《概率统计》期中试卷答案2015.5

合集下载

高中数学(统计概率)综合练习试题含解析

高中数学(统计概率)综合练习试题含解析
故选:D.
考点:频率分布直方图.
13.B
【解析】
试题分析:分层抽样为按比例抽样,则O型血抽取人数为 ;A型血抽取人数为 ;B型血抽取的人数为 ;AB型血抽取人数为 .故本题答案选B.
考点:分层抽样
14.B
【解析】
试题分析:因为 ,所以 = ,故选B.
A.
B.
C.
D.
2.2015年11月19日是“期中考试”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则 ( )
A. B. C. D.
3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两个样本的下列数字特征相同的是()
考点:变量的相关性以及回归直线方程.
6.D
【解析】
试题分析:由二项分布概念可知得 ,则 = ,故正确选项为D.
考点:二项分布.
7.B
【解析】
试题分析:设中间一个长方形的面积为 ,则其他 个小长方形面积和为 ,则 所以 ,所以中间一组的频数为 ,故选B.
考点:1.频率分布直方图;2.总体估计.
8.B
【解析】
(Ⅰ)求样本容量n和频率分布直方图中y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在 的概率.
25.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

系部 专业班级 学号 姓名 密封线 答题留空不够时,可写到纸的背面 注意保持装订完整,试卷折开无效 装订线二.填空题(每题2分,共10分)1.已知().P A =06, ()|.P B A =03, 则()P A B ⋂= ___0.18_______;2.甲、乙、丙3人独立地译出一种密码,他们能译出的概率分别为1/5,1/3,1/4,则能译出这种密码的概率为35; 3.一种动物的体重X 是一随机变量,设()(),E X D X ==334,10个这种动物的平均体重记作Y ,则()D Y =__ 0.4 _;4. 已知,36)(,25)(==Y D X D X 与Y 的相关系数为4.0=XY ρ,则)(Y X D -= 37 ;5. 设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从2()n χ分布.三.计算下列各题(共80分)1.(10分)例 1.某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录三家厂的次品率分别为0.02,0.01,0.03,三家厂所提供的份额分别为0.15,0.80,0.05。

设这三家厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机取一只元件,求它是次品的概率;(2)在仓库中随机取一只元件,若已知取到的是次品,求出此次品由第一家工厂生产的概率是多少?解:设A 表示“取到的是一只次品”,(i=1,2,3)表示“所取到的产品是由第i 家工厂提供的”,则P()=0.15 P()=0.80 P()=0.05P(=0.02 P(=0.01 P(=0.03 (3分)1>.由全概率公式()112233(|)()(|)()(|) ?()A B B A B B B A A B =++P P P P P P P 0.0125= (5分) 2>.由贝叶斯公式P() = = = 0.24 (10分)桂林理工大学考试试卷 (2014--2015 学年度第 一 学期)课 程 名 称:概率统计 A 卷 命 题:基础数学教研室 题 号 一二三总 分得 分一. 单项选择题(每小题2分,共10分)1.如果 1)()(>+B P A P ,则 事件A 与B 必定( C ))(A 独立 )(B 不独立 )(C 相容 )(D 不相容2.设随机变量X 服从二项分布(,)B n p ,且()()2.1 1.47==E X D X ,则二项分布的参数,n p 的值为( A ) ()70.3==A n p ()30.7==B n p ()210.1==C n p ()40.6==D n p3.设随机变量X 服从)1,0(N 分布,12+=X Y ,则~Y ( B ) ()(0,1)()(1,4)()(1,2)()(0,4)A N B N C N D N4. 已知X 服从泊松分布,则()D X 与()E X 的关系为( C ) )(A ()()D X E X > )(B ()()D X E X < )(C ()()D X E X = )(D 以上都不是5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( D ))(A 32112110351ˆX X X ++=μ)(B 3212949231ˆX X X ++=μ)(C 3213216131ˆX X X ++=μ)(D 32141254131ˆX X X ++=μX-1-1 0.12将联合分布表每行相加得-10.6将联合分布表每列相加得-10.30,1,;0θ<<!!n e X , (4分)()1ln !!!n X X θ- n ,令ln 0,d d θ=得1n θ= (10000,0.005b49.75, ()2.84Φ-Φ。

2015年高考理数专题复习---概率统计(解析版)

2015年高考理数专题复习---概率统计(解析版)

2015年高考理数专题复习---概率统计预测2013年高考中,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,排列、组合、概率、统计都将是重点考查内容,至少会考查其中的两种类型。

(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。

这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

复习建议在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.母题一:5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求:(1)甲中奖的概率;(2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.母题二:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).母题三:某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01): (1)恰好有两家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率.母题四:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数 的分布列.母题五:.A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白2,服鼠的只数比服用B有效的多,就称该试验组为甲类组.设每一只小白鼠服用A有效的概率为31. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,用ξ表示这3用B有效的概率为2个试验组中甲类组的个数,求ξ的分布列和数学期望.7 8 99 4 4 6 4 7 3高考模拟1.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )(A )8,8 (B )10,6 (C )9,7 (D )12,4【答案】C2.右图是 2011年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84B. 84,1.6C. 85,1.6D. 85,4【答案】C 【解析】2580855x =+=,244 1.6.5s +== 3.如图,矩形O A B C 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( ) A .712π B.23π C .34π D.56π 【答案】B【答案】A6.右图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约( ) A .523 B .521 C .519 D .516 【答案】A 7.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( ) A .964 B .964π C .916π D .916【答案】B8.已知椭圆2214x y +=的焦点为12,F F ,在长轴A 1A 2上任取一点M ,过M 作垂直于A 1A 2的直线交椭圆于点P ,则使得120PF PF ⋅< 的点M 的概率为( )A B C D .12【答案】B9.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C10.盒子中放有编号为1,2,3,4,5的形状和大小完全相同的5个白球和5个黑球,则取出球的编号互不相同的概率为()A.115B.112C.12D.23【答案】D【解析】32352180.33243 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭12.对某种花卉的开放花期追踪调查,调查情况如下:则这种卉的平均花期为__ _天.【答案】16天(15.9天给满分)16.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)4050,,[)5060,,…,[]90100,后得到如下图的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)4050,与[]90100,两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。

2015概率统计试卷A

2015概率统计试卷A
第1页
2
D. S 是 的极大似然估计量.
2
2
共5页
8. 设 X1 ,
, X n 是 N (, 2 ) 的样本, 未知, X
1 n 1 n 2 X , S ( X i X )2 ,则 2 的置 i n i 1 n 1 i 1
[ ]
信度为 0.95 的置信区间为
2.已知随机变量 X ~ U (2, 2), 且Y X ,求(1)Y的概率密度(2)求 P( Y>X).
2
第3页 共6页
x 1 e ,x 0 3.总体 X 的概率密度函数 f ( x) , 0 。 X1 , 0, x 0
, X n 为 X 的样本,求 的极大似然
A. (
(n 1)S 2 (n 1) S 2 , ) (2n ) (0.025) (2n) (0.975)
S n
B.
(
(n 1)S 2 (n 1)S 2 , ) (2n1) (0.025) (2n1) (0.975)
S n
近似服从 [ ]
C. X t( n1) (0.025)
得分
2.总体 X ~ N (1 , 2 ) , Y ~ N (2 , 2 ) ,且 X 与 Y 相互独立,设 X1 , X 2 ,
, X m 是来自于 X 的样本,
Y1 , Y2 ,
, Yn 是 来 自 于 Y 的 样 本 , S , S 分 别 是 这 两 个 样 本 的 样 本 方 差 , 证 : 对 于 任 意 常 数
2.设袋中有 6 只红球,4 只白球,甲乙两人先后从中任取一只,已知乙取到白球,则甲取到的是红球
3.在区间(0,1)中随机取两个数,两数之和小于 1.4 的概率为 4. 设 X 为随机变量, E( X ) 0, E(2 X 1) 8, D(2 X 1) 2 ,则 E(X)= B.2

2015年概率论考试题答案

2015年概率论考试题答案

2005级建筑工程(本)自考班 概率统计期末考试题(A 卷)参考答案一、填空 1. ABBC AC 或 ABC ABC ABC ABC2. 出现的点数恰为53. r p -A 与B 互斥∴ ()()()P A B P A P B =+ 则 ()()()P B P A B P A r p =-=-4.21 ()22~21124()114412X e EX DX EX DX EX ∴===+=+=,则5. 0.25由题设,可得X sin 的概率分布为{}sin 00.250.250.5P X ==+={}5.021sin =⎭⎬⎫⎩⎨⎧===πX P X P则 ()sin 0.5E X =,()sin 0.50.50.25D X =⨯=二、单项选择 1.D 2. A 3. A利用集合的运算性质可得. 4.DA 与B 互斥()0P AB ∴=故 ()()()()P A B P A P AB P A -=-= 5.BB A ⊂ AB B ∴=故 ()()P AB P B = 6. (C )由已知X 服从二项分布(,)B n p ,则()1DX np p =- 又由方差的性质知,(21)4(1)D X np p -=-7. (B )()04X N 服从,04EX DX ∴==,于是 ()222E X X EX EX -=-⎡⎤⎣⎦()24DX EX EX =+-=28. (A ) 由正态分布密度的定义,有 22()2()()x p x x μσ--=-∞<<+∞24()()x x x ϕ--∞<<+∞⇒由 22242σσ=⇒=9. (D )X EX DX λ==若服从泊松分布,则∴如果EX DX ≠时,只能选择泊松分布. 10. (D )∵ X 为服从正态分布N (-1, 2), EX = -1 ∴ E (2X - 1) = -3三、计算与应用题 1. 解:设 A 表示“取到的两球颜色不同”,则1153A n C C =而样本点总数28C n =故 ()1153281528A C C n P A n C ===2. 解:设 A 表示“能把门锁打开”,则112373A n C C C =+,而210C n = 故 ()1123732108A 15A C C C n P n C +=== 3. 解:设 A 表示“有4个人的生日在同一月份”,则21124611C C n A =而样本点总数为612=n故 412612611()0.007312A C C n P A n === 4. 解:设 A 表示“至少取到一个次品”,因其较复杂,考虑逆事件A =“没有取到次品”则 A 包含的样本点数为A n 346C =。

14-15概率论期中考试试题答案(防灾科技学院)

14-15概率论期中考试试题答案(防灾科技学院)
0 y 8 4, 2 其它,
1 y 8 1 ) , y 8 y 8 ( fY ( y) f X ( )( ) 8 2 2 2 2 0 , y 8 , 8 y 16, 32 其它. 0 ,
„(5 分)
1, 0 x 1, (2)因 X ~ U (0,1) ,故 f X ( x) 0, 其他;
1 4 1 „(3 分) 4
(3)因为 X 为连续型随机变量, P{1 X 3} F (3) F (1) 1 (1 )
3. (10 分)设随机变量 X 在 [ 2, 5 ]上服从均匀分布, 现对 X 进行三次独立观测 ,试求至 少有两次观测值大于 3 的概率. 1 答:X 的概率密度函数为 , 2 x 5,
0
„„„(3 分)
4. (20 分) (1)设随机变量 X 具有概率密度 f X ( x) 8
0 x4 其它
,求 Y=2X+8 的概率
密度。 (2)设随机变量 X ~ U (0,1) ,求 Y e
2X
的密度函数 f Y ( y) 。
y 8
解: (1)
y 8 FY ( y) P(Y y) P(2 X 8 y) P( X ) 2 f X ( x)dx „ (5 分) 2
3
1 2 dx , 3 3
„„„(2 分)
因而有 P{Y 2}
3 2 2 3
2
2 3 2 1 3 3 3
3
20 2 1 . 3 27
x , 0,
„„„(2 分)
(1) 由全概率公式 P( B) P( A1 ) P( B A1 ) P( A2 ) P( B A2 ) P( A3 ) P( B A3 ) „„ (3 分) =0.25×0.05+0.35×0.04+0.40×0.02=0.0345; (2)由贝叶斯公式 P( A1 B)

(完整版)概率统计综合测验(3套题)

(完整版)概率统计综合测验(3套题)

概率统计综合测验(一)一、选择填空题(每小题3分,共18分)1. 箱中有5个白球3个红球,任取2个,则两个都是红球的概率为( )A.15/28B.13/28C.5/28D.3/282. 设X〜N(,2),则随增加,概率P(|X | )( )A.单调增加B.单调减少C. 保持不变D.与有关3. 设总体错误!未找到引用源。

X : N(u, 2),X!,X2,X3是总体X的样本,贝U以下的无偏估计中,最有效的估计量是().A. 2X X1B. 1 2 X2 1 X2 3 6D. 2 4 1C. X X X2 X5 5 54. ________________________________________________________ 设P(A) 0.5, P(AUB) 0.8,且A与B互斥,则P(B) _________________________5. 设随机变量X在(1,6 )服从均匀分布,则P(2 X 4) __________________6. 若总体X ~ N( , 2),其中2未知,则对总体均值进行区间估计时选择的枢轴量为_________二、计算题(每小题10分,共30分)1. 某保险公司把投保人分成三类:“谨慎的”、“一般的”、“冒险的”,占的比例分别为20%、50%、30%。

一年中他们出事故的概率分别为0.05、0.15、0.30.(1)求一年中投保人出事故的概率;(2)现有一投保人出了事故,求他是“谨慎的”客户的概率.2. 设随机变量X(1)求E(X) ; (2)求D(X).3.设随机变量X的概率密度为f(x)3x 小ce , x 00, 其他(1)求常数c;(2)求P(X 1).三、计算题(每小题10分,共40分) 1. 设二维随机变量(X,Y)具有联合分布律求(1)X 的边缘分布律;(2)P(X 2 Y 2 1). 2. 设二维随机变量(X,Y)的联合概率密度为f(x,y) (1) 求X 与Y 的边缘概率密度; (2) 判断X 与丫是否独立?(说明理由)1…、x 0x13.设总体X 的概率密度为f(x, ),0 x [错误!未找到引用0,其他源。

2013-2015概率统计试题及解答

2013-2015概率统计试题及解答

(2) 设 Y 为 150h 内烧坏的电子管数,则 Y ~ B(3, p) , p = P{X < 150} = F (150) = 1 。(3 分)
3
所求为 P{Y ≥ 2} = C32 (1 3)2 (2 3) + (1 3)3 = 7 27 。(2 分)
∫ ∫ ∫ ∫ ∫ 三、1. (1) 由
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
题号
一 二 三 四 总分
标准分 24 16 30 30
得分
注 请填写清楚左侧装订线内的所有信息,并在交卷时保持三页试卷装订完好。
A 一、填空题和选择题 (每题 3 分,共 24 分)
1. 已知 P(A) = 0.5 , P(B) = 0.6 , P ( B A) = 0.8 ,则 P ( A ∪ B) =
⎪⎩ 0,
其它.
cov( X ,Y ), ρXY , D( X − Y ) 。
姓名:
学号: 线
专业班级: 订
专业班级: 全校工科、经管、理科各专业 [该项由出卷人填写]

第( 2 )页共( 3 )页
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
A 四、计算下列各题 (共 30 分) 1. (7 分) 某单位设置一电话总机,共有 100 架电话分机。设每个电话分机是否使用外线通话 是相互独立的,且每时刻每个分机有 10%的概率要使用外线通话。问总机需要多少外线才能
36
6
36
∫ ∫ ∫ ∫ E(XY ) =
+∞
+∞
xyf (x, y)dxdy =

概率统计试卷及答案

概率统计试卷及答案

概率统计试卷 A一、填空题(共5 小题,每题 3 分,共计15分)1、设P(A) =a , P(B) = 0.3, P(A B ) = 0.7,若事件A 与B 互不相容,则 a = .2、设在一次试验中,事件A 发生的概率为p ,现进行n 次重复试验,则事件A 至少发生一次的概率为 .3、已知P(A ) = 0.3, P(B) = 0.4 , P(AB ) = 0.5,则P(|B A B )= .4、设随机变量X 的分布函数为0,0,()sin ,0,21.2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩则A = .5、设随机变量X ~(1)π,则P{2()X E X =}= . 二、选择题(共5 小题,每题3 分,共计15分)1、设P(A|B) = P(B|A)=14,2()3P A =, 则( )一定成立. (A) A 与B 独立,且2()5P A B =. (B) A 与B 独立,且()()P A P B =. (C) A 与B 不独立,且7()12P A B =. (D) A 与B 不独立, 且(|)(|)P A B P A B =.2、下列函数中,( )可以作为连续型随机变量的概率密度.(A)3sin ,,()20x x f x ππ⎧≤≤⎪=⎨⎪⎩其它. (B) 3sin ,,()20x x g x ππ⎧-≤≤⎪=⎨⎪⎩其它. (C)3s ,,()20co x x x ππϕ⎧≤≤⎪=⎨⎪⎩其它. (D) 31s ,,()20co x x h x ππ⎧-≤≤⎪=⎨⎪⎩其它. 3、设X 为一随机变量,若D(10X ) =10,则D(X ) = ( ).(A) 110. (B) 1. (C) 10. (D) 100.4、设随机变量X 服从正态分布2(1,2)N ,12100,,X X X 是来自X 的样本,X 为样本均值,已知~(0,1)Y aX b N =+,则有( ).(A)11,55a b ==. (B) 5,5a b ==.(C)11,55a b ==-. (D) 5,5a b ==-. 5、在假设检验中,显著性水平α的意义是( ). (A) 原假设0H 成立,经检验不能拒绝的概率.(B) 原假设0H 不成立,经检验被拒绝的概率. (C) 原假设0H 成立,经检验被拒绝的概率.(D)原假设0H 不成立,经检验不能拒绝的概率. 三、10片药片中有5片是安慰剂,(1)从中任取5片,求其中至少有2片是安慰剂的概率.(2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率. (本题10分)四、以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),X 的分布函数是0.41,0,()0,0.x X e x F x x -⎧->=⎨≤⎩ 求下述概率:(1)P {至多3分钟}.(2)P {3分钟至4分钟之间}. (本题10分)五、设随机变量(X ,Y)的概率密度为()1(),0,0,(,)20x y x y ex y f x y -+⎧+>>⎪=⎨⎪⎩其它. (1) 求边缘概率密度(),()X Y f x f y .(2) 判断X 和Y 是否相互独立? (本题10分)六、设随机变量X 的分布律为X -2 0 2 p k 0.4 0.3 0.3求22(),(35)E X E X +. (本题10分)七、设12,,n X X X 为总体的一个样本,12,,,n x x x 为一相应的样本值,总体密度函数为1,01,()0x f x ≤≤=⎪⎩其它. 其中θ>0,求θ为未知参数的矩估计值和估计量. (本题10分)八、用金球测定引力常数(单位:10-11312m kg s --⋅⋅),观察值为6.683 6.681 6.676 6.678 6.679 6.672设测定值总体为N 2(,)μσ,2,μσ均未知,试求2σ的置信水平为0.9的置信区间.(本题10分)(2s = 0.15×10-4,20.05χ(5) = 11.070, 20.05χ(6) = 12.592, 20.95χ(5) = 1.145,20.95χ(6)=1.635 ).九、按规定,100g 罐头番茄汁中的平均维生素C 含量不得少于21/mg g ,现从工厂的产品中抽取17个罐头,其 100g 番茄汁中测得平均维生素C 含量(/mg g )记录如下:16 25 21 20 23 21 19 15 13 23 17 20 29 18 22 16 22设维生素含量服从正态分布2(,)N μσ,2,μσ均未知,问这批罐头是否符合要求(取显著性水平α= 0.05).(本题10分) (225416s =, 0.05t (16) = 1.7459, 0.05t (17) = 1.7396, 0.025t (16) = 2.1199, 0.025t (17) =2.1098)参考答案一、1、0.3 2、1(1)np -- 3、0.25 4、1 5、12e 二、1、C 2、B 3、A 4、D 5、C三、解 (1)设A=“任取5片,至少2片安慰剂.” ……1分法一23324155555555510113()126C C C C C C C P A C +++== ……4分 法二514555510113()1126C C C P A C +=-= ……4分 (2)设B=“不放回任取5片,前3次都取到安慰剂.” ……1分5431()109812P B =⋅⋅=……4分四、解(1) 设A={至多3分钟} ……1分0.431()(3)(3)11P A P X F e e -⨯-=≤==-=- ……4分(2) 设B={3分钟至4分钟之间} ……1分1.6 1.2 1.2 1.6()(34)(4)(3)(4)1(1)0P B P X F F P X e e e e ----=≤≤=-+==---+=- ……4分五、解 (1) (X, Y) 关于X 的边缘密度为()01(),0()(,)20,0x y X x y edy x f x f x y dy x +∞-++∞-∞⎧+>⎪==⎨⎪≤⎩⎰⎰ ……2分=1(1),020,0xx e x x -⎧+>⎪⎨⎪≤⎩ ……2分 (X, Y) 关于Y 的边缘密度为()01(),0()(,)20,0x y Y x y edx y f y f x y dx y +∞-++∞-∞⎧+>⎪==⎨⎪≤⎩⎰⎰ ……2分 =1(1),020,0yy e y y -⎧+>⎪⎨⎪≤⎩ ……2分 (2) ()()X Y f x f y ⋅=()1(1)(1),0,040,x y x y ex y -+⎧++>>⎪⎨⎪⎩其它 ……1分显然()()(,)X Y f x f y f x y ⋅≠,故X 和Y 不独立. ……1分六、解 E(X 2 )=(-2)2 ×0.4+ 02 ×0.3+22 ×0.3=2.8 …… 5分E(3X 2 +5)=3 E(X 2 )+5=3×2.8 +5=13.4 ……5分 七、解11()E X dx ==⎰⎰……3分110|==……3分由矩估计定义知11nii X X n ===∑ ……2分 解得矩估计值为2ˆ()1x x θ=- ……1分矩估计量为2ˆ()1X X θ=- ……1分八、解 2,μσ均未知,2σ的置信度为0.9的置信区间为2222/21/2(1)(1)[,](1)(1)n S n S n n ααχχ----- ……2分这里n = 6, 2α= 0.05, 2s =0.15×10-5查表得20.05χ(5)=11.070, 20.95χ(5)=1.145 ……3分 计算得 2462/2(1)50.1510 6.77410,(1)11.070n s n αχ---⨯⨯==⨯- ……2分24521/2(1)50.1510 6.55010,(1) 1.145n s n αχ----⨯⨯==⨯- ……2分即2σ的置信区间为[6.774×10-6,6.550×10-5]. ……1分九、解 检验假设H 0:μ≥21, H 1:μ<21. ……1分2σ未知,检验问题的拒绝域为(1)x t t n α=≤-- ……3分n = 17, α= 0.05, x = 20, 2s =254/16,查表得0.025t (16) = 1.7459 ……2分t ==–1.03>-1.7459 ……2分 故接受H 0即认为这批罐头符合要求. ……2分 概率统计试卷 B一、填空题(共5 小题,每题 3 分,共计15分)1、设A 、B 为两个随机事件,()P A = 0.7, ()P A B -= 0.3则()P AB = .2、已知()P A =14, (|)P B A =13, (|)P A B =12,则()P A B = .3、若随机变量X 的概率密度为,01(),02,40,2x ke x f x x x ⎧<⎪⎪=≤<⎨⎪≥⎪⎩,则k = .4、设随机变量X 的分布率为 X -1 0 1k p 13 16 12 则X 的分布函数()F x = .5、设X 为随机变量,若已知2,()1,2XEX D ==则2(2)E X -= .二、选择题(共5 小题,每题3 分,共计15分)1、设A 、B 是两个相互独立的事件,且()0,()0,P A P B >>则()P A B ) =( )一定成立.(A) ()()P A P B + (B) 1()()P A P B -(C) 1()()P A P B + (D) 1()P AB -2、下列函数中,( )可以作为连续型随机变量的分布函数.(A) 1,0()10x e x F x x ⎧<=⎨≥⎩ (B)2,0()10x e x F x x -⎧<=⎨≥⎩ (C) 30,0()10x x F x e x <⎧=⎨-≥⎩ (D)40,0()10xx F x e x -<⎧=⎨+≥⎩ 3、设X 和Y 是两个相互独立的随机变量,DX = 4,DY =2,则(32)D X Y -=( ).(A) 8 (B) 16(C) 28 (D) 444、设12,,(1)n X X X n >是来自正态总体N 2(,)μσ的简单随机样本,X 是样本均值,222212112222341111(),(),111(),(),1n n i i i i n n i i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑则服从自由度为n -1的t 分布的随机变量是( ).(A)X t =(B) X t =(C)X t =(D)X t =5、在假设检验中,0H 表示原假设,1H 为备择假设,则称为犯第二类错误是( ).(A) 1H 不真,接受1H (B) 1H 不真,接受0H (C) 0H 不真,接受0H (D) 0H 不真,接受1H三、已知在10件产品中有2件次品,在其中任取两次,每次任取一件,作不放回抽样,求下列事件的概率: (1) 两件都是正品;(2) 第二次取出的是次品. (本题10分)四、设事件A 在每次试验发生的概率为0.3,A 发生不少于3次时,指示灯发出信号,进行了5次重复独立试验,求指示灯发出信号的概率. (本题10分)五、设随机变量(X,Y)的概率密度为(),01,0(,)10x y e e x y f x y e -+⎧<<<<+∞⎪=-⎨⎪⎩其它 (1) 求边缘概率密度(),()X Y f x f y ;(2) 判断X 和Y 是否相互独立? (本题10分)六、设随机变量12,X X 的概率密度别为212,0,()0,0.x e x f x x -⎧>=⎨≤⎩ 424,0,()0,0.x e x f x x -⎧>=⎨≤⎩ (1)求212(23)E X X -; (2)又设12,X X 相互独立,求12()E X X . (本题10分)七、设12,,(1)n X X X n >为总体X 的一个样本,12,,,n x x x 为一相应的样本值,总体密度函数为(1),()0c x x c f x θθθ-+⎧>=⎨⎩其它, 其中c>0为已知,θ>1,求θ为未知参数的最大似然估计值和估计量. (本题10分)八、用铂球测定引力常数(单位:10-11m 3.kg -1.s -2),观察值为6.661 6.661 6.667 6.667 6.664设测定值总体为N 2(,)μσ,2,μσ未知,试求2σ的置信水平为0.9的置信区间. (本题10分)(250.910,s -=⨯20.05χ(4) = 9.488, 20.05χ(5) = 11.071,20.95χ(4) = 0.711,20.95χ(5)=1.145 )九、如果一个矩形的宽度与长度的比为11)2≈0.618,这样的矩形称为黄金矩形,某工艺厂生产的矩形的宽度与长度的比值总体服从正态分布N 2(,)μσ,现随机抽取16个,测得x = 0.6544, s = 0.0925, 其均值为μ,方差为2σ,2,μσ均未知,试检验假设H 0:μ= 0.618, H 1:μ≠0.618 (取α= 0.05). (本题10分)(0.025t (19) = 2.0930, 0.025t (20) = 2.0860, 0.05t (19) = 1.7291, 0.05t (20) =1.72470.025t (15) = 2.1315, 0.025t (16) = 2.1199, 0.05t (15) = 1.7531, 0.05t (16) =1.7459)参考答案一、1、0.6 2、1/3 3、0.5 4、0,11,103()1,01211x x F x x x <-⎧⎪⎪-≤<⎪=⎨⎪≤<⎪⎪≥⎩ 5、4 二、1、B 2、A 3、D 4、B 5、C 三、解 设i A =“第i 次取出的是正品.”i B =“第i 次取出的是次品.” ……2分(1)121218728()()(|)10945P A A P A P A A ==⋅= ……4分 212121212121121(2)()()()()()(|)()(|)822191109109455P B P A B B B P A B P B B P A P B A P B P B B =⋃=+=+=⋅+⋅== ……4分四、解 设A 发生的次数为X ,B 为指示灯发出信号,则X 服从b (n ,p ), n=5,p=0.3 ……4分法一5553()(3)(0.3)(0.7)0.163kk kk P B P X C -==≥=≈∑……6分法二2550()1(3)1(0.3)(0.7)0.163k k k k P B P X C -==-<=-≈∑ ……6分五、解 (1) (X, Y) 关于X 的边缘密度为()0,01()(,)1,x y X e e dy x f x f x y dy e +∞-++∞-∞⎧<<⎪==-⎨⎪⎩⎰⎰其它 ……2分 =,0110,xe e x e -⎧<<⎪-⎨⎪⎩其它 ……2分 (X, Y) 关于Y 的边缘密度为1()0,0()(,)1,0x y Y e e dx y f x f x y dx e y -++∞-∞⎧>⎪==-⎨⎪≤⎩⎰⎰……2分 =,00,0y e y y -⎧>⎨≤⎩ ……2分(2) ()()X Y f x f y ⋅(),01,010x y e e x y e -+⎧<<<<+∞⎪=-⎨⎪⎩其它 ……1分显然()()(,)X Y f x f y f x y ⋅=,故X 和Y 相互独立. ……1分 六、解11()2E X =,21()4E X = …… 2分 2222222111()()[()]()()448E X D X E X =+=+=……2分221212(1)(23)2()3()11523288E X X E X E X -=-=⋅-⋅=…… 3分(2)12,X X 独立,1212111()()()248E X X E X E X ==⋅= ……3分七、解 样本X 1,X 2,…,X n 的似然函数为(1)(1)11()nnnn i i i i L c xc x θθθθθθθ-+-+===∏⋅=⋅∏ ……3分 而1ln ()ln ln (1)ln nii L n n c x θθθθ==+-+∑ ……2分令1ln ()ln ln 0ni i d nL n c x d θθθ==+-=∑ ……2分解得的最大似然估计值为1ˆln ln nii nx n cθ==-∑ ……2分最大似然估计量为1ˆln ln nii nXn cθ==-∑ ……1分八、解 2,μσ均未知,2σ的置信度为0.9的置信区间为2222/21/2(1)(1)[,](1)(1)n S n S n n ααχχ----- ……2分这里n = 5, 2α= 0.05, 2s =0.9×10-5查表得20.05χ(4)=9.488, 20.95χ(4)=0.711 ……3分 计算得 2562/2(1)40.910 3.79410,(1)9.488n s n αχ---⨯⨯==⨯- ……2分25521/2(1)40.910 5.06310,(1)0.711n s n αχ----⨯⨯==⨯- ……2分即2σ的置信区间为[3.794×10-6,5.063×10-5]. ……1分九、解 检验假设H 0:μ= 0.618, H 1:μ≠ 0.618. ……1分2σ未知,检验问题的拒绝域为/2|||(1)x t t n α=≥- ……3分n = 16, α= 0.05, α/2 = 0.025, x = 0.6544, s = 0.0925, 查表得0.025t (15) = 2.1315 ……2分||||t ==1.574 < 2.1315 ……2分 故接受H 0即认为矩形的宽度与长度的比为0.618. ……2分概率统计试卷 C一、填空题(共5 小题,每题 3 分,共计15分) 1、设A 、B 、C 为三个随机事件, 11()()(),()()0,(),48P A P B P C P AB P BC P AC ======则()P A B C = . 2、设随机变量X 的概率密度为2(1),11,()0,k x x f x ⎧--<<=⎨⎩其他.,则k = .3、设随机变量X,Y 相互独立,~(1,4),~(10,0.4),X N Y b 则(2)D X Y -= .4、设12,,,n X X X 是来自总体2(,)N μσ的样本,X 是样本均值,则X 服从的分布为 .5、设12,,,n X X X 是来自总体2(,)N μσ的样本,2S 为样本方差,μ未知时,则2σ的一个置信水平为1α-的置信区间为 . 二、选择题(共5 小题,每题3 分,共计15分)1、设A 、B 是两个相互独立的事件,且()0,()0,P A P B >>则 ( )一定成立.(A) (|)1()P A B P A =- (B) (|)0P A B = (C) ()1()P A P B =- (D) (|)()P A B P B =2、函数()=y f x 是一连续型随机变量X 的概率密度,则( )一定成立. (A) ()f x 的定义域为[0,1] (B) ()f x 的值域为[0,1](C) ()f x 非负 (D) ()f x 在(-∞,∞)内连续3、设X 和Y 是两个相互独立的随机变量,且都服从泊松分布,又知()2,()3,E X E Y ==则2()E X Y +=( ).(A) 51 (B) 10 (C) 25 (D) 304、设总体2~(,)X N μσ,其中μ已知,2σ未知,123,,X X X 是来自正态总体X 的一个容量为3的样本,则下列选项中不是统计量的是 ( ). (A) 123X X X ++ (B) 123max{,,}X X X(C)2222123()X X X σ++ (D) 132X X μ+- 5、设总体2~(,)X N μσ, 12,,,n X X X 是来自正态总体的样本,则2σ的无偏估计量是( ). (A) 211()n i i X X n =-∑ (B) 211()1n i i X X n =--∑(C) 2211n i i X X n =-∑ (D) 211()1n i i X X n =-+∑三、有两种花籽,发芽率分别为0.8, 0.9,从中各取一颗,设各花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率, (2)恰有一颗能发芽的概率. (本题12分)四、设随机变量X 的分布函数为0,1,()ln ,1,1,.X x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩(1)求{2 2.5},P X <<(2)求密度函数().X f x (本题12分)五、设随机变量(X,Y )的概率密度为225.25,1,(,)0,x y x y f x y ⎧≤≤=⎨⎩其它. (1) 求边缘概率密度(),()X Y f x f y ;(2) 判断X 和Y 是否相互独立? (本题12分)六、设随机变量(X,Y )的概率密度为212,01,(,)0,.y y x f x y ⎧≤≤≤=⎨⎩其他求(),().E X E XY (本题10分)七、设随机变量X 的分布律为1{}(1),0,1x xP X x p p x -==-=,1,2,,n X X X 是来自X的一个样本,12,,,n x x x 为一相应的样本值, p 为未知参数,求p 的最大似然估计值和估计量. (本题12分)八、某批矿砂的5个样品中的镍含量,经测定为(%) 3.25 3.27 3.24 3.26 3.24设测定值总体服从正态分布,但参数均未知,问在α= 0.01下能否接受假设:这批矿砂的镍含量的均值为 3.25. (本题12分)(s = 0.013, 0.005t (4) = 4.6041, 0.005t (5) = 4.0322, 0.01t (4) = 3.7459, 0.01t (5) = 3.3649)参考答案一、1、5/8=0.625 2、3/8=0.375 3、18.4 4、2(,)N n σμ5、2222/21/2(1)(1)(,)(1)(1)n S n S n n ααχχ-----二、1、A 2、C 3、D 4、C 5、B 三、解 设i A =“第i 种花籽取一颗.”(i =1,2)(1) P (两颗花籽都能发芽)=12()P A A12()()0.80.90.72P A P A ==⨯= ……6分(2) P (恰有一颗能发芽)=12121212()()()P A A A A P A A P A A =+1212()()()()0.80.10.20.90.26.P A P A P A P A =+=⨯+⨯= ……6分 四、解 (1) (2 2.5)(2.5)(2)X X P X F F <<=-5l n 2.5l n 2l n4=-= ……6分 (2)1,1,()()0,.X X x e f x F x x⎧<<⎪'==⎨⎪⎩其他 ……6分 五、解 (1) (X, Y ) 关于X 的边缘密度为 2125.25,11()(,)0,x X x ydy x f x f x y dy +∞-∞⎧-≤≤⎪==⎨⎪⎩⎰⎰其它 ……3分 2221241215.25(1),11280,xx y x x x ⎧=--≤≤⎪=⎨⎪⎩其它 ……2分 (X, Y ) 关于Y 的边缘密度为2,01()(,)0,Y x ydx y f y f x y dx +∞-∞⎧≤≤⎪==⎨⎪⎩⎰其它 ……3分35/225.25 3.5,0130,y x y y ⎧=≤≤⎪=⎨⎪⎩其它……2分(2) ()()(,)X Y f x f y f x y ⋅≠,故X 和Y 不相互独立. ……2分 六、解()(,)E X x f x y dxdy∞∞-∞-∞=⎰⎰…… 2分 112400041245x dx xy dy x dx ===⎰⎰⎰, ……3分()(,)E XY xy f x y dxdy∞∞-∞-∞=⎰⎰……2分 113500011232x dx xy dy x dx ===⎰⎰⎰ …… 3分七、解 设12,,,n x x x 是相应于样本X 1,X 2,…,X n 的的一个样本值,X 的分布律为1{}(1),0,1x x P X x p p x -==-=故似然函数为1111()(1)(1)nniii i i i x n x nx x i L p p p p p ==--=∑∑=∏-=- ……4分 而11ln ()()ln ()ln(1)nni i i i L p x p n x p ===+--∑∑令11ln ()01nniii i xn x dL p dp pp==-=-=-∑∑ ……4分解得p 的最大似然估计值为 11ˆni i px x n ===∑最大似然估计量为 11ˆ.ni i pX X n ===∑ ……4分八、解 检验假设H 0:μ= 3.25, H 1:μ≠3.25 .2σ未知,检验问题的拒绝域为/2|||(1)x t t n α=≥- ……4分n = 5, α= 0.01, α/2 = 0.005, x = 3.252, s = 0.013,查表得0.005t (4) = 4.6041 ……4分|||t == 0.343 < 4.6041 故接受H 0即认为这批矿砂的镍含量的均值为3.25. ……4分概率统计试卷 D一、填空题(共5 小题,每题 3 分,共计15分)1、设事件A,B 相互独立,()0.4,()0.7,==P A P A B 则()P B = .2、设随机变量X 的概率密度为cos ,,()220,k x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他.,则k = . 3、设随机变量123,,X X X 相互独立且都服从参数为λ的泊松分布,令1231()3Y X X X =++则()D Y = .4、设12,,,n X X X 是来自总体2(,)N μσ的样本,2,X S 分别是样本均值和样本方差,则22(1)n S σ-服从的分布为 .5、设12,,,n X X X 是来自总体2(,)N μσ的样本,2,X S 分别是样本均值和样本方差,2σ已知时,μ的一个置信水平为1-α的置信区间为 . 二、选择题(共5 小题,每题3 分,共计15分)1、设A 、B 是两个相互独立的事件,且()0,()0,P A P B >>则 ( )一定成立.(A) (|)1()P A B P A =- (B) (|)0P A B = (C) ()1()P A P B =- (D) (|)()P A B P B =2、函数()=y f x 是一连续型随机变量X 的概率密度,则( )一定成立.(A) ()f x 的定义域为[0,1] (B) ()f x 的值域为[0,1] (C) ()f x 非负 (D) ()f x 在(-∞,∞)内连续3、设()0,E X ≥且2111(1)2,(1),222E X D X -=-=则()E X =( ). (A)(B) 2(C) 1 (D) 04、设1234,,,X X X X 是来自正态总体X 的样本,其中μ已知,2σ未知,则下列选项中不是统计量的是 ( ).(A) 4114ii X X ==∑ (B) 142X X μ+-(C) 42211()3i i S X X ==-∑ (D) 42211()i i K X X σ==-∑5、设总体2~(,)X N μσ, 12,,,n X X X 是来自正态总体的样本,则2σ的无偏估计量是( ).(A) 211()n i i X X n =-∑ (B) 211()1n i i X X n =-+∑(C) 211()1n i i X X n =--∑ (D) 2211n i i X X n =-∑三、有两种花籽,发芽率分别为0.8, 0.9,从中各取一颗,设各花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率,(2)恰有一颗能发芽的概率. (本题12分)四、设随机变量X 的分布函数为0,1,()ln ,1,1,.X x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩(1)求{03}P X <≤,(2)求密度函数().X f x (本题12分)五、设随机变量(X,Y )的概率密度为 4.8(2),01,0,(,)0,y x x y x f x y -≤≤≤≤⎧=⎨⎩其它.(1) 求边缘概率密度(),()X Y f x f y ;(2) 判断X 和Y 是否相互独立? (本题12分)六、设随机变量(X,Y )的概率密度为2,01,01,(,)0,.y x y f x y <<<<⎧=⎨⎩其他 ,求(),().E Y E XY (本题10分)七、设1,2,,n X X X 是来自总体X 的一个样本,12,,,n x x x 为一相应的样本值,总体X 的密度函数为 1,01,(,)(0)0,x x f x θθθθ-⎧<<=>⎨⎩其它.,求θ为未知参数的矩估计值和估计量. (本题12分)八、某批矿砂的5个样品中的镍含量,经测定为(%) 3.25 3.27 3.24 3.26 3.24设测定值总体服从正态分布,但参数均未知,问在α= 0.01下能否接受假设:这批矿砂的镍含量的均值为 3.25. (本题12分)(s = 0.013, 0.005t (4) = 4.6041, 0.005t (5) = 4.0322, 0.01t (4) = 3.7459, 0.01t (5) = 3.3649)参考答案一、1、0.5 2、1/2=0.5 3、13λ 4、2(1)n χ- 5、/2()X z α二、1、A 2、C 3、B 4、D 5、C 三、解 设i A =“第i 种花籽取一颗.”(i =1,2)(1) P (两颗花籽都能发芽)=12()P A A12()()0.80.90.72P A P A ==⨯= ……6分(2) P (恰有一颗能发芽)=12121212()()()P A A A A P A A P A A =+1212()()()()0.80.10.20.90.26.P A P A P A P A =+=⨯+⨯= ……6分 四、解 (1) (03)(3)(0)101X X P X F F <≤=-=-= ……6分(2)1,1,()()0,.X Xx e f x F x x ⎧<<⎪'==⎨⎪⎩其他 ……6分 五、解 (1) (X, Y ) 关于X 的边缘密度为4.8(2),01()(,)0,x X y x dy x f x f x y dy +∞-∞⎧-≤≤⎪==⎨⎪⎩⎰⎰其它 ……3分 2202.4(2) 2.4(2),010,x x y x x x ⎧-=-≤≤⎪=⎨⎪⎩其它 ……2分 (X, Y ) 关于Y 的边缘密度为14.8(2),01()(,)0,yY y x dx y f y f x y dx +∞-∞⎧-≤≤⎪==⎨⎪⎩⎰⎰其它 ……3分 21214.8[(2)] 2.4(34),0120,y y x y y y y ⎧--=-+≤≤⎪=⎨⎪⎩其它 ……2分(2) ()()(,)X Y f x f y f x y ⋅≠,故X 和Y 不相互独立. ……2分 六、解()(,)E Y y f x y dxdy∞∞-∞-∞=⎰⎰……2分 11112311000000222223333dx y dy y dx dx x =====⎰⎰⎰⎰, ……3分 ()(,)E XY xy f x y dxdy∞∞-∞-∞=⎰⎰……2分 1111231100000022112.3333dx xy dy xy dx xdx x =====⎰⎰⎰⎰ ……3分七、解 由矩法估计1()(,)E X x f x d xμθ∞-∞==⎰11110011x x dx x θθθθθθθ-+===++⎰ ……4分 以1A 代1μ得 1111ni i A X Xn θθ====+∑ ……4分得θ的矩估计量为ˆ,1X X θ=- θ的矩估计值为 ˆ1x x θ=-. ……4分 八、解 检验假设H 0:μ= 3.25, H 1:μ≠3.25 .2σ未知,检验问题的拒绝域为/2|||(1)x t t n α=≥- ……4分n = 5, α= 0.01, α/2 = 0.005, x = 3.252, s = 0.013,查表得0.005t (4) = 4.6041 ……4分|||t ==0.343 < 4.6041 故接受H 0即认为这批矿砂的镍含量的均值为3.25. ……4分。

《概率统计》期中考试卷A答案_2010-2011学年第二学期

《概率统计》期中考试卷A答案_2010-2011学年第二学期

λ k e −λ ( k = 0,1,2 L) ,由 P{ X = 0} = e − λ = 0.01 , 得 λ = ln 100 = 2 ln 10, k!
(1) P {X ≥ 2} = 1 − P {X < 2} = 1 − P {X = 0} − P {X = 1}
= 1 − 0.01 −
2 ln 10 ⋅ e − ln 100 = 0.99 − 0.02 ln 10. 1!
三.(10 分) 玻璃杯成箱出售,每箱 20 只.设各箱含 0 只、1 只残次品的概率分别为 0.8 和 0.2. 一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看 3 只:若无残次品,则买 下该箱玻璃杯,否则退回. 求:(1) 顾客买下此箱玻璃杯的概率; (2) 已知顾客买下此箱玻璃杯,求该箱中确实没有残次品的概率. 解: 设 A0=“箱中含有 0 件次品” , A1=“箱中含有 1 件次品” ,则 A0 ,A1 是一完备事件组, 设 B=“任取的 3 只都是合格品”=“顾客买下该箱玻璃杯” , (1) P ( B ) = P ( A0 ) P ( B | A0 ) + P ( A1 ) P ( B | A1 )
A卷 第 3 页(共 4 页)
(2) EX = λ = ln 100 = 2 ln 10.
P D F
c re a te d
w ith
p d f F a c to r y tr ia l v e r s io n
浙江财经学院课程期中考试试卷
七. (10 分) 设 X 服从参数 λ =
′ (tan y ) sec 2 y = f X (tan y ) ⋅ sec 2 y = fY ( y ) = [FY ( y )] ′ = FX

概率统计答案(详解)

概率统计答案(详解)

第一章 随机事件与概率1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1) 抛一枚硬币两次,观察出现的面,事件{=A 两次出现的面相同};(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次};(3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。

解 (1) 用+表示出现正面,-表示出现反面。

)},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 012{,,,,}kΩωωωω=,0123{,,,}A ωωωω=.其中k ω 表示1分钟内接到k 次呼唤,0,1,2,k =(3) 记x 为抽到的灯泡的寿命(单位:小时),则{|0}x x Ω=≥, {|20005000}A x x =≤≤.2. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A . 解 (1) 1342AB x x B ⎧⎫=≤≤=⎨⎬⎩⎭; (2) 10122AB x x x B ⎧⎫=≤≤<≤⎨⎬⎩⎭或1131422x x x x ⎧⎫⎧⎫=≤≤<≤⎨⎬⎨⎬⎩⎭⎩⎭; (3) 因为B A ⊂,所以ΦAB =;(4)130242AB A x x x ⎧⎫=≤<<≤⎨⎬⎩⎭或=⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 3. 用事件C B A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E );(7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。

概率统计中期考试试题及答案

概率统计中期考试试题及答案

概率统计中期考试试题及答案 一选择题1 设A ,B ,C 为三个独立事件,则下列等式中不成立的是( ) (A ) )()()(B P A P B A P = (B ) )()()(B P A P B A P = (C ) )()()(C P A P AC P = (B ) )()()()(C P B P A P ABC P =解 A ,B ,C 为三个独立事件 ,则A 与B 相互独立 )()()(B P A P B A P = 所以 (B )不成立2 如果事件A 与B 相互对立,则下面结论错误的是( ) (A ) A+B 是必然事件 (B )B A +是必然事件 (C ) B A 是不可能事件 (D )A 与B 一定不互斥解 如图 :事件A 与B 相互对立,则 A B ==,Φ=B A所以(D )是错误的 3 给出下列命:(1) 互斥事件一定对立 (2) 对立事件一定互斥 (3) 互斥事件不一定对立(4) 事件A 与B 的和事件的概率一定大于事件A 的概率 (5) 事件A 与B 互斥,则P(A)=1-P(B) 其中命题正确的个数为( )(A) 0 (B) 1 (C) 2 (D) 3 解 (1) 错误 (2) 正确 (3) 正确(4) 如果 A B ⊆,则 )()(A P B A P =+ 所以错误(5) 事件A 与B 互斥,则)()()(B P A P B A P +=+ 但)(B A P +不一定等于1 所以错误4 一个员工一周需要值班二天,其中恰有一天是星期六的概率为( ) ( A) 1/7 (B) 2/7 (C) 1/49 (D) 2/49 解 A={ 恰有一天是星期六} 726)(27==C A P 5 有三个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有二人在车厢内相遇的概率( )(A) 29/200 (B) 7/25 (C) 29/144 (D) 7/18 解 A={至少有二人在车厢内相遇} 则2571089101)(1)(3=⨯⨯-=-=A P A P二 填空题1 袋中3红球,2白球,每次取1个,取后放回,再放入相同颜色的球1个,则连续三次取得红球的概率 解 i A 第i 次取红球(i=1,2,3)则 )|()|()()(213121321A A A P A A P A P A A A P =756453⨯⨯=72= 2 有两箱同类的零件,第一箱有50只,其中有10件一等品,第二箱有30只,其中有18件一等品,今从两箱中任取一箱,然后从该箱中取零件两次,每次取一只,不放回,则第一次取到一等品的概率是解 A------取到第一只箱子 B------第一次取到红球)|()()|()()(A B P A P A B P A P B P +=4.0301821501021=⨯+⨯=3某射手命中率为0.9,他射击10次恰好中9次的概率为 解 X------10次射击命中的次数,则 )9.0,10(~B X1.09.0}9{9910C X P ===0.387424设8支枪中已有5支经试射校正,有3支未校正,一射手用校正过的枪命中率为0.8,用未校正过的枪命中率为0.3,今从8支枪中选一支进行射击,结果中靶,则所用枪是校正过的概率为解 A------取到校正过的枪 B-----射击命中目标 )|()()|()()(A B P A P A B P A P B P += 3.0838.085⨯+⨯=)()|()()()()|(B P A B P A P B P AB P B A P ==3.0838.0858.085⨯+⨯⨯==0.8163275 设随机变量X 的分布律为 kb k X P )32(}{== (k=1,2,3,…) 则常数b=解 132132)32(1=-=∑∞=b b k k5.0=⇒b6 事件A ,B ,C 三事件相互独立,A 发生的概率为1/2,A ,B ,C 同时发生的概率为1/24,A ,B ,C 都不发生的概率为1/4,则A ,B ,C 只有一个发生的概率为 解 事件A ,B ,C 三事件相互独立21)(=A P 241)()()()(==C P B P A P ABC P 41))(1))((1))((1()()()()(=---==C P B P A P C P B P A P C B A P 则 31)(=B P 41)(=C P )()()()(P P P P ++=++)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=413221433121433221⨯⨯+⨯⨯+⨯⨯=2411=7设某项实验成功率是失败率的2倍,用X 表示一次实验成功的次数,则P{X=0}= 解 A={成功} 则 32)(=A P 31)0(==X P 8 已知a A P =)( b B P =)( c B A P =+)( 则 =)(B A P 解 )()()])[()(B P B A P B B A P B A P -+=-+==c-b9 从1到100共100个整数中任取一个数,在已知这个数是3的倍数的条件下,这个数能被5整除的概率为解 A={这个数是3的倍数} B={这个数能被5整除}则 112100331006)()()|(===A P AB P A B P三 设连续型随机变量的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Axx x F 求(1)A=? (2)P{0.3<X<0.7} (3) X 的概率密度解 (1)因为为F(x)连续函数,特别地,在X=1处连续, 有A=1(2) 4.03.07.0)3.0()7.0(}7.03.0{22=-=-=<<F F X P(3) ⎪⎩⎪⎨⎧≥<≤<='=1010200)()(x x x x x F x f四 测量到某目标的距离时发生的随机误差X 具有概率密度3200)20(22401)(--=x ex f π求在一次测量中误差的绝对值不超过30米的概率 解 224020213200)20(24012401)(⎪⎭⎫ ⎝⎛----==x x eex f ππ)40,20(~2N X)25.1()25.0()402030()402030(}3030{}30|{|-Φ-Φ=--Φ--Φ=≤≤-=≤X P X P 4931.018944.05981.0)]25.1(1[)25.0(=-+=Φ--Φ=五 设随机变量X 服从均匀分布U (0,1),试求Xe Y = 概率密度函数与分布函数解 )1,0(~U X ⎪⎩⎪⎨⎧≥<≤<=1010100)(x x x x f Xx e y =单调上升,其反函数为: y x ln = 导数为: yx y 1='(1) Xe Y = 概率密度函数为:|)(|))(()(y h y h f y f X Y '∙=⎪⎪⎩⎪⎪⎨⎧≥<≤<=1ln 01ln 010ln 0y y y y ⎪⎪⎩⎪⎪⎨⎧≥<≤<=e y e y y y 0111(2) 分布函数为 dy y f y F Y Y ⎰=)()(⎪⎩⎪⎨⎧≥<≤+<=e y c e y c y y c 3211ln 1根据)(y F Y 的连续性,及,0)(=-∞Y F 1)(=+∞Y F 有 1,0,0321===c c c所以 =)(y F Y ⎪⎩⎪⎨⎧≥<≤<=e y e y y y 11ln 10。

2015-2016概率统计(B)答案

2015-2016概率统计(B)答案

广州大学2015-2016学年第二学期考试卷参考答案课 程:概率论与数理统计 考 试 形 式:闭卷考试一、选择题(每小题2分,总计10分)1.下列给出的数列中,可用来描述某一随机变量分布律的是( D ).(A )25i p i =,5,4,3,2,1=i ; (B )6)5(2i p i -=,3,2,1,0=i ;(C )1453i p i =,5,4,3,2,1=i ; (D )302i p i =,4,3,2,1=i .2.设事件A 与B 同时发生的概率()0P AB =,则( C ).(A)事件A 与B 相互独立; (B)事件A 与B 不相关; (C)()()()P A B P A P B =+ ; (D)事件AB 为不可能事件.3.已知2.0)(=A P ,2.0)(=B P ,A 与B 互斥,则=-)(A B P ( B ). (A )0.04; (B )0.2; (C )0.16; (D )0.4.设()f x ,()F x 分别为某连续型随机变量的概率密度函数和分布函数,则( B ). (A)()f x 连续; (B)()()F x f x '=; (C)()()f x F x '=; (D)lim ()1x f x →+∞=.5.设)4,2(~N X , 若Y =( A ), 则~(0,1)Y N .(A)22-X ; (B)24X -; (C)24X +; (D)42X +. 二、填空题(每小题2分,总计10分)1. 袋中有6个红球,2个白球.从中任取3个,则恰好取到2个红球的概率是___2815___. 2. 已知()0.4P A =,()0.5P B =,6.0)|(=A B P ,则()P A B = 0.66 . 3.每次试验中A 出现的概率为p ,在三次试验中A 出现至少一次的概率是6463,则p = 0.75 .4.设离散型随机变量X 的分布律为X 0 1 3 P 0.6 0.1 0.3其分布函数为()F x ,则(2)F = 0.7 .5.设321,...,),64,3(~x x N X 为X 的一个样本,则样本均值X 的方差为 2 . 三、(本题满分8分)袋中有红球7个, 白球3个, 从中抽3个, 求(1)抽到3个红球的概率()P A ;(2)抽到至多2个白球的概率()P B .解:(1) 247)(31037==C C A P ……(4分)(2) ()1()P B P B =-120119131033=-=CC = ……(8分) 四、(本题满分10分)设某批产品中, 甲, 乙, 丙三厂生产的产品分别占35%, 25%, 40%, 各厂的产品的次品率分别为4%, 2%, 5%, 现从中任取一件, 经检验发现取到的产品为次品, 求该产品是甲厂生产的概率.解:记事件0:“该产品是次品”, 事件2A :“该产品为乙厂生产的”, 事件3A :“该产品为丙厂生产的”,事件B :“该产品是次品”.------2分 由题设,知%,35)(1=A P %,25)(2=A P %,40)(3=A P1(|)4%P B A =,2(|)2%P B A =,3(|)5%P B A =,------5分 由全概率公式得31()()(|)i i i P B P A P B A ==∑%39=.------8分由贝叶斯公式(或条件概率定义), 得1(|)P A B 1()()P A B P B =11()(|)()P A P B A P B =3914=.------10分 五、(本题满分8分) 设随机变量X 的分布律为试求:(1)随机变量21Y X=+的分布律;(2)Y 的分布函数. 解:(1) 随机变量Y 的分布律为……(5分)(2) ⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=y y y y y F 51526.0211.010)( ……(8分)六、(本题满分14分)设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数;(3) P {0≤X <1,0≤Y <2}.解:(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有(,)(,)d dy xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰七、(本题满分为10分)袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?解:(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立八、(本题满分10分)某市保险公司开办一年人身保险业务, 被保险人每年需交付保险费200元, 若一年内发生重大人身事故, 其本人或家属可获2.5万元赔金. 已知该市人员一年内发生重大人身事故的概率为0.005,现有5000人参加此项保险, 问保险公司一年内从此项业务所得到的总收益在0到75万元之间的概率是多少?2t x -(,)n p ,其中5000n =,0.005p =.------2分 保险公司一年内从此项业务所得到的总收益为X 5.2500002.0-⨯万元.------5分 所求概率为)4010()755.2500002.00(≤≤=≤-⨯≤X P X P ------6分995.0252540)1(995.0252510⨯-≤--≤⎩⎨⎧⨯-=p np np X P ------7分 )3()3(-Φ-Φ≈------8分 1)3(2-Φ=------9分 =0.9974.-----10分十、(本题满分10分)设分别自总体21N(,)μσ和22N(,)μσ中抽取容量为n 1,n 2的两个独立样本,其样本方差分别为2212,S S . 试证:对于任意常数a ,b (a +b =1),Z =a 21s +b 22s 都是σ2的无偏估计,并确定常数a ,b ,使D(Z)达到最小.解 由题意,2212,S S 相互独立, ()()222212,E S E S σσ==则2222221212()()()()()E Z E aS bS aE S bE S a b σσ=+=+=+=所以,Z 是2σ的无偏估计. 又22211~(1)1S n n σχ-- ()211(1)2(1)D n n χ-=-,所以()2444222111111222211111122(1)1(1)(1)1n n D S D S D S n n n n n σσσσσσ⎛⎫--⎛⎫===-= ⎪ ⎪----⎝⎭⎝⎭ 同理 ()422221D S n σ=-因此有()24242222222241212121222()()21111a b a b D aS bS a D S b D S n n n n σσσ⎛⎫+=+=+=+ ⎪----⎝⎭由于a +b =1, 由10题的结果,可得当11212n a n n -=+-,21212n b n n -=+-,D(Z)有极小值,最小值为:224412122()2112a b D Z n n n n σσ⎛⎫=+=⎪--+-⎝⎭。

概率统计期中考答案版

概率统计期中考答案版

《_》 期中考试 (一、四)班级 ______ ___ 姓名 _______学号 _ ___一、选择题(共6题,每题3分,共计18分) 1. 事件C 发生导致事件A 发生, 则 B 。

A. A 是C 的子事件 B. C 是A 的子事件 C. A C = D .()()P C P A >2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = B 。

A .1115 B .415 C .56 D .16(逆事件概率,加法公式,()1()1[()()()]P A B P A B P A P B P AB =-=-+-U )3. 设X ~2(,)N μσ,那么当σ增大时,{2}P X μσ-< C 。

A .增大B .减少C .不变D .增减不定 (随机变量的标准正态化,2(2)1=Φ-)4. 已知B A ,是两个事件,X ,Y 是两个随机变量,下列选项正确的是(C )A . 如果B A ,互不相容,则A 与B 是对立事件B . 如果B A ,互不相容,且()()0,0>>B P A P ,则B A ,互相独立C . Y X 与互相独立,则Y X 与不相关D . Y X 与相关,则相关系数1ρ=5.已知2,1,(,)1,DX DY Cov X Y === 则(2)D X Y -= ( C ) (A) 3; (B) 11; (C) 5; (D) 7 (考查公式(2)4()()2cov(2,)D X Y D X D Y X Y -=+-)6.若X,Y 为两个随机变量,则下列等式中成立的是( A ) A.EY EX Y X E +=+)( B.DY DX Y X D +=+)( C.DXY DX DY =⋅ D.EXY EX EY =⋅二、填空题(共6题,每题3分,共计18分)1. 设三次独立试验中,事件A 出现的概率相等,如果已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为13. (考查贝努里概型)2.设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度 某顾客在窗口等待服务,若超过9分钟,他就离开. (1)该顾客未等到服务而离开窗口的概率P {X >9}= 3e -(2)若该顾客一个月内要去银行5次,以Y 表示他未等到服务而离开窗口的次数,即事件{X >9}在5次中发生的次数,P {Y =0}= 35(1)e -- 3.设随机变量X ~)2,1(2N ,(1){ 2.2}P X <= 0.7257 (2){ 1.6 5.8}P X -≤<= 0.895 (3){ 3.5}P X ≤= 0.8822((0.6)0.7257Φ=(2.4)0.9918,Φ=(1.3)0.9032Φ=(1.25)0.8944,Φ=(2.25)0.9878Φ=)4.,,,X Y Z W 是独立的随机变量,X 服从二项分布1(4,)2B ,Y 为参数为2的指数分布,Z 为参数为3的泊松分布,W 是服从[2,4]-上的均匀分布, ()D Y Z -= 13/4 ,(2)E Z W += 7 ,[(1)]E XY X Z +-= -2 。

概率统计期中测验带答案

概率统计期中测验带答案

2015-2016-1学期《概率统计B 》期中测验姓名: 班级: 成绩:一 单选题(每题5分,共 30分)1.对任意两事件A 和B ,则=-)(B A P ( )A.()()P A P B -;B.()-()()P A P B P AB +;C.()()P A P AB -;D. ()()()P A P B P AB +-.2. 某人向同一目标独立重复射击,每次射击命中目标的概率为p ,则此人第4次射击恰好第2次命中目标的概率为( )A . 22)1(3p p - ; B . 22)1(6p p - ; C . 2)1(3p p - ; D . 2)1(6p p -. 3. 设二维随机向量),(Y X 的联合分布律为则}0{=X P =( ) A. 12; B. 12; C. 12; D. 512.4. 设事件A ,B 相互独立,且36.0)(,16.0)(==B A P B A P ,则)(),(B P A P 分别为 ( ) .A .0.2, 0.8 B .0.4, 0.6 C .0.6, 0.4 D .0.8, 0.2 5. ~(0,1),()X N x Φ是X 的分布函数,则( ) A. ()()x x Φ-=Φ ; B. ()()x x Φ-=-Φ; C. ()1()x x Φ-=-Φ; D. ()()1x x Φ-=Φ-.6. 设随机变量X 与Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=其它,020,83)(2x x x f ,设两个事件}{a X A >=与}{a Y B >=相互独立,43)(=B A P 。

则a =( )(A) 4 ; (B) 34; (C) 4; (D) 2二 填空题(每题5分,共 30分)1.设A 、B 为相互独立的随机事件,7.0)(=A P ,3.0)(=B P ,则(P A B =2.某零件需经过3道工序才能加工成形,3道工序出废品与否是相互独立的,且出废品的概率依次是0.1,0.2,0.3,试求成形零件为废品的概率 .3.设离散型随机变量X 的概率分布为,3.0}1{,2.0}0{====X P X P ,5.0}2{==X P 则=≤}5.1{X P .4.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,则=-)(A B P 。

2015-2016学年第一学期概率论与数理统计阶段测验(二)试卷答案

2015-2016学年第一学期概率论与数理统计阶段测验(二)试卷答案

北 京 交 通 大 学2015~2016学年第一学期概率论与数理统计阶段测验(二)试卷参 考 答 案一.(本题满分10分)设二维随机变量()Y X ,的联合密度函数为()()⎩⎨⎧<<<-=其它0101,y x y c y x f ⑴ 求常数c (5分);⑵ 求概率{}1<+Y X P (5分). 解:⑴ 由密度函数的性质:()1,=⎰⎰+∞∞-+∞∞-dxdy y x f ,得()()⎰⎰⎰⎰-==+∞∞-+∞∞-y dx y c dy dxdy y x f 011,1()()6312111210cc dy y y c ydy y c =⎪⎭⎫ ⎝⎛-=-=-=⎰⎰,由此得6=c . ⑵ {}()⎰⎰<+=<+1,1y x dxdy y x f Y X P()⎰⎰⎰-=-⎪⎪⎭⎫⎝⎛-=-=2101212102616dx y y dy y dx xx y x x ()434121321321=⎪⎭⎫ ⎝⎛-=-=⎰dx x .二.(本题满分10分)设随机变量Y 服从参数为1=λ的指数分布,定义随机变量k X ,()2,1=k 如下:⎩⎨⎧>≤=k Y kY X k 10 求二维随机变量()21,X X 的联合分布列.解:由题设,得随机变量Y 的密度函数为()⎩⎨⎧≤>=-0x x e y f y. ()()()()111121112,100---∞--=-===≤=≤≤===⎰⎰e e dy e dy yf Y P Y Y P X X P y y ,()()()02,11021=∅=>≤===P Y Y P X X P ,()()()()2121212121112,101-----=-===≤<=≤>===⎰⎰e e edy e dy y f Y P Y Y P X X P y y,()()()()22222122,111-∞+-+∞-+∞=-===>=>>===⎰⎰e e dy e dy yf Y P Y Y P X X P yy .因此,()21,X X 的联合分布列为三.(本题满分12分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧<<=其它01421,22y x y x y x f .⑴ 求随机变量X 及Y 各自的边缘密度函数()x f X 与()y f Y (8分);⑵ 判断随机变量X 与Y 是否相互独立(4分)? 解:⑴ 当11<<-x 时, ()()()4212212182121421421,22x x y x ydy x dyy x f x f x x X -=⋅===⎰⎰+∞∞-, 所以,随机变量X 的边缘密度函数为()()⎪⎩⎪⎨⎧<<--=其它11182142x x x x f X .当10<<y 时, ()()2523322724731421421,y y y y y ydy x dx y x f y f yyyyY =⋅=⋅===--+∞∞-⎰⎰, 所以,随机变量Y 的边缘密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yx f X . ⑵ 因为()()()y f x f y x f Y X ≠,,所以随机变量X 与Y 不独立.四.(本题满分12分)设随机变量X 与Y 相互独立,下表给出()Y X ,的联合分布列及X 与Y 各自的边际分布的某些取值:试计算该表的其它数值. 解:()()()2418161,,12111=-===-====y Y x X P y Y P y Y x X P , ()()()4161241,1111=======y Y P y Y x X P x X P ,()()()()1218124141,,,2111131=--===-==-====y Y x X P y Y x X P x X P y Y x X P , ()()()214181,1212=======x X P y Y x X P y Y P ,()()()3141121,1313=======x X P y Y x X P y Y P ,()()43411112=-==-==x X P x X P ,()()()838121,,21222=-===-====y Y x X P y Y P y Y x X P , ()()()4112131,,31332=-===-====y Y x X P y Y P y Y x X P .表中其余各值如下表所示:可以验证,对于上述表中各值,X 与Y 相互独立.五.(本题满分12分)将3个球随机地放入4个杯子中.令X 表示杯子中球的最大个数.求:⑴ X 的分布列(6分);⑵ X 的数学期望()X E 与方差()X D (6分). 解:⑴ X 的可能取值为3,2,1.且{}8341334===P X P .{}1614433===X P .{}{}{}1691618313112=--==-=-==X P X P X P .所以,随机变量X 的分布列为⑵ ()1616316281=⨯+⨯+⨯=X E .()1651161316928312222=⨯+⨯+⨯=X E .因此,()()()()2568716271651222=⎪⎭⎫ ⎝⎛-=-=X E X E X D . 六.(本题满分10分)记掷n 颗均匀的骰子点数之和为X ,求()X E (5分)与()X var (5分). 解:以k X 表示掷第k 颗均匀的骰子出现的点数,()n k ,,2,1 =,则随机变量n X X X ,,,21相互独立,而且同分布,∑==nk k X X 1.k X 的分布列为所以,(){}27621616161====⋅=∑∑==k k k k k X P k X E . (){}691616126122===⋅=∑∑==k k kk k X P k XE所以,()()()()1235273691var 222=⎪⎭⎫ ⎝⎛-=-=k k k X E X E X .因此,()()n X E X E X E nk nk k n k k 2727111===⎪⎭⎫ ⎝⎛=∑∑∑===.再由n X X X ,,,21 的相互独立性,得()()n X X X nk nk k n k k 12351235var var var 111===⎪⎭⎫ ⎝⎛=∑∑∑===.七.(本题满分14分)一射手进行射击,击中目标的概率为p ()10<<p ,射击直至击中2次目标时为止.令X 表示首次击中目标所需要的射击次数,Y 表示总共所需要的射击次数. ⑴ 求二维随机变量()Y X ,的联合分布律(6分). ⑵ 求随机变量Y 的边缘分布律(4分).⑶ 求在n Y =时,X 的条件分布律.并解释此分布律的意义(4分). 解:⑴ 随机变量Y 的取值为 ,4,3,2;而随机变量X 的取值为1,,2,1-n ,并且 (){}次第次,第二次命中目标在第一次命中目标在第n m P n Y m X P ===, 2211p q p q p q n m n m ----=⋅=, (其中p q -=1) ()1,,2,1;,4,3,2-==n m n .⑵ ()()()221122111,p q n p q n Y m X P n Y P n n m n n m --=--=-======∑∑,() ,4,3,2=n . 即随机变量Y 的边缘分布律为()()221p q n n Y P n --== () ,4,3,2=n .⑶ 由于()()()()111,2222-=-=======--n p q n p q n Y P n Y m X P n Y m X P n n 因此在n Y =时,X 的条件分布律为 ()11-===n n Y m X P ()1,,2,1-=n m 这表明,在n Y =的条件下,X 的条件分布是一个“均匀”分布.它等可能地取值1,,2,1-n .八.(本题满分10分)设随机变量X 与Y 相互独立,且都服从标准正态分布()1,0N .令随机变量22Y X Z +=.⑴ 试求随机变量Z 的密度函数()z f Z (6分).⑵ 试求()Z E (4分).⑴ 由题意,得()2221x X ex f -=π ()∞<<∞-x , ()2221y y ey f -=π()∞<<∞-y .设随机变量22Y X Z +=的分布函数为()z F Z ,则(){}{}z Y X P z Z P z F Z ≤+=≤=22当0≤z 时,(){}()022=∅=≤+=P z Y X P z F Z ;当0>z 时,(){}()()⎰⎰≤+=≤+=zy x YXZdxdy y f x f z Y XP z F 2222⎰⎰≤++-=zy x y x dxdy e 2222221π作极坐标变换θθsin ,cos r y r x ==,则有()⎰⎰⎰--==zr zr Z rdr erdr ed z F 022202221πθπ所以,随机变量22Y X Z +=的分布函数为()⎪⎩⎪⎨⎧≤>=⎰-000022z z rdre z F z rZ所以,随机变量22Y X Z +=的密度函数为()()⎪⎩⎪⎨⎧≤>='=-0022z z zez F z f z Z Z ⑵ ()()⎰⎰⎰∞+-+∞-∞+-∞+∞-+-===2222222dz ezedz e zdz z f z Z E z z z z222212222ππ====⎰⎰+∞∞--+∞-dz e dz ez z . 九.(本题满分10分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.① 求X 与Y 的相关系数(6分);② 计算概率{}X Y P ≥(4分).(1) 由于区域G 的面积为1,因此()Y X ,的联合密度函数为()()()⎩⎨⎧∉∈=Gy x G y x y x f ,,1,.当10<<x 时,()()()x dy dy y x f x f xX -===⎰⎰-+∞∞-12,220,所以,()()⎩⎨⎧<<-=其它01012x x x f X .当20<<y 时,()()21,210ydy dx y x f y f yY -===⎰⎰-∞+∞-, 所以,()⎪⎩⎪⎨⎧<<-=其它2021y y y f Y .()()()3131212121=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x xf X E X , ()()32212=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y y dy y yf Y E Y , ()()()6141312121222=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x f x XE X,()()32212222=⎪⎭⎫⎝⎛-⋅==⎰⎰+∞∞-dy y ydy y f y Y E Y,所以,()()()()1813161var 222=⎪⎭⎫ ⎝⎛-=-=X E X E X ,()()()()923232var 222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y , ()()⎰⎰⎰⎰⎰--+∞∞-+∞∞-⋅===1220222012,dx y x xydy dxdxdy y x xyf XY E xx,()()6121324122212123102=⎪⎭⎫ ⎝⎛+-=+-=-=⎰⎰dx x x x dx x x ,所以,()()()()181323161,cov -=⨯-=-=Y E X E XY E Y X .()()()2192181181var var ,cov ,-=-==Y X Y X YX ρ.(2) {}()()()2123232,1121=-=-===≥⎰⎰⎰⎰⎰-≥dx x dy dxdxdy y x f X Y P x xxy .。

2015-2016学年第一学期概率论与数理统计阶段测验(一)试卷及答案

2015-2016学年第一学期概率论与数理统计阶段测验(一)试卷及答案

因此,有
P(C ) = P(A1 ∪ A1B2 A3 ∪ A1B2 A3 B4 A5 ∪ A1B2 A3 B4 A5 B6 A7 ) = P( A1 ) + P (A1B2 A3 ) + P(A1B2 A3 B4 A5 ) + P(A1B2 A3 B4 A5 B6 A7 ) 3 7 6 3 7 6 5 4 3 7 6 5 4 3 2 3 + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 10 10 9 8 10 9 8 7 6 10 9 8 7 6 5 4 7 = = 0.58333333 . 12 =
1 1 + +0−0−0−0+0 12 16 7 = = 0.145833333333 . 48 =
⑵ 由于 {随机事件 A,B,C 都不发生 } = A B C = A ∪ B ∪ C ,
所以,
P{随机事件 A,B,C 都不发生 } = P A ∪ B ∪ C
= 1 − P( A ∪ B ∪ C ) = 1 − P( A) − P(B ) − P (C ) + P ( AB ) + P (BC ) + P( AC ) − P( ABC )
⑵ 将 5 颗骰子分成两组,一组 2 颗,一组 3 颗,有分法 C52 种.再将 6 个点数取 2 个, 分别分给两个组,有 P62 不同的分法.因此随机事件 B 含有 C52 ⋅ P62 个样本点.故
P (B ) =
C52 ⋅ P62 25 = = 0.03858024691 . 65 648
二. (本题满分 8 分) 设随机事件 A 、 B 、 C 满足: P ( A) = P (B ) = P (C ) =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号:
则α =
0.6
.
5. 设随机变量 X 服从参数为 λ 的泊松 (Poisson) 分布,且已知 E[( X 则λ =
− 1)( X − 2)] = 1 ,
1
.
6. 设随机变量 X 服从[ 0, 2 ]上的均匀分布,则 P { X > 7. 设随机变量 X 服从参数 λ =
DX } =
5 6
.
班级:
第 5 页(共 5 页)
P
(3)
x < −2 − 2 ≤ x < −1 −1≤ x < 0 , 0≤ x<2 x≥2
3 6
0.1 0.4 0.5
第 2 页(共 5 页)
浙江财经大学课程期中考试试卷
P { X < 0 | X ≠ −1 } =
P { X < 0, X ≠ −1 } P { X = −2 } 0.2 1 = = = . P { X ≠ −1 } P { X ≠ −1 } 0.6 3
x > 0, 得 P{ X < 2} = F ( 2) = 1 − e −1 . x≤0
k ∴ Y ~ B (5, 1 − e −1 ), 即有 P {Y = k } = C5 (1 − e −1 )k (e −1 )5 − k , (k = 0,1,2,3,4,5)
(1) EY = np = 5 (1 − e −1 ) ,
x − t2 2
x
x
当 x > 0 时, F ( x ) =
∫− ∞ f ( t ) dt = ∫0 te
, x>0 x≤0
− 1 2
x
dt = − e

t2 2
x
= 1− e
0

x2 2
,
⎧ − ⎪ ∴ F ( x ) = ⎨1 − e ⎪ ⎩ 0,
(3) (4)
x2 2

P { 1 < X < 2 } = F ( 2) − F (1) = e
P ( A − B ) = 0.3 ,则 P ( AB ) =
0.6
.
2.某校学生四级英语考试的通过率为 90%,其中 60%学生还通过六级考试,则随意选出一名学 生,该生通过六级的概率为 姓名
0.54
.
⎧ ⎪ ⎪ 3. 设离散型随机变量 X 的分布函数 F ( x ) = ⎨ ⎪ ⎪ ⎩
浙江财经大学课程期中考试试卷
浙江财经大学 2014~ 2015 学年第二学期
《 概率论与数理统计 》课程期中考试试卷(答案) 考核方式: 闭卷 考试日期: 2015 年 月 日 适用专业、班级: 13 级各专业
题 得 号 分 一 二 三 四 五 六 七 八 九 总分 线 评卷人 (共 九 大 题 ) 一 、 填 空 题 ( 每 小 题 2 分 , 共 20 分 ) 1. 设 A, B 为随机事件,且 P ( A) = 0.7,
⎧ − ⎪ 五 . (10分) 已知连续型随机变量X 的密度函数为 f ( x ) = ⎨ Axe ⎪ ⎩ 0,
求:(1) 常数 A; (2) X 的分布函数 F(x);
x2 2 dx
x2 2
,
x>0 x≤0
(4) EX .
x2 2 +∞
(3)
P { 1 < X < 2 };
− x2 2 d (−
100 − 100 ) = Φ (0) = 0.5 , 5 115 − 100 100 − 100 P{ Y = 3 } = P{ 100 < X ≤ 115 } = F (115 ) − F (100) = Φ ( ) −Φ( ) 5 5 = Φ ( 3) − Φ (0) = 0.99865 − 0.5 = 0.49865 , = 10 } = P{ X ≤ 100 } = F (100 ) = Φ (
DY = npq = 5 (1 − e −1 ) e −1 ,
第 4 页(共 5 页)
浙江财经大学课程期中考试试卷
(2) P{ Y ≤ 4 } = 1 − P { Y > 4 } = 1 − P{Y = 5} = 1 − (1 − e −1 )5 . 八 . (10 分) 某工程队完成某项目所需要时间 X (天)服从 N (100 , 5 2 ) ,工程队上级规定: 若工程在 100 天内完成,可以得到奖金 10 万元;在 100~115 天内完成,可以得到奖金 3 万元, 若超过 115 天完成,罚款 5 万元.求该工程队在完成该项工程时,获取金额的期望. (附标准正态分布函数值: Φ (1) = 0.8413 , Φ ( 2) = 0.97725 , Φ ( 3) = 0.99865 ) 解 : X ~ N (100 , 5 2 ) , 则 P{ Y 设获取金额为 Y ,
0.62469
.
X | < 2} =
10. 利用正态分布的结论,有
+∞ − 1 ( x 2 − 4 x + 4) e 2π ( x − 2) 2 2 dx
∫− ∞
=
1
.
第 1 页(共 5 页)
浙江财经大学课程期中考试试卷
二 . (10 分) 甲、乙、丙三位同学同时独立参加《概率论与数理统计》考试,及格的概率分别为
解 : (1)
∫− ∞ f ( x )dx = ∫0
+∞
+∞
Axe

= − A∫0 e
+∞
− x2 ) = − Ae 2
= A = 1,
0
∴ A = 1,
⎧ − ⎪ 此时 f ( x ) = ⎨ xe ⎪ ⎩ 0,
x2 2
,
x>0 x≤0

(2) 当 x ≤ 0 时, F ( x ) =
∫− ∞ f ( t )dt = ∫− ∞ 0 dt = 0,
4. 设随机变量 X 的概率密度 f ( x ) = ⎨
0, x < −1 0.2, − 1 ≤ x < 1 ,则 X 的分布律为 0.7, 1 ≤ x < 2 1, x≥2
X P
-1 0.2
1 0.5
2 0.3

⎧ 3 x 2 , 0 < x < 1 ,且 P{ X ≥ α } = 0.784 , 其他 ⎩ 0,
九.(10 分) 设随机变量 X 的概率密度为 f ( x ) =
1 , ( −∞ < x < +∞ ) , π (1 + x 2 )
求:(1) Y = X 2 的概率密度 fY ( y ) ;
解 : (1) 当 当
(2) E (arctan X ) .
FY ( y) = P{Y ≤ y} = P{ X 2 ≤ y},
y>0 y≤0
+∞
1 ⎧ , ⎪ ∴ fY ( y ) = ⎨ π (1 + y ) y ⎪ 0, ⎩
(2) E (arctan X ) = ∫
+∞

arctan x ⋅ f ( x )dx = ∫− ∞ arctan x −∞
1 dx = 0 π (1 + x 2 )
(对称区间上奇函数的积分)
P( A1 + A2 + A3 ) = 1 − P( A1 ) P( A2 ) P( A3 ) = 1 − 0.1 × 0.3 × 0.5 = 0.985 .
三 . (10 分) 有三个箱子,第一个箱子中有 4 个黑球、1 个白球,第二个箱子中有 3 个黑球、3 个白球,第三个箱子中有 3 个黑球、5 个白球.现随机地取一个箱子,再从这个箱子中取出 1 个 球, (1) 求这个球为白球的概率; (2) 已知取出的球是白球,求此球属于第二个箱子的概率. 解 : 设 Ai =“取第 i 个箱子” , (i =1, 2, 3),则 A1 , A2 , A3 是一完备事件组, 设 B=“取出的球为白球” , 则 (1) P ( B ) =
X -2 -1 0 2
四 . (10 分) 设随机变量 X 的概率分布为: 求 : (1) X 的 分 布 函 数 F(x) ; 分布; (3) P { X < 0 | X ≠ −1 } . (2)
P 0.2 0.4 0.1 0.3
Y = X2 + 2 的 概 率
⎧ 0, ⎪ 0.2, ⎪ ⎪ 解 : (1) F ( x ) = ⎨ 0.6, ⎪ 0.7, ⎪ ⎪ ⎩ 1, 2 (2) X +2 2
3 1 1 π . dt = 2Γ ( ) = 2 ⋅ Γ ( ) = 2 2 2 2
六 . (10 分)设一城市某公交线路终点站的载客人数服从泊松分布,且每辆进站车车中无人的概 率为 e −10 ,现任意观察一辆到达终点站的汽车, 求:(1) 车中有 5 人的概率; (2) 车中至少有 3 人的概率.
解 : 设 X 表示进站车中的人数,则 P{ X = k } = 由 P { X = 0} = e − λ = e −10 , 得 λ (1) P{ X = 5} =
λ k e −λ
k!
( k = 0,1,2 !) ,
= 10,
10 5 ⋅ e −10 2500 − 10 = e ; 5! 3
(2) P{ X ≥ 3} = 1 − P{ X < 3} = 1 − P{ X = 0} − P{ X = 1} − P{ X = 2} = 1 − 61 e −10 .
七. (10 分) 设 X 服从参数 λ =
1 Y 表示对 X 的 5 次独立重复观察中事件“ X < 2 ” 的指数分布, 2
(2)
出现的次数,求: (1) EY 和 DY ;
P { Y ≤ 4} .
⎧ 1 − 1 x ⎪ e 2 , 解 : 由 X ~ f ( x ) = ⎨ 2 ⎪ 0, ⎩
相关文档
最新文档