七年级上册数学期中试卷带答案

合集下载

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了( ) A .15℃ B .18°C C .-3℃ D .-18°C2.下列各个运算中,结果为负数的是( )A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小 4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有( )A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是( )A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为( )A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是( ) A .28131x x +- B .2251x x -++ C .2851x x -+ D .2251x x --8.若|2|2a a -=,则下列结论正确的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 9.a,b,c 在数轴上的对应点的位置如图所示,化简|b -c|+|a+b|-|a|的结果是( )A .cB .c -2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____. 12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-. 14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭; (3)()25124382⎛⎫-⨯-+ ⎪⎝⎭; (4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭; (6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;℃0,6,6-,18,30-,66,…;℃1-,2,4-,8,16-,32,…;℃(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是 .(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:℃0的绝对值是0,℃A选项不合题意,℃由正整数的定义知最小的正整数是1,℃B选项符合题意,℃0的绝对值是0,但0不是正数,℃C选项不合题意,℃负数的相反数是正数,而正数大于负数,℃D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5 是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n -1=2,m+2=4,从而求出m 、n ,继而求出m -n 的值.【详解】解:由题意可知:n -1=2,m+2=4,解得:n=3,m=2,℃m -n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】℃|-2a|=2a,℃-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a 绝对值要由字母a 本身的取值来确定:℃当a是正有理数时,a的绝对值是它本身a;℃当a是负有理数时,a 的绝对值是它的相反数-a;℃当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,℃b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:℃a+(a+2)=20,℃b=a+1,℃b=a+1=9+1=10,℃x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:13.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,℃56 1515<,℃1235->-. 故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数比较大小,绝对值大的其值反而小. 14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键. 15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:℃233m m --的值为2,℃2332m m --=,℃235m m -=.℃()222021262021232021252021102011m m m m -+=--=-⨯=-=. 故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭; (3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯+-⨯ ()()161512=-++-(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=; (5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157- 【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算. 【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =, 原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭. 【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:℃2512A x my =+-,21B nx y =++,℃()()2223251231A B x my nx y +=+-+++ 2210224333x my nx y =+-+++()()21032321n x m y =+++-,℃23A B +中不含x 和y ,℃1030 230nm+=⎧⎨+=⎩,℃32103mn⎧=-⎪⎪⎨⎪=-⎪⎩,℃310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n -÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,℃第1行数的第n 个数为:()2n -;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,℃第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,℃第3行数的第n 个数为:()22n -÷. ℃第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n -÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=, ℃()()()11222192n n n -+-+-+-=, ℃()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-= ℃()()12124192n --⨯-+=,℃()162642n --==,℃16n -=,℃7n =,℃()712232--÷=,()72264-÷=-,()7122128+-÷=,℃这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可; (3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-, 故答案为:2或4-;(3)℃42a -<<, ℃42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,℃使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,℃()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤, 当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<, 当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1)2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y ,PA PB PC +=,由图可知P 在A 的右侧时不存在,℃当P 在B 点的左侧时,122y y y ---=-,解得3y =-,℃当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是( ) A .0.15- B . 1.3+ C .0 D .32- 2.计算()32-,正确结果是( )A .-6B .-8C .6D .83.1x =-是下列哪个方程的解( ) A .56x -= B .1262x += C .314x += D .440x += 4.2||3-的相反数是( ) A .32 B .23- C .32- D .23 5.下列去括号正确的是( )A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是( )A .单项式235xy 的系数是3,次数是2 B .单项式15ab -的系数是15,次数是2 C .12xy -是二次多项式 D .多项式243x -的常数项是3 7.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是( ) A .ab B .a b + C .10a b + D .100a b 8.代数式227y y ++的值是6,则2485y y +-的值是( )A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是( )A .a+b <0B .a+b >0C .a+b=0D .ab=0 10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于( )A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370 000km 2,用科学记数法表示370 000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数 63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中 12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==. (1)试猜想:135720052007++++++的值? (2)推广:13579(21)(21)++++++-++n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵30.15<2--, ∵30.15>2--, ∵这四个数中,最小的数是32-. 故选:D .【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B .【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x =-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.【详解】解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意; C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】 −2-3的相反=-2-3= -23. 故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 原式=−2a−2b ,故本选项错误;B. 原式=−2a−2b ,故本选项错误;C. 原式=−2a−2b ,故本选项正确;D. 原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号. 6.C【解析】【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意; B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意; D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍, b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B【解析】【详解】∵227y y ++=6,∵22y y +=-1,∵2485y y +-=2425y y +-() =4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∵a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370 000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】解:∵单项式3mab和4-n a b是同类项,∵n=1,m=1,+=2,∵m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∵a=5或−5,b=7或−7,又∵|a+b|=a+b ,∵a+b∵0,∵a=5或−5,b=7,∵a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12- 【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∵2a+3=0,3b -1=0,,∵3123a b =-=,, ∵311232ab =-⨯=-. 故答案为12-. 17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18. 17 21n ##12n +【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n .【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-. 【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】 解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦, =4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦, =312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦, =21258()52⎡⎤---+⨯-⎢⎥⎣⎦, =12585⎛⎫---- ⎪⎝⎭, =12585-++, =4165-. 【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-. 【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-, 把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-. 23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可. 【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式, ∵2430m n ⎧+=⎨-=⎩, 解得23m n =±⎧⎨=⎩, 当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=. 【点睛】 本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键. 24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∵|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∵|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:∵正数都大于0;∵负数都小于0;∵正数大于一切负数;∵两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:∵当a 是正有理数时,a的绝对值是它本身a;∵当a是负有理数时,a的绝对值是它的相反数﹣a;∵当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.26.(1)1008016;(2)()21n+.【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++=221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭, 221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭, ∵135720052007++++++=221200710042+⎛⎫= ⎪⎝⎭=1008016; (2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭, 由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭, 【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭. 27.(1)()2πa b +米 (2)2π44b ab +平方米 (3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和; (2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2) 两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米), 长方形的面积为ab (平方米), 因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题2022年一、单选题1.﹣2的绝对值等于( )A .2B .﹣2C .12D .± 22.在数2(3),|3|,3,|3|-----+-中,负数有( )A .0个B .1个C .2个D .3个 3.下列计算正确的是( )A .339=B .2416-=-C .880--=D .523--=-4.据旅游研究院最新数据显示,今年中秋节国庆节假期,全国实现旅游收入210500000000元,将旅游收入210500000000元用科学记数法表示为( )A .112.10510⨯元B .122.10510⨯元C .102.10510⨯元D .82.10510⨯元 5.对数字1.8045进行四舍五入取近似数,精确到0.01的结果为( ) A .1.8 B .1.80 C .1.81 D .1.805 6.下列各题正确的是( )A .336x y xy +=B .0x x --=C .222396y y y -=D .22990a b a b -= 7.多项式x 2y ﹣xy 2+3xy ﹣1的次数与常数项分别是( )A .2,﹣1B .3,1C .3,﹣1D .2,1 8.下列各式去括号正确的是( )A .(2)2-+=-+x y x yB .3(2)32-+=--x y z x y zC .()--=-x y x yD .2()2-=-x y x y9.对于任意有理数x ,经过以下运算过程,当6x =-时,运算结果是( )A .1B .2C .3D .4 10.若xy 2<0,且|x|=3,则x+2的值是( )A .﹣1B .0C .1D .211.a的平方的5倍减去3的差,应写成()A.5a2–3 B.5(a2–3)C.(5a)2–3 D.a2(5–3)12.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861B.863C.865D.867二、填空题13.10.0658≈______.(精确到百分位)14.“一个数a的3倍与2的和”用代数式可表示为________.15.比大小:﹣17___﹣0.14,|5|--_______(4)--.16.若3xm+1y与x3y是同类项,则有m=___.17.若规定2*1a b a b=-,则()2*3-的值为________________.18.已知2a-3b=-3,则4a-6b+5=_____19.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,…,它们的个位数字有什么规律,用你发现的规律直接写出31+32+33+34+…+3366的个位数字是___.三、解答题20.计算(1)20(7)|2|----,(2)23233(2)4(2)-⨯-+÷-21.化简:222(4)2(2)ab b a ab b--+-22.为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,﹣4,+3,﹣10,+3,﹣9.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米; (2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?23.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为3,求323a bcd x +-+的值.24.先化简,再求值:3ab 2﹣2(2a 2b ﹣3ab 2)+3(2a 2b ﹣3ab ),其中a =﹣2,b =12.25.如图,一个直角三角形ABC 的直角边BC =a ,AC =b ,三角形内部圆的半径为r .(1)用含a ,b ,r 的式子表示阴影部分面积(结果保留π);(2)当a =10,b =6,r =2时,计算阴影部分的面积.(结果保留π).26.已知,有理数a ,b ,c 在数轴上所对应的点分别是A ,B ,C 三点,且a ,b ,c 满足:①(b ﹣1)2+|c ﹣5|=0;①多项式12x |a |+(a ﹣2)x +7是关于x 的二次三项式.(1)a ,b ,c 的值分别是 (直接写出答案);(2)若数轴上点B 、C 之间有一动点P ,且点P 对应的数为y ,化简|y|﹣2|y ﹣5|+|y +2|27.观察下列程式,并回答下列问题:21131222-=⨯,21241333-=⨯,21351444-=⨯,21461555-=⨯,21571666-=⨯,… (1)填空2117-= ,2112021-= . (2)根据上面的规律写出第n 个式子211(1)n -=+ . (3)计算下列式子的值22221111(1)(1)(1)(1)2342021-⨯-⨯-⨯⋯⨯-参考答案1.A 【解析】 【详解】解:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义, 在数轴上,点﹣2到原点的距离是2, 所以﹣2的绝对值是2, 故选A . 2.C 【解析】 【分析】根据有理数的性质、绝对值的性质及乘方的运算即可求解判断. 【详解】①(3)--=3>0,|3|--=-3<0,23-=-9<0,|3|+-=3>0 ①负数有2个 故选C . 【点睛】此题主要考查有理数的大小判断,解题的关键是熟知有理数的运算、绝对值、乘方的运算法则. 3.B 【解析】 【分析】根据有理数的乘方和减法运算法则逐项判断即可. 【详解】解:A 、3327=,故错误,不符合题意; B 、2416-=-,故正确,符合题意; C 、8816--=-,故错误,不符合题意; D 、527--=-,故错误,不符合题意; 故选B . 【点睛】本题考查了有理数的乘方和减法,掌握运算法则是解题的关键. 4.A 【解析】 【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此判断即可. 【详解】11210500000000 2.10510⨯=.故选A . 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 5.B 【解析】 【分析】把千分位上的数字进行四舍五入即可.解:1.8045精确到0.01的结果为1.80. 故选B . 【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些. 6.D 【解析】 【分析】根据合并同类项法则分别判断. 【详解】解:A 、3x 和3y 不是同类项,不能合并,不符合题意; B 、2x x x --=-,故错误,不符合题意; C 、222396y y y -=-,故错误,不符合题意; D 、22990a b a b -=,故正确,符合题意; 故选D . 【点睛】本题考查了合并同类项法则,解题的关键是掌握运算法则. 7.C 【解析】 【分析】根据最高的项的次数叫做多项式的次数,不含字母的项叫常数项可得答案. 【详解】多项式2231x y xy xy -+-的次数与常数项分别是3和1-, 故选:C . 【点睛】此题考查了多项式,关键是掌握多项式的相关定义是解题的关键. 8.B【分析】根据去括号的法则逐一判断即可.【详解】A、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B、正确;C、括号前为“-”号,去括号时括号里的项没有变号,故错误;D、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B.【点睛】本题考查了去括号法则,当括号前是“-”时,去年“-”号及括号,括号里的各项都要变号;当括号前是“+”时,去年“+”号及括号,括号里的各项都不变号;另外运用乘法分配律时,不要出现漏乘.9.C【解析】【分析】首先认真分析找出规律,然后再代入数值计算,看明白图示所表示的运算顺序.【详解】-+=-,解:(6)332-=,3)(91⨯=,933故选:C.【点睛】本题考查了有理数的运算,解题的关键是看明白图示所表示的运算顺序.10.A【解析】【分析】注意xy2<0中的隐含条件x<0,根据绝对值的定义可求得答案.【详解】解:①xy 2<0,y 2>0, ①x <0, ①|x|=3,x =±3, ①x =﹣3①x+2=﹣3+2=﹣1. 故选A . 【点睛】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0. 11.A 【解析】 【分析】先表示a 的平方,再表示5倍,最后减3可得. 【详解】根据题意可得:5a 2−3; 故答案选A. 【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式. 12.C 【解析】 【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解. 【详解】解:根据表中数据可得:输出数据的规律为2+1nn , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C. 【点睛】本题考查的知识点是有理数的混合运算及列代数式,解题的关键是找到规律列出相应代数式.13.10.07【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:10.0658精确到百分位约等于10.07,故答案为:10.07.【点睛】本题主要考查近似数,近似数与精确数的接近程度,可以用精确度表示.理解近似数的求法是解题关键.14.3a+2 或者2+3a【解析】【分析】根据题意,列代数式即可.【详解】解:“一个数a的3倍与2的和”用代数式可表示为3a+2,故答案为:3a+2.【点睛】此题考查了列代数式,解题的关键是理解题意,正确列出代数式.15.<<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可;先化简符号,再比较即可.【详解】解:﹣17=15049,0.147350350-=-=,①5049 350350>,①﹣17<﹣0.14;①|5|--=-5<0,(4)--=4,①|5|--<(4)--,故答案为:<,<.【点睛】本题考查了绝对值,有理数的大小比较,能熟记有理数的大小比较法则和绝对值的意义是解此题的关键.16.2【解析】【分析】同类项指的是所含字母相同,并且相同字母的指数也相同,几个常数也叫同类项.根据定义解题即可.【详解】解:①3xm+1y与x3y是同类项,①m+1=3,解得m=2.故答案为:2.【点睛】本题考查同类项的定义,牢记定义是解题关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-=⨯-431=-121=11故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.-1【解析】【分析】首先根据题目入手,要求解4a-6b,所以将等式的两边同时乘以2可得4a-6b,代入即可.【详解】根据等式的性质可得4a-6b=-6所以4a-6b+5=-6+5=-1.【点睛】本题主要考查等式的性质,关键在于构造计算的式子.19.2【解析】【分析】根据题目中的数字和数字,可以写出前几个式子的值,从而可以发现这些式子结果的个位数字的变化特点,从而可以得到所求式子的个位数字.【详解】解:由题意可得,31=3,31+32=12,31+32+33=39,31+32+33+34=120,31+32+33+34+35=363,31+32+33+34+35+36=1092,…,由上可得,这列式子的结果的个位数字依次以3,2,9,0循环出现,①366÷4=91…2,①31+32+33+34+…+3366的个位数字是2,故答案为:2.【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现式子的结果个位数字的变化特点,求出所求式子的结果的个位数字.20.(1)25;(2)70【解析】【详解】解:(1)原式2072=+-,272=-,25=;(2)原式9(8)16(8)=-⨯-+÷-,722=-,70=.【点睛】本题考查了含乘方的有理数的混合运算、绝对值,解题的关键是掌握其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.21.222a b -+【解析】【分析】去括号,合并同类项即可.【详解】解:222(4)2(2)ab b a ab b --+-,=222424+2ab b a ab b ---,22=2+a b -.【点睛】本题考查整式加减混合运算,掌握整式加减混合运算的法则,关键是括号前面带有数字的处理.22.(1)12;(2)13.6.【解析】【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【详解】解:(1)根据题意得:+5﹣4+3﹣10+3﹣9=﹣12(千米)则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4×(5+4+3+10+3+9)=13.6(升)则这天上午小王的汽车共耗油13.6升.【点睛】本题考查了正数与负数,弄清题意是解答本题的关键.23.3或9-【解析】【分析】根据a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,可以得到0a b +=,1cd =,3x =±,然后利用分类讨论的方法即可求得所求式子的值.【详解】①a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为3,0a b ∴+=,1cd =,3x =±,当3x =时,0323123333a b cd x +-+=-⨯+⨯=, 当3x =-时,032312(3)933a b cd x +-+=-⨯+⨯-=-, 323a b cd x +∴-+的值为3或9-. 【点睛】本题考查有理数的混合运算,绝对值的意义,相反数和倒数的定义,解答本题的关键是求出0a b +=,1cd =,3x =±.24.9ab 2+2a 2b -9ab ;172【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=3ab 2―2(2a 2b―3ab 2)+3(2a 2b -3ab)=3ab 2―4a 2b +6ab 2+6a 2b -9ab=(3+6)ab 2+(―4+6)a 2b -9ab=9ab 2+2a 2b -9ab当a =﹣2,b =12时,原式=1119(2)249(2)422⨯-⨯+⨯⨯-⨯-⨯=172. 【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解题的关键.25.(1)212ab r π-;(2)30-4π 【解析】【分析】(1)根据题意列代数式即可;(2)把字母的值代入代数式即可得到结论.【详解】解:解:(1)S 阴影 =212ab r π-; (2)当a =10,b =6,r =2时,S 阴影 =12ab -πr 2=12×10×6-π×22=30-4π.【点睛】本题考查了根据图形列代数式,解决问题的关键是读懂题意,结合图形,利用面积的和差直接列代数式即可.26.(1)﹣2,1,5;(2)4y ﹣8【解析】【分析】(1)由非负性和二次三项式的定义可求a ,b ,c 的值;(2)由y 的取值范围,化简可求解;【详解】解:(1)①(b ﹣1)2+|c ﹣5|=0,①b =1,c =5,①多项式12x |a |+(a ﹣2)x+7是关于x 的二次三项式, ①a =﹣2,故答案为:﹣2,1,5;(2)①数轴上点B 、C 之间有一动点P ,①1<y <5;①|y|﹣2|y ﹣5|+|y+2|=y ﹣2(5﹣y )+y+2=4y ﹣8;【点睛】本题考查了多项式以及数轴,列出正确的方程是本题的关键. 27.(1)6877⨯,2020202220212021⨯;(2)211n n n n +⋅++;(3)10112021【解析】【分析】(1)观察等式中变化的数字与等式的序号之间的关系,不变的数字以及运算符号的规律即可得出结论;(2)利用(1)中得到的规律解答即可;(3)利用(2)中的规律将括号中的数据表示成两数的乘积后化简即可得出结论.【详解】解:(1)观察六个等式可以看到:等式左边第一个数字都是1,第二个数字的分子都是1,分母为等式的序号加1的平方;等式的右边为两个分数的乘积,两个分数的分母均为等式的序号加1,分子分别为等式的序号和等式的序号加2.由此规律可得第6个等式为:21681777-=⨯, 第2020个等式为21202020221202120212021-=⨯. 故答案为:6877⨯,2020202220212021⨯;(2)由(1)中的规律得第n 个等式为:2121(1)11n n n n n +-=⋅+++. 故答案为:211n n n n +⋅++.(3)22221111(1)(1)(1)(1)2342021-⨯-⨯-⨯⋯⨯-, 132420202022()()()()2233202120344152=⨯⨯⨯⨯⨯⨯⨯⨯,3544132420202022223320212021=⨯⨯⨯⨯⨯⨯⨯⨯,1202222021=⨯,10112021=.。

七年级上册数学期中试卷带答案

七年级上册数学期中试卷带答案

七年级上册数学期中试题一、单选题1.2017-的倒数是()A.12017B.2017C.2017-D.12017-2.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m3.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.736.110⨯B.90.36110⨯C.83.6110⨯D.73.6110⨯4.若等式﹣3□2=﹣1成立,则□内的运算符号为()A.+ B.﹣C.×D.÷5.下列各数中:+3、+(﹣2.1)、﹣12、﹣π、0、﹣|﹣9|、﹣0.1010010001中,负有理数有()A.2个B.3个C.4个D.5个6.下列各组算式中,其值最小的是()A.﹣3 B.﹣(﹣3)C.|﹣3| D.﹣13 7.下列代数式的书写格式正确的是()A.112bc B.a×b×c÷2 C.3x•y÷2D.52xy8.已知a,b两数在数轴上对应的点如图所示,下列结论中正确的是()A.a<b B.ab<0 C.b﹣a>0 D.a+b<09.下列各式中,不相等的是()A.(﹣2)2和22B.|﹣2|3和|﹣23|C.(﹣2)2和﹣22D.(﹣2)3和﹣2310.下面说法正确的有()个.(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b.A .1个B .2个C .3个D .4个二、填空题 11.﹣4的相反数是_____,﹣2﹣(+5)的绝对值是_____.12.比较大小:﹣12_____﹣13;(﹣2)2_____﹣|﹣2﹣1|.(填“>”或“<”)13.在数轴上,若点P 表示﹣2,则距P 点3个单位长的点表示的数是_____.14.a 是最大的负整数,b 是2的相反数,c 是平方最小的有理数,则a+b+c 的值为_____. 15.计算:(﹣2)101+(﹣2)100﹣(﹣1)2n ﹣(﹣1)2n+1=_____.(其中n 为正整数) 16.已知a+2b ab =12 ,则代数式4a+8b ab﹣3ab 2a+4b 的值为_____. 17.已知有理数a ,b ,c 满足|a |a +|b |b +|c |c =1,则abc|abc |=_____. 18.已知点A ,B 在数轴表示的有理数分别为1,﹣2,则线段AB 的中点C 表示的数为_____.若将数轴沿点C 折叠,则点A 与点B 重合,数轴上两点P 、Q 之间的距离为100(P 在Q 的左侧),且P 、Q 经过上述折叠后也重合,则点P 在数轴表示的数为_____.三、解答题19.(1)(﹣23.7)+58+(16.3)(2)﹣2﹣(﹣2)﹣2×(﹣1)(3)﹣52×(﹣15)2÷(225)(4)﹣12+32÷[(﹣2)3﹣(﹣1)2]20.(1)112×57﹣(﹣57)×212+(﹣12)÷75(2)(﹣0.25)2017×42017+(12-13)×62÷|﹣2|21.当x=﹣12,y=3时,分别求以下代数式的值:(1)x2﹣xy2;(2)2x+4xyx.22.若有理数x,y满足|y|=2,x2=64,且|x﹣y|=x﹣y,求x+y的值.23.已知x,y互为相反数,m,n互为倒数,且有|a﹣2|=3,试求下面代数式的值:a2﹣(x+y+mn)a+(x+y)2017﹣(﹣mn)2017.24.2016年第三次G20财长和央行行长会议在成都举行,订制某品牌茶叶作为纪念品,该品牌茶叶加工厂接到一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实行每日计件工资制,按计划每生产1kg茶叶50元,若超产,则超产的每千克奖20元;若每天少生产1kg,则扣除10元,那么该厂工人这一周的工资总额是多少?25.已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70.⑴请写出AB的中点M对应的数⑵现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请你求出C点对应的数.⑶若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数.参考答案1.D【解析】【分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是1 2017 .故选:D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.D【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,正数和负数可以用来表示相反意义的量再根据题意作答.【详解】解:∵水位升高6m时的水位变化记作+6m,∴水位下降6m的水位变化记作-6m,故选:D.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.3.C【解析】361 000 000=3.61×108.故选C.4.A【解析】【分析】根据有理数的加法运算法则进行计算即可得解.【详解】解:∵-3+2=-1,∴□内的运算符号为+.故选:A.【点睛】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.5.C【解析】【详解】+(﹣2.1)=﹣2.1,﹣|﹣9|=﹣9;所以负有理数有:+(﹣2.1)、12-、﹣|﹣9|,﹣0.1010010001共4个.故选C .考点:有理数.6.A【解析】【分析】 根据有理数大小比较的方法进行比较,再找到其值最小的即为所求.【详解】解:∵−(−3)=3,|−3|=3,−3<−13<3,∴其值最小的是-3.故选:A .【点睛】考查了有理数大小比较,有理数大小比较的法则:①正数都大于0; ②负数都小于0; ③正数大于一切负数; ④两个负数,绝对值大的其值反而小.7.D【解析】【分析】根据代数式的书写要求判断各选项.【详解】 解:13A 1bc bc 22选项:正确的书写格式是,本选项错误; 1B :a b c 2abc 2⨯⨯÷选项正确的书写格式是,本选项错误; 3C 3x ?y 2xy 2÷选项:正确的书写格式是,本选项错误; 5D xy 2选项:代数式合乎代数式的书写规则,本选项正确. 故选D.【点睛】本题考查了代数式的书写要求: ①两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,乘号都可以省略不写. ②字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面. ③代数式中不能出现除号,相除关系要写成分数的形式.④数字与数字相乘时,乘号仍应保留不能省略,或直接计算出结果.8.D【解析】试题解析:根据数轴,得b<a<0.A、错误;B、两个数相乘,同号得正,错误;C、较小的数减去较大的数,差是负数,错误;D、正确.故选D.考点:1.有理数大小比较;2.数轴;3.有理数的加法;4.有理数的减法;5.有理数的乘法.9.C【解析】【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.【详解】解:A、(-2)2=4,22=4,故(-2)2=22;B、|-2|3=23=8,|-23|=|-8|=8,则|-2|3=|-23|;C、(-2)2=4,-22=-4,则(-2)2≠-22;D、(-2)3=-8,-23=-8,故(-2)3=-23;故选C【点睛】此题考查了有理数的乘方及绝对值的知识,确定底数是关键,要特别注意-23和(-2)3的区别.10.C【解析】【分析】可以根据定义定理直接得结论,也可以通过举反例的办法排除.【详解】解:互为相反数的两数的绝对值是相等的,非负数的绝对值是它本身,故(1)(2)均正确;当m≥0时,|m|=m,当m<0时,|m|>m,故(3)正确;|-3|>|-1|,但-3<-1,故(4)不一定正确.故选C.【点睛】本题考查了绝对值的意义和相反数的意义.注意非负数的绝对值是它本身,非正数的绝对值是它的相反数.11.4 7【解析】【分析】根据相反数的定义,有理数的减法法则与绝对值的定义求解可得.【详解】解:-4的相反数是4,∵-2-(+5)=-2+(-5)=-7,∴-2-(+5)的绝对值是7,故答案为4,7.【点睛】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则、相反数和绝对值的定义. 12.<>.【解析】【分析】(1)本题需先通分,再根据有理数大小比较方法进行比较;(2)本题需先去掉括号和绝对值,再根据有理数大小比较方法进行比较.【详解】解:(1)∵−12=−1×32×3=−36,−13=−1×23×2=−26,且36>26,根据“两个负数比较大小,绝对值大的数反而小”,∴−12<−13.(2)(−2)2=4,−|−2−1|=−|−3|=−3,根据“正数大于负数”∴(−2)2>−|−2−1|.故答案是:(1)<(2)>.【点睛】本题主要考查了有理数的大小比较,在解题时要把有理数解答出来,再进行比较是本题的关键.比较方法主要有:1.在数轴上表示的两个数,右边的总比左边的数大; 2.正数都大于零,负数都小于零,正数大于负数; 3.两个正数比较大小,绝对值大的数大,两个负数比较大小,绝对值大的数反而小.13.﹣5或1.【解析】【分析】设距P点3个单位长的点表示的数是x,则|x+2|=3,分两种情况讨论,求出x的值. 【详解】解:设距P点3个单位长的点表示的数是x,则|x+2|=3,当x+2≥0时,原式可化为:x+2=3,解得x=1;当x+2<0时,原式可化为:−x−2=3,解得x=−5.故答案为:-5或1.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.﹣3【解析】【分析】先求出a、b、c的值,再代入求出即可.【详解】解:∵a是最大的负整数,b是2的相反数,c是平方最小的有理数,∴a=-1,b=-2,c=0,∴a+b+c=(-1)+(-2)+0=-3,故答案为-3.【点睛】本题考查了有理数的加法、相反数、有理数等知识点,能正确求出a、b、c的值是解此题的关键.15.﹣2100.【解析】【分析】根据有理数的乘方法则进行计算.【详解】解:原式=(−2)100×(−2)+(−2)100×1−(−1)2n×1−(−1)2n×(−1)=(−2)100×(−2+1)−(−1)2n×[1+(−1)]=2100×(−1)=−2100.故答案是:−2100.【点睛】本题考查乘方的计算,能根据算式特点,采用合适的运算定律使计算更简便. 16.﹣1.【解析】【分析】根据已知条件巧变形,整体代入求出结果.【详解】解:∵a+2bab =12,∴ab=2(a+2b)=2a+4b,∴4a+8bab−3ab2a+4b=2(2a+4b)2a+4b−3abab=2−3=−1.故答案为−1.【点睛】本题考查了分式的性质及整体代入的思想,解决本题的关键是把已知变形后整体代入.17.﹣1.【解析】【分析】根据|a|a +|b|b+|c|c=1,可以看出,a,b,c中必有两正一负,从而可得出|abc|abc的值.【详解】解:∵|a|a +|b|b+|c|c=1,∴a,b,c中必有两正一负,即abc之积为负,∴|abc|abc=−1.故答案是:-1.【点睛】本题考查了绝对值,有理数的乘除法,注意从所给条件中获得有用信息,即a,b,c中必有两正一负.18.﹣0.5 ﹣50.5.【解析】【分析】根据数轴数形结合或中点坐标公式即可解决问题.【详解】解:∵点A,B在数轴表示的有理数分别为1,−2,AC=CB,∴点C表示的数为1−22=−0.5.∵数轴上两点P、Q之间的距离为100且P、Q经过上述折叠后也重合,∴PC=50,∴OP=50+1 2,∴点P表示的数为−50.5.故答案为−0.5,−50.5.【点睛】本题考查数轴的应用,中点坐标公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(1)50.6;(2)2;(3)﹣512;(4)﹣2.【解析】【分析】(1)根据有理数的加减法则,原式结合后,相加即可求出值;(2)原式先计算乘法运算,再计算加减运算即可求出值;(3)原式先计算乘方运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值.【详解】(1)原式=34.3+16.3=50.6;(2)原式=﹣2+2+2=2;(3)原式=−25×125×512=−512.(4)原式=﹣1+9÷(﹣9)=﹣1﹣1=﹣2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,同时注意−12与(−1)2的区别.20.(1)52;(2)2. 【解析】【分析】(1)先算乘除再算加减,将有理数除法转化为有理数的乘法,运用乘法分配律简便计算; (2)有乘方先算乘方,化简绝对值,将()201720170.254⨯﹣转化为()20170.254⨯﹣使计算简便.【详解】解: ()155117112277225⎛⎫⎛⎫⨯--⨯+-÷ ⎪ ⎪⎝⎭⎝⎭ 15511512277227⎛⎫⎛⎫=⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭ 1115122227⎛⎫=+-⨯ ⎪⎝⎭ 7527=⨯ 52=(2)()2017201720.25462⨯+⨯÷﹣﹣()201710.2543626=⨯+⨯÷﹣ ()2017162=-+÷13=+﹣2=.【点睛】本题考查有理数的混合运算,熟悉运算法则,难点是乘方运算和运算律的运用,掌握一定的运算技巧.21.(1)194 ;(2)56.【解析】【分析】把x 与y 的值代入原式计算即可【详解】解:当x =−12,y =3时,(1)原式=14−(−12)×9=194; (2)原式=2×(−12)+4×(−12)×3(−32)3 =−7−18=56.【点睛】本题考察有理数的混合运算,将值代入后,根据运算法则进行计算.22.6或10.【解析】【分析】直接利用绝对值的性质以及偶次方的性质分析得出答案.【详解】解:∵|x ﹣y|=x ﹣y ,∴x ﹣y≥0,∵|y|=2,x2=64,∴y=±2,x=±8,∴当x=8时,y=±2,x=﹣8时,不合题意,故x+y=6或10.【点睛】此题主要考查了绝对值以及偶次方的性质,正确分类讨论是解题关键.23.21或3【解析】【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【详解】解:∵互为相反数的两个数之和为0,∴x+y=0;∵互为倒数的两个数之积为1,∴mn=1;∵互为相反数的两个数绝对值相等,∴a=5或a=﹣1.∴当a=5时,原式=52﹣(0+1)×5+02017﹣(﹣1)2017=25﹣5+0+1=21;或当a=﹣1时,原式=(﹣1)2﹣(0+1)×(﹣1)+02017﹣(﹣1)2017=1+1+0+1=3.【点睛】本题考查了相反数,倒数和绝对值的定义,互为相反数的两个数的和为0;互为倒数的两个数的积为1;互为相反数的两个数的绝对值相等;互为相反数的两个数的平方相等;0的任何不等于0的次幂都等于0;1的任何次幂都等于1;-1的奇次幂都等于-1;-1的偶次幂都等于1.24.(1)180kg;(2)8580元【解析】【分析】(1)根据七天的生产情况记录(超产为正、减产为负),可以计算每天实际产量,求和即可.(2)根据(1)中结果,算出金额,再将一周的超产、减产相加乘以10元,求出二者之和即可以得出答案.【详解】解:(1)∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg 、24kg 、22kg 、27kg 、25kg 、32kg 、21kg .∴一周总产量:29+24+22+27+25+32+21=180(kg ).答:这一周的实际产量是180kg ;(2)26×50+3×20+(26﹣2)×50+10×(﹣2)+(26﹣4)×50+(﹣4)×10+26×50+1×20+(26﹣1)×50+(﹣1)×10+26×50+6×20+(26﹣5)×50+(﹣5)×10=8580(元) 答:该厂工人这一周的工资总额是8580元.【点睛】此题考查了正数负数在实际生活中的应用,通过实际例子,可以让学生体会数学与生活的密切相关,提升学生在实际生活中发现数学、应用数学的能力.25.(1)30;(2)C 点对应的数是38;(3)经过9秒或23秒,2只电子蚂蚁在数轴上相距35个单位长度,9秒对应的数为17,23秒对应的数为59.【解析】试题分析:(1)由点A 对应的数为-10,B 点对应的数为70,可知线段AB=70-(-10)=80,80÷2=40,70-40=30,即线段AB 的中点M 所对应的数是30;(2)设t 秒后两只电子蚂蚁在点C 相遇,则结合AB=80可得: 3280t t +=,由此可解得: 16t =,则由此可得相遇时:BQ=16×2=32,由70-32=38可知,点C 所对应的数是38;(3)本题要分两种情况讨论,①相遇前相距35个单位长度;②相遇后相距35个单位长度;由此设x 秒后两只电子蚂蚁相距35个单位长度,则由题意可得:①803235x x --= ,解得: 9x =;②328035x x +-=,解得: 23x =;当9x =时,点P 所对应的数是:3×9-10=17;当23x =时,点P 所对应的数是:3×23-10=59.试题解析:(1)∵点A 对应的数为-10,B 点对应的数为70,∴AB=70-(-10)=80,∵点M 是AB 的中点,∴BM=80÷2=40,∵70-40=30,∴点M 所对应的数是30;(2)由(1)可知:AB=80,设t 秒后P 、Q 相遇,∴3t+2t=80,解得t=16;∴此时点Q 走过的路程为2×16=32,∴此时C 点表示的数为70﹣32=38.答:C 点对应的数是38;(3)设x 秒后两只电子蚂蚁相距35个单位长度,则根据题意可得:①相遇前相距35个单位长度,则803235x x --= ,解得: 9x =;②相遇后相距35个单位长度,则328035x x +-=,解得: 23x =;即经过9秒或23秒,2只电子蚂蚁在数轴上相距35个单位长度;当9x =时,点P 所对应的数是:3×9-10=17;当23x =时,点P 所对应的数是:3×23-10=59.点睛:本题本质上是一道数轴上的“相遇问题”,解题的关键点有以下几点:(1)“两地A 、B”间的距离为:AB=70-(-10)=80(单位长度);(2)解第(3)问时,要分相遇前相距35个单位长度和相遇后相距35个单位长度两种情况讨论;(3)第(3)问中最后点P 所对应的数=点P 运动的距离-点A 到原点的距离.。

七年级上册数学期中考试试题带答案

七年级上册数学期中考试试题带答案

七年级上册数学期中考试试卷一、选择题。

(每小题只有一个答案正确) 1.2-的相反数是( ) A .2-B .2C .12D .12-2.有理数﹣10的倒数是( ) A .110B .110-C .10D .﹣103.在代数式40x 2y 3、﹣4x+6、2m ﹣3n 、﹣5、a 中,单项式的个数是( ) A .1个B .2个C .3个D .4个4.下列各式一定成立的是( ) A .222(2)=-B .332(2)=-C .22-=22-D .33(2)(2)-=-5.用科学记数法表示56 700 000,正确的是( ) A .567×105B .56.7×106C .5.67×107D .5.67×1086.下列式子中正确的是( ) A .3a+b =3ab B .3mn ﹣4mn =﹣1 C .7a 2+5a 2=12a 4D .4xy ﹣5xy =﹣xy7.小华有x 元,小林的钱数是小华的一半还多2元,小林的钱数是( ) A .122x +B .1(2)2x +C .122x -D .1(2)2x -8.下列计算中,正确的是( ) A .﹣2(a+b )=﹣2a+b B .﹣2(a+b )=﹣2a ﹣b 2 C .﹣2(a+b )=﹣2a ﹣2bD .﹣2(a+b )=﹣2a+2b9.下列说法正确是. ( ) A .绝对值最小的数是1 B .绝对值最小的数0 C .绝对值最大的数是1D .-1是最大的负数10.若-1<a<0,则a,1a,2a 的大小关系是 ( ) A .a<1a<2a B .1a<a<2aC .1a<2a <aD .a<2a <1a二、填空题11.单项式323xy的系数为_____.12.用四舍五入法,把0.25036精确到0.001是_____.13.多项式5x2+3xy3﹣1的次数是_____.14.若单项式3x2y n与﹣2x m y3是同类项,则m﹣n=_____.15.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分.某班的比赛结果是胜3场、平2场、输4场,则该班得________分.三、解答题16.计算:63×(﹣49)+(﹣17)÷114.17.-0.5-(-314)+2.75-(+712)18.计算:﹣14﹣16×[2﹣(﹣3)2].19.把下列各数在数轴上表示出来,并且用“<”号把它们连结起来:-3,-(-4),0,|-2.5|,-120.某文具店在一周的销售中,盈亏情况如表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?21.先合并同类项:3x2y﹣4xy2﹣3+5x2y+2xy2+5,再计算,其中x=12-,y=3.22.把下面的有理数填入它所属于的集合的大括号内:﹣5.3,+5,20%,0,27-,﹣7,﹣|﹣3|,﹣(﹣1.8)正数集合{…}整数集合{…}分数集合{…}有理数集合{…}23.买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,甲买5个篮球、7个排球、3个足球;乙买3个篮球、6个排球、4个足球,甲、乙两人共需要花费多少元?24.一张长方形桌子可坐6人,按图3将桌子拼在一起.(1)2张桌子拼在一起可坐人,4张桌子拼在一起可坐人,n张桌子拼在一起可坐人;(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?25.电动车厂本周计划每天生产200辆电动车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如表;根据上面的记录,问:(1)星期几生产的电动车最多,是几辆?(2)生产最多的一天比生产最少的一天多多少辆?(3)若每台电动车的售价是350元,则本周的生产总额是多少元?参考答案1.B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.2.B 【分析】利用倒数的定义得出答案. 【详解】解:有理数﹣10的倒数是:﹣110. 故选:B. 【点睛】本题主要考查了倒数的定义,熟练掌握概念是解题的关键. 3.C 【分析】利用单项式的定义得出答案. 【详解】解:在代数式40x 2y 3、﹣4x+6、2m ﹣3n 、﹣5、a 中,单项式有:40x 2y 3、﹣5、a 共3个. 故选:C. 【点睛】本题主要考查了单项式的定义,熟练掌握概念是解题的关键. 4.A 【分析】根据有理数的乘方与去绝对值运算逐项分析即可. 【详解】解:A. 222=(2)=4-,故正确;B. 328=,3(2)=-8-则332(2)≠-,故错误;C. 22-=-4,22-=4则22-≠22-,故错误;D. 33(2)-8(2)=8-=-,则33(2)(2)-≠-,故错误. 故选A. 【点睛】此题考查了有理数的运算,熟练掌握运算法则是解题的关键. 5.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:56 700 000=5.67×107,故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【分析】分别根据合并同类项的法则逐一判断即可.【详解】解:A.3a与b不是同类项,所以不能合并,故本选项不合题意;B.3mn﹣4mn=﹣mn,故本选项不合题意;C.7a2+5a2=12a2,故本选项不合题意;D.4xy﹣5xy=﹣xy,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了同类项的运算,熟练掌握同类项的概念是解题的关键.7.A【解析】试题分析:小华存款的一半为12x元,则小林的存款数为(12x+2)元,故选A.8.C【详解】A、﹣2(a+b)=﹣2a﹣2b,故错误;B、﹣2(a+b)=﹣2a﹣2b,故错误;C、﹣2(a+b)=﹣2a﹣2b,正确;D、﹣2(a+b)=﹣2a﹣2b,故错误,故选C.【点睛】本题考查了去括号法则,熟练掌握去括号法则是解题的关键. 9.B 【详解】A 选项:绝对值最小的数是0,故A 选项错误;B 选项:绝对值最小的数是0,故B 选项正确;C 选项:不存在绝对值最大的数,故C 选项错误;D 选项:-1是最大的负整数,不存在最大的负数,故D 选项错误. 故本题应选B. 点睛:与本题相关的几个重要知识需要熟练掌握:不存在最大的正数也不存在最小的正数;不存在最大的负数也不存在最小的负数;1是最小的正整数;-1是最大的负整数;0是绝对值最小的数,也是最小的自然数,但是0既不是正数也不是负数. 10.B 【解析】 ∵10a -<<,∴可设12a =-,则此时:12a =-,214a =,∵11242>->-, ∴21a a a<<. 故选B.点睛;对于这道题,采用在所给的取值范围内取特殊值进行验证的方式帮助判断是一种简单可行的方法. 11.23-【分析】单项式的系数是单项式里面的数字因数. 【详解】解:﹣323xy 的系数是﹣23.故答案为:﹣23.【点睛】本题考查了对单项式的有关概念,注意:单项式的系数是指单项式的数字因数,单项式的次数是指单项式中所有字母的指数的和.12.0.250.【分析】把万分位上的数字3进行四舍五入即可.【详解】解:用四舍五入法,把0.25036精确到0.001是0.250,故答案为:0.250.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.4.【分析】利用多项式的次数确定方法分析得出答案.【详解】解:多项式5x2+3xy3﹣1的次数是:3xy3的次数为4.故答案为:4.【点睛】本题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.14.﹣1.【分析】根据同类项的概念求解.【详解】解:∵单项式3x2y n与﹣2x m y3是同类项,∴m=2,n=3,则m﹣n=2﹣3=﹣1.故答案为﹣1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.7【详解】分析:足球循环赛,规则是:胜一场得+3分,平一场得+1分,输一场得﹣1分,根据题意可列算式计算.详解:根据题意可列算式为:3×3+2×1+4×(﹣1)=9+2﹣4=7,即该班得7分.故答案为7.点睛:本题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.16.-30【分析】根据有理数的混合运算顺序和运算法则计算可得.【详解】解:原式=﹣28+(﹣17)×14=﹣28﹣2=﹣30.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握掌握有理数的混合运算顺序和运算法则.17.-2【分析】首先将同分母的进行合并计算,然后进行有理数的加减法计算【详解】解:原式=1131111332(7)(7)(32)24422244-+++-=--++=-8+6=-2考点:有理数的计算18.16;【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.本题解析:原式=﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1+=19.数轴见解析;-3<-1<0<|-2.5|<-(-4)【分析】先分别把各数化简为-3,4,0,2.5,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【详解】解:由题意-3<-1<0<|-2.5|<-(-4)20.所以星期六盈利了,盈余38元.【分析】利用加减法法则,先计算星期六的盈亏钱数,再怕门店星期六的盈亏.【详解】解:458﹣188+27.8+70.3﹣200﹣138.1+8=38因为38>0,所以星期六盈利了,盈余38元.【点睛】本题考查了有理数的加减及正负数的意义,利用加减法计算出星期六的钱数是解决本题的关键.21.8x2y﹣2xy2+2,17.【分析】原式合并同类项得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=8x2y﹣2xy2+2,当x=﹣12,y=3时,原式=6+9+2=17.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.见详解【分析】根据有理数的分类填空.【详解】解:﹣|﹣3|=﹣3,﹣(﹣1.8)=1.8.正数集合{+5,20%,﹣(﹣1.8)}整数集合{+5,0,﹣7,﹣|﹣3|}分数集合{﹣5.3,20%,27-,﹣(﹣1.8)}有理数集合{﹣5.3,+5,20%,0,27-,﹣7,﹣|﹣3|,﹣(﹣1.8)}.【点睛】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.23.甲、乙两人共需要花费(8x+13y+7z)元【分析】根据题意,可以计算出甲、乙两人共需要花费多少元,本题得以解决.【详解】解:由题意可得,(5x+7y+3z)+(3x+6y+4z)=5x+7y+3z+3x+6y+4z=(8x+13y+7z)(元),即甲、乙两人共需要花费(8x+13y+7z)元.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.24.(1)8,12,(4+2n);(2)共可坐112人.【分析】(1)根据题目中的图形,可以发现所座人数的变化规律,从而可以解答本题;(2)根据(1)中的发现和题意,可以求得40张桌子可拼成8张大桌子,共可坐多少人. 【详解】解:(1)由图可得,2张桌子拼在一起可坐:4+2×2=4+4=8(人),4张桌子拼在一起可坐:4+2×4=4+8=12(人),n张桌子拼在一起可坐:(4+2n)人;(2)由题意可得,40张桌子可拼成8张大桌子,共可坐:(4+2×5)×8=(4+10)×8=14×8=112(人),即40张桌子可拼成8张大桌子,共可坐112人.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中所座人数的变化规律,利用数形结合的思想解答.25.(1)星期五生产的电动车最多,是21辆;(2)生产最多的一天比生产最少的一天多35辆;(3)则本周的生产总额是482650元.【分析】(1)根据表格列出算式,计算即可得到结果;(2)找出产量最多与最少的,相减即可得到结果;(3)根据表格中的数据先求出本周每天的产量,乘以售价可得结论.【详解】解:(1)200+10=210,答:星期五生产的电动车最多,是21辆;(2)根据题意得:10﹣(﹣25)=35,则生产最多的一天比生产最少的一天多35辆;(3)﹣5+7﹣3+4+10﹣9﹣25=﹣21,200×7﹣21=1400﹣21=1379,1379×350=482650,则本周的生产总额是482650元.【点睛】本题考查的是正数与负数.弄清题中表格中的数据是解本题的关键.。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。

七年级数学上册期中考试试卷带答案

七年级数学上册期中考试试卷带答案

七年级数学上册期中考试试卷带答案(试卷满分:150分;考试时间:120分钟)一.选择题:本题共12小题,每小题4分,共48分。

1.下列各组数中,数值相等的是( )A.32和23B.-23和(-2)3C.-32和(﹣3)2D.-(3×2)2和﹣3×22 2.当代数式x+3x+1的值为2022时,代数式2x+6x -3的值为( ) A.2022 B.4037 C.4039 D.20193.一个数a 精确到十分位的结果是3.6,那么这个数a 的范围满足( )A.3.55≤a ≤5.3B.3.55<a ≤3.65C.3.55<a<3.65D.3.55≤a<3.65 4.观察下列各式:x ,ab3,﹣1,x 2﹣1,﹣x2+y ,S=πr 2,其中整式有( )A.3个B.4个C.5个D.6个 5.下列结论中正确的是( ) A.单项式πr 24的系数14,次数是4 B.单项式﹣xy 2z 的系数是﹣1,次数是4C.多项式2x 2+xy 2+3是再次三项式D.单项式m 的次数是1,没有系数 6.有理数a 、b 在数轴上的位置如图所示,则下列选项正确的是( )A.a+b<0B.b -a>0C.ab>0D.|a |>|b |7.计算=( )A.3n+2mB.n 3+2mC.3n +2mD.3n+m 2 8.请仔细分析下列赋予4a 实际意义的例子中错误的是( ) A.若葡萄的价格是4元/kg ,则4a 表示买akg 葡萄的金额 B.若a 表示一个正方形的边长,则4a 表示这个正方形的周长C.若4和a 分别表示一个两位数中的十位数字和个位数字,则4a 表示这个两位数D.某款凉鞋进价为a 元,销售这款凉鞋盈利100%,则销售两双的销售额为4a 元9.近几年智能手机已成为人们生活中不可缺少的一部分,智能手机价格也不断地降低.某品牌智能手机原售价为m 元,现打九折,再让利n 元,那么该手机现在的售价为( ) A.(109m ﹣n )元 B.(910m -n )元 C.(9m -11)元 D.(9n -m )元10.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的面积是( )A.a 2+3aB.2a 2+6aC.2a 2+3aD.a 2+6a11.用你发现的规律解答下列问题:11×2=1﹣12,12×3=12﹣13,13×4=13﹣14...,探究11×2+12×3+13×4+...+1n (n+1)=( ),A.1+1nB.1-1n+1C.1-1nD.1+1n+112.在多项式:a -b+c -d -e 中,任选两个字母,在两侧加括号,称为第一轮"加括号操作".例如:选择b ,d 进行"加括号操作",得到a -(b+c -d)-e=a -b -c+d -e .在第一轮"加括号操作"后的式子中进行同样的操作,称为第二轮"加括号操作",按此方法,进行第n(n ≥1)轮"加括号操作".下列相关说法正确的个数是:①存在某种第一轮"加括号操作"的结果与原多项式相等;②不存在第k(k ≥1)轮"加括号操作",使得结果与原多项式的和为0;③对原多项式进行第一轮"加括号操作"后,共有4种不同结果.其中正确的个数为( )A.0个B.1个C.2个D.3个二.填空题:本题共6小题,每题4分共24分13.已知:a 、b 互为倒数,c 、d 互为相反数,且都不为零,|m |=2,n 是最大的负整数,求式子2ab ﹣c+d2024+m+n+cd 的值 .14.已知x=12,y=﹣5,求代数式x 2-2xy+y 2的值为 .15.如图,某学校的操场形状是由一个长方形和两个半圆组成.整个操场的面积用代数式表示为 (用含π代数式表示)16.如果对于任何有理数a 、b 定义运算"△"如下:a △b=1a ÷(﹣b2),如2△3=12÷(﹣32)=﹣13,求(﹣2△7)△4的值 .17.甲、乙两人各买一本相同的书(都按原价),甲用去了他所带钱的60%,乙用去了他所带钱的25,则甲、乙两人所带钱的比是 .18.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第23个图形需要黑色棋子的个数为 .三.解答题 19.计算题:(每题4分,共12分)(1)-24+9÷(34)2+3×(﹣1)5 (2)﹣|﹣23|﹣|﹣12×23|﹣|13﹣14| (3)(﹣22)÷49×(﹣23)220.先化简,再求值:(6分)已知A=x 2-xy+y 2,B=x 2+xy+3y 2,其中x=23,y=32.求A+(B -2A)的值.21.(12分)当今社会,随着生活水平的提高,人们越来越重视自己的身心健康,注重锻炼身体.某公司计划购买50个羽毛球拍和x 个羽毛球,某体育用品商店每个羽毛球拍定价80元,每个羽毛球定价5元,经协商拟定了两种优惠方案如下(两个优惠方案不可混用): 方案一:每买一个羽毛球拍就赠送2个羽毛球; 方案二:羽毛球拍和羽毛球都按定价的90%付款, (1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x 的代数式分别把两种方案的费用表示出来.22.(12分)某养鱼专业户准备挖一个面积为2000m 2的长方形鱼塘.(1)用式子表示鱼塘的长y(m)与宽x(m)的关系;长y(m)与宽x(m)成什么比例关系?(2)由于受场地的限制,鱼塘的宽最多只能挖20m ,当鱼塘的宽是20m 时,鱼塘的长为多少米?23.(12分)分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a :当a=0时,|a|=0:当a<0时,|a|=-a .用这种方法解决下列问题: (1)当a=5时,求|a |a 的值. (2)当a=-2时,求a |a |的值.(3)已知a ,b 是有理数,当ab>0时,试求a|a |+|b |b 的值.24.(12分)学习了整式的加减运算后,老师给同学们布置了一个任务:已知a=2,自行给b 取一个喜欢的数.先化简下列式子,再代入求值. (5a 2b -2ab 2+6a)-3(2a 2b -3a)+2(ab 2+12a 2b)﹣1(1)小杜、小康、小磊三人经过化简计算,后来交流结果时发现,虽然三人给b 取的值都不同,但计算结果却完全一样.请解释出现这种情况的原因,并求这个计算结果. (2)已知代数式A=2x 2+5xy -7y -3,B=x 2-xy+2. ①当x=-1,y=2时,求A -3B 的值;②若A -2B 的值与y 的取值无关,求x 的值.25.(12分)已知二项式﹣x 2y 2-2中,含字母的项的系数为a ,多项式的次数为b ,且a 、b 在数轴上对应的点分别为A 、B ,点C 为数轴上任意一点,对应的数为C.(1)a= ,b= 。

七年级上册数学期中考试试题含答案

七年级上册数学期中考试试题含答案

七年级上册数学期中考试试卷2022年一、单选题1.-5的相反数是( )A .15-B .15C .5D .-5 2.下列运算正确的是( )A .2334a a a +=B .()33a b a b --=-+C .540a a -=D .2222a b a b a b -=-3.下列是一元一次方程的是( )A .231x y -=B .2331x x -=+C .35x +D .2320x x -+= 4.若233n a b +-与144m b a -可以合并,那么2m n -的值是( )A .2-B .1-C .0D .15.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为( )A .6750吨B .67500吨C .675000吨D .6750000吨 6.某商品先按批发价a 元提高20%零售,后又按零售价降低20%出售,则它最后的单价是( )元.A .aB .0.8aC .0.96aD .1.44a7.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是( ) A .28131x x +- B .2251x x -++ C .2851x x -+ D .2251x x -- 8.有理数a ,b 在数轴上的对应点的位置如图所示,则下列选项正确的是( )A .0a b +>B .0a b +<C .-0a b <D .-0a b =9.定义运算2a b ab a b =--★,如13132132=⨯-⨯-=★,则()24-★的值为( ) A .8 B .-8 C .16 D .-1610.下列说法:①符号相反的数互为相反数,①两个四次多项式的和一定是四次多项式:①若abc >0,则a b c a b c++ 的值为3或-1,①如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A .4个B .3个C .2个D .1个二、填空题11.比较大小:13-______0.3-(填“>”或“<”)12.计算:(﹣124)÷(237348-+)=_____.13.若352x y 与153n x y +-是同类项,则n =______.14.已知方程()2350m m x ---=是关于x 的一元一次方程,则m 的值是______.15.已知2320210a b -+=,则462021a b -+=______.16.如图是用大小相等的小正方形拼成的一组图案:观察并探索:第(2021)个图案中有小正方形的个数是______.17.已知2m n x y 与43x y 是同类项,则m -n=________.三、解答题18.计算.(1)()121821---;(2)()()20212223251--⨯-----.19.化简下列各式.(1)222262x y xy x y x y +--.(2)()()5234x y x y ++-.20.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.21.先化简,后求值.求()()22222512a b ab ab a b +--+-的值,其中1a =,2b =-.22.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?23.某城市鼓励市民节约用水,对自来水用户按以下标准收费:若每月用户用水不超过a 立方米,则每立方米的水价按3元收费;若超过a 立方米,则超过的部分每立方米按4元收费.(1)某用户居民在一个月内用水20立方米,那么他该缴多少水费?(2)在第(1)小题的基础上,若15a =,求该用户的水费是多少元?24.小明同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B -,求得结果是C .若213322B x x =+-,2325C x x =--+,请你帮助小明求出2A B -的正确答案.25.(1)一天数学老师布置了一道数学题:已知2021x =,求整式()()()322332678323541x x x x x x x x x --+---+-+++-的值,小明观察后提出:“已知2021x =是多余的”,你认为小明的说法有道理吗?请解释.(2)已知整式2531M x ax x =+--,整式M 与整式N 之差是234x ax x +-.①求出整式N .①若a 是常数,且2M N +的值与x 无关,求a 的值.26.如图,在数轴A 、B 上两点对应的数分别为−40、20,数轴上一点P 对应的数为x . (1)若点P 在A 、B 两点之间,则点P 到A 、B 两点的距离的和为(2)如图,数轴上一点Q 在点P 的右侧,且与点P 始终保持相距18个单位长度.当x 取何值时,点A 与点P 的距离、点B 与点Q 的距离的和为48?(3)结合对前面问题的思考,若()()42530x x y y ++-⋅+-≤,求2x y -的最大值和最小值.参考答案1.C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5.故选C .【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2.D【解析】【分析】根据同类项,合并同类项,去括号法则判断即可.【详解】解:A、3a2和a不能合并,故本选项错误;B、结果是-3a+3b,故本选项错误;C、结果是a,故本选项错误;D、结果是-a2b,故本选项正确;故选:D.【点睛】本题考查了同类项,合并同类项,去括号法则的应用,能熟记法则是解此题的关键.3.B【解析】【分析】一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式【详解】A:含有两个未知数x和y,不满足只含有一个未知数B:移项,合并同类项后为40x+=,符合一元一次方程的定义C:35x+为代数式,不是一元一次方程D:2320-+=不满足未知数的最高次数为1x x故选择:B【点睛】明确一元一次方程的定义是解题的关键4.C【解析】【分析】利用3an+2b3与4bm-1a4可以合并得出关于m,n的方程,进而得出m,n的值,然后代值计算即可得出答案.【详解】解:①-3an+2b3与4bm-1a4可以合并,①2413nm+=⎧⎨-=⎩,解得:42mn=⎧⎨=⎩,①m-2n=4-2×2=0.故选:C.【点睛】本题考查了合并同类项,掌握同类项的定义是解题的关键.5.B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.6.C【解析】【分析】先求出零售价,然后求出降价之后的价钱.【详解】解:零售价为:1.2a,降价之后价钱为:1.2a(1-20%)=0.96a.故选C .【点睛】本题考查了列代数式的知识,解答本题的关键是按照步骤分别求出零售价和降价之后的价钱.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.A【解析】【分析】由数轴可知:b <0<a ,结合有理数a 、b 在数轴上的对应点的位置进行求解即可.【详解】由数轴观察到-1<b <0<1<a ,所以a+b >0,故A 正确;a+b >0,故B 错误;a -b >0,故C 、D 错误.故选:A .【点睛】本题考查了数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.9.A【解析】【分析】由新定义的运算法则进行计算,即可得到答案.【详解】解:①2a b ab a b =--★,①()()()242422488-=-⨯-⨯--=-=★;故选:A .【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行解题. 10.D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;①两个四次多项式的和不一定是四次多项式,不符合题意;①若abc>0,则abca b c ++的值为3或一1,符合题意;①如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 11.<【解析】【分析】两个负数比较大小,其绝对值大的反而小,据此判断即可.【详解】解:①110.333-==,|0.3|0.3-=, 又①10.33>, ①10.33-<-, 故答案为:<.【点睛】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.﹣1 19【解析】【分析】根据有理数的加减法和除法法则计算即可.【详解】解:原式=116182124242424⎛⎫⎛⎫-÷-+⎪ ⎪⎝⎭⎝⎭=1192424⎛⎫-÷⎪⎝⎭=1242419⎛⎫-⨯⎪⎝⎭=1 19 -故答案为:﹣1 19.【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则是关键.13.2【解析】【分析】根据同类项的意义列方程求解即可.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:由同类项的意义得,n+1=3,解得:n=2,故答案为:2.【点睛】本题考查同类项的意义,掌握含有的字母相同且相同字母的指数也相同的项是同类项是解决问题的关键.14.-3【解析】【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【详解】解:①(m -3)x |m |-2-5=0是关于x 的一元一次方程,①m−3≠0且|m|−2=1,解得m=-3.故答案为:-3.【点睛】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义.15.-2021【解析】【分析】先将已知等式变形为232021a b -=-,再将所求式子变形,整体代入计算即可.【详解】解:①2320210a b -+=,①232021a b -=-,①()()46202122320212202120212021a b a b -+=-+=⨯-+=-,故答案为:-2021.【点睛】本题考查了代数式求值,解题的关键是掌握整体思想的熟练运用.16.8081【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(n -1)+1个小正方形.【详解】解:由图片可知:第(1)个图案中有4×0+1=1个小正方形,第(2)个图案中有4×1+1=5个小正方形,第(3)个图案中有4×2+1=1个小正方形,…①规律为小正方形的个数=4(n-1)+1=4n-3.n=2021时,小正方形的个数=4n-3=8081.故答案为:8081.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n-1)+1个小正方形.17.3【解析】【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.【详解】①2x m y n与3x4y是同类项,①m=4,n=1,①m-n=4-1=3.故答案为3.【点睛】此题主要考查了同类项,正确把握定义是解题关键.18.(1)9(2)0【解析】【分析】(1)从左往右计算即可求解;(2)先算乘方,再算乘法,最后算加减.(1)解:()121821---=121821+-=3021-=9;(2)()()20212223251--⨯-----=()4631-+---=4631-+-+=0【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)3x 2y+xy 2;(2)11x -7y【解析】【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项.【详解】解:(1)6x 2y+xy 2-x 2y -2x 2y=(6x 2y -x 2y -2x 2y )+xy 2=3x 2y+xy 2;(2)(5x+y )+2(3x -4y )=5x+y+6x -8y=11x -7y .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.20.3或7【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:①a ,b 互为相反数,①a+b=0,①c ,d 互为倒数,①cd=1,①|m|=2,①m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m 2-(-1)+|a+b|-cdm 的值为3或7.【点睛】本题主要考查的是有理数的混合运算,求代数式的值、相反数、倒数、绝对值,求得a+b=0,cd=1,m=±2是解题的关键.21.22333a b ab --+,-3【解析】【分析】原式去括号、合并同类项化简,再将a ,b 的值代入计算可得.【详解】解:原式=2222225552a b ab ab a b +-+--=22333a b ab --+,当a=1,b=-2时,原式=()()223123123-⨯⨯--⨯⨯-+=3-【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握去括号、合并同类项法则. 22.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是【解析】【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%.答:这个小组男生百米测试的达标率是62.5%;(2)1.20.7010.30.20.30.58-++--+++=﹣0.1(秒),14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键.23.(1)若a≥20,应缴60元;若a<20,应缴(80-a)元(2)65元【解析】【分析】(1)分a≥20,a<20两种情况,根据收费方案列出水费;(2)将a=15代入(1)中对应情况求值即可.(1)解:由题意可得:若a≥20,则该缴3×20=60元;若a<20,则该缴3a+4(20-a)=(80-a)元;(2)当a=15时,该用户的水费是80-15=65元.【点睛】此题主要考查了列代数式,代数式求值,关键是正确理解题意,理清题目中的收费方式.24.-92x2+12x+1.【解析】【分析】将B代入A-2B中计算,根据结果为C,求出A,列出正确的算式,去括号合并即可得到正确结果.【详解】解:根据题意得:A-2B=C,即A-2(12x2+32x-3)=-3x2-2x+5,所以A=-3x2-2x+5+2(12x2+32x-3)=-3x2-2x+5+x2+3x-6 =-2x2+x-1,则2A-B=2(-2x2+x-1)-(12x2+32x-3)=-4x2+2x-2-12x2-32x+3=-92x2+12x+1.【点睛】本题考查了整式的加减,属于常考题型,熟练掌握整式加减的运算法则是解题的关键.25.(1)有道理,过程见解析;(2)①-2x2+(a-2)x-1;①8 11【解析】【分析】(1)根据整式的加减,可得答案.(2)①根据题意,可得N=(x2+5ax-3x-1)-(3x2+4ax-x),去括号合并即可;①把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【详解】解:(1)整式的值与x的取值无关,所以小明说的有道理,理由如下:原式=x3-6x2-7x+8+x2+3x-2x3+3+x3+5x2+4x-1=(1-2+1)x3+(-6+1+5)x2+(-7+3+4)x+(8+3-1)=10,由此可知整式的值与x 的取值无关,所以小明说的有道理.(2)①N=(x 2+5ax -3x -1)-(3x 2+4ax -x )=x 2+5ax -3x -1-3x 2-4ax+x=-2x 2+(a -2)x -1;①①M=x 2+5ax -3x -1,N=-2x 2+(a -2)x -1,①2M+N=2(x 2+5ax -3x -1)-2x 2+(a -2)x -1=2x 2+10ax -6x -2-2x 2+(a -2)x -1=(10a -6+a -2)x -3=(11a -8)x -3由结果与x 值无关,得到11a -8=0,解得:a=811. 【点睛】本题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.26.(1)60;(2)43x =-或5;(3)最大值为2,最小值为-14.【解析】【分析】(1)用B 点表示的数减去A 点表示的数即可求解;(2)根据题意Q 点表示的数为()18x +,分为四种情况讨论:①P 在A 点左边、①P Q 、都在A B 、点中间、①P 在A B 、中间,Q 在B 点右边、①P Q 、都在B 点右边,列出方程求解即可;(3)根据绝对值的意义和前两问的结果得到426x x ++-≥,55y y +-≥,结合题意得到()()42530x x y y ++-+-=,根据数轴解该方程即可,然后分类讨论即可求解.【详解】(1)()204060--=①距离为60个单位长度;(2)①若P 在A 点左边,则点P 与点A 的距离为40x --,点Q 与点B 的距离为()()201840201848x x x -+--+-+=,得43x =-,①若P Q 、都在A B 、点中间,此时距离和为601842-=,不符合题意;①若P 在A B 、中间,Q 在B 点右边,则点P 与点A 的距离为()40x --,点Q 与点B 的距离为()1820x +-,()()40182048x x --++-=,得5x =,①若P Q 、都在B 点右边,此时仅点P 与点A 的距离60>,不符合题意; 综上所述,当43x =-或5时,满足题意.(3)由前面可知,426x x ++-≥,55y y +-≥, ①()()42530x x y y ++-+-≥,①已知()()42530x x y y ++-+-≤,①()()42530x x y y ++-+-=,①42x -≤≤,05y ≤≤,当2x =,0y =时,2x y -有最大值:2-0=2,当4x =-,5y =时,2x y -有最小值:42514--⨯=-, 综上所述,2x y -的最大值为2,最小值为-14.。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.如果温度上升2℃记作+2℃,那么气温下降10℃记作( )A .10℃B .-10℃C .-8℃D .12℃2.12021-的倒数是( )A .12021 B .-2021 C .12021- D .20213.下列数:5,0,-2,-0.01,其中最小的数是( )A .5B .0C .-2D .-0.014.数240940937用科学记数法表示为( )A .24.0940937×107B .2.40940937×109C .0.240940937×109D .2.40940937×1085. 下列结论正确的是( )A .xyz 的系数为0B .3x 2-x+1 中一次项系数为-1C .a 2b 3c 的次数为5D .a 2-33是一个三次二项式6.下列各组单项式中,为同类项的是( )A .a 3与a 2B .212a b 与2ba 2 C .2xy 与2x D .﹣3与a7.下列计算正确的是( )A .-32=9B .3a -a=2C .2a 3+a 2=3a 5D .-a 2b+ 3a 2b=2a 2b 8.下列各数:3,0,-5,0.48,-(-7),-|-8|,()24-中,非正数有( ) A .1个 B .2个 C .3个 D .4个 9.实数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A .b >aB .a >bC .-a >-bD .无正确答案 10.如图是一个数值的运算程序,若输出y 的值为11,则输入的数是( )A .3B .-3C .3或-3D .9二、填空题11.我市某天最高气温是15℃,最低气温是零下3℃,那么当天的最大温差是_____℃.12.若(a-2)2+5b+=0,那么a+b=____________ .13.-15的倒数是__________,相反数是________,绝对值是__________.14.代数式-13xay与6x3yb是同类项,则a+b=__________ .15.若式子x-3y的值是1,则式子1-x+3y的值是___________.16.把-2.3962精确到百分位的近似数是_____________.17.在数轴上,与表示数-2的点的距离是5的点表示的数是____________.18.规定符号“℃”的意义为:a℃b=ab-a2,那么-2℃5=___________.三、解答题19.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.-(-72),-3.5,0,2-,-1.20.计算下列各题(1)(-1)3-(-6)+2-3÷(-13)(2)(2119418-+)÷(-118)(3)-2.7×56+7.9×(-56)+6×5.6(4)-14+16×[2-(-3)2]21.化简(1)(4x2y-3xy2)-2(1+2x2y-32xy2)(2)4y2-[3y-(3-2y)+2y2] 22.解答下列问题(1)先化简,再求值:x2-2(x2+13y)-(-3x2+13y),其中x=-5,y=2;(2)已知A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3,求A-(B+C)的值,其中x=-2.23.如图,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c .化简a b a c b c --+--.24.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(-5x 2+6x -1)-3,其中x=2021”.小明做题时把“x=2021”错抄成了“x=-2021”但他计算的结果却是正确的,请你说明这是什么原因.25.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.参考答案1.B【解析】【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“-”,据此解答即可.【详解】解:℃温度上升2C ︒,记作2C ︒+,℃气温下降10C ︒,记作10C ︒-.故选:B .【点睛】此题主要考查了正负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“-”.2.B【解析】【分析】直接利用倒数的定义得出答案.【详解】12021-的倒数是:2021-, 故选:B .【点睛】本题考查了倒数的定义(两个数乘积为1,称这两个数互为倒数),正确掌握相关定义是解题的关键.3.C【解析】【分析】根据负数小于0小于正数,两个负数比较大小,绝对值大的反而小即可得出最小的数.【详解】解:-2,-0.01两个数小于5,0,因为,|-2|=2,|-0.01|=0.01,2>0.01,所以,-2<-0.01,最小的数是-2,故选:C .【点睛】此题考查了有理数大小比较,掌握比较两个负数的方法是解题关键.4.D【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解: 8240940937 2.4094093710=⨯,故选:D .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 5.B【解析】【详解】试题分析:A 、xyz 的系数为1,错误;B 、3x 2﹣x+1中一次项系数为﹣1,正确;C 、a 2b 3c 的次数为6,错误;D 、a 2﹣33是一个二次二项式,错误,故选:B考点:多项式与单项式.6.B【解析】【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.7.D【解析】【分析】分别计算,然后判断即可.【详解】解:-32=-9,故A选项计算错误,不符合题意;3a-a=2a,故B选项计算错误,不符合题意;2a3和a2不是同类项,不能合并,故C选项计算错误,不符合题意;-a2b+ 3a2b=2a2b,故D选项计算正确,符合题意.故选:D.【点睛】本题考查乘方运算,合并同类项.熟练掌握相关运算法则是解题关键.8.C【解析】【分析】先将能化简和计算的数据进行化简和计算,然后根据非正数的定义,非正数即负数和0,可得答案.【详解】解:-(-7)=7,-|-8|=-8,()24-=16又℃非正数即负数和0℃0,-5,-|-8|是非正数,共3个,故选:C.【点睛】本题考查双重符号的化简,绝对值的化简和有理数的乘方计算,同时考查非正数的定义,掌握化简及计算方法和非正数即负数和0是本题的解题关键.9.B【解析】【分析】根据数轴上表示的数,它们从左往右的顺序,就是它们由小到大的顺序,得出b<0<a,再由绝对值的定义,可知|b|>|a|,从而得出结果.【详解】由数轴上a,b两点的位置可知b<0<a,|b|>|a|,℃a < -b,-a >b,-a <-b,b < a,故选B.【点睛】数轴上表示的数的特点:原点左边的数为负数,右边的数为正数,右边的数总比左边的大.10.C【解析】【分析】本题逆向思考,先用11减去3得到+3前的值,再加上1得到-1前的值,最后开平方求得输入的值.【详解】=±.3故选C.【点睛】考查了有理数的混合运算,本题采用逆向思考的方法解题.11.18【解析】【分析】先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.【详解】解:15-(-3)=15+3=18.故答案为:18.【点睛】本题主要考查有理数的减法运算,熟练掌握运算法则是解题的关键.12.-3【解析】【分析】根据非负数的性质求出a和b的值,进而求得代数式的值.【详解】解:℃(a-2)2+5b+=0,℃a-2=0,5b+=0,解得a=2,b=-5,℃a+b=2-5=-3.故答案为:-3.【点睛】本题主要考查了非负数的性质,掌握非负数的性质:几个非负数的和等于0,则每个数等于0,是解题的关键.13.-515##0.215##0.2【解析】【分析】根据倒数,绝对值和相反数的定义进行求解即可.【详解】解:15-的倒数是-5,相反数是15,绝对值是15.故答案为:5-;15;15.【点睛】本题主要考查了相反数,倒数和绝对值,解题的关键在于能够熟知三者的定义.14.4【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得a,b的值,再代入所求式子计算即可.【详解】解:根据题意得,a=3,b=1,℃a+b=3+1=4.故答案为:4.【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.15.0【解析】【分析】原式后两项提取-1变形后,将已知代数式的值代入计算即可求出值.【详解】解:℃x-3y=1,℃原式=1-(x-3y)=1-1=0,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.-2.40【解析】【分析】把千分位上的数字6进行四舍五入即可.【详解】解:用四舍五入法将-2.3962精确到百分位的近似数为-2.40.故答案为:-2.40.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.17.-7或3【解析】【分析】由于所求点在2-的左侧和在2-的右侧两种情况讨论.-的哪侧不能确定,所以应分在2【详解】--=-;解:由题意得:当所求点在2-的左侧时,则距离5个单位长度的点表示的数是257当所求点在2-的右侧时,则距离5个单位长度的点表示的数是253-+=.故答案为:-7或3.【点睛】考查了数轴上的两点之间的距离,从2-的左,右两个方向考虑是解题的关键. 18.-14【解析】【分析】根据a℃b=ab -a 2,即可得到-2℃5()()2252=-⨯--,由此进行计算即可.【详解】解:由题意得:-2℃5()()225210414=-⨯--=--=-,故答案为:-14.【点睛】本题主要考查了新定义下的运算,解题的关键在于能够准确读懂题意,理解新定义的运算法则. 19.见解析;-3.5<-1<0<2-<-(-72) 【解析】【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【详解】 解:7722⎛⎫--= ⎪⎝⎭,22-= 将各数用点在数轴上表示如下:其大小关系为:73.51022⎛⎫-<-<<-<-- ⎪⎝⎭【点睛】此题主要考查了有理数的比较大小,以及数轴,关键是掌握当数轴方向向右时,右边的数总比左边的数大.20.(1)16;(2)-12 ;(3)-560;(4)-136【解析】【分析】(1)先计算有理数的乘方,然后根据有理数的混合计算法则进行求解即可;(2)直接根据有理数的乘除计算法则进行求解即可;(3)根据有理数的混合计算法则进行求解即可;(4)先计算有理数的乘方,然后根据有理数的混合计算法则进行求解即可.【详解】解:(1)()()3116233⎛⎫---+-÷- ⎪⎝⎭()1629=-++--1629=-+++16=;(2)2111941818⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭()211189418⎛⎫=-+⨯- ⎪⎝⎭9412=-+-12=-;(3)()2.7567.9566 5.6-⨯+⨯-+⨯2.7567.9560.656=-⨯-⨯+⨯()2.77.90.656=--+⨯1056=-⨯560=-;(4)()2411236⎡⎤-+⨯--⎣⎦[]11296=-+⨯-716⎛⎫=-+- ⎪⎝⎭136=-. 【点睛】本题主要考查了有理数的乘方计算和有理数的混合计算,解题的关键在于能够熟练掌握相关计算法则.21.(1)-2;(2)2y 2-5y+3【解析】【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】解:(1)原式=222243243x y xy x y xy ---+=2-;(2)原式=2243(32)2y y y y -+--=2243322y y y y -+--=2253y y -+【点睛】本题考查正式的加减.整式的加减即去括号合并同类项.22.(1)2x 2-y ,48;(2)-3x 2+12,0【解析】【分析】(1)先根据整式的加减计算法则化简,然后代值计算即可;(2)先根据整式的加减计算法则求出()A B C -+,然后代值计算即可.【详解】解:(1)222112333x x y x y ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭222212333x x y x y =--+-22x y =-,当5x =-,2y =时,原式()225248=⨯--=;(2)℃32243A x x x =-++,226B x x =+-,323C x x =+-,℃()()32232432623A B C x x x x x x x -+=-++-+-++- 323224349x x x x x x =-++---+2312x =-+,当2x =-时,原式()232120=-⨯-+=.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握整式的加减计算法则. 23.2b【解析】【分析】根据数轴上点的位置,确定,,a b a c b c -+-的符号进而化简绝对值.【详解】由数轴得,c >0,a <b <0,a c >,因而a -b <0,a+c <0,b -c <0.℃原式=()()()b a a c b c ---+---⎡⎤⎡⎤⎣⎦⎣⎦=b a a c b c -+++-=2b .【点睛】本题考查了数轴上的点表示有理数,整式的加减,根据数轴上点的位置确定式子符号,有理数的加减法法则,化简绝对值,数形结合是解题的关键.24.见解析【解析】【分析】原式去括号、合并同类项即可得结果与x 无关,所以无论x 是多少结果不变.【详解】解:原式=17x 2-8x 2-5x -4x 2-x+3-5x 2+6x -1-3=-1因为化简后的结果与x 无关,所以x 抄错,计算结果仍然正确.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握去括号、合并同类项法则. 25.(1)22111222a ab b ++;(2)492【解析】【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a a b b ⨯++,22111222a ab b =++;(2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=.。

七年级上册《数学》期中测试卷(含答案)

七年级上册《数学》期中测试卷(含答案)

七年级上册《数学》期中测试卷(时间:120分钟,满分:120分)一、选择题(本大题共12小题,每小题3分,共36分.下列各题给出的四个选项中,只有一项符合题意)1.下列各题计算正确的个数是( )①(-24)÷(-8)=-3;②(+32)÷(-8)=-4;③(-45)÷(-45)=1; ④(-334)÷(-1.25)=-3. A.1B.2C.3D.4 2.(2020·江苏南通中考)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A.6.8×104B.6.8×105C.0.68×105D.0.68×106 3.下列各对单项式是同类项的是( ) A.-12x 3y 2与3x 3y 2B.-x 与yC.3与3aD.3ab 2与a 2b4.如图,四个有理数m,n,p,q 在数轴上对应的点分别为M,N,P,Q.若n+q=0,则m,n,p,q 四个有理数中,绝对值最大的一个是( )A.pB.qC.mD.n5.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m-n等于()A.2B.3C.4D.无法确定6.下列各式计算正确的是()A.6a+a=6a2B.-2a+5b=3abC.4m2n-2mn2=2mnD.3ab2-5b2a=-2ab27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3km收费7元),3km后每千米1.4元(不足1km按1km算).小明坐车x(x>3)km,应付车费()A.6元B.6x元C.(1.4x+2.8)元D.1.4x元,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为8.下列各数:0.01,10,-6.67,-13()A.1B.2C.3D.49.若一个多项式加上3x2y-3xy2得x3+3x2y,则这个多项式是()A.x3+3xy2B.x3-3xy2C.x3-6x2y+3xy2D.x3-6x2y-3x2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a11.已知a+b=12,则代数式2a+2b-3的值是( )A.2B.-2C.-4D.-31212.如果一段钢材增加12后是6m,那么这段钢材减少30%后是( )m.A.4B.3.5C.3D.2.8二、填空题(本大题共5小题,每小题4分,共20分)13.若a,b 互为倒数,c,d 互为相反数,且e 是绝对值最小的有理数,则整式-(ab)2+2(c+d)-e 3的值为 .14.在式子xy 2,3x ,a+32,3,m,xy 2+1中,单项式有 个.15.多项式x 3y+2xy 2-y 5-12x 3是 次多项式,它的最高次项是 .16.若有理数a,b 满足|a+3|+(b-2)2=0,则a b 的值为 .17.对于有理数a,b,定义运算“*”:a*b={a 2-ab,a ≥b,a-b,a <b.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)= .三、解答题(本大题共6小题,共64分)18.(每小题4分,共24分)计算:(1)-4÷23−(-23)×(-30);(2)-20+(-14)-(-18)-13;(3)-22+|5-8|+24÷(-3)×13;(4)(114-56+12)×(-12);(5)-5m2n+4mn2-2mn+6m2n+3mn;(6)2(2a-3b)-3(2b-3a).19.(8分)先化简,再求值:(1)2x+7+3x-2,其中x=2;(2)3x2y-[2xy-2(xy-32x2y+2xy)],其中x=-1,y=2.20.(8分)下表记录的是今年长江某水文站检测的某一周内的水位变化情况,这一周的上周周末的水位已达到警戒水位33m.注:正数表示水位比前一天上升,负数表示水位比前一天下降.(1)本周该水文站哪一天的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末该水文站的水位是上升了还是下降了?上升了或下降了多少米?21.(8分)某移动通信公司开设了两种通信业务:①全球通用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话);②快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q元.(1)请你分别写出P,Q与x之间的关系;(2)若某用户一个月内通话时间为120分钟,你认为选择哪种移动通信业务较合适?(3)当用户一个月内通话时间为多少分钟时采用两种通信业务所需话费相同?22.(8分)某汽车行驶时油箱中剩余油量Q(单位:kg)与行驶时间t(单位:h)的关系如下表:(1)写出用时间t时,求剩余油量Q的值.(2)当t=212(3)根据所列式子回答,汽车行驶之前油箱中有多少千克汽油?(4)油箱中原有汽油可供汽车行驶多少小时?23.(8分)我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n·(n-1)·(n-2)·…·2·1;当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2)0!;2!(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.七年级上册《数学》期中测试卷答案一、选择题1.B;2.A;3.A;根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.A;因为n+q=0,所以n,q两数互为相反数,所以N,Q两点的中点位置即为原点.又M,N,P,Q四个点中,点P到原点的距离最远,所以有理数p的绝对值最大.5.B;设空白处图形的面积为x,则m=9-x,n=6-x,故m-n=9-6=3.6.D;7.C;小明坐车x(x>3)km,应付车费=起步价7元+超过3km的收费=7+1.4(x-3)=(1.4x+2.8)元.8.D因为非负整数即为正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数.9.A;这个多项式为(x3+3x2y)-(3x2y-3xy2)=x3+3x2y-3x2y+3xy2=x3+3xy2.10.C;a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36.因为-36<-18<36,所以c<a<b.11.B;12.D。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版

人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版

人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1. 2023的倒数是 ( )A. - 2023B. 2023C.12023D.−12023【答案】C2. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃【答案】B3. 下列各式中,与3x²y³是同类项的是( )A. 6x⁵B.3x³y²C.−12x2y3D.−14x5【答案】C4.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为( )A.4×10⁵B.4×10⁶C.40×10⁴D.0.4×10⁶【答案】A5. 下列是根据等式的性质进行变形,正确的是 ( )A. 若x=y, 则x+5=y-5B. 若a-x=b+x, 则a=bC. 若 ax= ay, 则x=yD. 若x2=y2,则x=y【答案】D6. 下列各式正确的是 ( )A. - |-5|=5B. - (-5)=-5C. |-5|=-5D. - (-5)=5【答案】D7. 下列说法错误的是( )A.2x²−3xy−1是二次三项式B. - x+1的项是-x、 1C.−x²y的系数是-1D.−2ab²是二次单项式【答案】D8. 已知有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是( )A. b>a>0B. b>0>aC. a+b>0D. a-b>0【答案】B9. 解方程x+14=x−5x−112时,去分母正确的是( )A.3 (x+1)=x - (5x-1)B.3 (x+1)=12x-5x-1C.3 (x+1)=12x - (5x-1)D.3x+1=12x-5x+1【答案】C10. 已知整数a₁, a₂, a₃, a₄, 满足下列条件:a₁=0,a₂=−|a₁+1|,a₃=−|a₂+2|,a₄=−|a₃+3|,依此类推, 则a₁₀₀₁的值为( )A. - 500B. - 501C. - 1000D. - 1001【答案】A二、填空题(本题共6小题,每小题3分,共18分)11. 点A在数轴上的位置如图所示,则点A 表示的数的相反数是 .【答案】-212. 比较大小:−65¯−34(填“>” 、“<” 或“=” ).【答案】<13. 已知关于x的方程 mx+2=x的解是x=6, 则m的值为 .【答案】2 314. 已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2−a+b2024+x=¯.【答案】215. 若2m--n=2, 则代数式6+4m-2n 值为 .【答案】1016. 如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为【答案】2或3##3或2三、解答题(本题共9个小题, 第17、18、19题每题6分, 第20、21题每题8分, 第22、23每题9分, 第24、25每题10分, 共72分)17. 计算: −1²⁰²³+(−2)³×5−(−28)÷4+|−2|.【详解】原式=-1-40+7+2,=-32.18. 解方程:(1) 3(x-3)=x+1(2)x+24−2x−36=2【详解】(1) 解: 3x-9=x+1,3x-x=9+1,2x=10,x=5;(2) 解:3(x+2)−2(2x−3)=24,3x+6−4x+6=24,−x=12,x=−12.19. 先化简, 再求值:3y²−x²+2(2x²−3xy)−3(x²+y²)的值,其中.x=2,y=−3.【详解】解:3y²−x²+2(2x²−3xy)−3(x²+y²)=3y²−x²+4x²−6xy−3x²−3y²=−6xy:当x=2,y=−3时,原式:=−6×2×(−3)=36.20. 已知关于x的多项式2mx³−2x²+3x−(2x³+nx)不含三次项和一次项,求((m−n)³的值.【详解】解:2mx³−2x²+3x−(2x³+nx)=2mx³−2x²+3x−2x³−nx=(2m−2)x³−2x²+(3−n)x,由题意,得:2m−2=0,3−n=0所以m=1, n=3.则(m−n)³=(−2)³=−8.21. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过(1) 该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2) 求该外卖小哥这一周总共送餐多少单?【小问1详解】14−(−8)=14+8=22 (单),即该外卖小哥这一周送餐量最多的一天比最少的一天多22单;【小问2详解】50×7+(−3+4−5+14−8+7+10)=350+19=369369 (单),即该外卖小哥这一周一共送餐369单.22. 如图所示:已知a,b,c在数轴上的位置(1) 化简:|a+b|−|c−b|+|b−a|(2) 若a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,求−a+2b+c−(a+b−c)的值.【小问1详解】解: 由数轴可得: c<b<0<a,∴a+b>0,c-b<0,b-a<0,∴原式=a+b+c-b-b+a=2a-b+c.【小问2详解】∵a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,c<0,∴a=2,b=-1,c=-2,∴-a+2b+c-(a+b-c)=-a+2b+c-a-b+c=-2a+b+2c=-4-1-4=-9.23. 已知A=2a²−a−ab,B=a²−b+ab.(1) 化简A-2B;(2) 若A-2B的值与a的取值无关, 求A-2B的值.【小问1详解】解: A-2B=(2a²−a−ab)−2(a²−b+ab)=2a²−a−ab−2a²+2b−2ab=-a+2b-3ab;【小问2详解】解: 由(1) 得:A−2B=−a+2b−3ab=(−1−3b)a+2b,∵A-2B的值与a的取值无关,∴--1-3b=0,,解得:b=−13∴A−2B=2b=−2324. 如图,在数轴上点A表示数a,点B表示数b,且(a+5)²+|b−16|=0.(1) 填空:a=;(2) 若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3) 若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD -5AD的值始终是一个定值,求此时m的值.【小问1详解】解:∵(a+5)²+|b−16|=0,∴a+5=0,b−16=0,∴a=−5,b=16,故答案为: - 5, 16:【小问2详解】解:设点C在数轴上表示的数为x,①点C在点A的左侧时,∵AC=−5−x,BC=16−x,AC+BC=29。

七年级上册数学期中考试试卷有答案

七年级上册数学期中考试试卷有答案

七年级上册数学期中考试试题2022年一、单选题1.2-的相反数是( )A .2-B .2C .12D .12- 2.在0,﹣4,﹣1,3这四个数中,最小的数是( )A .0B .﹣1C .﹣4D .33.过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( ) A .63.1210⨯ B .53.1210⨯ C .531.210⨯ D .70.31210⨯ 4.单项式:223x y -的系数和次数分别是( ) A .23和2 B .23-和3 C .23和3 D .23-和2 5.下列各组式子中,是同类项的是( )A .2x 2和3x 3B .5x 2y 和-yx 2C .6x 2y 和6xy 2D .3x 和6y6.下列方程是一元一次方程的为( )A .2531-=+x x xB .3711+=x yC .29x =D .424-=x x7.下列计算正确的是( )A .1284--=-B .-21÷(-7)=-3C .239-=D .2(1)---=38.一件衣服的进价为a ,在进价的基础上增加20%标价,则标价可表示为( ) A .(1﹣20%)a B .20%a C .(1+20%)a D .a+20% 9.有理数a 、b 在数轴上的位置如图,化简∣a |-|a -b |+|b -a |的结果是( )A .-3a+2bB .2b -aC .a -2bD .-a10.在平面直角坐标系中,一只蚂蚁从原点0出发,,按如图所示方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则蚂蚁从点2016A 到点2017A 的移动方向为( )A .向左B .向右C .向上D .向下二、填空题11.比较大小:-1_____12(>,<,=填空). 12.已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是__________. 13.多项式12x|m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 14.已知1x =-是方程23ax a =-的解,则=a __________.15.数轴上点A 表示的数是3-,数轴上另一点B 与点A 相距7个单位长度,则点B 表示的数是_______________16.规定了一种新运算*:若a 、b 是有理数,则*32a b a b =-,请你计算()2*5-=______. 17.如图,在长为a 宽为b 的长方形中剪去两个半径为b 的四分之一圆,用代数式表示图中阴影部分面积_(用含a 、b 的代数式表示).三、解答题18.计算:(1) (-20) + (+3) - (-5) - (+7)(2)13 ⨯ (-5 ) - (-3 ) ÷32519.计算 (2 x 2 + 1) - 2 (5 - x 2 ) -320.解方程:3x+7=6x ﹣2.21.先化简,再求值:[( 2xy + 2 y - 3x ) - 5 ]- (4 xy + 10 y ) ,其中 x = -1 , y = -222.小明在计算多项式M 减去多项式32231x y x y -+时,误计算成加上这个多项式,结果得到答案3254x y x y x -+.(1)请你帮小明求出多项式M ;(2)对于(1)式中的多项式M ,当2x =-时,1y =,求多项式M 的值.23.某服装店以每件32元的价格购进30件衣服,针对不同的顾客,30件衣服的售价不完全相同,若以50元为标准价,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表(1)该服装店售完这30件衣服的总销售额是多少?(2)该服装店售完这30件衣服赚了多少元?24.某市的A 地和B 地秋季育苗,急需化肥分别为80吨和70吨,该市的C 地和D 地分别储存化肥100吨和50吨,全部调给A 地和B 地,已知从C 、D 两地运化肥到A 、B 两地的运费(元/吨)如下表所示(1)设C地运到A地化肥为x吨,则C地运到B地的化肥为吨,D地运到A地的化肥为吨,D地运到B地的化肥为吨;x 时的总运费.(2)用含x(吨)代数式表示表示总运费W(元),并写出4025.如图,A、B分别为数轴上的两点,A点对应的数为-5,B点对应的数为55.现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q 点所对应的数.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.C【解析】【分析】根据正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小进行比较即可.【详解】 解:4411-=-=,∣4103-<-<<,故选:C .【点睛】本题主要考查有理数的大小比较,熟练掌握有理数的大小比较的方法是解题的关键. 3.A【解析】【分析】根据科学记数法可直接进行求解.【详解】解:由把数3120000用科学记数法表示为63.1210⨯,故选A .【点睛】本题主要考查科学记数法,熟练掌握求一个数的科学记数法是解题的关键.4.B【解析】【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式的次数就是所有字母指数的和.【详解】 单项式23-x 2y 的数字因数为23-,所以系数为23-,所有字母指数的和为2+1=3,所以次数为3.故选B .【点睛】本题考查了单项式的相关概念,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.B【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案,注意同类项与字母的顺序无关,与系数无关.【详解】A 、相同字母的指数不相等,不是同类项;B 、字母相同,相同字母的指数相等,是同类项;C 、x 的指数不相等,y 的指数也不相等,不是同类项;D 、所含字母不同,不是同类项.故选B .【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.6.A【解析】【分析】一元一次方程要求:含有一个未知数,未知数的最高次数是一次,并且是整式方程,由此即可判断得到正确答案.【详解】解:A 、2531-=+x x x 符合一元一次方程的要求,选项正确;B 、3711+=x y 含有两个未知数,不是一元一次方程,选项错误;C 、29x =,未知数的指数是2次,不是一元一次方程,选项错误;D 、424-=x x,不是整式方程,不是一元一次方程,选项错误.故选:D【点睛】本题考查一元一次方程的定义,牢记相关要求是解此类题的关键.7.D【解析】【分析】根据有理数的乘除运算法则和乘方运算判断即可;【详解】12820--=-,故A错误;()-÷-=,故B错误;21732-=-,故C错误;39---=3,故D正确;2(1)故选D.【点睛】本题主要考查了有理数加减乘除乘方的运算,准确分析计算是解题的关键.8.C【解析】【详解】【分析】根据:标价=进价+提价可得a+20%a.【详解】一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为a+20%a=(1+20%)a;故选:C【点睛】本题考核知识点:列式表示数量. 解题关键点:用式子表示数量关系.9.D【解析】【分析】根据数轴可以判断a,b,a-b,b-a的正负情况,从而可以把绝对值符号去掉,然后化简即可解答本题.【详解】根据题目中的数轴可得,a<0,b>0,∣a−b<0,b−a>0.∣|a|−|a−b|+|b−a|=−a−(b−a)+(b−a)=−a.故答案为D.【点睛】此题考查绝对值,数轴,整式的加减,解题关键在于利用数轴结合图形判断a,b 的值. 10.C【解析】【详解】由图可知,A1在y 轴上,A3,A12都在x 轴上.∣蚂蚁每次移动1个单位,∣OA1=1,OA3=1,OA12=6,∣A1(0,1),A3(1,0),A12(6,0);若n 是4的倍数,那么连续四个点的坐标是11,02n n A -⎛⎫- ⎪⎝⎭ ,,02n n A ⎛⎫ ⎪⎝⎭,1,12n n A +⎛⎫ ⎪⎝⎭,21,12n n A +⎛⎫+ ⎪⎝⎭; ∣2016÷4=504,∣2016是4的倍数,∣A2016(1008,0).∣2017÷4=504…1,∣A2017与A2016横坐标相同,∣A2017(1008,1),∣从点A2016到点A2017的移动方向与从点O 到A1的方向一致,为从下向上.故选C.11.<【解析】【分析】根据正数大于负数进行比较即可.【详解】因为正数大于负数, 所以112-<. 故答案为:<.【点睛】考查了有理数的大小比较,解题关键是熟记“在数轴上表示的两个数,右边的总比左边的数大;正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小”.12.45【解析】【详解】解:把x=2代入方程得:3a=12a+2,解得:a=45. 故答案为:45. 13.-3【解析】【分析】由题意可知:|m|=3,且m -3≠0即可作答.【详解】由题意可知:|m|=3,且m -3≠0;∣m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键.14.1【解析】【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.15.4或-10 或者 -10或4【解析】【分析】根据数轴上点的表示方法和数轴上两点间的距离分两种情况讨论求解即可.【详解】解:∣数轴上点A 表示的数是3-,数轴上另一点B 与点A 相距7个单位长度, 当B 在A 的左边时,B 表示的数=3710--=-;当B 在A 的右边时,B 表示的数=374-+=;∣点B 表示的数是4或-10.故答案为:4或-10.【点睛】此题考查了数轴上点的表示方法和数轴上两点间的距离,解题的关键是熟练掌握数轴上点的表示方法和数轴上两点间的距离.16.16【解析】【分析】直接根据新运算法则运算即可.【详解】根据题意得,()()2*5322561016-=⨯-⨯-=+=故答案为16.【点睛】此题主要考查新定义下的运算,解题关键是理解题意.17.212ab b π-【分析】由图可得,阴影部分的面积是长方形的面积与两个半径为b 的14圆的面积之差,由长方形的长为a ,宽为b ,从而可以表示出阴影部分的面积.【详解】解:依题意可知,图中阴影部分面积为ab ﹣14πb 2×2=212ab b π-. 故答案为:212ab b π-. 【点睛】 本题主要考查列代数式,解题的关键是明确题意,利用数形结合的思想找出所求问题需要的条件.18.(1)-19;(2)-40【解析】【分析】(1)先去括号,再相加减即可;(2)先计算乘除,再相减即可.【详解】(1) (-20) + (+3) - (-5) - (+7)=-20+3+5-7=-19.(2)13 ⨯ (-5 ) - (-3 ) ÷325=-65-(-25)=-40.【点睛】考查了有理数的加减、乘除,解题关键是熟记去括号法则及其计算法则.19.2 412x -【解析】【分析】先去括号,再合并同类项即可.22 21253()()x x +---22 211023x x =+-+-21 42x =-【点睛】考查了整式加减、去括号,解题关键是熟记去括号法则.20.3x =【解析】【分析】直接利用移项、合并同类项即可求解.【详解】解:移项,得3627x x -=--,合并同类项,得39x -=-,系数化为1,得3x =.【点睛】本题考查解一元一次方程,注意移项要变号.21.2385xy x y ----,10【解析】【分析】原式去括号、合并同类项化简,再将x 、y 的值代入计算即可【详解】解:[( 2xy + 2 y - 3x ) - 5 ]- (4 xy + 10 y )=2235410xy y x xy y +----2385xy x y =----把x = -1,y = -2代入原式2(1)(2)3(1)8(2)5=-⨯-⨯--⨯--⨯--43165=-++-10=.【点睛】考查整式的加减-化简求值,解题的关键是掌握非负数的性质和去括号、合并同类项法则.22.(1)3231x y x y x -+-;(2)-31【解析】(1)根据小明在计算多项式M 减去多项式32231x y x y -+时,误计算成加上这个多项式,得到结果3254xy x y x -+,令3254x y x y x -+减去32231x y x y -+可以得到M ,即可解答本题. (2)根据(1)中的结果,代入即可得解.【详解】(1)根据题意,得M+32231x y x y -+=3254x y x y x -+M=3254x y x y x -+-(32231x y x y -+)=3231x y x y x -+-(2)当2x =-时,1y =,M=3231x y x y x -+-=()()323212121-⨯--⨯--=-31.【点睛】本题考查整式的加减,解题的关键是明确题意,进行正确的计算.23.(1)该服装店售完这30件衣服的总销售额是1522元;(2)该服装店售完这30件衣服赚了562元【解析】【分析】(1)把销售数量和销售价相乘加起来计算即可;(2)用售价减去进价计算即可;【详解】解:(1)7×(+3)+6×(+2)+3×(+1)+5×0+4×(-1)+5×(-2),=21+12+3+0-4-10,=22(元),50×30+22=1522(元);所以该服装店售完这30件衣服的总销售额是1522元;(2)1522-32×30=1522-960=562(元),该服装店售完这30件衣服赚了562元.【点睛】本题主要考查了有理数的混合运算应用,准确计算是解题的关键.24.(1)(100)x -、(80)x -、(30)x -;(2)103350W x =+,3750元【解析】【分析】(1)根据C 地运到A 地化肥为x 吨,且C 地储存化肥100吨,可求C 地运到B 地化肥的吨数,再由A 地和B 地急需化肥分别为80吨和70吨,即可表示出D 地运到A 地化肥以及D 地运到B 地化肥的吨数;(2)分别求出C 地运往A 地、B 地的费用以及D 地运往A 地、B 地的费用,然后相加进行化简即可,然后将40x =代入即可求出费用.【详解】解:(1)∣C 地储存化肥100吨,且C 地运到A 地化肥为x 吨,∣C 地运到B 地化肥为(100)x -吨,又∣A 地急需化肥分别为80吨,∣D 地运到A 地化肥为(80)x -吨,又∣B 地急需化肥70吨,∣D 地运到B 地化肥为[]70(100)(30)x x --=-吨,故答案为:(100)x -、(80)x -、(30)x -;(2)根据题意可知:2520(100)30(80)35(30)103350W x x x x x =+-+-+-=+, 当40x =时,103350104033503750W x =+=⨯+=,∣当40x =时,总费用为3750元.【点睛】本题考查了列代数式以及代数式求值,解题的关键是根据题意找出之间的数量关系. 25.(1)19;(2)-125;(3)11或27.【解析】【分析】(1)首先求出A 、B 两点之间的距离,然后求出相遇时间,再求出点Q 所走的路程,根据左减右加的原则,可求出相遇地点所对应的数;(2)此题是追及问题,先求出P 追上Q 所需的时间,然后求出Q 所走的路程,根据左减右加的原则,可求出点D 所对应的数;(3)首先设其运动时间为t,根据题意列出关系式,解得t,然后求出Q点运动的路程,即可求出Q此时对应的数.【详解】(1)∣A点对应的数为-5,B点对应的数为55∣A、B两点之间的距离是55-(-5)=60它们相遇的时间是60÷(6+4)=6即相同时间Q点运动路程是4×6=24即从数-5向右运动24个单位到19即C点对应的数是19;(2)P点追到Q点的时间是60÷(6-4)=30即此时Q点运动的路程是4×30=120即从数-5向左运动120个单位到数-125即D点对应的数为-125.(3)∣相遇前PQ=20时,设运动时间为a秒,4a+6a=55-(-5)-20,解得:a=4,因此Q点对应的数为-5+4×4=11,∣相遇后PQ=20时,设运动时间为b秒,4b+6b=55-(-5)+20,解得:b=8,因此Q点对应的数为-5+4×8=27,故Q点对应的数为11或27.。

七年级数学上册期中考试卷(附带答案)

七年级数学上册期中考试卷(附带答案)

七年级数学上册期中考试卷(附带答案)本试卷满分120分,考试时间为120分钟第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 4的平方根是( ) A .2B .﹣2C .±2D .162.下列各组数中,能构成三角形的是( )A .1,3,5B .2,2,6C .6,8,14D .4, 3,5 3.下列四个图形中,是轴对称图形的是( )A B C D 4.在-25,﹣,0.1010010001,35,π,√16中,无理数的个数是( ) A .1 B .2 C .3 D .4 5.在△ABC 中,如果∠A =∠B =4∠C ,那么∠C 的度数是( ) A .10° B .20° C .30° D .40° 6.等腰三角形的底边长为24,底边上的高为5,它的腰长为( ) A .10 B .11 C .12 D .13 7.如图所示,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠A =50°,则∠ACB 的度数为( ) A .90° B .95° C .100° D .105° 8. 如图所示,①AB =AD ;②∠B =∠D ;③∠BAC =∠DAC ;④BC =DC ,以上4条件中的2个条件不能作为依据来说明△ABC ≌△ADC 的是( ) A .①②B .①③C .①④D .②③第7题图 第8题图9. 如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.4 cm B.5 cm C.cm D.cm10.如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A.B.C.D.第9题图第10题图二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.√81的算数平方根是12.如图,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为.13.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为.14.若一个三角形三边长分别是9cm,40cm,41cm,则这个三角形的面积是cm2.15.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABC的周长为30,BE=5,则△ABD的周长为.16.如图,BD是△ABC的角平分线,DE⊥AB于点E,BD=13,BE=12,BC=14,则△BCD的面积是.17. ﹣64的立方根是a,的平方根是b,则a+b=.18.如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有.(填序号)第12题图第15题图第16题图第18题图三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题8分,第(1)题4分,第(2)题4分)(1)在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的三条边,c=17,b=15,求a的长.(2)在△ABC中,∠A:∠B:∠C=2:3:4,请分别求出这个三角形三个内角的度数.20.(8分)已知,BD是∠ABC的角平分线.用直尺和圆规作图(不写作法,只保留作图痕迹).(1)在线段BD上找一点P,使点P到△ABC三条边的距离相等.(2)在线段BD上找一点Q,使点Q到点B,C的距离相等.第20题图21. (8分)八年级二班小明和小亮同学学习了“勾股定理”之后,为了测得得如图风筝的高度CE,他们进行了如下操作:(1)测得BD的长度为15米.(注:BD⊥CE)(2)根据手中剩余线的长度计算出风筝线BC的长为25米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.第21题图22. (8分)如图,点E,F在AB上,CE与DF交于点H,AD=BC,∠A=∠B,AE=BF.GE与GF相等吗?请说明理由.第22题图23.(9分)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.24. (9分)在8×8的方格纸中,设小方格的边长为1.(1)请判断△ABC的形状并说明理由.(2)画出△ABC以CO所在直线为对称轴的对称图形△A′B′C′,并在所画图中标明字母.第24题图25.(12分)如图①,点D是等边△ABC的边BC上一点,连接AD,以AD为一边,向右作等边三角形ADE,连接CE,说明:AC=CD+CE.【类比探究】(1)如果点D在BC的延长线上,其它条件不变,请在图②的基础上画出满足条件的图形,写出线段AC,CD,CE之间的数量关系,并说明理由.(2)如果点D在CB的延长线上,请在图③的基础上画出满足条件的图形,并直接写出AC,CD,CE 之间的数量关系,不需要说明理由.数量关系:.第25题图参考答案一、选择题1.C2.D3.D4.C5.B6.D7.D8.A9.C 10.B二、填空题11.3 12.62°13.-1 17 .180 15.20 16.35 17.-6或-2 18.①②③④三、解答题19.(8分)解:(1)在Rt△ABC中,由勾股定理,得a2+b2=c2,即a2+152=172,所以a=8.(2)设三个角的度数分别为2x°,3x°,4x°在△ABC中,∠A+∠B+∠C=180°所以2x+3x+4x=180解得x=20.∴三个内角的度数分别为∠A=40°,∠B=60°,∠C=80°.20. (8分)解:(1)如图(1)所示,点P即为所求.(2)如图(2)所示,点Q即为所求.21. (8分)解:在Rt△CDB中,由勾股定理,得CD2=BC2﹣BD2=252﹣152=400所以CD=20.所以CE=CD+DE=20+1.6=21.6米.所以风筝的高度CE为21.6米.解:GE=GF.理由如下:在△ADF与△BCE中∵AE=BF∴AE+EF=BF+EF∴AF=BE.22. (8分)已知AD=BC,∠A=∠B根据SAS,△ADF≌△BCE.∴∠CEB=∠DFA∴GE=GF.23. (9分)因为x﹣2的平方根是±2,所以x-2=4,所以x=6.因为2x+y+7的立方根是3,所以2x+y+7=27,所以y=8.所以x2+y2=100所以x2+y2的平方根±1024. (9分)解:(1)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25∴AB2+AC2=BC2∴△ABC是直角三角形.(2)如图所示,△A′B′C′就是所求三角形.25. (12分)解:在△ABD和△ACE中∵△ABC和△ADE均为等边三角形∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°所以∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.根据SAS,∴△ABD≌△ACE.∴BD=CE∴AC=BC= CD+BD=CD+CE.类比探究:(1)如图②,AC= CE﹣CD.∵△ABC和△ADE均为等边三角形∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°所以∠BAC+∠DAC=∠DAC+∠DEA∴∠BAD=∠CAE.根据SAS,∴△ABD≌△ACE.∴BD=CE.∴AC=BC=BD-CD=CE﹣CD.(2)如图③,数量关系:AC=CD﹣CE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期中考试试题一、单选题1.2019-的倒数是( ) A .2019-B .12019-C .12019D .20192.下列各组数中,相等的是( ) A .﹣1与(﹣4)+(﹣3) B .(﹣4)2与﹣16 C .234与916D .|﹣3|与﹣(﹣3)3.如果||a a =-,下列成立的是( ) A .0a >B .0a <C .0a ≥D .0a ≤4.有理数a 、b 在数轴上的对应的位置如图所示,则( )A .a+b <0B .a+b >0C .a-b=0D .a-b >05.(-2)11+(-2)10的值是( ). A .-2B .(-2)21C .0D .-2106.比-7.1大,而比1小的整数的个数是( ) A .6B .7C .8D .97.两个非零有理数的和是0,则它们的商为: ( ) A .0B .-1C .+1D .不能确定8.如果0a b +>,且0ab <,那么下列结论正确的是( ) A .0,0a b >>B .0,0a b <<C .a 、b 异号且负加数绝对值较大D .a 、b 异号且正加数绝对值较大9.一个数和它的倒数相等,则这个数是( ) A .1B .0C .±1D .±1和010.下列四个式子:①―(―1) , ②, ③(―1)3, ④ (―1)8.其中计算结果为1的有( )A .1个B .2个C .3个D .4个11.2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12 050 000枚,用科学记数法表示正确的是( ) A .1.205×107B .1.20×108C .1.21×107D .1.205×10812.最大的负整数的2019次幂与绝对值最小的数的2020次幂的和是( ) A .-1 B .0 C .1 D .2二、填空题13.按要求用四舍五入法取下列各数的近似值:(1)3.4249≈______(精确到百分位);(2)2 950 000≈________(精确到十万位) 14.用“>”、“<”号填空:(1)0.02___1-; (2)]3___(0.85)4⎡-----⎣; 15.若21(2)0x y -++=,则x y +=___________16.1-2+3-4+5-6+7-8+…+2019-2020=____________三、解答题17.在数轴..上表示下列数字:()22-,20191-, 1,2-- ( 1.5)--, 0.并按从小到大的顺序用“<”连接起来.18.把下列各数填入相应的大括号里:()()222138, 0.275, 2, 0, 1.04, 10, 0.1, 2,,, 734+--------+. 正整数集合:{ …} 负分数集合:{ …} 非正数集合:{ …}19.计算:(1)(1)(2)(3)(4)(5)-++--+--+(2)151015(10)()()834÷-⨯-÷-(3)[]()3232(1)13(5)2-⨯---⨯-÷- (4)(3774126+-)×(-60)(简便方法)20.若2||2,9x y ==,求x y -的值.21.已知a 、b 互为相反数且a 、b 均不为0,m 、n 互为倒数,x 的绝对值为2,(1)2___,____,___,____aa b mn x b +====; (2)求22a b amn x m n b+-+++-的值.22.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为450克,则抽样检测的总质量是多少?参考答案1.B 【解析】 【分析】直接利用倒数的定义进而得出答案. 【详解】 ∵2019-×(12019-)=1, ∴2019-的倒数12019-. 故选B. 【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键. 2.D 【解析】 【分析】根据有理数的加法运算,有理数的乘方运算以及绝对值的性质对各选项分析判断利用排除法求解. 【详解】A 、(-4)+(-3)=-7≠-1,故本选项错误;B 、(-4)2=16≠-16,故本选项错误;C 、2399=4416≠,故本选项错误;D 、|-3|=3,-(-3)=3,故本选项正确. 故选D . 【点睛】本题考查了有理数的乘方,绝对值的性质,有理数的加法,要注意分数的乘方有括号和没有括号的区别. 3.D 【解析】 【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0. 【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤. 故选D . 【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键. 4.A 【解析】 【分析】由图可知:a<-1,0<b<1,根据a ,b 的范围逐项判断即可。

【详解】解:由数轴可知:a <0,b >0,a <b ,|a|>|b| A 、a+b <0,故选项A 符合题意; B 、a+b <0,选项B 不符合题意; C 、a-b <0,故选项C 不符合题意; D 、a-b <0,故选项D 不符合题意; 故答案为:A 【点睛】本题主要考查在数轴上表示数的方法,以及数轴的特征:一般来说,数轴右边的数总比左边的数大,准确找出a.b的范围是解题的关键.5.D【解析】【分析】乘方的运算可以利用乘法的运算来进行,运用乘法的分配律简便计算.【详解】原式=(﹣2)10×(﹣2+1)=(﹣2)10×(﹣1)=﹣210.故选D.【点睛】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.本题运用乘法的分配律计算.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.6.C【解析】【详解】比-7.1大而比1小的整数有:-7、-6、-5、-4、-3、-2、-1和0共8个.故选C7.B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键8.D【分析】根据题意,0ab <,则a 、b 异号,根据0a b +>分析可得答案. 【详解】 解:∵0ab <, ∴a 、b 异号, 又∵0a b +>, ∴正数的绝对值较大,但无法确定a 、b 哪个为正,哪个为负, 故选:D . 【点睛】本题考查实数符号的判断,注意两实数积与和来判断实数的符号. 9.C 【解析】 【分析】根据倒数的定义即可求解. 【详解】±1的倒数等于它本身,故C 符合题意.故选:C . 【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 10.B 【解析】根据相反数、绝对值的意义及出发点运算法则:-1的奇数次幂是-1,-1的偶数次幂是1求解. 解答:解:①-(-1)=1, ②-|-1|=-1, ③(-1)3=-1, ④(-1)8=1.所以计算结果为1的有①和④共2个. 故选B .【解析】 【分析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤a <10,n 表示整数. 【详解】解:12 050 000=1.205×107.则用科学记数法表示正确的是1.205×107. 故选:A . 【点睛】把一个数M 记成a×10n (1≤|a|<10,n 为整数)的形式,这种记数的方法叫做科学记数法. 12.A 【解析】 【分析】最大的负整数是-1,绝对值最小的数是0,然后计算即可求出结果. 【详解】解:最大的负整数是-1, ∴()201911-=-,绝对值最小的数是0, ∴202000=,所以它们的和是:101-+=-. 故选:A . 【点睛】此题的关键是知道最大的负整数是-1,绝对值最小的数是0. 13.3.42 3.0×106 【解析】 【分析】四舍五入法精确到哪位,就是对它后边的一位进行四舍五入. 【详解】解:3.4249精确到百分位,即精确到小数点后第二位,由四舍五入法可得3.4249≈3.42; 2950000精确到十万位,由四舍五入法可得62950000 3.010≈⨯.本题主要考查学生对近似数的精确度理解是否深刻,能熟练运用四舍五入法取近似数. 14.< ,> 【解析】 【分析】(1)负数小于正数,(2)分别求出绝对值和去括号,然后利用两个负数的绝对值比较,最后得出结果. 【详解】解:(1)0.021-< (2)330.7544--=-=- ,](0.85)0.85⎡---=-⎣; ∴0.750.85-<- ∴0.750.85->- 即:]3(0.85)4⎡-->---⎣. 故答案为:(1)< ,(2)>. 【点睛】本题主要考查了有理数大小比较,解题的关键利用有理数大小比较方法比较. 15.-1 【解析】 【分析】根据非负数的性质列出算式,求出x 、y 的值,代入计算. 【详解】解:∵()2120x y -++= ∴10x -=,20y +=, 解得:1x =,2y =-, 则()121x y +=+-=- . 故答案为:-1.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.-1010【解析】【分析】由1、2两数的和为-1;3、4两数的和为-1;5,6两数的和为-1;…;可将原式中的数两两结合,进而可得出原式=(-1)×1010=-1010,此题得解.【详解】解:原式=[1-2]+[3-4]+[5-6]+…+[2017-2018]+[2019-2020]=(-1)+(-1)+(-1)+…+(-1)+(-1)=(-1)×1010=-1010.故答案为:-1010.【点睛】本题考查数字的变化类、有理数的加减混合运算,解答本题的关键是明确题意,求出所求式子的值.17.详见解析【解析】【分析】先在数轴上表示各个数,再比较即可.【详解】解:各个数字在数轴上为:其大小关系为:()()22019110 1.522-<--<<--<-. 【点睛】 本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.18.详见解析【解析】【分析】按照有理数的分类填写即可.【详解】解:正整数集合:{ +8 , -(-10) …}负分数集合:{ -1.04,13-…}非正数集合:{ -|-2|,0, -1.04, -(-2)2, 13-…}【点睛】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.19.(1)-5; (2)16-; (3)6;(4)-10 . 【解析】【分析】(1)利用有理数的加减法法则计算;(2)利用有理数的乘除法则计算;(3)先算乘方,再算乘除,最后算加减,有括号先算括号里面的;(4)利用有理数的乘法分配率计算.【详解】(1)()()()()()12345-++--+--+ ()()()()12345=-++++-+-5=-(2)()151********⎛⎫⎛⎫÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭ 151108103415⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 16=-(3)()()()332211352-⨯---⨯-÷-⎡⎤⎣⎦ ()()()411158=-⨯----÷-⎡⎤⎣⎦14168⎛⎫=-⨯- ⎪⎝⎭426=+=(4)()377604126⎛⎫+-⨯- ⎪⎝⎭ ()()()3776060604126=⨯-+⨯--⨯- ()()()453570=-+---()()()453570=-+---()8070=-+10=-【点睛】本题考查了有理数的加减法、乘除法、乘方等的运算法则,熟悉有理数的运算法则是解题的关键.20.15±±或【解析】【分析】分别求出x ,y 的值,然后代入计算即可.【详解】解:∵|x|=4,y 2=9,∴x=±2,y=±3.∴当x=2,y=3时,x-y=2-3=-1,当x=-2,y=3时,x-y=(-2)-3=-5,当x=2,y=-3时,x-y=2-(-3)=5,当x=-2,y=-3时,x-y=(-2)-(-3)=1,综上所述:x-y=±1,x-y=±5. 【点睛】本题考查了有理数的绝对值,平方的应用,分类讨论各种情况是解题关键.21.(1)20,1,1,4a a b mn x b+==-==;(2)1 【解析】【分析】由题意,利用相反数,倒数,以及绝对值的代数意义求出+a b ,mn ,x 的值,代入原式计算即可得到结果.【详解】解:∵a 、b 互为相反数且a 、b 均不为0,m 、n 互为倒数,x 的绝对值为2 ∴(1)0a b +=,1a b=-,1mn =,24x =, (2)则22a b a mn x m n b+-+++- ()02141m n =-⨯+++-- ()2014=-+++-1=.【点睛】此题考查了整式数的加减,绝对值以及代数式求值,熟练掌握运算法则是解本题的关键. 22.(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克),则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.。

相关文档
最新文档