2007年中国西部数学奥林匹克试题及答案

合集下载

全国初中数学竞赛试题及答案(2007年)

全国初中数学竞赛试题及答案(2007年)

2007年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1. 已知z y x ,,满足x z z y x +=-=532,则z y y x 25+-的值为 ( )(A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ).注:本题也可用特殊值法来判断.2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211x x +-的值,将所得的结果相加,其和等于 ( )(A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ). 3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( )(A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ). 4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C.解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=.易证△DEF ∽△M N P ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___.解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____.AB CD E F G M N解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n+≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥. 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC ,∴△PNE ∽△PBC ,∴PC PE PB PN =, ∴PC PN PE PB ⋅=⋅.又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.∴PF PM PC PN ⋅=⋅,故PFPC PN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC ∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 A B D E F M N P⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-. 第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)题目和解答与(A )卷第二题相同. 三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. 解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点. 因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x(2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根. 而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点.解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++=113a x-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x(2)必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数, 而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a . 显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 ⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。

2007-2011年小学数学奥林匹克决赛试卷及答案解析

2007-2011年小学数学奥林匹克决赛试卷及答案解析

2009年小学数学奥林匹克决赛试卷及解答(2)7、一项工程,交甲工程队做需30天完成,每天工程费用万元;交乙工程队做需40天完成,每天工程费用万元,为了在20天内完成,安排甲、乙两队共同参与这项工程,如果两队工作的天数可以不一样,那么,两队共同完成这项工程的总费用至少需要15万元。

解答:设甲工作了x天,乙工作了y天。

1/30x+1/40y=1,4x+3y=120,Y=40-4/3 x,这里x、y均小于20。

只有当x=15时,y=20; 当x=18时,y=16;15×2/3+20×1/4=15;18×2/3+16×1/4=16。

15小于16答:两队共同完成这项工程的总费用至少需要15万元。

8、如图,半径分别是8和28的两个圆盘。

大圆是固定的。

小圆在大圆的外面,沿大圆圆周按逆时针方向滚动。

开始时小圆圆周上的A点与大圆圆周上的B点重合。

当A、B两点再次重合时,A至少绕小圆圆心转动了9圈。

解答:A至少绕小圆圆心转动了 9 圈。

9、右下图中有12个点,A、B、…X、Y、Z,和若干个三角形。

如果从中选出4个三角形,使得它们的顶点正好是图中的12个点,就称这样的选法是合格的选法。

例如,图中用粗线标出的4个三角形(ABM,CLF,DZY,EKX)就是一个合格的选法。

那么,不同的合格选法共有10种。

解答:不同的合格选法共有 10种。

(1)ABM、CLF、DZY、EKX;(2)ABM、CFK、DYL、EXZ;(3)BCK、ADL、EMZ、XFY;(4)BCK、AMD、YFL、ZEX;(5)ACL、BEM、DZY、KXF;(6)ACL、BKE、XFY、DMZ;(7)ABC、DMZ、YFL、XEK;(8)ABC、DYL、XKF、MEZ;(9)XYZ、AMD、CFL、BKE;(10)XYZ、ADL、CKF、BEM。

10、字母A 、B 、C 、D 、E 、F 、G 代表不同的数字。

这些数字满足算式:那么,七位数 = 2178409。

2007年中国西部数学奥林匹克试题及答案(广西南宁,11月10日、11日)

2007年中国西部数学奥林匹克试题及答案(广西南宁,11月10日、11日)

2007年中国西部数学奥林匹克(广西南宁,11月10日)第一天 11月10日 上午8:00-12:00每题15分一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ⊆≠∅,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数?二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN⊥的充要条件为P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证:22211115411541154114a ab bc c ++≤-+-+-+.四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<.广西 南宁第二天 11月11日 上午8:00-12:00每题15分五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,,满足⎩⎨⎧=++=++.,022211ny x x x x n n七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心.八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,2,,n .再从某个黑子起,按逆时针方向依次将黑子标以1,2,,n . 证明:存在连续n 个棋子(不计黑白), 它们的标号所成的集合为{}1,2,,n .解 答一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ⊆≠∅,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数?解 对于空集∅,定义()0S ∅=.令012{3,6},{1,4,7},{2,5,8}T T T ===.对于A T ⊆,令001122,,A A T A A T A A T === ,则01212()()()()(mod 3)S A S A S A S A A A =++≡-,因此,3()S A 当且仅当12(mod 3)A A ≡.有以下几种情况:1111112222220,0,3,3,1,2,0,3,0,3,1,2,A A A A A A A A A A A A ⎧=⎧=⎧=⎧=⎧=⎧=⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎨⎨======⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩⎩⎩ 从而满足3()S A 的非空子集A 的个数为20003303311223333333333332()1C C C C C C C C C C C C +++++-=87.若3()S A ,5()S A ,则15()S A .由于()36S T =,故满足3()S A ,5()S A 的()S A 的可能值为15,30.而 15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1=7+6+2=7+5+3=7+5+2+1=7+4+3+1=6+5+4=6+5+3+1=6+4+3+2 =5+4+3+2+1,36-30=6=5+1=4+2=3+2+1.故满足3()S A ,5()S A ,A ≠∅的A 的个数为17. 所以,所求的A 的个数为87-17=70. 二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN ⊥的充要条件为P ,Q ,M ,N 四点共圆.证 设三角形ABC 的外接圆O 的半径为R ,从N 到圆O 的切线为NX ,则2222R NB NC R NX NO +⋅=+=, ①同理 22R MA MC MO +⋅=. ② 因为A ,C ,D ,P 四点共圆,所以MP MD MA MC ⋅=⋅, ③因为Q ,D ,C ,B 四点共圆,所以NQ ND NB NC ⋅=⋅, ④由①,②,③,④得MP MD NQ ND MO NO ⋅-⋅=-22)()(DP MD MD DQ ND ND +-+= )(22DP MD DQ ND MD ND ⋅-⋅+-=, 所以, O D M N ⊥⇔2222MD ND MO NO -=-DP MD DQ ND ⋅=⋅⇔⇔P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证:22211115411541154114a ab bc c ++≤-+-+-+. 证 若a ,b ,c 都小于95,则可以证明211(3)541124a a a ≤--+. (*) 事实上, (*)⇔ 2(3)(5411)24a a a --+≥ ⇔ 325192390a a a -+-≤ ⇔ 2(1)(59)0a a --≤95a ⇐<同理,对b ,c 也有类似的不等式,相加便得222111541154115411a ab bc c ++-+-+-+1111(3)(3)(3)2424244a b c ≤-+-+-=. 若a ,b ,c 中有一个不小于95,不妨设95a ≥,则2454115()115a a a a -+=-+9945()1120555≥⋅⋅-+=,故 211541120a a ≤-+. 由于 2222454115()4()111110555b b -+≥-⋅+=->,所以211541110b b <-+,同理,211541110c c <-+,所以 222111541154115411a a b b c c ++-+-+-+11112010104<++=.因此,总有 22211115411541154114a ab bc c ++≤-+-+-+,当且仅当1a b c ===时等号成立.四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<. 证法一 先证一个引理:设α,β都是正实数,N 是任意一个大于max{βα1,1}的整数,则存在正整数12,p p 和q ,使得21q N ≤≤,且1211,q p q p N Nαβ-<-< 同时成立.引理的证明:考虑平面21N +个点组成的集合T ={({i α},{i β})|i =0,1,…,2N },这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].现在将正方形点集{(x ,y )|0≤x ,y <1}沿平行于坐标轴的直线分割为2N 个小正方形(这里的每个正方形都不含右边和上边的两条边),则T 中必有两点落在同一个小正方形内,即存在0≤j <i ≤N 2,使得|{i α}-{j α}|<N1,|{i β}-{j β}|<N1.令q =i -j ,p 1=[i α]-[j α],p 2=[i β]-[j β],则1211,q p q p N Nαβ-<-<. 如果p 1≤0,那么N1>|q α|≥α,与N 的选择矛盾,故p 1为正整数.同理p 2也是正整数.引理获证.回到原题,由条件知存在正实数α,β使得0=++OC OB OA βα,利用引理的结论知对任意大于max{βα1,1}的正整数N ,存在正整数p 1,p 2和q ,使得1211,q p q p N Nαβ-<-< 同时成立,于是,由=++q q q βα可得|)()(|||2121q p q p q p p βα-+-=++≤|)(||)(|21q p q p βα-+- <N1(||||OB OA +). 取N 充分大即可知命题成立.证法二 由条件可知存在正实数β,γ使得=++γβ,于是对任意正整数k ,都有0=++OC k OB k OA k γβ,记m (k )=[k β],n (k )=[k γ],这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].利用β,γ都是正实数可知m (kT )与n (kT )都是关于正整数k 的严格递增数列,这里T 是某个大于max{γβ1,1}的正整数.因此,|}{}{||)()(|kT kT kT n kT m kT γβ--=++≤||}{||}{OC kT OB kT γβ+≤||||OC OB +.这表明有无穷多个向量OC kT n OB kT m OA kT )()(++的终点落在一个以O 为圆心,||||+为半径的圆内,因此,其中必有两个向量的终点之间的距离小于20071,也就是说,这两个向量的差的模长小于20071.即存在正整数k 1<k 2,使得 |(OC T k n OB T k m OA T k )()(222++)-(OC T k n OB T k m OA T k )()(111++)|<20071.于是,令p =(k 2-k 1)T ,q =m (k 2T )-m (k 1T ),r = n (k 2T )-n (k 1T ),结合T 与m (kT ),n (kT )的单调性可知p ,q ,r 都是正整数. 命题获证.五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?解 不存在这样的三角形,证明如下:不妨设∠A ≤∠B ≤∠C ,则∠C =2∠A ,且a =2007.过C 作∠ACB 的内角平分线CD ,则∠BCD =∠A , 结合∠B =∠B .可知△CDB ∽△ACB 。

2007年第六届中国女子数学奥林匹克试题及解答

2007年第六届中国女子数学奥林匹克试题及解答

综上 ,最少取出 11 枚棋子 ,才可能满足要求 . 三、 定义集合 A = { m
k + 1| m ∈N+ , k ∈P} . k +1
.
i +1 数 ,则对任意的 k1 、 k2 ∈P 和正整数 m 1 、 m2 , m1 k1 + 1 = m2
由于对任意的 k 、 i ∈P ,且 k ≠i ,
是无理
由 m1 是正整数知 , 对 i = 1 ,2 ,3 ,4 ,5 , 满足这个 条件的 m1 的个数为 m
5
k +1 i +1 k +1 i +1
.
k 2 + 1 Ζ m 1 = m 2 , k1 = k 2 .
从而 , n =
注意到 A 是一个无穷集 . 现将 A 中的元素按从 小到大的顺序排成一个无穷数列 . 对于任意的正整 数 n ,设此数列中第 n 项为 m k + 1 . 接下来确定 n 与 m 、 k 间的关系 .
yx
2
当 x = 0 时 ,上式也成立 .
a1 a2 a2 a3 a n a1 故 2 + 2 + …+ 2 a2 + 1 a3 + 1 a1 + 1
2 2 2
4 . (1) 记 S 中的 n 个点为 A 1 , A 2 , …, A n .
建立直角坐标系 ,设 A i ( x i , y i ) ( i = 1 ,2 , …, n) . 易证
32
中 等 数 学
2007 女子数学奥林匹克
第一天
1. 设 m 为正整数 ,如果存在某个正整数
n ,使得 m 可以表示为 n 和 n 的正约数个数 (包括 1 和自身 ) 的商 , 则称 m 是 “好数” .求

历届西部数学奥林匹克试题

历届西部数学奥林匹克试题

目录2001年西部数学奥林匹克 (2)2002年西部数学奥林匹克 (4)2003年西部数学奥林匹克 (6)2004年西部数学奥林匹克 (7)2005年西部数学奥林匹克 (8)2006年西部数学奥林匹克 (10)2007年西部数学奥林匹克 (12)2008年西部数学奥林匹克 (14)2009年西部数学奥林匹克 (16)2010年西部数学奥林匹克 (18)2011年西部数学奥林匹克 (21)2012年西部数学奥林匹克 (23)2001年西部数学奥林匹克1.设数列{x n}满足x1=12,x n+1=x n+x n2n2.证明:x2001<1001.(李伟固供题)2.设ABCD是面积为2的长方形,P为边CD上的一点,Q为△P AB的内切圆与边AB的切点.乘积PP⋅PP的值随着长方形ABCD及点P 的变化而变化,当PP⋅PP取最小值时,(1)证明:PP≥2PB;(2)求PQ⋅PQ的值.(罗增儒供题)3.设n、m是具有不同奇偶性的正整数,且n>m.求所有的整数x,使得x2n−1x m−1是一个完全平方数.(潘曾彪供题)4.设x、y、z为正实数,且x+y+z≥xyz.求x2+y2+z2xyz的最小值.(冯志刚供题)5.求所有的实数x,使得[x3]=4x+3.这里[y]表示不超过实数y的最大整数.(杨文鹏供题)6.P为⊙O外一点,过P作⊙O的两条切线,切点分别为A、B.设Q为PO与AB的交点,过Q作⊙O的任意一条弦CD.证明:△PAB与△PCD有相同的内心. (刘康宁供题)7.求所有的实数x∈�0,π2�,使得(2−sss2x)sss�x+π4�=1,并证明你的结论.(李胜宏供题)8.我们称P1,P2,⋯,P n为集合A的一个n分划,如果(1)P1∪P2∪⋯∪P n=P;(2)P i∩P j≠Φ,1≤s<j≤s.求最小正整数m,使得对P={1,2,⋯,m}的任意一个14分划P1,P2,⋯,P14,一定存在某个集合P i(1≤s≤14),在P i中有两个元素a、b满足b<a≤43b. (冷岗松供题)2002年西部数学奥林匹克1.求所有的正整数n,使得s4−4s3+22s2−36s+18是一个完全平方数.2.设O为锐角△ABC的外心,P为△AOB内部一点,P在△ABC的三边BC、CA、AB上的射影分别为D、E、F.求证:以FE、FD为邻边的平行四边形位于△ABC内.3.考虑复平面上的正方形,它的4个顶点所对应的复数恰好是某个整系数一元四次方程x4+px3+qx2+rx+s=0的4个根.求这种正方形面积的最小值.4.设n为正整数,集合P1,P2,⋯,P n+1是集合{1,2,⋯,s}的n+1个非空子集.证明:存在{1,2,⋯,s+1}的两个不交的非空子集{s1,s2,⋯,s k}和{j1,j2,⋯,j m},使得P i1∪P i2∪⋯∪P i k=P j1∪P j2∪⋯∪P j m.5.在给定的梯形ABCD中,AD∥BC,E是边AB上的动点,O1、O2分别是△AED、△BEC的外心.求证:O1O2的长为一定值.6.设s(s≥2)是给定的正整数,求所有整数组(a1,a2,⋯,a n)满足条件:(1)a1+a2+⋯+a n≥s2;(2)a12+a22++a n2≤s3+1.7.设α、β为方程x2−x−1=0的两个根,令a n=αn−βnα−β,s=1,2,⋯.(1)证明:对任意正整数n,有a n+2=a n+1+a n;(2)求所有正整数a、b,a<b,满足对任意正整数n,有b整除a n−2sa n.8.设S=(a1,a2,⋯,a n)是一个由0,1组成的满足下述条件的最长的数列:数列S中任意两个连续5项不同,即对任意1≤s<j≤s−4,a i,a i+1,a i+2,a i+3,a i+4与a j,a j+1,a j+2,a j+3,a j+4不相同.证明:数列S 最前面的4项与最后面的4项相同.1. 将1,2,3,4,5,6,7,8分别放在正方体的八个顶点上,使得每一个面上的任意三个数之和均不小于10.求每一个面上四个数之和的最小值.2. 设2n 个实数a 1,a 2,⋯,a 2n 满足条件∑(a i+1−a i )2=12n−1i=1.求(a n+1+a n+2+⋯+a 2n )−(a 1+a 2+⋯+a n )的最大值.3. 设n 为给定的正整数.求最小的正整数u n ,满足:对每一个正整数d ,任意u n 个连续的正奇数中能被d 整除的数的个数不少于奇数1,3,5,⋯,2s −1中能被d 整除的数的个数.4. 证明:若凸四边形ABCD 内任意一点P 到边AB 、BC 、CD 、DA 的距离之和为定值,则ABCD 是平行四边形.5. 已知数列{a n }满足:a 0=0,a n+1=ka n +�(k 2−1)a n 2+1,s =0,1,2,⋯,其中k 为给定的正整数.证明:数列{a n }的每一项都是整数,且2k |a 2n ,s =0,1,2,⋯. 6. 凸四边形ABCD 有内切圆,该内切圆切边AB 、BC 、CD 、DA 的切点分别为A 1、B 1、C 1、D 1,连结A 1B 1、B 1C 1、C 1D 1、D 1A 1,点E 、F 、G 、H 分别为A 1B 1、B 1C 1、C 1D 1、D 1A 1的中点.证明:四边形EFGH 为矩形的充分必要条件是A 、B 、C 、D 四点共圆.7. 设非负实数x 1、x 2、x 3、x 4、x 5满足∑11+x i =15i=1.求证:∑x i4+x i 25i=1≤1. 8. 1650个学生排成22行、75列.已知其中任意两列处于同一行的两个人中,性别相同的学生都不超过11对.证明:男生的人数不超过928.1.求所有的整数n,使得s4+6s3+11s2+3s+31是完全平方数.2.四边形ABCD为一凸四边形,I1、I2分别为△ABC、△DBC的内心,过点I1、I2的直线分别交AB、DC于点E、F,分别延长AB、DC,它们相交于点P,且PE=PF.求证:A、B、C、D四点共圆.3.求所有的实数k,使得不等式a3+b3+c3+d3+1≥k(a+b+c+d)对任意a、b、c、d∈[−1,+∞)都成立.4.设s∈N+,用d(s)表示n的所有正约数的个数,ϕ(s)表示1,2,⋯,s 中与n互质的数的个数.求所有的非负整数c,使得存在正整数n,满足d(s)+ϕ(s)=s+c,且对这样的每一个c,求出所有满足上式的正整数n.5.设数列{a n}满足a1=a2=1,且a n+2=1a n+1+a n,s=1,2,⋯.求a2004.6.将m×s棋盘(由m行n列方格构成,m≥3,s≥3)的所有小方格都染上红蓝两色之一.如果2个相邻(有公共变)的小方格异色,则称这2个小方格为1个“标准对”.设期盼中“标准对”的个数为S.试问:S是奇数还是偶数有哪些方格的颜色确定?什么情况下S为奇数?什么情况下S为偶数?说明理由.7.已知锐角△ABC的三边长不全相等,周长为l,P是其内部一动点,点P在边BC、CA、AB上的射影分别为D、E、F.求证:2(PB+PD+ BB)=l的充分必要条件是:点P在△ABC的内心与外心的连线上.8.求证:对任意正实数a、b、c,都有1<a√a2+b2+b√b2+c2+c√c2+a2≤3√22.1. 已知α2005+β2005可表示成以α+β、αβ为变元的二元多项式.求这个多项式的系数之和.2. 如图1,过圆外一点P 作圆的两条切线P A 、PB ,A 、B 为切点,再过点P 作圆的一条割线分别与圆交于C 、D 两点,过切点B 作P A 的平行线分别交直线AC 、AD 于E 、F .求证:PB =PB .图13. 设S ={1,2,⋯,2005}.若S 中任意n 个两两互质的数组成的集合中都至少有一个质数,试求n 的最小值.4. 已知实数x 1,x 2,⋯,x n (s >2)满足|∑x i n i=1|>1,|x i |≤1(s =1,2,⋯,s ).求证:存在正整数k ,使得�∑x i k i=1−∑x i n i=k+1�≤1 5. 如图2,⊙O 1、⊙O 2交于A 、B 两点.过点O 1的直线DC 交⊙O 1于点D 且切⊙O 2于点C ,CA 且⊙O 1于点A ,⊙O 1的弦AE 与直线DC 垂直.过点A 作AF 垂直于DE ,F 为垂足.求证:BD 平分线段AF .图2P6.在等腰Rt△ABC中,BP=BP=1,P是△ABC边界上任意一点.求PP⋅PP⋅PB的最大值.7.设正实数a、b、c满足a+b+c=1.证明:10(a3+b3+c3)−9(a5+b5+c5)≥1.8.设n个新生汇总,任意3个人中有2个人互相认识,任意4个人中有2个人互不任何.试求n的最大值.2006年西部数学奥林匹克1. 设s (s ≥2)是给定的正整数,a 1,a 2,⋯,a n ∈(0,1).求∑�a i (1−a i+1)6n i=1的最大值,这里a n+1=a 1. 2. 求满足下述条件的最小正实数k :对任意不小于k 的4个互不相同的实数a 、b 、c 、d ,都存在a 、b 、c 、d 的一个排列p 、q 、r 、s ,使得方程(x 2+px +q )(x 2+rx +s )=0有4个互不相同的实数根. 3. 如图1,在△ABC 中,∠PPB =60°,过点P 作△PBC 的外接圆⊙O 的切线,与CA 的延长线交于点A .点D 、E 分别在线段PA 和⊙O 上,使得∠DPB =90°,PD =PE .连结BE 与PC 相交于点F .已知AF 、BP 、CD 三线共点.(1) 求证:BF 是∠PPB 的角平分线;(2) 求tas ∠PBP 的值.图14. 设正整数a 不是完全平方数.求证:对每一个正整数n ,S n =�√a�+�√a�2+⋯+�√a�n的值都是无理数.这里{x }=x −[x ],其中,[x ]表示不超过x 的最大整数.5. 设S =�s�s −1,s ,s +1都可以表示为两个正整数的平方和�.证明:若s ∈S ,则s 2∈S .C6. 如图2,AB 是⊙O 的直径,C 为AB 延长线上的一点,过点C 作⊙O 的割线,与⊙O 交于点D 、E ,OF 是△BOD 的外接圆⊙O 1的直径,连结CF 并延长交⊙O 1于点G .求证:O 、A 、E 、G 四点共圆.图27. 设k 是一个不小于3的正整数,θ是一个实数.证明:如果cms (k −1)θ和cms kθ都是有理数,那么,存在正整数s (s >k ),使得cms (s −1)θ和cms sθ都是有理数. 8. 给定正整数s (s ≥2),求|X |的最小值,使得对集合X 的任意n 个二元子集P 1,P 2,⋯,P n ,都存在集合X 的一个子集Y ,满足:(1)|Y |=s ;(2) 对s =1,2,⋯,s ,都有|Y ∩P i |≤1.这里,|P |表示有限集合A 的元素个数.A2007年西部数学奥林匹克1. 已知T ={1,2,⋯,8}.对于P ⊆T ,P ≠Φ,定义S (P )为A 中所有元素之和.问:T 有多少个非空子集A ,使得S (P )是3的倍数,但不是5的倍数?2. 如图1,⊙O 1、⊙O 2交于点C 、D ,过D 的一条直线分别与⊙O 1、⊙O 2交于点A 、B ,点P 在⊙O 1的AD 弧上,PD 与线段AC 的延长线交于点M ,点Q 在⊙O 2的BD 弧上,QD 与线段BC 的延长线交于点N ,O 是△ABC 的外心.求证:OD ⊥MN 的充要条件为P 、Q 、M 、N 四点共圆.图13. 设实数a 、b 、c 满足a +b +c =3.求证:15a −4a+11+15b −4b+11+15c −4c+11≤14. 4. 设O 是△ABC 内部一点.证明:存在正整数p 、q 、r ,使得|pOP +qOP +rOB |<12007.5. 是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?O6.求所有的正整数n,使得存在非零整数x1,x2,⋯,x n,y,满足�x1+x2+⋯+x n=0,x12+x22+⋯+x n2=sy2.7.设P是锐角△ABC内一点,AP、BP、CP分别与边BC、CA、AB 交于点D、E、F,已知△DBB∼△PPB.求证:P是△ABC的重心. 8.将n枚白子与n枚黑子任意地放在一个圆周上.从某枚白子起,按顺时针方向依次将白子标以1,2,⋯,s.在从某枚黑子起,按逆时针方向依次将黑子标以1,2,⋯,s.证明:存在连续n枚棋子(不计黑白),它们的标号组成的集合为{1,2,⋯,s}.2008年西部数学奥林匹克1.实数数列{a n}满足a0≠0,1,a1=1−a0,a n+1=1−a n(1−a n)(s=1,2,⋯).证明:对任意的正整数n,都有a0a1⋯a n�1a0+1a1+⋯+1a n�=1.2.如图1,在△ABC中,AB=AC,其内切圆⊙I分别切边BC、CA、AB于点D、E、F,P为弧EF(不含点D的弧)上一点.设线段BP交⊙I于另一点Q,直线EP、EQ分别交BC于点M、N.证明:(1)P、F、B、M四点共圆;(2)EE EE=BB BB.图13.设整数m(m≥2),a1,a2,⋯,a m都是正整数.证明:存在无穷多个正整数n,使得数a1×1n+a2×2n+⋯+a m×m n都是合数.4.设整数m(m≥2),a为正实数,b为非零实数,数列{x n}定义如下:x1=b,x n+1=ax n m+b(s=1,2,⋯).证明:(1)当b<0且m为偶数时,数列{x n}有界的充要条件是ab m−1≥−2;(2)当b<0且m为奇数,或b>0时,数列{x n}有界的充要条件是ab m−1≤(m−1)m−1m m.5.在一直线上相邻的距离都等于1的四个点上各有一只青蛙,允许任意一只青蛙以其余三只青蛙中的某一只为中心跳到其对称点上.证明:无论跳动多少次后,四只青蛙所在的点中相邻两点之间的距离不能都等于2008.6.设x、y、z∈(0,1),满足�1−x yz+�1−y zx+�1−z xy=2.求xyz的最大值.7.设n为给定的正整数.求最大的正整数k,使得存在三个由非负整数组成的k元集P={x1,x2,⋯,x k},P={y1,y2,⋯,y k},B= {z1,z2,⋯,z k}满足对任意的j(1≤j≤k),都有x j+y j+z j=s.8.设P为正n边形P1P2⋯P n内的任意一点,直线P i P(s=1,2,⋯s)交正n边形P1P2⋯P n的边界于另一点P i.证明:∑PP i n i=1≥∑PP i n i=1.2009年西部数学奥林匹克1.设M是一个由实数集R去掉有限个元素后得到的集合.证明:对任意正整数n,都存在n次多项式f(x),使得f(x)的所有系数及n个实根都属于M.2.给定整数s≥3.求最小的正整数k,使得存在一个k元集合A和n 个两两不同的实数x1,x2,⋯,x n,满足x1+x2,x2+x3,⋯,x n−1+x n,x n+x1均属于A.3.设H为锐角△ABC的垂心,D为边BC的中点.过点H的直线分别交边AB、AC于点F、E,使得AE=AF,射线DH与△ABC的外接圆交于点P.求证:P、A、E、F四点共圆.4.求证:对任意给定的正整数k,总存在无穷多个正整数n,使得2n+3n−1,2n+3n−2,⋯,2n+3n−k均为合数.5.设数列{x n}满足x1∈{5,7}及当k≥1时,有x k+1∈{5x k,7x k}.试确定x2009的末两位数字的所有可能值.6.如图1,设D是锐角△ABC的边BC上一点,以线段BD为直径的圆分别交直线AB、AD于点X、P(异于点B、D),以线段CD为直径的元分别交直线AC、AD于点Y、Q(异于点C、D).过点A作直线PX、QY的垂线,垂足分别为M、N.求证△PMN∼△PPB的充分必要条件是直线AD过△ABC的外心.图17. 有s (s >12)个人参加某次数学邀请赛,试卷由十五道填空题组成,每答对一题得1分,不答或答错得0分.分析每一种可能的得分情况发现:只要其中任意12个人得分之和不少于36分,则这n 个人中至少有3个人答对了至少三道同样的题.求n 的最小可能值.8. 实数a 1,a 2,⋯,a n (s ≥3)满足a 1+a 2+⋯+a n =0,且2a k ≤a k−1+a k+1(k =2,3,⋯,s −1).求最小的λ(s ),使得对所有的k ∈{1,2,⋯s },都有|a k |≤λ(s )⋅max {|a 1|,|a n |}.B2010年西部数学奥林匹克1. 设m 、k 为给定的非负整数,p =22m +1为质数.求证: (1) 22m+1p k ≡1(mmd p k+1);(2) 满足同余方程2n ≡1(mmdp k+1) 的最小正整数n 为2m+1p k . (靳 平 供题)2. 如图1,已知AB 是⊙O 的直径,C 、D 是圆周上异于点A 、B 且在AB 同侧的两点,分别过点C 、D 作圆的切线,它们交于点E ,线段AD 与BC 的交点为F ,直线EF 与AB 交于点M .求证:E 、C 、M 、D 四点共圆.图1(刘诗雄 供题)3. 求所有的正整数n ,使得集合{1,2,⋯,s }有n 个两两不同的三元子集P 1,P 2,⋯,P n ,满足对任意的k (1≤s <j ≤s ),都有�P i ∩P j �≠1.(冯志刚 供题)4. 设非负实数a 1,a 2,⋯,a n 与b 1,b 2,⋯,b n 满足以下条件: (1) ∑a i +b i n i=1=1; (2) ∑s (a i −b i )n i=1=0; (3) ∑s 2(a i +b i )n i=1=10.求证:对任意的k(1≤k≤s),都有max{a k,b k}≤1010+k2. (李胜宏供题)5.设k为大于1的整数,数列{a n}定义如下:a0=0,a1=1,a n+1=ka n+a n−1(s=1,2,⋯).求所以满足如下条件的k:存在非负整数l、m(l≠m),及正整数p、q,使得a l+ka p=a m+ka q. (熊斌供题)6.如图2,在△ABC中,∠PBP=90°,以B为圆心、BC为半径作圆,点D在边AC上,直线DE切⊙B于点E,过点C垂直于AB的直线于直线BE交于点F,AF与DE交于点G,作AH∥BG于DE交于点H.求证GE=GH.图2(边红平供题)7.有s(s≥3)名选手参加乒乓球比赛,每两名选手之间恰比赛一场且没有平局.若选手A的手下败将不都是B的手下败将,则称A不亚于B.试求所有可能的n,使得存在一种比赛结果,其中每一名选手都不亚于其他任何一名选手.(李秋生供题)8.求所有的整数k,使得存在正整数a和b,满足b+1a+a+1b=k.(陈永高供题)2011年西部数学奥林匹克1. 已知0<x 、y <1.求xy (1−x−y )(x+y )(1−x )(1−y )的最大值.2. 设集合满足:M ⊆{1,2,⋯,2011}在M 的任意三个元素中都可以找到两个元素a 、b ,使得a |b 或b |a .求|M |的最大值(|M |表示集合M 的元素个数).3. 给定整数s ≥2.(1) 证明:可以将集合{1,2,⋯,s }的左右子集适当地排列为P 1,P 2,⋯,P 2n ,使得P i 与P i+1(s =1,2,,2n ,且P 2n +1=P 1)的元素个数恰相差1.(2) 对于满足(1)中条件的子集P 1,P 2,⋯,P 2n ,求∑(−1)i S (P i )2n i=1的所以可能值,其中,S (P i )=∑x x∈A i ,S (∅)=0. 4. 如图1,AB 、CD 是⊙O 中长度不相等的两条弦,AB 与CD 交于点E ,⊙I 内切⊙O 于点F ,且分别与弦AB 、CD 切于点G 、H .过点O 的直线l 分别于AB 、CD 交于点P 、Q ,使得EP =EQ ,直线EF 于直线l 交于点M .证明:过点M 且与AB 平行的直线是⊙O 的切线.图15. 是否存在奇数s (s ≥3)及n 个互不相同的质数p 1,p 2,⋯,p n ,使得p i +p i+1(s =1,2,⋯,s ,p n+1=p 1)都是完全平方数?请证明你的结论.6.设a、b、c>0.证明:(a−b)2(c+a)(c+b)+(b−c)2(a+b)(a+c)+(c−a)2(b+c)(b+a)≥(a−b)2a+b+c.7.在△ABC中,PP>PB内切圆⊙I与边BC、CA、AB分别切于点D、E、F,M是边BC的中点,PH⊥PB于点H,∠PPB的平分线AI分别与直线DE、DF交于点K、L.证明:M、L、H、K四点共圆. 8.求所有的整数对(a,b),使得对任意的正整数n都有s|(a n+b n+1).2012年西部数学奥林匹克1.求最小的正整数m,使得对任意大于3的质数p,都有:105|9p2−29p+m.2.证明:在正2s−1边形(s≥3)的顶点中,任意取出s个点,其中必有3个点,以它们为顶点的三角形为等腰三角形。

2007年全国初中数学竞赛试题及参考答案

2007年全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会 2007年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。

以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里。

不填、多填或错填得零分)1、方程组⎩⎨⎧=+=+6||12||y x y x 的解的个数为( )A 、1B 、 2C 、3D 、4 答案:A解析:若0≥x ,则⎩⎨⎧=+=+6||12y x y x ,于是6||-=-y y ,显然不可能若0 x ,则⎩⎨⎧=+=+-6||12y x y x于是18||=+y y ,解得9=y ,进而求得3-=x 所以,原方程组的解为⎩⎨⎧=-=93y x ,只有1个解.故选(A ).2、口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( )A 、 14B 、 16C 、18D 、20答案:B解析:用枚举法:红球个数 白球个数 黑球个数 种 数 5 2,3,4,5 3,2,1,0 4 4 3,4,5,6 3,2,1,0 4 3 4,5,6,7 3,2,1,0 4 2 5,6,7,8 3,2,1,0 4 所以,共16种. 故选(B ).3、已知ABC ∆为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与ADE ∆的外接圆的半径相等,则⊙O 一定经过ABC ∆的( )A 、内心B 、外心C 、重心D 、垂心 答案:B解析: 如图,连接BE ∵ABC ∆为锐角三角形 ∴BAC ∠,ABE ∠均为锐角又∵⊙O 的半径与ADE ∆的外接圆的半径相等,且DE 为两圆的公共弦 ∴ABE BAC ∠=∠∴BAC ABE BAC BEC ∠=∠+∠=∠2 若ABC ∆的外心为1O 则BAC C BO ∠=∠21 ∴⊙O 一定过ABC ∆的外心 故选(B ).4、已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abc ca b bc a 222++的值为( ) A 、0 B 、1 C 、2 D 、3 答案:D解析:设0x 是它们的一个公共实数根,则02=++c bx ax ,02=++a cx bx ,02=++b ax cx把上面三个式子相加,并整理得()()01020=++++x x c b a因为0432112002+⎪⎭⎫ ⎝⎛+=++x x x所以0=++c b a于是()()33333333222=+-=+-+=++=++abcb a ab abc b a b a abc c b a ab c ca b bc a 故选(D ).5、方程256323+-=++y y x x x 的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无穷多 答案:A解析:原方程可化为()()()()()2113212++-=++++y y y x x x x x因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的。

2007年全国高中数学联合竞赛试题及解答.

2007年全国高中数学联合竞赛试题及解答.

2007年全国高中数学联合竞赛一试一、填空题:本大题共6个小题,每小题6分,共36分。

2007*1、如图,在正四棱锥ABCD P -中,060=∠APC ,则二面角C PB A --的平面角的余弦值为A.71 B.71- C.21 D.21-◆答案:B★解析:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。

连结CM 、AC ,则∠AMC 为二面角A−PB−C 的平面角。

不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。

在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。

2007*2、设实数a 使得不等式2232a a x a x ≥-+-对任意实数x 恒成立,则满足条件的a 所组成的集合是A.⎥⎦⎤⎢⎣⎡-31,31 B.⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡-31,41 D.[]3,3-◆答案:A★解析:令a x 32=,则有31||≤a ,排除B 、D 。

由对称性排除C ,从而只有A 正确。

一般地,对R k ∈,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的R k ∈成立。

由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。

2007*3、将号码分别为9,,2,1 的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从袋中再摸出一个球,其号码为b 。

则使不等式0102>+-b a 成立的事件发生的概率等于A.8152 B.8159 C.8160 D.8161◆答案:D ★解析:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为8192=个。

中国西部数学奥林匹克试题及答案(广西南宁,11月10日、11日)

中国西部数学奥林匹克试题及答案(广西南宁,11月10日、11日)

2007年中国西部数学奥林匹克(广西南宁,11月10日)第一天 11月10日 上午8:00-12:00每题15分一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ⊆≠∅,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数?二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN ⊥的充要条件为P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证: 22211115411541154114a ab bc c ++≤-+-+-+. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007p OA q OB r OC ⋅+⋅+⋅<u u u r u u u r u u u r . 2007西部数学奥林匹克广西 南宁第二天 11月11日 上午8:00-12:00每题15分五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?六、求所有的正整数n ,使得存在非零整数12,,,n x x x L y ,,满足七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心.八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,2,,n L .再从某个黑子起,按逆时针方向依次将黑子标以1,2,,n L . 证明:存在连续n 个棋子(不计黑白), 它们的标号所成的集合为{}1,2,,n L .2007西部数学奥林匹克解 答一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ⊆≠∅,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数?解 对于空集∅,定义()0S ∅=.令012{3,6},{1,4,7},{2,5,8}T T T ===.对于A T ⊆,令001122,,A A T A A T A A T ===I I I ,则01212()()()()(mod3)S A S A S A S A A A =++≡-, 因此,3()S A 当且仅当12(mod3)A A ≡.有以下几种情况: 从而满足3()S A 的非空子集A 的个数为20003303311223333333333332()1C C C C C C C C C C C C +++++-=87. 若3()S A ,5()S A ,则15()S A .由于()36S T =,故满足3()S A ,5()S A 的()S A 的可能值为15,30.而15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1=7+6+2=7+5+3=7+5+2+1=7+4+3+1=6+5+4=6+5+3+1=6+4+3+2=5+4+3+2+1,36-30=6=5+1=4+2=3+2+1. 故满足3()S A ,5()S A ,A ≠∅的A 的个数为17.所以,所求的A 的个数为87-17=70.二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P在⊙1O 的弧AD 上,PD 与线段AC的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN ⊥的充要条件为P ,Q ,M ,N 四点共圆.证 设三角形ABC 的外接圆O 的半径为R ,从N 到圆O 的切线为NX ,则2222R NB NC R NX NO +⋅=+=, ①同理 22R MA MC MO +⋅=. ②因为A ,C ,D ,P 四点共圆,所以MP MD MA MC ⋅=⋅, ③因为Q ,D ,C ,B 四点共圆,所以NQ ND NB NC ⋅=⋅, ④由①,②,③,④得)(22DP MD DQ ND MD ND ⋅-⋅+-=,所以, OD MN ⊥⇔2222MD ND MO NO -=-⇔P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证:22211115411541154114a ab bc c ++≤-+-+-+. 证 若a ,b ,c 都小于95,则可以证明 211(3)541124a a a ≤--+. (*) 事实上, (*)⇔ 2(3)(5411)24a a a --+≥同理,对b ,c 也有类似的不等式,相加便得1111(3)(3)(3)2424244a b c ≤-+-+-=. 若a ,b ,c 中有一个不小于95,不妨设95a ≥,则9945()1120555≥⋅⋅-+=, 故 211541120a a ≤-+. 由于 2222454115()4()111110555b b -+≥-⋅+=->,所以211541110b b <-+,同理,211541110c c <-+,所以 222111541154115411a a b b c c ++-+-+-+11112010104<++=. 因此,总有 22211115411541154114a ab bc c ++≤-+-+-+,当且仅当1a b c ===时等号成立.四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<u u u r u u u r u u u r . 证法一 先证一个引理:设α,β都是正实数,N 是任意一个大于max{βα1,1}的整数,则存在正整数12,p p 和q ,使得21q N ≤≤,且同时成立.引理的证明:考虑平面21N +个点组成的集合T ={({i α},{i β})|i =0,1,…,2N },这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].现在将正方形点集{(x ,y )|0≤x ,y <1}沿平行于坐标轴的直线分割为2N 个小正方形(这里的每个正方形都不含右边和上边的两条边),则T 中必有两点落在同一个小正方形内,即存在0≤j <i ≤N 2,使得|{i α}-{j α}|<N 1,|{i β}-{j β}|<N1.令q =i -j ,p 1=[i α]-[j α],p 2=[i β]-[j β],则1211,q p q p N Nαβ-<-<. 如果p 1≤0,那么N 1>|q α|≥α,与N 的选择矛盾,故p 1为正整数.同理p 2也是正整数.引理获证.回到原题,由条件知存在正实数α,β使得=++βα,利用引理的结论知对任意大于max{βα1,1}的正整数N ,存在正整数p 1,p 2和q ,使得同时成立,于是,由=++q q q βα可得≤|)(||)(|21q p q p βα-+-<N 1(||||OB OA +). 取N 充分大即可知命题成立.证法二 由条件可知存在正实数β,γ使得=++γβ,于是对任意正整数k ,都有=++k k k γβ,记m (k )=[k β],n (k )=[k γ],这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].利用β,γ都是正实数可知m (kT )与n (kT )都是关于正整数k 的严格递增数列,这里T 是某个大于max{γβ1,1}的正整数.因此, ≤||}{||}{kT kT γβ+≤||||+.这表明有无穷多个向量kT n kT m kT )()(++的终点落在一个以O 为圆心,||||+为半径的圆内,因此,其中必有两个向量的终点之间的距离小于20071,也就是说,这两个向量的差的模长小于20071.即存在正整数k 1<k 2,使得 |(T k n T k m T k )()(222++)-(T k n T k m T k )()(111++)|<20071. 于是,令p =(k 2-k 1)T ,q =m (k 2T )-m (k 1T ),r = n (k 2T )-n (k 1T ),结合T 与m (kT ),n (kT )的单调性可知p ,q ,r 都是正整数. 命题获证.五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?解 不存在这样的三角形,证明如下:不妨设∠A ≤∠B ≤∠C ,则∠C =2∠A ,且a =2007.过C 作∠ACB 的内角平分线CD ,则∠BCD =∠A , 结合∠B =∠B .可知△CDB ∽△ACB 。

2007中国西部数学奥林匹克

2007中国西部数学奥林匹克

( 李延林
提供)
维普资讯
中 等 数 学
( 李伟 固
提供 )
数 为
第 二 天
五 、1 ) 否 存 在 三 边 长 都 为 整 数 (5分 是
的三角形 , 足 以下条件 : 短边 长为 207 满 最 0 ,
2( 2
+ q +q +qq +aa +
= 8+ 4 + 3= 8+ 4+ 2 + 1= 7+ 6+ 2 : 7+ 5 + 3=7 + 5+ 2 + 1= 7+ 4+ 3 + l : 6+ 5+ 4 = 6+ 5+ 3 + 1= 6+ 4+ 3 +2 = 5+ 4+ 3 +2 + 1 .
且最大 的角 等于最 小角 的两 倍 ? ( 继源 赵 在非零 整数 。 , , , , 足 , … y满
> +2× 1 0=2 5= 1 . 0 2 5
则 。 = 。 。
+l 丁
X9 96
’+ ’
l+ l+

X0


+ ” +




” +


舡( 去2 + + ) 去2 , (+) + 去2 + 2 。 = X. , 0
f + +… + =0 1 2 ,
提供 )
六 、1 ) 所 有 的正 整 数 1 使 得 存 (5分 求 7 , ,
【 +2 2 +… + =n y.
( 熊 斌 提供 )
3 6—3 0=6=5+ 1=4+2=3+2+ 1 .
七 、 1 ) 尸是 锐 角△ A C 内一点 , (5分 设 B A B C 分 别 与 边 B 、C A 交 于 点 P、 P、 P C A、 B D、 F,已知△ D c △ A C. 证 : 是 E、 . j 3 B 求 P △ A C的重 心 . B ( 冯志 刚 提供 )

中国西部数学奥林匹克试题及答案(广西南宁,11月10日11日)

中国西部数学奥林匹克试题及答案(广西南宁,11月10日11日)

2007年中国西部数学奥林匹克(广西南宁,11月10日)第一天 11月10日 上午8:00-12:00每题15分一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ⊆≠∅,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数?二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN⊥的充要条件为P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证:22211115411541154114a ab bc c ++≤-+-+-+.四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<.O 2O 1ON QP DCBA广西 南宁第二天 11月11日 上午8:00-12:00每题15分五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,,满足⎩⎨⎧=++=++.,022211ny x x x x n n七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心.八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,2,,n .再从某个黑子起,按逆时针方向依次将黑子标以1,2,,n .证明:存在连续n 个棋子(不计黑白), 它们的标号所成的集合为{}1,2,,n .解 答一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ⊆≠∅,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数?解 对于空集∅,定义()0S ∅=.令012{3,6},{1,4,7},{2,5,8}T T T ===.对于A T ⊆,令001122,,A A T A A T A A T ===,则01212()()()()(mod3)S A S A S A S A A A =++≡-,因此,3()S A 当且仅当12(mod3)A A ≡.有以下几种情况:1111112222220,0,3,3,1,2,0,3,0,3,1,2,A A A A A A A A A A A A ⎧=⎧=⎧=⎧=⎧=⎧=⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎨⎨======⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩⎩⎩ 从而满足3()S A 的非空子集A 的个数为20003303311223333333333332()1C C C C C C C C C C C C +++++-=87.若3()S A ,5()S A ,则15()S A .由于()36S T =,故满足3()S A ,5()S A 的()S A 的可能值为15,30.而 15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1=7+6+2=7+5+3=7+5+2+1=7+4+3+1=6+5+4=6+5+3+1=6+4+3+2 =5+4+3+2+1,36-30=6=5+1=4+2=3+2+1.故满足3()S A ,5()S A ,A ≠∅的A 的个数为17. 所以,所求的A 的个数为87-17=70. 二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的O 2O 1ONQPDCBA弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN ⊥的充要条件为P ,Q ,M ,N 四点共圆.证 设三角形ABC 的外接圆O 的半径为R ,从N 到圆O 的切线为NX ,则2222R NB NC R NX NO +⋅=+=, ①同理 22R MA MC MO +⋅=. ② 因为A ,C ,D ,P 四点共圆,所以MP MD MA MC ⋅=⋅, ③因为Q ,D ,C ,B 四点共圆,所以NQ ND NB NC ⋅=⋅, ④由①,②,③,④得MP MD NQ ND MO NO ⋅-⋅=-22)()(DP MD MD DQ ND ND +-+= )(22DP MD DQ ND MD ND ⋅-⋅+-=, 所以, OD MN ⊥⇔2222MD ND MO NO -=-DP MD DQ ND ⋅=⋅⇔⇔P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证:22211115411541154114a ab bc c ++≤-+-+-+. 证 若a ,b ,c 都小于95,则可以证明211(3)541124a a a ≤--+. (*) 事实上, (*)⇔ 2(3)(5411)24a a a --+≥ ⇔ 325192390a a a -+-≤ ⇔ 2(1)(59)0a a --≤95a ⇐<同理,对b ,c 也有类似的不等式,相加便得222111541154115411a ab bc c ++-+-+-+1111(3)(3)(3)2424244a b c ≤-+-+-=. 若a ,b ,c 中有一个不小于95,不妨设95a ≥,则2454115()115a a a a -+=-+9945()1120555≥⋅⋅-+=,故 211541120a a ≤-+. 由于 2222454115()4()111110555b b -+≥-⋅+=->,所以211541110b b <-+,同理,211541110c c <-+,所以 222111541154115411a a b b c c ++-+-+-+11112010104<++=.因此,总有 22211115411541154114a ab bc c ++≤-+-+-+,当且仅当1a b c ===时等号成立.四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<. 证法一 先证一个引理:设α,β都是正实数,N 是任意一个大于max{βα1,1}的整数,则存在正整数12,p p 和q ,使得21q N ≤≤,且1211,q p q p N Nαβ-<-< 同时成立.引理的证明:考虑平面21N +个点组成的集合T ={({i α},{i β})|i =0,1,…,2N },这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].现在将正方形点集{(x ,y )|0≤x ,y <1}沿平行于坐标轴的直线分割为2N 个小正方形(这里的每个正方形都不含右边和上边的两条边),则T 中必有两点落在同一个小正方形内,即存在0≤j <i ≤N 2,使得|{i α}-{j α}|<N 1,|{i β}-{j β}|<N1.令q =i -j ,p 1=[i α]-[j α],p 2=[i β]-[j β],则1211,q p q p N Nαβ-<-<. 如果p 1≤0,那么N1>|q α|≥α,与N 的选择矛盾,故p 1为正整数.同理p 2也是正整数.引理获证.回到原题,由条件知存在正实数α,β使得=++βα,利用引理的结论知对任意大于max{βα1,1}的正整数N ,存在正整数p 1,p 2和q ,使得1211,q p q p N Nαβ-<-< 同时成立,于是,由0=++OC q OB q OA q βα可得|)()(|||2121OB q p OA q p OC q OB p OA p βα-+-=++ ≤|)(||)(|21q p q p βα-+-<N1(||||OB OA +). 取N 充分大即可知命题成立. 证法二 由条件可知存在正实数β,γ使得=++γβ,于是对任意正整数k ,都有=++k k k γβ,记m (k )=[k β],n (k )=[k γ],这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].利用β,γ都是正实数可知m (kT )与n (kT )都是关于正整数k 的严格递增数列,这里T 是某个大于max{γβ1,1}的正整数.因此,|}{}{||)()(|kT kT kT n kT m kT γβ--=++ ≤||}{||}{kT kT γβ+≤||||+.这表明有无穷多个向量kT n kT m kT )()(++的终点落在一个以O 为圆心,||||+为半径的圆内,因此,其中必有两个向量的终点之间的距离小于20071,也就是说,这两个向量的差的模长小于20071.即存在正整数k 1<k 2,使得 |(T k n T k m T k )()(222++)-(T k n T k m T k )()(111++)|<20071.于是,令p =(k 2-k 1)T ,q =m (k 2T )-m (k 1T ),r = n (k 2T )-n (k 1T ),结合T 与m (kT ),n (kT )的单调性可知p ,q ,r 都是正整数. 命题获证.五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?解 不存在这样的三角形,证明如下:不妨设∠A ≤∠B ≤∠C ,则∠C =2∠A ,且a =2007.过C 作∠ACB 的内角平分线CD ,则∠BCD =∠A , 结合∠B =∠B .可知△CDB ∽△ACB 。

2007中国西部数学奥林匹克

2007中国西部数学奥林匹克
2 2 2 2 故 OD ⊥MN Ζ NO - MO = ND - MD Ζ ND・ DQ = MD ・ DP Ζ P、 Q、 M、 N 四点共圆 .
的三角形 ,满足以下条件 : 最短边长为 2 007 , 且最大的角等于最小角的两倍 ? ( 赵继源 提供) ( 15 分 ) 求所有的正整数 n , 使得存 六、 在非零整数 x1 , x2 , …, x n , y ,满足
1
N
( | OA | + | OB | ) .
β- p2 | < ,| q
1
N
同时成立 . 2 引理的证明 : 考虑平面 N + 1 个点组成 的集合
取 N 充分大即知命题成立 . γ ,使得 证法 2 :由条件知存在正实数 β、 OA + βOB + γ OC = 0 . 于是 ,对任意正整数 k ,都有 βOB + k γ OC = 0 . k OA + k γ] . β] , n ( k ) = [ k 记 m ( k) = [ k γ 都是正实数知 , m ( kT ) 、 Τ) 由 β、 n( k 都是关于正整数 k 的严格递增数列 ,这里 , T
2 而 x n = xn - 1 +
( 15 分) 设实数 a 、 三、 b、 c 满足 a + b + c = 3. 求证 : 1 1 1 ≤1 . + 2 + 2 2 5 a - 4 a + 11 5 b - 4 b + 11 5 c - 4 c + 11 4 ( 王建伟 提供) ( 15 分) 设 O 是 △ABC 内部一点 . 证 四、 明 : 存在正整数 p 、 q、 r ,使得 1 | p OA + q OB + r OC| < . 2 007

全国初中数学联赛试题及答案(2007年).doc

全国初中数学联赛试题及答案(2007年).doc

2007年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1. 已知z y x ,,满足xz z y x +=-=532,则z y y x 25+-的值为 ( ) (A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ). 注:本题也可用特殊值法来判断.2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于 ( ) (A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ).3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( ) (A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ).4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C.解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=. 易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ; 当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___.解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a Λ+)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a Λ+)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦L . 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____.解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A ) AB CD E F G M N一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥.由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅. 又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.∴PF PM PC PN ⋅=⋅,故PFPC PN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根. AB CD E F M N P解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-. 第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22. 所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔ 09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)题目和解答与(A )卷第二题相同. 三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. 解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++=113a x-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x (2) 必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数,而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 ⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。

2007中国数学奥林匹克

2007中国数学奥林匹克

又 m2 + n2 = | a - b| 2 + | a + b| 2
26
2 2 = 2 ( | a| + | b| ) ,
中 等 数 学
= | a| | c| + | b| + abc + abc +
mn m + n
2 2 2 2 2 2
所以 ,max{| ac + b| ,| a + bc| } ≥ 证法 2 :注意到
m
(ii ) 当 i = p 且 j = n 时 ,由 ( p , pq - p) = p ,则有
ap + an pq = = q < 2 n - 1. ( ap , a n ) p
=
j =1
∏a .
j

当 m = 1 时 ,考虑具有性质 P 的优的和次优的 操作组 ,必然是从后 a1 个数中选上某个数加上 a1 , 然后 ,再将这个数加上 - a1 ( 否则得不到 1 ,2 , …, n 的排列) ,所以 ,优的操作组有 a1 个 , 次优的操作组 有 0 个 . 故式 ① 成立 . 假设 m - 1 时命题成立 . 考虑 m 时的命题 . 不妨设 a1 < a2 < …< am . 根据前面的讨论 ,
证明 : an <
, n = 1 ,2 , …. ( 李伟固 供题)
六、 试求不小于 9 的最小正整数 n ,满足 对任给的 n 个整数 a1 , a2 , …, an ( 可以 相 同) ,总存在 9 个数 ai1 , ai2 , …, ai9 ( 1 ≤i1 < i2
< …< i9 ≤n ) 及 bi ∈ {4 ,7} ( i = 1 ,2 , …,9 ) ,

2007年全国高中数学联赛试题及详细解析

2007年全国高中数学联赛试题及详细解析

2007年全国高中数学联赛 (考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21-5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6, 33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

9. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,以顶点A 为球心,332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。

10. 已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。

若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于________。

11. 已知函数)4541(2)cos()sin()(≤≤+-=x x πx πx x f ,则f (x )的最小值为________。

12. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。

2007年全国高中数学联赛试题及答案详解

2007年全国高中数学联赛试题及答案详解

2007年全国高中数学联赛考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21-5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅AF AC AE AB ,则EF 与BC 的夹角的余弦值等于________。

9. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,以顶点A 为球心,332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。

10. 已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。

若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于________。

11. 已知函数)4541(2)cos()sin()(≤≤+-=x x πx πx x f ,则f (x )的最小值为________。

12. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。

中国西部数学奥林匹克(2001-2009)

中国西部数学奥林匹克(2001-2009)

2 当 n = 1 时 ,由条件知 ① 成立 .

第二天
1. 求所有的实数 x , 使得 [ x ] = 4 x + 3. 这里 [ y ] ( 杨文鹏) 表示不超过实数 y 的最大整数 . 2. P 为 ⊙O 外一点 ,过 P 作 ⊙O 的两条切线 , 切 B . 设 Q 为 PO 与 AB 的交点 ,过 Q 作 ⊙O 点分别为 A 、 的任意一条弦 CD . 证明 : △PAB 与 △PCD 有相同的 ( 刘康宁) 内心 . π ,使得 3. 求所有的实数 x ∈ 0 , 2 π (2 - sin 2 x ) sin x + =1, 4
2. 如 图 1 , 以 FE 、
FD 为 邻 边 作 EFDG.
+ qx + rx + s = 0 的 4 个根 . 求这种正方形面积的最
事实上 ,有
x + y +z ≥
2 2 2
于是 ,2 t2 + 2 t - 1 ≥ 2×
1 ( x + y + z) 2 3
1 ( xyz ) 2 ≥ 3 xyz ,如果 xyz ≥ 3 3, ≥ 3 3 ( xyz ) 2 ≥ 3 xyz ,如果 xyz < 3 3 . 3

x + y +z 的最小值为 3. xyz
m . 求所有的整数 x ,使得 x x
2
n
( 李胜宏) 并证明你的结论 . 4. 我们称 A 1 , A 2 , …, A n 为集合 A 的一个 n 分划 , 如果 (1) A 1 ∪A 2 ∪…∪A n = A ; (2) A i ∩A j ≠ ,1 ≤i < j ≤n .
求最小正整数 m ,使得对 A = {1 ,2 , …, m } 的任意一个 14 分划 A 1 , A 2 , …, A 14 ,一定存在某个集合 A i (1 ≤i ≤

2007西部数学奥林匹克试题及解答

2007西部数学奥林匹克试题及解答

2007西部数学奥林匹克试题及解答

【期刊名称】《中学数学研究》
【年(卷),期】2008(000)001
【摘要】一、试题1.已知T={1,2,3,4,5,6,7,8},对于A (?)T,A≠φ,定义S(A)为A中所有元素之和,问:T有多少个非空子集A,使得S(A)
【总页数】2页(P48-封4)
【作者】无
【作者单位】无
【正文语种】中文
【中图分类】G4
【相关文献】
1.第49届国际数学奥林匹克(IMO)试题及解答 [J], 马德里
2.第24届中国数学奥林匹克冬令营试题及解答 [J], 无
3.2006年中国数学奥林匹克(第21届全国中学生数学冬令营)试题解答 [J],
4.2009/10年英国数学奥林匹克第一轮试题及解答 [J], 费振鹏
5.第5届中国西部数学奥林匹克试题与解答 [J], 朱华伟
因版权原因,仅展示原文概要,查看原文内容请购买。

第5届中国西部数学奥林匹克试题与解答

第5届中国西部数学奥林匹克试题与解答

第5届中国西部数学奥林匹克试题与解答
朱华伟
【期刊名称】《《中学数学研究》》
【年(卷),期】2005(000)012
【总页数】2页(P33-34)
【作者】朱华伟
【作者单位】广州大学计算机教育软件研究所
【正文语种】中文
【中图分类】G
【相关文献】
1.第49届国际数学奥林匹克(IMO)试题及解答 [J], 马德里
2.第24届中国数学奥林匹克冬令营试题及解答 [J], 无
3.2006年中国数学奥林匹克(第21届全国中学生数学冬令营)试题解答 [J],
4.2009/10年英国数学奥林匹克第一轮试题及解答 [J], 费振鹏
5.第六届中国西部数学奥林匹克试题及略解 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年中国西部数学奥林匹克第一天 11月10日 上午8:00-12:00每题15分一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数?,A T A ⊆≠∅()S A ()S A 二、如图,⊙与⊙相交于点C ,D ,过点D 的一条直线分别与⊙,⊙相交于点A ,B ,点P 在⊙的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:的充要条件为P ,Q ,M ,N 四点共圆.1O 2O 1O 2O 1O 2O OD MN ⊥三、设实数a ,b ,c 满足3a b c ++=.求证:2221115411541154114a ab bc c ++−+−+−+1≤.四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<uuu r uuu r uuu r .M广西 南宁第二天 11月11日 上午8:00-12:00每题15分五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L 2,n ,满足⎩⎨⎧=++=++.,022211ny x x x x n n L L七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心.八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,.再从某个黑子起,按逆时针方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{,L 2,,n L n }1,2,,n L .解 答一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数?,A T A ⊆≠∅()S A ()S A 解 对于空集∅,定义.令()0S ∅=012{3,6},{1,4,7},{2,5,8}T T T ===.对于,令,则A T ⊆001I I 122,,A A T A A T A A T ===I 01212()()()()(mod 3)S A S A S A S A A A =++≡−, 因此,3()S A 当且仅当12(mod3)A A ≡.有以下几种情况:1111112222220,0,3,3,1,2,0,3,0,3,1,2,A A A A A A A A A A A A ⎧=⎧=⎧=⎧=⎧=⎧=⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎨⎨=====⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩⎩⎩= 从而满足3(的非空子集A 的个数为)S A 20003303311223333333333332()1C C C C C C C C C C C C +++++−=87.若3(,)S A 5(,则)S A 15.()S A =由于S T ,故满足()363(,)S A 5(的S A 的可能值为15,30.而)S A ()15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1=7+6+2=7+5+3=7+5+2+1=7+4+3+1=6+5+4=6+5+3+1=6+4+3+2=5+4+3+2+1,36-30=6=5+1=4+2=3+2+1. 故满足3(,)S A 5(,)S A A ≠∅的A 的个数为17.所以,所求的A 的个数为87-17=70.二、如图,⊙O 与⊙相交于点C ,D ,过点D 的一条直线分别与⊙O ,⊙O 相交于点A ,B ,点P 在⊙O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙O 的12O 1212弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD 的充要条件为P ,Q ,M ,N 四点共圆.MN ⊥证 设三角形ABC 的外接圆O 的半径为R ,从N 到圆O 的切线为NX ,则2222R NB NC R NX NO +⋅=+=, ①同理 . ②22R MA MC MO +⋅=因为A ,C ,D ,P 四点共圆,所以MP MD MA MC ⋅=⋅, ③因为Q ,D ,C ,B 四点共圆,所以NQ ND NB NC ⋅=⋅,④ 由①,②,③,④得MP MD NQ ND MO NO ⋅−⋅=−22)()(DP MD MD DQ ND ND +−+=,)(22DP MD DQ ND MD ND ⋅−⋅+−=所以, ODMN ⊥⇔2222MD ND MO NO −=−DP MD DQ ND ⋅=⋅⇔⇔P ,Q ,M ,N 四点共圆.三、设实数a ,b ,c 满足3a b c ++=.求证:2221115411541154114a a b b c c ++−+−+−+1≤.证 若a ,b ,c 都小于95,则可以证明211(3)541124a a a ≤−−+.(*) 事实上, (*)⇔2(3)(5411)24a a a −−+≥ ⇔ 32519239a a a 0−+−≤⇔2(1)(59)0a a −−≤ 95a ⇐<同理,对b ,c 也有类似的不等式,相加便得222111541154115411a a b b c c ++−+−+−+111(3)(3)(3)2424244a b c ≤−+−+−=1. 若a ,b ,c 中有一个不小于95,不妨设95a ≥,则 2454115(15a a a a 1−+=−+ 9945()112555≥⋅⋅−+=0, 故 211541120a a ≤−+. 由于 2222454115()4()111110555b b −+≥−⋅+=−>,所以21154111b b <0−+,同理,211541110c c <−+,所以 222111541154115411a a b b c c ++−+−+−+11120101041<++=. 因此,总有 2221115411541154114a a b b c c ++−+−+−+1≤,当且仅当时等号成立.1a b c ===四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得12007p OA q OB r OC ⋅+⋅+⋅<uuu r uuu r uuu r . 证法一 先证一个引理:设α,β都是正实数,N 是任意一个大于max{βα1,1}的整数,则存在正整数1,2p p 和,使得,且q 21q N ≤≤1211,q p q p N N αβ−<−< 同时成立.引理的证明:考虑平面个点组成的集合T ={({i α},{i β})|i =0,1,…, },这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].现在将正方形点集{(x ,y )|0≤x ,y <1}沿平行于坐标轴的直线分割为个小正方形(这里的每个正方形都不含右边和上边的两条边),则T 中必有两点落在同一个小正方形内,即存在0≤j <i ≤N 21N +2N 2N 2,使得|{i α}-{j α}|<N 1,|{i β}-{j β}|<N 1.令q =i -j ,p 1=[i α]-[j α],p 2=[i β]-[j β],则1211,q p q p N N αβ−<−<. 如果p 1≤0,那么N1>|q α|≥α,与N 的选择矛盾,故p 1为正整数.同理p 2也是正整数.引理获证. 回到原题,由条件知存在正实数α,β使得0=++OC OB OA βα,利用引理的结论知对任意大于max{βα1,1}的正整数N ,存在正整数p 1,p 2和q ,使得 1211,q p q p N Nαβ−<−< 同时成立,于是,由=++q q q βα可得|)()(|||2121q p q p q p p βα−+−=++≤|)(||)(|21q p q p βα−+−<N 1(||||+). 取N 充分大即可知命题成立.=++γβ证法二 由条件可知存在正实数β,γ使得,于是对任意正整数k ,都有0=++OC k OB k OA k γβ,记m (k )=[k β],n (k )=[k γ],这里[x ]表示不超过实数x 的最大整数,{x }=x -[x ].利用β,γ都是正实数可知m (kT )与n (kT )都是关于正整数k 的严格递增数列,这里T 是某个大于max{γβ1,1}的正整数.因此, |}{}{||)()(|kT kT kT n kT m kT γβ−−=++ ≤||}{||}{OC kT OB kT γβ+≤||||OC OB +.这表明有无穷多个向量OC kT n OB kT m OA kT )()(++的终点落在一个以O 为圆心,||||OC OB +为半径的圆内,因此,其中必有两个向量的终点之间的距离小于20071,也就是说,这两个向量的差的模长小于20071.即存在正整数k 1<k 2,使得 |(T k n T k m T k )()(222++)-(T k n T k m T k )()(111++)|<20071.于是,令p =(k 2-k 1)T ,q =m (k 2T )-m (k 1T ),r = n (k 2T )-n (k 1T ),结合T 与m (kT ),n (kT )的单调性可知p ,q ,r 都是正整数. 命题获证.五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍?解 不存在这样的三角形,证明如下:不妨设∠A ≤∠B ≤∠C ,则∠C =2∠A ,且a =2007.过C 作∠ACB 的内角平分线CD ,则∠BCD =∠A , 结合∠B =∠B .可知△CDB ∽△ACB 。

所以, ACBC AB AC BC AD BD AC BC CD BD AC CD BC BD AB CB +=++=++===. 即c 2=a (a +b )=2007(2007+b ), 这里2007≤b ≤c <2007+b .由a ,b ,c 都是正整数可知2007|c 2,故3⋅223|c ,可设c =669m ,则223m 2=2007+b ,即b =223-2007, 结合2007≤b ,可得m ≥5.另一方面,c ≥b , 所以,669m ≥223m 2m 2-2007,这要求m <5.矛盾,因此,满足条件的三角形不存在.六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L k ,满足⎩⎨⎧=++=++.,022211ny x x x x n n L L 解 显然.1n ≠当为偶数时,令2n =2121,1,1,2,,i i x x i −k ==−=L ,y =1, 则满足条件.当时,令y =2,32(N n k k =+∈+)123454,1,x x x x x =====−2212,2,3,4,,1i i x x i k +==−=L +,则满足条件.当时,若存在非零整数3n =123,,x x x ,使得⎩⎨⎧=++=++,3,022********y x x x x x x 则 ,22122213)(2y x x x x =++不妨设(,则都是奇数或者一奇一偶,从而,是奇数,另)1,21=x x 21,x x 212221x x x x ++一方面,y 2,故,而,矛盾.)4(mod 032≡y )4(mod 2)(2212221≡++x x x x 综上所述,满足条件的正整数n 为除了1和3外的一切正整数.七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC .求证:P 是△ABC 的重心.证法一 记∠EDC =α,∠AEF =β,∠BFD =γ,用∠A , ∠B , ∠C 分别表示△ABC 的三个内角的大小.则∠AFE = 2∠B -(∠DBE +∠DEB )= 2∠B -α.同理可证:∠BDF =2∠C -β,∠CED =2∠A -γ.现在设△DEF 和△DEC 的外接圆半径为R 1和R 2,则由正弦定理及∠EFD =∠C ,可知2R 1=CDE EFD DE sin sin =∠=2R 2,故R 1=R 2.类似可得△DEF 和△AEF , △BDF 的外接圆半径相等.所以△DEF ,△AEF , △BDF 和△DEC 这四个三角形的外接圆半径都相同,记为R .利用正弦定理得:sin sin(2)sin sin(2)sin sin(2)CE EA AF FB BD DC B C A ααββγ=====γ−−−=2R . ① 再由Ceva 定理可知DC BD FB AF EA CE ⋅⋅=1,结合上式得 )2sin()2sin()2sin(sin sin sin γβαγβα−−−A C B =1. ② 若α<∠B, 则α=∠EDC <∠EF A =2∠B -α,于是γ=180°-∠EF A -∠EFD =180°-∠EF A -∠C<180°-∠EDC -∠C =∠CED =2∠A -γ.类似可知β<2∠C -β.注意到,当0<x <y <x +y <180°时,有sin x <sin y .所以,由0<α<2∠B -α<α+(2∠B -α)=2∠B <180°(这里用到△ABC 为锐角三角形)可得sin α<sin(2B -α),同理sin β<sin(2∠C -β), sin γ<sin(2∠A -γ).这与②矛盾.类似地,若α>∠B ,可得②的左边小于右边,矛盾.所以,α=∠B .同理β=∠C ,γ= ∠A .因此,由①可知D ,E ,F 分别为BC ,CA ,AB 的中点.从而,P 为△ABC 的重心.证法二 本题的结论对△ABC 为一般的三角形都成立.我们采用复数方法予以证明.设P 为复平面上的原点,并直接用X 表示点X 对应的复数,则存在正实数α,β,γ,使得αA +βB +γC =0,且α+β+γ=1.由于D 为AP 与BC 的交点,可解得D =-αα−1A ,同样地,E =-ββ−1B ,F =-γγ−1C .利用△DEF ∽△ABC 可知CB F E B A E D −−=−−,于是 γβααβγγβααβγ−−−−−−−+−+−111111CA BC AB BC AB BC =0. 化简得:(γ2-β2)B (C -A )+(α2-γ2)A (C -B )=0.这时,若γ2≠β2,则R B C A A C B ∈−−)()(,因此,R B P A P B C A C ∈−−−−)/()()/()(,这要求P 在△ABC 的外接圆上,与P 在△ABC 内矛盾,所以γ2=β2,进而α2=γ2,得α=β=γ=31.即P 为△ABC 的重心.命题获证.八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时钟方向依次将白子标以1,.再从某个黑子起,按逆时钟方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{2,,L n 2,,n L n }1,2,,n L .证 取定标号相同的黑白棋子各一个,使得该对点所决定的劣弧中其他点(不含端点,不计黑白)的个数最少.不妨假设该标号为1.在上述所取的开劣弧中, 只有一种颜色的棋子.事实上,若两个1之间有两种颜色的棋子,则白n和黑n 都在其中,如图1,于是两个标号为n 的劣弧之间的点比两个标号为1的更少,矛盾!如果开劣弧中全是白子, 有如下两种情形:(1) 开劣弧中的白子是2,…,k ,如图2所示,则从标号为1的白子起,按逆时针方向连续n 个棋子的标号所成的集合为{}1,2,,n L . 图1(2)开劣弧中的白子是k ,k +1,…,n ,如图3所示,则从标号为1的白子起,按顺时针方向连续n 个棋子的标号所成的集合为{}1,2,,n L .图2 图3如果开劣弧中全是黑子,或者开劣弧中没有棋子,类似可得.。

相关文档
最新文档