初中数学函数基础知识难题汇编及答案解析
初中数学函数基础知识难题汇编含答案
故上坡时间 =10(min),下坡时间 =2(min)
∴总用时为:10+2=12(min)
故选:B
【点睛】
本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应
11.如图,矩形 的周长是 ,且 比 长 .若点 从点 出发,以 的速度沿 方向匀速运动,同时点 从点 出发,以 的速度沿 方向匀速运动,当一个点到达点 时,另一个点也随之停止运动.若设运动时间为 , 的面积为 ,则 与 之间的函数图象大致是()
12.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()
A.甲乙两地相距1200千米
B.快车的速度是80千米∕小时
C.慢车的速度是60千米∕小时
D.快车到达甲地时,慢车距离乙地100千米
【答案】C
【解析】
A. B.
C. D.
【答案】C
【解析】
【分析】
根据题意可对每个选项逐一分析判断图象得正误.
【详解】
解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.
B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.
C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.
故选C
【点睛】
考点:函数的定义
15.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()
A. B. C. D.
【答案】D
【解析】
最新初中数学函数基础知识难题汇编附答案(3)
最新初中数学函数基础知识难题汇编附答案(3)一、选择题1.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒ 则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.5.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm/s 的速度从B A -在线段AB 上运动,到达点A 后,停止运动.若动点P,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为S(单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C .D .【答案】D【解析】【分析】根据题意可以得到点P 运动的快,点Q 运动的慢,可以算出动点P 和Q 相遇时用的时间和点Q 到达终点时的时间,从而可以解答本题.【详解】:设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为s (单位:cm ), 6=2t+t ,解得:t=2,即t=2时,P 、Q 相遇,即S=0,.P 到达B 点的时间为:6÷2=3s ,此时,点Q 距离B 点为:3,即S=3P 点全程用时为12÷2=6s ,Q 点全程用时为6÷1=6s ,即P 、Q 同时到达A 点由上可得,刚开始P 和Q 两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s ;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.6.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t变化的图象大致是()A.B.C.D.【答案】B【解析】【分析】从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.7.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.8.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=23)=4∴当点E与点D重合时,由勾股定理得a2+2∴a=13∴菱形的面积为3故选:C.【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,9.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与,A B重合).过Q作QM PA⊥于M,QN PB⊥于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据三角形面积得出S△PAB=12PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,进而得出y=PE ABPB,即可得出答案.【详解】解:连接PQ,作PE⊥AB垂足为E,∵过Q作QM⊥PA于M,QN⊥PB于N,∴S△PAB=12 PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,∵矩形ABCD中,P为CD中点,∴PA=PB,∵QM与QN的长度和为y,∴S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ=12PB(QM+QN)=12PB•y,∴S△PAB=12PE•AB=12PB•y,∴y=PE AB PB⋅,∵PE=AD,∴PE,AB,PB都为定值,∴y的值为定值,符合要求的图形为D,故选:D.【点睛】此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y=PE ABPB⋅,再利用PE=AD,PB,AB,PB都为定值是解题关键.10.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A 、距离越来越大,选项错误;B 、距离越来越小,但前后变化快慢一样,选项错误;C 、距离越来越大,选项错误;D 、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D .【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.11.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .【答案】D【解析】试题分析:如图,过点C 作CD ⊥AB 于点D .∵在△ABC 中,AC=BC ,∴AD=BD .①点P 在边AC 上时,s 随t 的增大而减小.故A 、B 错误;②当点P 在边BC 上时,s 随t 的增大而增大;③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D .考点:等腰三角形的性质,函数的图象;分段函数.12.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.13.如图,正方形ABCD 的边长为2,动点P 从点D 出发,沿折线D →C →B 作匀速运动,则△APD 的面积S 与点P 运动的路程x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.14.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN 的面积为S,能大致反映S与t函数关系的图象是()A.B.C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.15.某生物小组观察一植物生长,得到的植物高度y (单位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行于x 轴).下列说法正确的是( ).①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+; ③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A .①②③B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC 的解析式为y=kx+b (k≠0),然后利用待定系数法求出直线AC 线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得:156kb⎧=⎪⎨⎪=⎩,∴直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,1406145y=⨯+=,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y=⨯+=,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.16.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.17.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.18.按如图所示的运算程序,能使输出k的值为1的是()A.x=1,y=2 B.x=2,y=1 C.x=2,y=0 D.x=1,y=3【答案】B【解析】【分析】把各项中x与y的值代入运算程序中计算即可.【详解】解:A、把x=1,y=2代入y=kx,得:k=2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.19.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。
初中数学函数基础知识真题汇编及答案解析
初中数学函数基础知识真题汇编及答案解析一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 的面积为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积为( )A.24 B.40 C.56 D.60【答案】A【解析】【分析】由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD的面积为AB·BC=24,故选:A.【点睛】本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.3.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t变化的图象大致是()A.B.C.D.【答案】B【解析】【分析】从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.4.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.5.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=23)=4∴当点E与点D重合时,由勾股定理得a2+2∴a=13∴菱形的面积为3故选:C.【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,6.函数中,自变量x的取值范围是()1xA.x≠1B.x>0 C.x≥1D.x>1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x>1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.8.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A的解答过程可得结论;D.根据题意列式计算即可得出点M的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.2B.3C.5D.6【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDS=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCS=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴AB=2242+=25.故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.11.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.12.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.13.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键. 14.下列图形中的曲线不表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义15.某市在创建文明城市工作中,围绕重点,精准发力,进一步净化了城市环境,美化了市容市貌,如图1,园林队正在迎春公园进行绿化,图2为绿化面积S(单位:2m)与工作时间t(单位:h)之间的关系图象,工作期间有1小时休息,由图可知,休息后每小时绿化面积为()A .250mB .280mC .2100mD .240m【答案】A【解析】【分析】 由图象可知休息1小时后,园林队工作了2个小时,绿化了216060100m -=,即可求出答案.【详解】解:由图象可知,园林队休息后继续工作了:422h -=,绿化面积为216060100m -=,∴休息后每小时绿化面积为:2100250m ÷=故选:A .【点睛】本题考查的知识点是函数的图象,从图象中找出与所求内容相关的信息是解此题的关键.16.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s 与t 的大致图象应为( )A .AB .BC .CD .D【答案】D【解析】 根据题意,设小正方形运动的速度为v ,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt ,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D 符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.17.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.18.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.19.甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为4/m s和6/m s,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是()A.B. C.D.【答案】C【解析】【分析】甲在乙前面50m处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、 B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C.【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.20.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【答案】B【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.。
最新初中数学函数基础知识难题汇编含答案
根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.
【详解】
:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),
6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.
P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3
【详解】
解:由图像可知,当点P到达点A时,OB=OA=a,S△AOB= ,
过点A作AD⊥OB交OB于点D,
则∠AOD=90°,
∴在Rt△AOD中,sin∠AOD= ,
∵∠AOB=60°,
∴sin60°= ,
∴AD= ,
∵S△AOB= ,
∴ ,
∴a=4(舍负),
∴弧AB的长为: ,
∴ .
故选:B.
【点睛】
A. B. C. D.
【答案】D
【解析】
【分析】
根据动点的运动过程分三种情况进行讨论解答即可.
【详解】
解:根据题意可知:
, ,
当 时,
此函数图象是开口向上的抛物线;
当 时,
此时函数图象是过一、三象限的一次函数;
当 时,
.
此时函数图象是开口向下的抛物线.
所以符号题意的图象大致为 .
故选: .
【点睛】
本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.
A. B.
C. D.
【答案】D
【解析】
试题分析:
如图,过点C作CD⊥AB于点D.
∵在△ABC中,AC=BC,∴AD=BD.
①点P在边AC上时,s随t的增大而减小.故A、B错误;
最新初中数学函数基础知识难题汇编及答案解析
【解析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
解:当m=4时,
A、v=2m﹣2=6;
B、v=m2﹣1=15;
C、v=3m﹣3=9;
D、v=m+1=5.
故选B.
5.函数 中自变量 的取值范围是()
A.x≠2B.x≥2C.x≤2D.x>2
【答案】A
【解析】
【分析】
故选D.
【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.
3.如图,边长为2的正方形 ,点 从点 出发以每秒1个单位长度的速度沿 的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿 的路径向点A运动,当点Q到达终点时,点 停止运动,设 的面积为 ,运动时间为 秒,则能大致反映 与 的函数关系的图象是()
最新初中数学函数基础知识难题汇编及答案解析
一、选择题
1.小明从家骑车上学,先匀速上坡到达 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()
A.9分钟B.12分钟C.8分钟D.10分钟
【答案】B
【解析】
【分析】
先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间
D.快车到达甲地时,慢车距离乙地100千米
【答案】C
【解析】
【分析】
(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为 =60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.
最新初中数学一次函数难题汇编及答案解析
最新初中数学一次函数难题汇编及答案解析一、选择题1.关于一次函数y=3x+m ﹣2的图象与性质,下列说法中不正确的是( ) A .y 随x 的增大而增大B .当m≠2时,该图象与函数y=3x 的图象是两条平行线C .若图象不经过第四象限,则m >2D .不论m 取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确.故选:C .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.2.一次函数y x 1=-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据一次函数y x 1=-+中k 1=-,b 1=判断出函数图象经过的象限,进而可得出结论.【详解】解:Q 一次函数y x 1=-+中k 10=-<,b 10=>, ∴此函数的图象经过一、二、四象限,不经过第三象限.故答案选:C .【点睛】本题考查的是一次函数的性质,即一次函数()y kx b k 0=+≠中,当k 0<,b 0>时,函数图象经过一、二、四象限.3.如图,一次函数y =﹣x +4的图象与两坐标轴分别交于A 、B 两点,点C 是线段AB 上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 出发向点B 运动时,矩形CDOE 的周长( )A .逐渐变大B .不变C .逐渐变小D .先变小后变大【答案】B【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.4.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
(易错题精选)初中数学函数基础知识全集汇编及答案解析
(易错题精选)初中数学函数基础知识全集汇编及答案解析一、选择题1.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是( )A .用了5分钟来修车B .自行车发生故障时离家距离为1000米C .学校离家的距离为2000米D .到达学校时骑行时间为20分钟【答案】D【解析】【分析】 观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A 正确;自行车发生故障时离家距离为1000米,可知B 正确;学校离家的距离为2000米,可知C 正确;到达学校时骑行时间为20-5=15分钟,可知D 错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C .D .【答案】D【解析】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14 (x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.4.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm/s 的速度从B A -在线段AB 上运动,到达点A 后,停止运动.若动点P,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为S(单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C .D .【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.x>;②对角线相等的四边形5.下列说法:①函数y=x的取值范围是6是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计-的结果为7:⑥相等的圆心角所对的弧相等;算2|理数.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】x≥;故错误;解:①函数y=x的取值范围是6②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;==是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.7.如图,在Rt ABC ∆中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( )A .1323B .43C .45511D .145 【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC .【详解】解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小根据垂线段最短∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()()1211211⨯+=+所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90°∴△APC ∽△ACB∴AP AC AC AB = 114AB=解得:AB=161111在Rt △ABC 中,BC=22455AB AC -= 故选C .【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.8.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y 1、y 2、y 3的值,然后进行大小比较.【详解】解:∵A (﹣3,y 1)、B (0,y 2)、C (2,y 3)为二次函数y =(x+1)2+1的图象上的三点,∴y 1=(﹣3+1)2+1=5,y 2=(0+1)2+1=2,y 3=(2+1)2+1=10,∴y 2<y 1<y 3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A.B.C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.11.若12x y -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v 1,v 2,v 3,v 1<v 2<v 3,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图象可能是( )A .B .C .D .【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是.故选C.13.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A.【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.14.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.15.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.16.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y 有可能表示的是骆驼从0时到t 时刻之间的最高体温与当日最低体温的差. 故选:B .【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.17.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x + 【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.18.某种签字笔的单价为2元,购买这种签字笔x 支的总价为y 元,则y 与x 之间的函数关系式为( )A .y =-12x B .y =12x C .y =-2x D .y =2x【答案】D【解析】 依题意有:y=2x ,故选D .19.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.20.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ;③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】 本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.。
(易错题精选)初中数学函数基础知识难题汇编及答案
(易错题精选)初中数学函数基础知识难题汇编及答案一、选择题1.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.2.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒ 则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴1533PQ t =+,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.3.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm/s 的速度从B A -在线段AB 上运动,到达点A 后,停止运动.若动点P,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为S(单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C .D .【答案】D【解析】【分析】根据题意可以得到点P 运动的快,点Q 运动的慢,可以算出动点P 和Q 相遇时用的时间和点Q 到达终点时的时间,从而可以解答本题.【详解】:设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为s (单位:cm ), 6=2t+t ,解得:t=2,即t=2时,P 、Q 相遇,即S=0,.P 到达B 点的时间为:6÷2=3s ,此时,点Q 距离B 点为:3,即S=3P 点全程用时为12÷2=6s ,Q 点全程用时为6÷1=6s ,即P 、Q 同时到达A 点由上可得,刚开始P 和Q 两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s ;相遇后,在第3s 时点P 到达B 点,从相遇到点P 到达B 点它们的距离在变大,1s 后P 点从B 点返回,点P 继续运动,两个动点之间的距离逐渐变小,同时达到A 点. 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.4.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )A .3B 3C .3D .3【答案】C【解析】【分析】 将图1和图2结合起来分析,分别得出直线l 过点D ,B 和C 时对应的x 值和y 值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l 过点D 时,x =AF =a ,菱形ABCD 的高等于线段EF 的长,此时y =EF 3;直线l 向右平移直到点F 过点B 时,y 3;当直线l 过点C 时,x =a +2,y =0∴菱形的边长为a +2﹣a =2∴当点E 与点D 重合时,由勾股定理得a 2+23)=4∴a =1 3∴菱形的面积为3故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,5.如图,在Rt ABC ∆中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( )A .1323B .43C .45511D .1453【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC .【详解】解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2∴CD=2 ∵点D 为AC 边中点, ∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小根据垂线段最短∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()()1211211⨯+=+所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90°∴△APC ∽△ACB∴AP AC AC AB = 114AB= 解得:AB=1111在Rt △ABC 中,22455AB AC -=【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.6.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s (米)和所用时间t (分钟)的关系图.则下列说法中正确的是( ).①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A .①③④B .①②③C .①②④D .①②③④【答案】D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【答案】A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=12CM•CE=212x;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=12CD•(DE+CM)=12(2)2x x⨯⨯-+=2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x ﹣2,∵MN=6,CM=x ,∴CG=CN=6﹣x ,∴DF=DG=2﹣(6﹣x )=x ﹣4,∴y=S 梯形EMCD ﹣S △FDG =1()2CD DE CM +﹣212DG =12×2×(x ﹣2+x )﹣21(4)2x -=﹣212x +10x ﹣18, 故选项A 正确;故选:A .点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.9.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C .D .【答案】D【解析】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.10.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.11.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C .D .【答案】D【解析】试题分析:如图,过点C 作CD ⊥AB 于点D .∵在△ABC 中,AC=BC ,∴AD=BD .①点P 在边AC 上时,s 随t 的增大而减小.故A 、B 错误;②当点P 在边BC 上时,s 随t 的增大而增大;③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D .考点:等腰三角形的性质,函数的图象;分段函数.12.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.13.甲、乙两车同时从A 地出发,各自都以自己的速度匀速向B 地行驶,甲车先到B 地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y (千米)与乙车行驶的时间x (小时)之间的函数图象,则下列说法不正确的是( )A .A 、B 两地之间的距离是450千米B .乙车从出发到与甲车返回时相遇所用的时间是6.6小时C .甲车的速度是80千米/时D .点M 的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A的解答过程可得结论;D.根据题意列式计算即可得出点M的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )A.A B.B C.C D.D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.16.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A .①②③④B .①③⑤C .①③④D .①③④⑤【答案】D【解析】【分析】 根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.17.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.18.下列图象中,表示y 是x 的函数的是( )A .B .C .D .【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x ,y ,当给x 一个值时,y 有唯一的值与其对应,就说y 是x 的函数,x 是自变量.注意“y 有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x 一个值都有唯一的函数值y 相对应, 所以A. B. D 错误.故选C .【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.19.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x + 【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.20.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC交AC边于点F.点D为BC上一点,连接DE DF、.设点E到BC的距离为x,则DEF∆的面积S关于x的函数图象大致为()A.B.C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.。
人教版初中数学函数基础知识难题汇编附答案解析
人教版初中数学函数基础知识难题汇编附答案解析一、选择题1.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是( )A .B .C .D .【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A 、距离越来越大,选项错误;B 、距离越来越小,但前后变化快慢一样,选项错误;C 、距离越来越大,选项错误;D 、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D .【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C .D .【答案】D【解析】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14 (x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A .B .C .D .【答案】C【解析】【分析】分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【详解】解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,△DBC′为等边三角形.∴DE=32BC′=32x,∴y=12BC′•DE=34x2.当x=1时,y=34,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=12×1×32=34.∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=12B′C•DE=3(x-3)2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:C .【点睛】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.4.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm/s 的速度从B A -在线段AB 上运动,到达点A 后,停止运动.若动点P,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为S(单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C .D .【答案】D【解析】【分析】根据题意可以得到点P 运动的快,点Q 运动的慢,可以算出动点P 和Q 相遇时用的时间和点Q 到达终点时的时间,从而可以解答本题.【详解】:设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为s (单位:cm ), 6=2t+t ,解得:t=2,即t=2时,P 、Q 相遇,即S=0,.P 到达B 点的时间为:6÷2=3s ,此时,点Q 距离B 点为:3,即S=3P 点全程用时为12÷2=6s ,Q 点全程用时为6÷1=6s ,即P 、Q 同时到达A 点由上可得,刚开始P 和Q 两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s ;相遇后,在第3s 时点P 到达B 点,从相遇到点P 到达B 点它们的距离在变大,1s 后P 点从B 点返回,点P 继续运动,两个动点之间的距离逐渐变小,同时达到A 点.故选D .【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.5.如图,边长为 2 的正方形ABCD ,点P 从点A 出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点 B 出发以每秒 2 个单位长度的速度沿B C D A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.6.函数2x y x=-中自变量x 的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.函数中,自变量x的取值范围是()x1A.x≠1B.x>0 C.x≥1D.x>1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x>1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.12.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A.【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.13.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t 之间的函数图象大致为()A.B.C.D.【答案】D【解析】【分析】【详解】解:设P点运动速度为v(常量),AB=a(常量),则AP=vt,PB=a-vt;则阴影面积22222 111S)()()22222244a vt a vt v avt tπππππ-=--=+(由函数关系式可以看出,D的函数图象符合题意.故选D.14.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y 表示父亲和学子在行进中离家的距离,横t 表示离家的时间,下面与上述诗意大致相吻合的图象是( )A .B .C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.下列图形中的曲线不表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义17.2019年,中国少年岑小林在第六届上海国际交互绳大赛上,破“30秒内单脚单摇轮换跳次数最多”吉尼斯世界纪录!实践证明1分钟跳绳的最佳状态是前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变,则跳绳频率(次/秒)与时间(秒)之间的关系可以用下列哪幅图来近似地刻画()A.B.C .D .【答案】C【解析】【分析】根据前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变判断图象即可.【详解】解:根据题意可知,中间2050:秒频率保持不变,排除选项A 和D ,再根据最后10秒冲刺,频率是增加的,排除选项B ,因此,选项C 正确.故选:C .【点睛】本题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.18.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.19.按如图所示的运算程序,能使输出k 的值为1的是( )A .x =1,y =2B .x =2,y =1C .x =2,y =0D .x =1,y =3【答案】B【解析】【分析】把各项中x与y的值代入运算程序中计算即可.【详解】解:A、把x=1,y=2代入y=kx,得:k=2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.20.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.。
人教版初中数学函数基础知识难题汇编及答案
【答案】B
【解析】
【分析】
注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
【详解】
旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.
故选B.
【点睛】
考查动点问题的函数图象问题,关键要仔细观察.
14.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的 , 分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )
∴S△PEF= S△ABP,
根据图像可以看出x的最大值为4,
∴CD=4,
∵当P在D点时,△PEF的面积为2,
∴S△ABP=2×4=8,即S△ABD=8,
∴AD= = =4,
当点P在C点时,S△PEF=3,
∴S△ABP=3×4=12,即S△ABC=12,
∴BC= = =6,
过点A作AG⊥BC于点G,
∴∠AGC=90°,
故选项A正确;
故选:A.
点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.
6.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
【答案】C
【解析】
【分析】
根据三角形中位线定理,得到S△PEF= S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.
【详解】
(专题精选)初中数学函数基础知识难题汇编含答案解析
(专题精选)初中数学函数基础知识难题汇编含答案解析一、选择题1.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A.B.C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .4.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 的面积为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积为( )A .24B .40C .56D .60【答案】A【解析】【分析】 由点P 的运动路径可得△PAB 面积的变化,根据图2得出AB 、BC 的长,进而求出矩形ABCD 的面积即可得答案.【详解】∵点P 在AB 边运动时,△PAB 的面积为0,在BC 边运动时,△PAB 的面积逐渐增大, ∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD 的面积为AB·BC=24, 故选:A .【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.5.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A.B.C.D.【答案】C【解析】【分析】分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【详解】解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,△DBC′为等边三角形.∴DE=3BC′=3x,∴y=12BC′•DE=34x2.当x=1时,y=3,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=1233∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=12B′C•DE=3(x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:C.【点睛】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.6.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.8.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C .D .【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A 、B 、D 的路程始终都在变化,故错误;C 、修车是的路程没变化,故C 正确;故选:C .【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.11.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.在正方形ABCD 中,点E 为BC 边的中点,点F 在对角线AC 上,连接FB 、FE .当点F 在AC 上运动时,设AF =x ,△BEF 的周长为y ,下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F运动到点M处时,三角形△BEF的周长y最小,且AM>MC.过分析动点F的运动轨迹可知,y是x的二次函数且有最低点,利用排除法可知图象大致为:故选B.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.13.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN 的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=212t,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C.设1l对应的函数解析式为111y k x b=+,所以:1116020bk b=⎧⎨+=⎩,解得113060kb=-⎧⎨=⎩即1l对应的函数解析式为13060y x=-+;设2l对应的函数解析式为222y k x b=+,所以:22220.503.560k bk b+=⎧⎨+=⎩,解得222010kb=⎧⎨=-⎩即2l对应的函数解析式为22010y x=-,所以:30602010y xy x=-+⎧⎨=-⎩,解得1.418xy=⎧⎨=⎩∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,故本选项符合题意;D.根据图形即可得出乙出发3h时到达A地,故D错误.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.15.2019年,中国少年岑小林在第六届上海国际交互绳大赛上,破“30秒内单脚单摇轮换跳次数最多”吉尼斯世界纪录!实践证明1分钟跳绳的最佳状态是前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变,则跳绳频率(次/秒)与时间(秒)之间的关系可以用下列哪幅图来近似地刻画()A.B.C.D.【答案】C【解析】【分析】根据前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变判断图象即可.【详解】解:根据题意可知,中间2050:秒频率保持不变,排除选项A和D,再根据最后10秒冲刺,频率是增加的,排除选项B,因此,选项C正确.故选:C.【点睛】本题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.16.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.17.按如图所示的运算程序,能使输出k的值为1的是()A.x=1,y=2 B.x=2,y=1 C.x=2,y=0 D.x=1,y=3【答案】B【解析】【分析】把各项中x与y的值代入运算程序中计算即可.【详解】解:A、把x=1,y=2代入y=kx,得:k=2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.18.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.19.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
人教版初中数学函数基础知识难题汇编含答案
【答案】A
【解析】
【分析】
①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;
②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,
③把x=40代入②的结论进行计算即可得解;
④把x=50代入②的结论进行计算即可得解.
故选:C.
【点睛】
本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.
5.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
【答案】B
符合上述分析过程的为:A
故选:A
【点睛】
本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化
9.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )
A. B. C. D.
【答案】D
【解析】
试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;
∵△APQ为直角三角形,
∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=− x2+ x
整理得:y=− (x−3)2+
A. B.
C. D.
初中数学函数基础知识难题汇编及答案
初中数学函数基础知识难题汇编及答案一、选择题1.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.4.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C【解析】 分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b ,将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩ , ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.5.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【答案】A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=12CM•CE=212x;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=12CD•(DE+CM)=12(2)2x x⨯⨯-+=2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=1()2CD DE CM+﹣212DG=12×2×(x﹣2+x)﹣21(4)2x-=﹣212x+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.7.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t 之间关系的图象是()A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.8.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A.B.C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.9.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.10.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.2B.3C.5D.6【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴2242+5故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.11.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()A.B.C.D.【答案】D【解析】【分析】根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.【详解】解: 0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.故答案为D.【点睛】本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.12.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.13.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.14.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.15.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B 选项:满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故B 是函数;C 选项:不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故C 不是函数;D 选项:满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故D 是函数, 故选:C . 【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.16.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是( ) A .7y ≥- B .9y ≥C .9y <-D .7y <-【答案】B 【解析】 【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围. 【详解】解:由题意得20x -≥, 解得2x ≥,419x ∴+≥,即9y ≥. 故选:B . 【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.17.按如图所示的运算程序,能使输出k 的值为1的是( )A .x =1,y =2B .x =2,y =1C .x =2,y =0D .x =1,y =3【答案】B 【解析】 【分析】把各项中x 与y 的值代入运算程序中计算即可. 【详解】解:A 、把x =1,y =2代入y=kx ,得:k =2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.18.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.19.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C .20.在函数3y x =-x 的取值范围是( )A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C 【解析】 【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数. 【详解】 依题意,得x-3≥0, 解得x≥3. 故选C . 【点睛】本题考查了二次根式的性质:二次根式的被开方数是非负数.。
初中数学函数基础知识难题汇编含答案
初中数学函数基础知识难题汇编含答案一、选择题1.如图, AB 为半圆的直径,点 P 为 AB 上一动点.动点 P 从点 A 出发,沿 AB 匀速运动到 点 B ,运动时间为 t .分别以 AP 与 PB 为直径作半圆,则图中阴影部分的面积 S 与时间 t 之间的函数图象大致为( )解析】 【分析】 【详解】解:设 P 点运动速度为 v (常量), AB=a (常量),则 AP=vt ,PB=a-vt ;2则阴影面积 S1(a )2 1(vt )2 1(a vt )2 v 2t2avt2 22 22 244由函数关系式可以看出, D 的函数图象符合题意.故选 D .2.如图,在直角三角形 ABC 中, B 90 , AB 4, BC 3,动点 E 从点 B 开始沿 B C 以 2cm/s 的速度运动至 C 点停止;动点 F 从点 B 同时出发沿 B A 以1cm/s的速度运动至 A 点停止,连接 EF .设运动时间为 x (单位: s ), ABC 去掉 BEF 后剩2cm 2),则能大致反映y 与 x 的函数关系的图象是(答案】 D单位:解析】 分析】根据已知题意写出函数关系, y 为 ABC 去掉 BEF 后剩余部分的面积,注意 1.5 秒时点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关 系,要注意自变量的取值范围,以及是否为分段函数.【解析】根据函数的意义可知:对于自变量 x 的任何值, y 都有唯一的值与之相对应,故 D 正确. 故选 D .4.如图,在 Rt ABC 中,点 D 为 AC 边中点,动点 P 从点 D 出发,沿着 D A B 的 路径以每秒 1 个单位长度的速度运动到 B 点,在此过程中线段 CP 的长度 y 随着运动时间x 的函数关系如图 2所示,则 BC 的长为 ( )点 E 运动到C 点,而点F 则继续运动,因此 y 的变化应分为两个阶段. 解:S ABC2 4 36当 0 x3时,S BEF2当3x 4时,S BEF2由此可知当 0 x 3时 2x3 32x ,y函数为二次函数,当SABC SBEFSABC SBEF 3x 4时,2x ;3 x ,函数为一次函数.y 是 x 的函数的是(B2故选 B .3.下列各曲线中表A.13 2B.4 3 C.4 55D.14 53 C 11 3【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥ AB时AP的长,然后证出△APC∽△ ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【详解】解:∵动点P从点D 出发,线段CP的长度为y ,运动时间为x的,根据图象可知,当x=0 时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x= 2 11 s时,y 最小,即CP 最小根据垂线段最短∴此时CP⊥AB,如下图所示,此时点P 运动的路程DA+AP=1 2 11 2 11所以此时AP= 2 11 AD 11∵∠ A=∠ A,∠ APC=∠ ACB=90°∴△ APC∽△ ACB∴AP AC∴AC AB即11 44 AB解得:AB=16 1111在Rt△ABC中,BC= AB2AC2 4 55故选 C . 【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及 性质和勾股定理是解决此题的关键.5.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为 v1, v 2, v 3, v 1< v 2< 所用时间 t 的函数关系图象可能是( )【解析】【分析】 根据题意可对每个选项逐一分析判断图象得正误.【详解】 解: A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C 、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D 、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是. 故选 C .6.父亲节当天,学校 “文苑 ”栏登出了某同学回忆父亲的小诗: “同辞家门赴车站,别时叮 咛语千万,学子满载信心去,老父怀抱希望还. ”如果用纵轴 y 表示父亲和学子在行进中离答案】 B 解析】 分析】v 3,则小亮同学骑车上学时,离家的路程 s 与家的距离,横轴 t 表示离家的时间,下面与上述诗意大致相吻合的图像是()当 3 x 5 时, y13 5 x 215正确理解函数图象即可得出答案. 【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站 出发,离家的距离越来越远,父亲离开车站回家,离家越来越近. 故选 B .点睛】 首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.7.如图,在矩形 ABCD 中, AB 2, BC 3,动点 P 沿折线 BCD 从点 B 开始运动到 点D .设运动的路程为 x , ADP 的面积为 y ,那么 y 与 x 之间的函数关系的图象大致是故选 D.答案】 D 解析】 分析】由题意当 0 x 3 时, y 3,当 3 x 5时, y 13 25x3x 15 ,由此即 22可判断. 详解】由题意当 0 x 3 时, y 3, )【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,D 2020次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是()【答案】A【解析】【分析】火车通过隧道分为3 个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD中,AB 4,BC 6,当直角三角板MPN 的直角顶点P在BC 边上移动时,直角边MP 始终经过点A,设直角三角板的另一直角边PN 与CD相交于点Q.BP x,CQ y,那么y与x之间的函数图象大致是()【答案】 D 【解析】试题解析:设 BP=x ,CQ=y ,则 AP 2=42+x 2, PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△ APQ 为直角三角形,13 ∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得: y=- 1x 2+3x4219整理得: y=- (x-3)2+44根据函数关系式可看出 D 中的函数图象与之对应. 故选 D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直 角三角形中的勾股定理.10. 小明从家骑车上学,先匀速上坡到达 A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是解析】 分析】先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返 回家的时间 详解】根据图形得,从家到学校:上坡距离为 1km ,用时 5min ,下坡距离为 2km ,用时为 4minC .8 分钟D . 10 分钟12 1故上坡速度 V 1 (km/min) ,下坡速度 V 2 (km/min)5 4 2从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡∴总用时为: 10+2=12(min) 故选: B点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应11.如图,矩形 ABCD 的周长是 28cm ,且 AB 比 BC 长2cm .若点 P 从点 A 出发,以答案】 A 解析】分析】与 t 的关系式,分析图像可排除选项 B 、C ;当 4< t ≤6时, Q 在边 BC 上, P 在边 AD 上,如图 2,计算 S 与 t 的关系式,分析图像即可排除选项 D ,从而得结论. 【详解】 解:由题意得 2AB 2BC 28, AB BC 2 , 可解得 AB 8, BC 6,即 AD 6 , ① 当0≤t ≤时4,Q 在边 AB 上, P 在边 AD 上,如图 1,2km ,下坡 1km故上坡时间t 121 =10(min) ,下坡t21 1=2(min)2 1cm / s 的速度沿 A D C 方向匀速运动, A B C 方向匀速运动,当一个点到达点 时间为 t( s) , VAPQ 的面积为 S cm 2 ,则同时点 Q从点 A 出发,以 2cm/ s 的速度沿 C 时,另一个点也随之停止运动.若设运动2 S cm 2 与 t (s) 之间的函数图象大致是( )先根据条件求出 AB 、AD 的长,当 0≤t ≤时4, Q 在边 AB 上, P 在边 AD 上,如图 1 ,计算 S BS △APQ = 1 APgAQ 1tg2t t 2,22图像是开口向上的抛物线,故选项 B 、C 不正确;图像是一条线段,故选项 D 不正确; 故选: A . 点睛】12.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 y (千米)与行驶时间 x (小时)的对应关系如图所示,下列叙述正确的是( )A .甲乙两地相距 1200 千米B .快车的速度是 80 千米 ∕小时C .慢车的速度是 60 千米 ∕小时D .快车到达甲地时,慢车距离乙地 100 千米【答案】 C 【解析】 【分析】P 在边 AD 上,如图 2, 本题考查了动点问题的函数图象,根据动点P 和 Q 的位置的不同确定三角形面积的不同, S 与 t 的函数关系式.② 当 4<t ≤6时, Q 在边 BC 上,8(1)由图象容易得出甲乙两地相距600 千米;(2)由题意得出慢车速度为600 =60(千米10 /小时);设快车速度为x 千米/小时,由图象得出方程60× 4+4x=60,0 解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600 千米,故选项A错;(2)由题意得:慢车总用时10 小时,∴慢车速度为:600 =60(千米/ 小时);10 设快车速度为x 千米/ 小时,由图象得:60× 4+4x=600,解得:x=90,∴快车速度为90 千米/小时,慢车速度为60 千米/小时;选项B错误,选项C正确;600 20 20(3)快车到达甲地所用时间:小时,慢车所走路程:60× =400 千米,此时90 3 3慢车距离乙地距离:600-400=200 千米,故选项D 错误.故选C 【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式13.甲、乙两同学骑自行车从A地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:① 他们都骑行了20km;② 乙在途中停留了0.5h;③ 甲、乙两人同时到达目的地;④ 相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1 个B.2 个C.3 个D.4 个答案】B解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5 小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.下列图形中的曲线不表示y是x 的函数的是()【解析】【分析】函数是指:对于任何一个自变量x 的值都有唯一确定的函数值y 与之相对应. 【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y 与之对应,故不是函数. 故选C【点睛】考点:函数的定义15.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是()【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.16.如图所示,边长分别为1和2 的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t, 大正方形内去掉小正方形重叠部分后的面积为s,那么s与t 的大致图象应为()A . AB .BC .C 【答案】D 【解析】D .D根据题意,设小正方形运动的速度为 v ,分三个阶段; ① 小正方形向右未完全穿入大正方形, S=2× 2-vt × 1=,4-vt ② 小正方形穿入大正方形但未穿出大正方形, S=2× 2-1 × ,1=3 ③ 小正方形穿出大正方形, S=Vt ×,1 分析选项可得, D 符合, 故选 D . 【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依 次分析各个阶段得变化情况,进而综合可得整体得变化情况.17.如图 1,点 F 从菱形 ABCD 的项点 A 出发,沿 A -D -B 以 1cm/ s 的速度匀速运动到点 x (s)变化的关系图象,则 a 的值为 ( ) 答案】 CD . 2 5 解析】分析】 E 由图象可知,点 F 由点 A 到点 D 用时为 as , FBC 的面积为 acm 2 .求出 DE=2,再由图像得BD 5 ,进而求出 BE=1,再在 Rt △DEC 根据勾股定 理构造方程,即可求解. 【详解】 过点 D 作DE BC 于点 解:过点 D 作DE BC 于点E 由图象可知,点F 由点 A 到点 D 用时为 as , FBC 的面积为 acm 2.AD BC a1 DEgAD a DE2 由图像得,当点F 从D 到 B 时,用 5sBD 5 RtVDBE 中,BE BD 2 DE 2 ( 5) 2 221 ∵四边形 ABCD 是菱形,EC a 1 , DC aRt △DEC 中,2 2 2a 2 22 (a 1)25解得 a 52 本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关 系,解答此题关键根据图像关键点确定菱形的相关数据.18. 如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( ) 答案】 C 解析】 试题分析: A . y x 2 ,x 为任意实数,故错误;B . y x 2 2,x 为任意实数,故错误;C . y x 2 , x 2 0,即 x 2 ,故正确; 1D . y , x 2 0 ,即 x 2 ,故错误;x2故选 C .考点: 1.函数自变量的取值范围; 2.在数轴上表示不等式的解集19.如图,在 △ABC 中, AC = BC ,有一动点 P 从点 A 出发,沿 A →C →B →A 匀速运动.则 CP 的长度 s 与时间 t 之间的函数关系用图象描述大致是( )A . y=x+2B .y=x 2+2C .y= x 2D .y= 1x2点睛】如图,过点 C 作 CD ⊥AB 于点 D .∵在 △ABC 中, AC=BC ,∴ AD=BD .① 点 P 在边 AC 上时, s 随 t 的增大而减小.故 A 、B 错误;② 当点 P 在边 BC 上时, s 随 t 的增大而增大;③ 当点 P 在线段 BD 上时, s 随t 的增大而减小,点 P 与点 D 重合时, s 最小,但是不等于 零.故 C 错误;④ 当点 P 在线段 AD 上时, s 随 t 的增大而增大.故 D 正确.故答案选 D . 考点:等腰三角形的性质,函数的图象;分段函数.20.木杆 AB 斜靠在墙壁上,当木杆的上端 A 沿墙壁 NO 竖直下滑时,木杆的底端 B 也随 之沿着射线 OM 方向滑动.下列图中用虚线画出木杆中点 P 随之下落的路线,其中正确的【答案】 D【解析】 解:如右图,解析】试题分析:连接OP,由于OP是Rt△AOB斜边上的中线,1所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP 是一个定值,2O 为圆心的圆弧上,那么中点P 下落的路线是一段弧线.故选D.P就在以。
最新初中数学函数基础知识难题汇编及答案解析(2)
最新初中数学函数基础知识难题汇编及答案解析(2)一、选择题1.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.5.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.6.如图,在Rt ABC ∆中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( )A .1323B .43C .45511D .145 【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC .【详解】解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小根据垂线段最短∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()()1211211⨯+=+所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90°∴△APC ∽△ACB∴AP AC AC AB = 114AB=解得:AB=161111 在Rt △ABC 中,BC=22455AB AC -= 故选C .【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.7.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是( )A .B .C .D .【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A 、距离越来越大,选项错误;B 、距离越来越小,但前后变化快慢一样,选项错误;C 、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.9.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与,A B重合).过Q作QM PA⊥于M,QN PB⊥于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据三角形面积得出S△PAB=12PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,进而得出y=PE ABPB,即可得出答案.【详解】解:连接PQ,作PE⊥AB垂足为E,∵过Q作QM⊥PA于M,QN⊥PB于N,∴S△PAB=12 PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,∵矩形ABCD中,P为CD中点,∴PA=PB,∵QM与QN的长度和为y,∴S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ=12PB(QM+QN)=12PB•y,∴S△PAB=12PE•AB=12PB•y,∴y=PE AB PB⋅,∵PE=AD,∴PE,AB,PB都为定值,∴y的值为定值,符合要求的图形为D,故选:D.【点睛】此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y=PE ABPB⋅,再利用PE=AD,PB,AB,PB都为定值是解题关键.10.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A.B.C.D.【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是.故选C.11.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.【答案】D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.12.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F运动到点M处时,三角形△BEF的周长y最小,且AM>MC.过分析动点F的运动轨迹可知,y是x的二次函数且有最低点,利用排除法可知图象大致为:故选B.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.13.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN 的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断. 由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.15.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h【答案】C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ; 由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,16.甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为4/m s和6/m s,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是()A.B. C.D.【答案】C【解析】【分析】甲在乙前面50m处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、 B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C.【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.17.如图1,点F从菱形ABCD的项点A出发,沿A-D-B以1cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y (m2)随时间x (s)变化的关系图象,则a的值为( )A.5 B.2 C.52D.5【答案】C 【解析】过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.18.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a 件,则每件3元,超过a 件,超过部分每件b 元,如图是一名工人一天获得薪金y (元)与其生产的件数x (件)之间的函数关系式,则下列结论错误的( )A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.20.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.。
新初中数学函数基础知识难题汇编及答案
小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().
A.骆驼在 时刻的体温与0时体温的绝对差(即差的绝对值)
B.骆驼从0时到 时刻之间的最高体温与当日最低体温的差
C.骆驼在 时刻的体温与当日平均体温的绝对差
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x(秒)变化的函数图象大致情况.
【详解】
解:根据题意可知:AP=x,Q点运动路程为2x,
①当点Q在AD上运动时,
y= AP•AQ= x•2x=x2,图象为开口向上的二次函数;
故选: .
【点睛】
本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出 ,再从中选出符合事件 或 的结果数目 ,然后根据概率公式求出事件 或 的概率.也考查了二次函数图象上点的坐标特征.
8.如图, 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间 之间的关系用图象描述大致是()
图1 图2
A.4, B.4, C. , D. ,
【答案】B
【解析】
【分析】
结合函数图像中的(a, )可知OB=OA=a,S△AOB= ,由此可求得a的值,再利用弧长公式进而求得b的值即可.
【详解】
解:由图像可知,当点P到达点A时,OB=OA=a,S△AOB= ,
过点A作AD⊥OB交OB于点D,
则∠AOD=90°,
符合上述分析过程的为:A
新初中数学函数基础知识难题汇编含答案
=4•4﹣ •4•(4﹣t)﹣ •4•(4﹣t)﹣ •t•t
=﹣ t2+4t
=﹣ (t﹣4)2+8;
当4<t≤8时,S= •(8﹣t)2= (t﹣8)2.
故选D.
考点:动点问题的函数图象.
2.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )
13.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()
A.1个B.2个C.3个D.4个
【解析】
【分析】
【详解】
解:根据图形可知当t=0时,s=0,所以矩形OABC的初始位置不可能在第二象限,所以A、C错误;
因为 ,所以当t=2时,选项B中的矩形在第二象限内的面积为S= ,所以B错误,
因为 ,所以当t=2时,选项D中的矩形在第二象限内的面积为S= ,故选D.
考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.
5.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为( )
A.3B. C.2 D.3
【答案】C
【解析】
【分析】
将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.
2020-2021初中数学函数基础知识难题汇编及答案解析(1)
2020-2021初中数学函数基础知识难题汇编及答案解析(1)一、选择题1.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v 1,v 2,v 3,v 1<v 2<v 3,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图象可能是( )A .B .C .D .【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C 、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D 、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是. 故选C .2.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.3.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒ 则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴1533PQ t =+,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.4.如图,一只蚂蚁以均匀的速度沿台阶A 1⇒A 2⇒A 3⇒A 4⇒A 5爬行,那么蚂蚁爬行的高度h 随时间t 变化的图象大致是( )A.B.C.D.【答案】B【解析】【分析】从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.5.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】 解:由题意得,12×2πR×l =8π, 则R =8lπ, 故选A .【点睛】 本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.6.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.7.函数7y x =-的取值范围( ) A .7x >B .7x ≠C .7x ≤D .7x ≥ 【答案】C【解析】【分析】根据二次根式中,被开方数是非负数可得.【详解】函数7y x =-的取值范围:70x -≥,所以7x ≤.故选:C【点睛】考核知识点:自变量求值范围.理解二次根式有意义的条件.8.如图,在Rt △PMN 中,∠P=90°,PM=PN ,MN=6cm ,矩形ABCD 中AB=2cm ,BC=10cm ,点C 和点M 重合,点B 、C (M )、N 在同一直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线以每秒1cm 的速度向右移动,至点C 与点N 重合为止,设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y ,则y 与x 的大致图象是( )A.B.C.D.【答案】A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=12CM•CE=212x;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=12CD•(DE+CM)=12(2)2x x⨯⨯-+=2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=1()2CD DE CM+﹣212DG=12×2×(x﹣2+x)﹣21(4)2x-=﹣212x+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.9.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与,A B重合).过Q作QM PA⊥于M,QN PB⊥于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据三角形面积得出S△PAB=12PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,进而得出y=PE ABPB⋅,即可得出答案.【详解】解:连接PQ,作PE⊥AB垂足为E,∵过Q作QM⊥PA于M,QN⊥PB于N,∴S△PAB=12 PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,∵矩形ABCD中,P为CD中点,∴PA=PB,∵QM与QN的长度和为y,∴S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ=12PB(QM+QN)=12PB•y,∴S△PAB=12PE•AB=12PB•y,∴y=PE AB PB⋅,∵PE=AD,∴PE,AB,PB都为定值,∴y的值为定值,符合要求的图形为D,故选:D.【点睛】此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y=PE ABPB⋅,再利用PE=AD,PB,AB,PB都为定值是解题关键.10.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.11.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A .B .C .D .【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。
最新初中数学函数基础知识难题汇编及答案(3)
最新初中数学函数基础知识难题汇编及答案(3)一、选择题1.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.2.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.3.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A .B .C .D .【答案】C【解析】【分析】分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y 与x 的函数关系式,于是可求得问题的答案.【详解】解:如图1所示:当0≤x≤1时,过点D 作DE ⊥BC ′.∵△ABC 和△A ′B ′C ′均为等边三角形,△DBC ′为等边三角形.∴33, ∴y=12BC′•DE=34x 2. 当x=1时,3 如图2所示:1<x≤2时,过点A′作A′E ⊥B ′C ′,垂足为E .∵y=12B′C′•A′E=12×1×32=34. ∴函数图象是一条平行与x 轴的线段.如图3所示:2<x≤3时,过点D 作DE ⊥B ′C ,垂足为E .y=12B′C•DE=3(x-3)2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:C .【点睛】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.4.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm/s 的速度从B A -在线段AB 上运动,到达点A 后,停止运动.若动点P,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为S(单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.5.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km ,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h ,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C .【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.6.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.7.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )m1 2 3 4 v 0.01 2.9 8.03 15.1A .v=2m ﹣2B .v=m 2﹣1C .v=3m ﹣3D .v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式. 解:当m=4时,A 、v=2m ﹣2=6;B 、v=m 2﹣1=15;C 、v=3m ﹣3=9;D 、v=m+1=5.故选B .8.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )A .3B .3C .23D .33【答案】C【解析】【分析】 将图1和图2结合起来分析,分别得出直线l 过点D ,B 和C 时对应的x 值和y 值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l 过点D 时,x =AF =a ,菱形ABCD 的高等于线段EF 的长,此时y =EF =3 ;直线l 向右平移直到点F 过点B 时,y =3;当直线l 过点C 时,x =a +2,y =0∴菱形的边长为a +2﹣a =2∴当点E 与点D 重合时,由勾股定理得a 2+2(3)=4∴a =1∴菱形的高为3∴菱形的面积为23.故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.函数7y x =- ) A .7x >B .7x ≠C .7x ≤D .7x ≥【答案】C【解析】【分析】根据二次根式中,被开方数是非负数可得.【详解】函数7y x =-的取值范围:70x -≥,所以7x ≤.故选:C【点睛】 考核知识点:自变量求值范围.理解二次根式有意义的条件.11.若12x y -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.( )A .20B .24C .18D .16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A.【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.13.如图,2020D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A.B.C.D.【答案】A【解析】【分析】火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化14.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.15.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.16.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.17.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )A.A B.B C.C D.D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.18.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A【解析】【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x =2时△EFG 的面积y 最大,此时E 与B 重合,所以AB =2,∴等边三角形ABC 的高为3, ∴等边三角形ABC 的面积为3,由图2可知,x =1时△EFG 的面积y 最小,此时AE =AG =CG =CF =BG =BE ,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为34, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.19.某种签字笔的单价为2元,购买这种签字笔x 支的总价为y 元,则y 与x 之间的函数关系式为( )A .y =-12x B .y =12x C .y =-2x D .y =2x【答案】D【解析】 依题意有:y=2x ,故选D .20.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.
①射线AB表示甲的路程与时间的函数关系;
②甲的速度比乙快1.5米/秒;
③甲让乙先跑了12米;
④8秒钟后,甲超过了乙
其中正确的说法是( )
A.①②B.②③④C.②③D.①③④
【答案】B
【解析】
【分析】
根据函数图象上特殊点的坐标和实际意义即可作出判断.
【详解】
根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;
11.下列图象中,表示y是x的函数的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.
【详解】
解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,
【解析】
【分析】
【详解】
解:根据题意,设小正方形运动速度为 ,
由于 分为三个阶段,
①小正方形向右未完成穿入大正方形,
.
②小正方形穿入大正方形但未穿出大正方形,
,
③小正方形穿出大正方形,
,
∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,
∴只有A中的符合实际情况.
故选A.
14.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
4.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是( ).①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.
7.如图, 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间 之间的关系用图象描述大致是()
A. B. C. D.
【答案】A
【解析】
【分析】
火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道
【详解】
火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;
所以A. B. D错误.
故选C.
【点睛】
本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.
12.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()
∴S△PAB= PE•AB= PB•y,
∴y= ,
∵PE=AD,
∴PE,AB,PB都为定值,
∴y的值为定值,符合要求的图形为D,
故选:D.
【点睛】
此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y= ,再利用PE=AD,PB,AB,PB都为定值是解题关键.
10.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:
初中数学函数基础知识难题汇编及答案解析
一、选择题
1.在平面直角坐标系xoy中,四边形0ABC是矩形,且A,C在坐标轴上,满足 ,OC=1.将矩形OABC绕原点O以每秒15°的速度逆时针旋转.设运动时间为t秒 ,旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如右图所示,则矩形OABC的初始位置是()
小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,
故选:D.
【点睛】
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
5.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是( )
结合图象可知,符合题意的是A.
故选:A.
【点睛】
本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.
6.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()
【详解】
解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF= ;
直线l向右平移直到点F过点B时,y= ;
当直线l过点C时,x=a+2,y=0
∴菱形的边长为a+2﹣a=2
∴当点E与点D重合时,由勾股定理得a2+ =4
∴a=1
∴菱形的高为
∴菱形的面积为2 .
故选:C.
点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
13.如图所示:边长分别为 和 的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为 ,大正方形内除去小正方形部分的面积为 (阴影部分),那么 与 的大致图象应为()
A. B.
C. D.
【答案】A
9.如图,矩形 中, 为 中点,点 为 上的动点(不与 重合).过 作 于 , 于 .设 的长度为 , 与 的长度和为 .则能表示 与 之间的函数关系的图象大致是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据三角形面积得出S△PAB= PE•AB;S△PAB=S△PQB+S△PAQ= QN•PB+ PA•MQ,进而得出y= ,即可得出答案.
60x+90(x﹣6)=450,解得x=6.6,
∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.
故选项B不合题意;
∵甲车的速度为90千米/时.
故选项C符合题意;
点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.
故选:C.
【点睛】
本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.
A. B. C. D.
【答案】D
【解析】
【分析】
【详解】
解:根据图形可知当t=0时,s=0,所以矩形OABC的初始位置不可能在第二象限,所以A、C错误;
因为 ,所以当t=2时,选项B中的矩形在第二象限内的面积为S= ,所以B错误,
因为 ,所以当t=2时,选项D中的矩形在第二象限内的面积为S= ,故选D.
【详解】
解:连接PQ,作PE⊥AB垂足为E,
∵过Q作QM⊥PA于M,QN⊥PB于N,
∴S△PAB= PE•AB;
S△PAB=S△PQB+S△PAQ= QN•PB+ PA•MQ,
∵矩形ABCD中,P为CD中点,
∴PA=PB,
∵QM与QN的长度和为y,
∴S△PAB=S△PQB+S△PAQ= QN•PB+ PA•MQ= PB(QM+QN)= PB•y,
②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1过了乙,正确;
故选B.
【点睛】
正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
3.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为( )
A.3B. C.2 D.3
【答案】C
【解析】
【分析】
将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.
【详解】
解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.
故选:B.
【点睛】
主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.
A.A、B两地之间的距离是450千米
B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时