相作用力,及其与宏观物理性质之间的联系。

人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。

量子力学出现后,德国科学家海森伯(W.Heisenberg,19xx年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。

后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如图17-1所示。

图17-1 反铁磁有序磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。

这种磁有序状态称为反铁磁性。

法国科学家奈尔(L. E. F. Neel)因为系统地研究反铁磁性而获19xx年诺贝尔奖。

在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。

另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。

相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。

直接交换作用的特征长度为0.1—0.3nm,间接交换作用可以长达1nm以上。

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用物质在一定磁场下电阻改变的现象,称为磁阻效应。

磁性金属和合金材料一般都有这种现象。

一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。

要说这种效应的原理,不得不说一下电子轨道及自旋。

种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。

表征其性质的量子数是主量子数n 、角量子数l 、自旋量子数s =1/2,和总角动量量子数j 。

主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r )而定。

平均距离会随着n 增大,因此不同量子数的量子态会被说成属于不同的电子层。

角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。

在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。

有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p 轨道,l=2的叫d 轨道,而l=3的则叫f 轨道。

磁量子数(ml= -l ,-l+1 … 0 … l-1,l )代表特征值,。

这是轨道角动量沿某指定轴的射影。

从光谱学中所得的结果指出一个轨道最多可容纳两个电子。

然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。

所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。

这假设以后能被相对论性量子力学所解释。

“我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。

然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。

这就是过渡金属电阻率高的原因。

这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。

实验巨磁阻抗效应

实验巨磁阻抗效应

实验 巨磁阻抗效应巨磁阻抗效应,简称GMI(Giant magneto‐impedance),是指某些材料在通以一定频率的交变电流时,其交流阻抗随外加轴向磁场迅速变化的现象,常见的这种材料为Co基非晶丝等。

这种效应具有快速响应,温度稳定,无磁滞现象等特点,在高灵敏度新型传感器、磁记录头、电磁参数测量等方面具有应用前景,正成为近来凝聚态物理研究领域的一个热点。

本实验对Co基非晶丝的GMI基本特性作初步地了解和研究。

巨磁阻抗实验装置图【实验目的】1.了解和研究铁磁性材料的GMI效应的规律和特点;2.深入理解磁畴、磁化、趋肤效应、阻抗等物理意义;3.学会使用高频信号发生器、模拟信号示波器、电磁铁、高斯计等实验设备。

【实验原理】1.基本物理概念交流阻抗在交流电路中,电压、电流之间存在量值(峰值或有效值)大小的关系,还有相位关系。

某一元件上电压电流二者峰值之比(等于有效值之比)叫做该元件的交流阻抗,用Z表示:趋肤效应在直流电路中,均匀导线截面上的电流密度是均匀的。

但在交流电路里,随着频率的增加,在导线截面上的电流分布愈来愈向导线表面集中。

这种现象叫做趋肤效应(skin effect )。

趋肤效应使导线的有效截面减少了,从而使它的等效电阻增加。

趋肤效应的强弱可以用趋肤深度表示:⑴ 式中,是射频电流角频率,是导体的电导率,是材料的磁导率。

是指:在导体内距表面处,振幅衰减到表面处振幅的。

磁畴在没有外场的情况下,铁磁质中的电子自旋磁矩可以在小范围内“自发地”排列起来,形成一个个小的“自发磁化区”。

这种自发磁化区被称作磁畴。

通常在未磁化的铁磁质中,各磁畴自发磁化方向不同,不显示出宏观上的磁性。

当外磁场不断加大时,磁畴发生畴壁移动和磁畴转动,磁化方向渐渐以不同程度趋向磁化场的方向,介质就显示出宏观的磁性。

2.GMI 效应的物理机理对于铁磁材料,磁导率不但与频率ω、磁场强度有关,而且还与其它参数有关,如机械形变、温度等。

巨磁电阻效应及其应用(42014030708323483)

巨磁电阻效应及其应用(42014030708323483)

巨磁电阻效应及其应用【思考题】1什么是磁电阻效应和巨磁电阻效应?巨磁电阻效应的发现对物理学和技术应用有什么重要贡献?2为什么铁磁材料中电子散射与电子自旋状态有关?3为什么非磁性层的厚度会影响巨磁电阻效应大小?用RKKY理论理解此现象。

4如何用双电流模型解释磁性多层膜的巨磁电阻效应?该模型除解释巨磁电阻效应外还有哪些应用?5磁性多层膜与自旋阀磁电阻在薄膜结构、性能与应用方面有什么不同?6磁硬盘记录的原理是什么?为什么磁电阻的应用能大大提高磁记录的密度和读写速度?7将多层膜制成GMR元件时一般将其几何结构光刻成微米宽度迂回形状,目的是什么?8将GMR元件用作传感器时,采用桥式电路有什么好处?9在GMR桥式电路中,有时在电桥对角位置的两个电阻表面加磁屏蔽,有时不加,其原因是什么?10如何提高GMR传感器的灵敏度?如何用磁电阻效应测量导线中的电流?11对磁性样品测量应注意哪些问题?为什么先将样品磁化到饱和再进行测量?如何判断样品已经被磁化到饱和状态?12你认为巨磁电阻效应的发现者能获得诺贝尔物理学奖的理由是什么?13如果你自己要制备一个有巨磁电阻效应的磁性多层膜,薄膜结构应满足那些条件?【引言】2007年12月10日,法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格(Peter Crünberg)分别获得了一枚印着蓝白红标志的2007年诺贝尔物理奖章,他们各自独立发现的巨磁阻效应(giant magnetoresistance, GMR)[1,2]。

早在一百多年前,人们对铁磁金属的输运特性受磁场影响的现象,就做过相当仔细的观测。

莫特的双电流理论,把电子自旋引入对磁电阻的解释,而巨磁电阻恰恰是基于对具有自旋的电子在磁介质中的散射机制的巧妙利用。

目前巨磁电阻传感器已应用于测量位移、角度等传感器、数控机床、汽车测速、非接触开关、旋转编码器等很多领域,与光电等传感器相比,它具有功耗小,可靠性高,体积小,能工作于恶劣的工作条件等优点。

巨磁阻原理及应用

巨磁阻原理及应用

巨磁阻效应的原理及应用摘要:介绍了巨磁阻效应的发现、原理及器件应用。

关键词:巨磁阻效应;原理;磁性材料;磁头;应用。

1、引言近年来各种铁磁/非铁磁多层结构的巨磁阻(GMR)效应引起了实验和理论工作者的广泛兴趣。

人们对GMR效应进行了一定程度的深入研究,并且取得了很大的成就。

如今一些利用巨磁阻效应制造器件的技术已经相当成熟,并且具有非常广阔的应用前景。

1997年,全球首个基于巨磁阻效应的读出磁头问世。

正是借助了巨磁阻效应,人们才能够制造出如此灵敏的磁头,能够清晰读出较弱的磁信号,并且转换成清晰的电流变化。

新式磁头的出现引发了硬盘的“大容量、小型化”革命。

如今全世界几乎所有,笔记本电脑、音乐播放器、数码相机等各类数码电子产品中所装备的硬盘,基本上都应用了巨磁阻效应,这一技术已然成为新的标准。

当然巨磁阻的发现并非偶然,这种效应的发现建立在长期对交换耦合膜和铁磁合金电子运输这两个相互独立而又密切相关的领域所作的系统深入研究的基础上。

1986 年Grunberg 等人实验中发现在“Fe/Cr/Fe”三明治结构中,Fe 层之间可以通过Cr 层进行交换作用,当Cr 层在合适的厚度时,两Fe 层之间存在反铁磁耦合。

在此基础上,1988 年Baibich 等人研究了在(001)GaAs 基片上用分子束外延(MBE)生长的单晶(001)Fe/Cr/Fe 三层膜和(Fe/Cr)超晶格的电子输运性质。

结果发现当Cr 层的厚度为9 Å 时,在4.2 K 下20 kOe 的外磁场可以克服反铁磁层间耦合而使相邻Fe 层磁矩方向平行排列,而此时电流方向平行于膜面的电阻率下降至不加外磁场(即相邻Fe 层磁化矢量反平行排列)时的一半,磁电阻值MR(%)=Δρ/ρHs=(ρ0-ρHs)/ ρHs高达100%,其值较人们所熟知的FeNi合金各向异性磁电阻效应约大一个量级,故命名为巨磁电阻效应(GMR)。

上图为Fe/Cr 多层膜在T=4.2 K 时的磁电阻磁场关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:1004-2261(2002)04-074-03巨磁阻抗效应及其应用董延峰,王 治,丁燕红(天津理工学院 材料物理所,天津300191)摘要:近年来在FeCoSiB等非晶和纳米晶丝带中发现了巨磁阻抗效应,由于其灵敏度高,因而在磁传感器技术中有巨大的应用前景,受到国内外专家的广泛关注.本文简单介绍了巨磁阻抗效应的原理,并结合近年来具有巨磁阻抗效应的非晶和纳米晶铁磁合金的应用研究进展情况,提出了巨磁阻抗效应可能广泛应用的领域.关键词:非晶;纳米晶;铁磁合金;巨磁阻抗效应中图分类号:TM27 文献标识码:AGiant magneto-impedance effects and their applicationsDONG Y an-feng,WANG Zhi,DING Yan-hong(Institute of M aterial Physics,Tianjin Institute of Technology,Tianjin300191,China)A bstract:Giant magneto-im pedance effects have been discovered in FeCoSiB amorphous andnanocrystalline w ires.These effects have giant sensitivity.Close attention has paid to it by schol-ars in lots of countries,since their g reat promising prospects in the application of sensor technolo-gy.In this article,the sources of giant magneto-im pendance effects are introduced briefly.And research developments of the effects and their applications in amo rphous and nanocrystalline soft magnetic alloy in recent years are summaried.The future applications are also described.Key words:amorphous;nanocrystalline;Fe-based mag netic alloy;giant mag neto-impedance1 GM I效应1992年,日本名古屋大学毛利佳年雄教授等人首先报道了在非晶磁性材料中发现其交流磁阻抗随外加磁场而变化的现象,这种现象非常灵敏[1~2].非晶丝的灵敏度达12%~120%/Oe[3],因此将此现象称为巨磁阻抗(Giant Magneto-impedance,GMI)效应.在室温下显著的磁阻抗效应和低外磁场下的高灵敏度,使这种效应在传感器技术和磁记录技术中具有巨大的应用潜能.接着美国波士顿大学教授Humphre y F B、瑞典皇家工学院Rao K V、日本Uniti-ka ltd公司在1994年的“MMM-INTERMAG联合会”和“快淬非晶磁性丝及应用研讨会”上均作了专题报告,对GMI效应的产生机制作了深入系统的分析研究,就实验数据作了理论解释.毛利等人的研究成果表明,在适当成分下, FeCoSiB非晶软磁丝具有良好的软磁特性.磁致伸缩系数趋近于零(~10-7),因为负的磁致伸缩导致切向各向异性,从而使磁畴结构沿着丝呈环形畴排列,如图1所示.通过丝的电流产生了一个易轴场,该场使畴壁移动产生环形磁化.外加纵向场H ex相对于环形磁化来讲是一个难轴场.会阻止环形磁通的变化.结果当H ex=0时,切向磁导率较大(~104),当H ex增加,切向磁导率随外磁场急剧减小,切向磁导率随外场灵敏度变化是巨磁阻抗效应产生的主要原因.第18卷第4期2002年12月 天 津 理 工 学 院 学 报JOURNAL OF TIANJIN INSTITUTE OF TECHN OLOGY Vol.18No.4 Dec.2002收稿日期:2002-09-08基金项目:天津市自然科学基金资助项目(003603111);天津市“材料物理与化学”重点学科资助项目第一作者:董延峰(1976-),男,硕士研究生图1 非晶丝的磁畴模型Fig .1 M odel for domain structure in negativemagnetostrietive amorphous wiresPanim a L V 等在研究急淬火法制得的非晶软磁丝时,发现在电流频率较低情况下(1kH z ~10kHz ),其感生电压下降350%,灵敏度为25%/Oe .这反映了切向磁导率随外磁场灵敏变化.在较高一些的电流频率(0.1MH z ~10MHz ),此时趋肤效应显著.当外加3Oe ~10Oe 的场时,丝的总电压降大约是40%~60%,灵敏度约10%/Oe[4].这些效应随外磁场变化不出现磁滞现象,并且能在1mm 长和几个微米直径的非晶丝得到,这对制作探测数量级为10-5Oe 的弱磁场的高灵敏度微传感器非常重要.2 GM I 应用进展随着信息技术的普及,各种信息设备,汽车和工业机器人一类机电设备,电力电子设备,医疗电子设备和工业测试设备的发展,都对磁传感器提出了越来越高的要求.为了检测磁记录介质和旋转编码器环形永磁体表面的定域微弱磁通量,检测头长度应小于1mm ;为了能够精确的非接触传感信号,磁通检测的灵敏度应为8×10-2~8×10-5A /m ;检测高密度记录应磁盘存储器表面磁通的变化,需要信号频率为0MHz ~10MHz 的响应速度;作为汽车和电动机用的微型磁传感器,在-50℃~+180℃温度范围应当由不稳定度小于0.01%FS ·℃-1的高温稳定性和最高工作温度;功耗要低于10mW ,使这种便携式微型传感器能够使用纽扣电池工作.通常使用的磁通传感器和磁通检测元件,例如磁通门传感器、霍尔元件和磁敏(M R )电阻元件,都不能完全满足这些要求.使用高性能细磁芯的磁通门磁强计,灵敏度可达8×10-5A /m ,但由于杂散电容,磁芯绕组会使传感器的响应速度低于数kHz .虽然霍尔元件和MR 元件都能做成微型器件,但它们的磁通检测率大约是0.1%/Oe .而且霍尔元件的最高工作温度在70℃;目前正在加紧开发的巨磁电阻(Giant Magneto -resistance ,GM R )元件是利用某些磁性材料的巨磁电阻效应,这种效应是在施加外加磁场的情况下材料的电阻发生巨变的现象.其灵敏度可以提高1个数量级,达到1%/Oe ,不过,它还存在辞滞、温度不稳定性等问题;使用目前研制的GM R 材料,必须在较高磁场(10kOe )中才能观察到效应,离实际应用还有一段较长的距离.巨磁阻抗(GM I )效应比巨磁电阻(GM R )效应大一个数量级.在室温下就可以得到相当大的磁阻抗效应,一般能达到12%Oe ~120%/Oe 的灵敏度.很多研究表明,具有显著GMI 效应的非晶或纳米晶丝(约1mm ),可以同时满足新型微型磁传感器所需的诸多条件.下面介绍一下国内外GM I 效应传感器的研究进展.2.1 GM I 微型传感头图2是科尔皮兹振荡器传感器组件电路[5].电路中利用GM I 元件的电感L 和电容C 1、C 2的共振产生振荡频率f =1/2π(LC 1C 2/(C 1+C 2))1/2.用1根Ф30μm 长的FeCoSiB 退火非晶丝作为GM I 元件,在C 1=C 2=10pF 和L =0.56μH 时,获得大约100MH z 高频振荡.在约160A /m 外磁场中,振荡电路的丝电压E w 下降100%.由于振荡电路中的阻抗和丝电流同时减小,E w 的下降率约为本征磁阻下降率的5倍,即磁通检测率灵敏度为50%/Oe .共振电路上由外场H ex 感生的振幅调制电压,通过检测H ex 波形的二极管D 和电容C 解调,只要有微小的直流电源电流,就足以使共振电路中的GMI 元件磁化.这个科尔皮兹电路以8mW 工作.这种微型传感头组件可以检测方向、旋转角和位移等物理量.图2 G M I 科尔兹振荡器传感器电路Fig .2 Circuit configuration of a field sensorusing colpitts vibrato r2.2 快速响应大电流传感器近来,随着用于交流电动机和各种传动机构的逆变器驱动电子控制系统技术的发展,急需能够测量数百甚至到2000A 的小尺寸快速响应大电流传感器.传统的霍尔效应传感器和新开发的75第4期 董延峰等:巨磁阻抗效应及其应用 非晶磁芯传感器在尺寸、重量级响应速度方面满足不了系统的要求.因此,Inada K等人[6]应用FeCoSiB非晶丝的GM I效应,开发一种新型的大电流快速响应传感器.其电路结构如图3所示.使用一对Co72.5Si12.5B15铸态非晶丝(Ф=130μm,l=5mm).电路中加负反馈环是为了改善输出电压-外磁场特性、频率特性和温度稳定性.使用1000pF电容C,获得约为10M的振荡频率.检测±3200A/m磁场具有很高的线性度,非线性度小于0.5%FS,介质频率高达300kHz.在室温到130℃工作温度范围内,传感头的温度变化仅为0.01%/℃FS.这种传感器在25mm距离内可检测交直流500 A,传感头与外磁场成80°角,可检测2000A.图3 GM I头共振式多谐振荡器磁场传感器电路Fig.3 Circuit configuration of a field sensor using a M I headresonant multivibrato r and a low-pass filter(L PF)2.3 位移传感器1993年,Takagi M等人[7]报导用这种传感器检测眼睑运动状态,图4是位移传感器的电路,电路为哈特莱振荡器型.他是把4根FeCoSiB退火非晶丝(Ф50μm,l=7mm)排列成星形,在其中心放置一块永磁片,磁片可以垂直移动.4根非晶丝互相串联,用50kH z、30mA正弦波圆周磁化,产生感生电压e L.欧姆电压在差分电路中被抵消.用差分运算放大器、解调器、低通滤波器电路,从解调电压e L减去直流偏压e b,得到传感器输出E out.把两个GM I元件固定在眼镜架上,两个永磁片贴在靠近鼻子的眼睑上,就可以传感两个眼睑的运动.直流偏压e b的振幅控制磁片位移的工作点,试验结果在约6m m处为线性检测区,得到输出E out±1.8V.通过检验眼睑的运动可以诊断疾病,检查汽车司机和计算机人员的视力疲劳程度.2.4 磁旋转编码器M ohri K等人[8]利用一根具有GM I效应的折叠的FeCoSiB非晶丝制成一种新型器件,他们把它成为磁阻抗元(MI),并将其应用到磁旋转编码器中,该编码器由8个串联的M I呈星形环状面对磁极分布,这种磁编码器消除了环形磁体的每个磁极磁场的不规则分布和外界杂散磁场的影响以及转动轴的偏心运动;同时M I的磁能互补,提高了编码的准确性;另外M I与磁体的间距较大,解决了碰撞问题,提高了控制精度.图4 采用共振式多谐振荡器的磁体位移传感器Fig.4 M I-effect mag net displacement sensor2.5 薄膜磁传感器日本NTT公司的Senda M等人[9]利用溅射磁性薄膜的高频磁阻抗效应,研制了一种薄膜高频磁阻抗传感器.磁性薄膜为多层结构Ni83Fe17/Cu/SiO2,用离子束溅射沉积在No.0211麻玻璃基片上.其中Cu为导体层,有两个电流电压电极;SiO2用于避免涡流损耗和介质击穿;NiFe层厚50nm,其4πM=1T,ρ=20μΨ·c m,λ=5×10-7,沉积时向膜外加数kA/m直流磁场产生单轴各向异性场Hk=240A/m~480A/m.用光刻将多层膜制成10μm宽的条形并设计成闭合磁路,这样构成的磁传感器,由于薄膜的GMI效应,外加数百A/m的磁场,通过800MHz~1000MHz交流电流,获得60%~70%的输出电压变化,并且没有磁滞和巴克豪森噪声.(下转第95页) 76 天 津 理 工 学 院 学 报 18卷平板,在确定其位移函数后,可进一步推演出其内力计算公式见(24),这里罗列如下: M x =-∑tm =0∑tn =0D x A m n1l 2Χ″m (x /l )Χn (y /b )+μb 2Χm (x /l )Χ″n (y /b ) M y =-∑tm =0∑t n =0D y A m n μl 2Χ″m (x /l )Χn (y /b )+1b 2Χm (x /l )Χ″n (y /b ) Q x =-∑tm =0∑t n =0D x A mn lμl 2Χ m (x /l )Χn (y /b )+1b2Χ′m (x /l )Χ″n (y /b ) Q y =-∑t m =0∑tn =0D y A mnb 1l 2Χ″m (x /l )Χ′n (y /b )+μb2Χm (x /l )Χn (y /b )(24)6 结 语通过以上分析计算,本文建议对于地基、箱形基础和上部结构相互作用的问题,用子结构法凝聚上部结构的刚度和荷载,采用有限分层地基模型,并计及基础自身刚度的影响,利用能量变分原理建立数学模型,从而对问题进行较为全面的分析,体现了三者协同工作的特性,修正了现行设计计算模型的不合理之处.同时,本方法与其它空间问题数值计算方法相比,还有显著节省计算工作量的优点.参 考 文 献:[1]王勖成,邵 敏.有限单元法基本原理和数值方法[M ].北京:清华大学出版社,1997.[2]钱伟长.变分法及有限元(上册)[M ].北京:科学出版社,1980.[3]陈位宫.力学变分原理[M ].上海:同济大学出版社,1989.[4]王龙甫.弹性理论[M ].北京:科学出版社,1984.[5]Selvadural A P S ;范文田译.土与基础相互作用的弹性分析[M ].北京:中国铁道出版社,1984.(上接第76页)3 结 论在退火FeCoSiB 非晶丝和其他材料中能发现显著的GMI 效应.使用GMI 元件制成的新型微型磁头和磁传感器,1mm 磁头可以达到8×10-4A /m 磁通检测灵敏度;使用200MHz ~300MH z 电流可以获得20MHz ~30MHz 的截止频率;传感器中的负反馈电路可以提高工作温度和温度稳定性;使用的自激振荡电路,功耗小于10mW .利用GM I 元件所制成的谐振荡电路可以制作成新型的GM I 效应磁传感器,这种传感器比其他磁效应传感器拥有更高的磁通检测率和灵敏度,在诸多领域内具有良好的发展前景.参 考 文 献:[1]M ohri K ,Kaw ashima K ,Ko hzaw a T ,et al .M agneto -inductive effect in amo rphous wires [J ].IEEE T rans M agn ,1992,28(5):3150-3152.[2]P anina L V ,M ohri K .M ag neto -Impedance effect inamorphous wiresAppl [J ].P hy s Lett ,1994,65(9):1189-1191.[3]K itohri T ,M ohri K ,U chiyama T .Asymmetrical M ag -neto -Impedance Effect in Twisted Amorphous Wires fo rSensitive M agne tic Sensors [J ].IEEE Trans M ag n ,1995,31(6):3137-3139.[4]Panina L V ,Mo hri K ,Bushida K ,et al .Giant M ag ne -to -I mpedance and M ag neto -Inductive Effects in Amor -phous alloy s [J ].J .Appl Phy s ,1994,76(10):6198-6203.[5]M ohri K ,Panina L V ,Uchiyama T ,et al .Sensitiveand quick response mag neto -impedance (M I )sensor us -ing amorphous wire [J ].I EEE T rans M agn ,1995,31(2):1266-1275.[6]Inada K ,M ohri K ,Inuzuka .Q uick Response LargeCurrent Seno r Using Amorphous M I Resonant M ultivi -brator [J ].IEEE T rans M ag n ,1994,30(6):4623-4625.[7]Takag i M ,K atoh M ,M ohri K ,et al .M agnet Displace -ment Sensor Using M I Elements fo r Ey elid M ovement Sensing [J ].I EEE T rans M agn ,1993,29(5):3340-3342.[8]M ohri K ,Kaw ashima ,Kohzawa K ,et al .M agneto -I n -ductive Effect in T ension -Annealed A mo rphous Wires and M I Sensors [J ].I EEE T rans M ag n ,1993,19(6):3168—3170.[9]Senda M ,Ishii O .T hin F ilm M agnetic Field Sensor U -tilizing M agneto Impedance [J ].IEEE T rans M ag n ,1994,30(6):4611-4613.95第4期 王曾嵘:用变分法分析地基-箱形基础-上部结构相互作用 。

相关文档
最新文档