二次根式的乘除(第1课时)教案

合集下载

16.2二次根式的乘除(1)教学设计

16.2二次根式的乘除(1)教学设计

二次根式乘除( 1)教课方案课型:新授学习目标:掌握二次根式的乘法法例,并能进行化简或计算。

教课重难点:能用二次根式的乘法法例解决简单的计算。

重难点打破方法:类比法、小组合作教课准备:微课()直尺()圆规()课件()教课过程:教学集备共案(个案用红笔)师生活动环节一、学 1. 化简:1、展错纠错前准(1) 4 9 (2) 9 4 2. 针对解说备:(3)9 4(4)5242二、探请同学们仔细阅读课本6--7 页,并划出你以为重要的内容。

1、小组合作研究沟通究活 1. 计算:2、小组报告动 4 9 =________ 4 9 =________。

3、商讨新知(一)100 × 36 =_____,100×36 =_______。

4、小组总结方法独立 2.经过计算,你发现:5、小组派代表登台报告思4 9 _______ 4 9 6、教师总结概括考·解100 ×36 _____ 100×36 (填“ >,<,=”)得出结论决问3.由此获得:二次根式乘法法例:题a ·b = (a 0,b 0)例1 计算(1)5×7 ( 2)5· 3a ·1 b 34.用“ >、 <或=”填空.16×25 16× 25100 36 ________ 100 ×36由此获得:积的算数平方根的性质:ab = a·b(a 0, b 0)例2计算(1) 16×9 (2) 3 9x2y2( 1) 1 8 () 2 22 24 9 ( 3)2 4a b注意:1. 被开方数都是数;2.无特别说明,全部字母均表示正数。

(二)例 3 计算:师(1) 6×( - 15 )(2) 3 1×12生3交流合(3)2 3 ×(- 27)(4)2x 21 xy 作探究例4化简(1)25 36(2)225 1、师生研究2、小组总结3、学生登台解说4、教师概括5.总结方法自1. 判断以下各式能否正确,不正确的请予以更正:我(1) (-4) ×(-9) = - 4 ×-9()测试(2) 2× 2=2 2 ( )(3) 9a =3a ( )2.填空:(1)121 =;196 =;(2) 2× 3=24×6=(3)18×8 =(4)2 12a2b2=。

人教版八年级下册16.2《二次根式的乘除》教案

人教版八年级下册16.2《二次根式的乘除》教案
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$($a \geq 0$,$b \geq 0$)
b.掌握二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)
五、教学反思
在今天的教学中,我们探讨了二次根式的乘除运算。通过这节课的学习,我发现学生们在理解乘除法则和应用这些法则解决实际问题时,普遍存在一些挑战。首先,学生们在从理论到实际应用的转换上存在一定的难度。他们能够理解乘法法则和除法法则的概念,但在将法则应用到具体题目中时,往往不知道如何下手。
例如,在计算$\sqrt{12} \times \sqrt{18}$时,部分学生未能首先将根式化简,而是直接相乘,导致计算错误。这让我意识到,在讲解乘除法则时,需要更加强调化简的步骤,让学生形成自动化的解题流程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.了解二次根式乘除运算在实际问题中的应用。
教学内容涵盖以下例题与练习:
1.计算下列二次根式的乘积:
$\sqrt{3} \times \sqrt{5}$,$2\sqrt{6} \times 3\sqrt{2}$,$5\sqrt{2} \times \sqrt{18}$

初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思

初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思

数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。

八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。

大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。

二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。

第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。

第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。

第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。

语言文明,思想健康,积极、认真、扎实。

但有的学生对自己的学习没信心,在自动放弃学习。

三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。

2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。

教学案例——二次根式的乘除法(第1课时)

教学案例——二次根式的乘除法(第1课时)

教学案例——二次根式的乘除法(第1课时)【教学背景】1教学内容华东师大版《义务教育课程标准实验教科书数学》九年级上册第22章。

2学情与教材分析本节主要内容是二次根式的乘法运算和二次根式的化简,通过本节学习应使学生掌握根式的乘法运算法则和化简二次根式的常用方法.建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。

探究二次根式的乘法法则,教材从具体例子出发,由特殊到一般、由具体到抽象地归纳给出二次根式的运算法则.通过“探究”栏目,引导学生利用二次根式的性质,从具体数字的运算中发现规律,进而得出二次根式的乘法法则.“探究”栏目中的两个问题是两个不同层次的探究活动.首先是让学生通过计算发现规律,然后是让学生对发现的规律进行类比,得出乘法法则的具体内容。

将二次根式的乘法法则反过来,就得到积的算术平方根的性质.利用这条性质可以对二次根式进行化简.通过学习,应该使学生对化简二次根式的基本要求有所认识,即在化简时,一般先将被开方数进行因数分解或因式分解,然后再将能开得尽方的因数或因式开出来。

3教学目标,重、难点教学目标:知识技能:3.1掌握二次根式乘法法则,能熟练地应用它进行二次根式乘法运算。

3.2会逆用二次根式乘法法则,熟练地将二次根式化简。

数学思考:体验二次根式乘除法法则的应用过程,培养逆向思维。

解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题。

情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的。

师生行为:老师点评(纠正学生练习中的错误)设计意图:设情境,鼓励学生观察,猜想,归纳,总结,使学生明确该部分的计算规则为本节课要讲授的知识奠定基础。

1.2参考上面的结果,用“&gt;、&lt;或=”填空。

师生行为:让3、4个同学总结规律。

老师点评:①被开方数都是正数;②两个二次根式的乘等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

3.2二次根式的乘除(1)

3.2二次根式的乘除(1)

课题:二次根式的乘除(1)教者: 一、教学目标:(1)使学生能掌握积的算术平方根的性质:b a ab ∙=(0,0)a b ≥≥;.(2)使学生能运用积的算术平方根的性质熟练解题。

(3)使学生能掌握并能运用二次根式的乘法法则b a ab ∙==b a ab ∙=(0,0)a b ≥≥并进行相关计算。

教学重点: 积的算术平方根的性质及二次根式的乘法法则教学难点:积的算术平方根的性质及二次根式的乘法法则的理解与运用 教学过程:一、探索活动: 1.计算:(1)425⨯=_______________ 425⨯=_______________ (2)169⨯=_______________ 169⨯=_______________(3)2)32(×2)53(=_______________22)53()32(⨯=_________ 2.请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小组讨论。

你还能举一些类似的式子吗?(至少举出三例)____________________ _________________ __________________由上述各式,我们可以推测出:b a ab ∙=________b a ab ∙=(0,0)a b ≥≥ 4.概括:一般地,两个二次根式相乘,实际上就是把被开方数相乘,而根号不变. 5.由以上公式逆向运用可得: b a ab ∙=(0,0)a b ≥≥文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积.三、例题教学例1、计算: (1)322⋅ (2)4831⋅ (3)814⨯练习(注意书写步骤)(1)9416⨯(2) 29223⋅ 例2、化简:(1)24, (2)3a )0(82≥⋅a a a (3)324y x (x ≥0,y ≥0)小结:如何化简二次根式?(关键:将被开方数因式分解或因数分解,使出现“完全平方数”或“偶次方因式”)四、当堂练习:1.化简72的结果是 ( ) A. 36 B. 26 C. 62 D. 562.下列等式中,正确的是 ( )A 、x x =931B 、x x 552=C 、15)35(2=D 、m m 55= 3.计算:(注意书写各式) (1)515⨯ (2)6622⨯(3) )18(243x x ⨯ (x ≥0) (4)3858327⨯⨯4.化简:(注意书写各式)(1)2000 (2)5438c b a (a ≥0 0b ≥ 0c ≥) (3) 224y x x + (0x ≥)五、课堂小结从本节课的学习中,你有什么收获六、布置作业习题3.2 第一、二题。

人教版数学八年级下册16.2二次根式的乘除第一课时优秀教学案例

人教版数学八年级下册16.2二次根式的乘除第一课时优秀教学案例
1.布置具有梯度的作业,让学生巩固本节课所学的知识。如:“请完成以下作业:1.计算2√3 × 3√2;2.计算4√5 ÷ 2√5;3.利用二次根式乘除法解决实际问题。”
2.要求学生认真完成作业,并及时给予反馈,了解学生对知识点的掌握情况。如:“请同学们认真完成作业,明天我们将进行作业讲评。”
五、案例亮点
(二)问题导向
1.设计具有启发性的问题,引导学生思考二次根式乘除法的运算规律,如:“如何将二次根式的乘除法转化为我们已经学过的加减法?”等。
2.引导学生通过问题发现知识点之间的联系,如:提问:“二次根式的乘除法与实数的乘除法有什么异同?”等,让学生在思考中掌握知识。
(三)小组合作
1.组织学生进行小组讨论,分享各自的想法和解决问题的方法,让学生在合作中发现问题、解决问题,培养团队合作精神。
针对这一知识点,我设计了一节以学生为主体、注重实践与思考的优秀教学案例。首先,我会通过复习导入,引导学生回顾已学的二次根式知识,为新课的学习做好铺垫。接着,我将会引导学生通过小组合作、讨论交流的方式,探索二次根式的乘除运算规律,培养学生的主体探究能力和团队合作精神。在探索过程中,我会适时给予学生反馈和指导,帮助他们克服困难,理解并掌握二次根式的乘除运算方论,让学生分享各自对二次根式乘除法的理解和运算方法。如:“你们认为二次根式乘除法应该如何运算?请你们小组讨论一下,并分享给其他小组。”
2.引导学生通过讨论,发现和总结二次根式乘除法的运算规律。如:“通过讨论,我们发现二次根式乘除法可以转化为加减法,只需要将根号内的数相乘(或相除)即可。”
(四)总结归纳
1.教师引导学生总结本节课所学的二次根式乘除法的运算规律。如:“我们可以总结一下,二次根式的乘法可以理解为将根号内的数相乘,除法可以理解为将根号内的数相除。”

16.2二次根式的乘除法(教案)

16.2二次根式的乘除法(教案)
三、教学难点与重点
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。

二次根式的乘除教案

二次根式的乘除教案

二次根式的乘除教案《二次根式的乘除教案》这是优秀的教案文章,希望可以对您的学习工作中带来帮助!学习目标:1、会进行简单的二次根式的乘法运算;2、会对二次根式进行适当化简;学习重点:理解二次根式的乘法法则;学习难点:灵活运用二次根式的乘法法则和性质进行计算和化简.学习过程一、引入新课:在前面的数学课里我们认识了什么是二次根式和二次根式的一些性质,那么该怎样进行二次根式的计算呢?本节课我们一起学习二次根式的乘法运算。

二、展示目标,自主学习:自学指导认真阅读课本第6页——7页内容,完成下列任务:1、先自主完成6页“探究”,再和同伴交流,你们得到的结论是:。

尝试用文字语言表述这个法则。

2、认真看例1、例2和例3的每一步计算和化简,有疑问随即和同伴交流或向老师请教;3、仿照例题格式完成7页练习并和同伴互相找毛病。

(10分钟)三、检测反馈1、师生共同解决“自学指导”中的问题。

2、找同学演板7页练习1、2、3四、课堂小结:本节课你有哪些收获?(1)二次根式的乘法法则是什么?请写在下面。

(2)在进行二次根式的乘法计算和化简时你有觉得应该注意些什么?请告诉大家。

五、布置作业:1、正式作业:课本第10页习题16.2第1题;第3题的(1)、(2)小题2、课外延伸计算和化简(1)(2)3(3)(4)(5)(6)(7)(8)(9)(四川省凉山州)阅读材料,解答下列问题.例:当时,如则,故此时的绝对值是它本身当时,,故此时的绝对值是零当时,如则,故此时的绝对值是它的相反数∴综合起来一个数的绝对值要分三种情况,即:这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(2)猜想与的大小关系.二次根式的乘除教案这篇文章共2104字。

课件3.2二次根式的乘除(1)

课件3.2二次根式的乘除(1)
(16) (25) 16 25
由题(1)(2)你能归纳 出什么结论?
自主展示
结论:
ab a b (a 0, b 0)
自主展示
4.求下列式子有意义的x的 取值范围
1
2
x
( x 1)(2 x) x 1 2 x
3
x 1 x 1 x2 1
2 2
10 12
2 5
16 9
2 3 3 5
2 2
2.归纳猜想:
文字语言叙述:
乘法法则: b ab(a 0, b 0) a
二次根式相乘,实际上就是把被开方 数相乘,而根号不变.
自主合作
例1:计算
1
2
2 32
1 8 2
3
200
2
3
x y x 0, y 0
3
x x y x 0, x y 计算
1
2
6 15
1 24 2
3
a ab(a 0, b 0)
3
自主展示
1.计算
1
14 35
1 (2)2 3 3
(3)2 5a 10a (a 0)
数学九年级上册 苏科版
3.2二次根式的乘除(1)
学习目标
1.运用二次根式的乘法法则: a b ab 进行相关计算; 2. 掌握积的算术平方根的性质: ab a b 熟练解题.
自主探究
1.计算:
4 25
10 12
2 5
4 25
169
2 3 3 5
自主展示
答案:
1x 0
2 1 x 2 3 1 x 1

二次根式的乘除说课稿15篇

二次根式的乘除说课稿15篇

二次根式的乘除说课稿15篇二次根式的乘除说课稿篇1一、说教材本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容。

“二次根式”是《课程标准》“数与代数”的重要内容。

*是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念、性质、和运算。

*内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础。

二、说学情学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力。

本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会”。

三、说教学目标根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:1.知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围2.过程与方法:根据条件处理问题的能力及分类讨论问题的能力3.情感态度价值观:严谨的科学精神四、说教学重点和难点教学重点:二次根式中被开方数的取值范围教学难点:二次根式的取值范围五、说教法教学活动的本质是一种合作,一种交流。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。

为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

六、说学法新课程标准指出:学生是学习的主体。

要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。

16.2二次根式的运算(第1课时)讲解与例题

16.2二次根式的运算(第1课时)讲解与例题

二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。

《16.2 二次根式的乘除(第1课时)》教学设计

《16.2 二次根式的乘除(第1课时)》教学设计

《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。

海南省万宁市思源实验学校九年级数学上册 21.2 二次根式的乘除(第1课时)学案

海南省万宁市思源实验学校九年级数学上册 21.2 二次根式的乘除(第1课时)学案

21.2 二次根式的乘除学习目标1.经历二次根式乘法法那么 a ·b =ab (a ≥0,b ≥0),ab =a ·b (a ≥0,b ≥0)的形成进程,会进行简单的二次根式的乘法运算.2.会利用积的算术平方根的性质化简二次根式.学习重点和难点 1.重点:二次根式的乘法法那么。

2.难点:利用积的算术平方根的性质化简二次根式.学习进程:一、自主学习(一)温习引入1.填空:(1)4×9=____,49⨯=____;4×9__49⨯ (2)16×25=____,1625⨯=___;16×25__1625⨯ (3)100×36=___,10036⨯=___.100×36__10036⨯ (二)、探讨新知一、 学生交流活动总结规律.二、一样地,对二次根式的乘法规定为a ·b =ab (a ≥0,b ≥0)3、反过来,把二次根式的乘法公式反过来,就取得ab =a ·b (a ≥0,b ≥0),利用它能够进行二次根式的化简。

例1.计算(1)5×7 (2)139 (3)610(45a 15ay 例2 化简(1)916⨯ (2)1681⨯(3)324b a (4)229x y(5)8(3)教材P 8练习 三、学生小组交流解疑,教师点拨、拓展(一)例3.判定以下各式是不是正确,不正确的请予以更正:(1)(4)(9)49-⨯-=-⨯-(2)12425×25=4×1225×25=41225×25=412=83 (二)归纳小结(1)a ·b =ab =(a ≥0,b ≥0),ab =a ·b (a ≥0,b ≥0)及其运用.(2)要明白得ab (a<0,b<0)=b -a -•,如(2)(3)-⨯-=(2)(3)--⨯--或(2)(3)-⨯-=23⨯=2×3.四、课后检测(一)、选择题1.直角三角形两条直角边的边长别离为15cm 和12cm ,那么直角三角形斜边是﹙ ﹚A. 32cm B .33cm C .9cm D .27cm2.化简a 3a -的结果是( ).A .2a a -B .2a aC .-2a a -D .-2a a3.等式1-x ·112+=-x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1( 二)、填空题1.1014=_______.;656)3122(43⨯-⨯= 2.已知xy <0,那么=y x 2______.)12()321(123143z xy x x ⋅-⋅⋅.=3.实数a,b在数轴上的位置如下图,那么化简22ba的结果是_____.。

九年级数学上册 21.2《二次根式的乘除》(第1课时)教案 新人教版

九年级数学上册 21.2《二次根式的乘除》(第1课时)教案 新人教版

21.2 二次根式的乘除教案第一课时教学内容a≥0,b≥0)a≥0,b≥0)及其运用.教学目标a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简(a≥0,b≥0)并运用它进行计算;•a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0)a≥0,b≥0)及它们的运用.a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(3(4(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3(4例2 化简(1(2(3(4(5a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5×三、巩固练习(1)计算(学生练习,老师点评)①×②(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4=4解:(1)不正确.×3=6(2)不正确.=五、归纳小结本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.六、布置作业1.课本P15 1,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是().A...9cm D.27cm2.化简).A..3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是().A..C..二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:===(2)验证:==同理可得:==通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1..12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,2.验证:==。

二次根式的乘除[1]

二次根式的乘除[1]

二次根式的乘除(第1课)【预习引领】计算下列各式,观察计算结果,你能发现什么规律?(1=,;(2=,;(3,;【要点梳理】)0,0a b=≥≥即:两个二次根式相乘,把被开方数相乘,根指数不变.例1计算下列各题:(1(2;(3(4(5);(6).【课堂操练】1.计算下列各题:(1)(2(3;(4;(5;(62.等式=成立的条件是.【要点梳理】2.积的算术平方根的性质:)0,0a b=≥≥即:两个非负数的积的算术平方根,等于这两个因数的算术平方根的乘积.例2化简:(1);(2;(3;(4【课堂操练】1. 化简:(1(2;(3(4【要点梳理】例3化简:(1;(2(3;(4(5)(--.【课堂操练】1.化简:(1;(2(3;(4(5例4比较大小①例5.已知梯形的上底a=,下底b=高h=求面积S.【课后盘点】1.等式=成立的条件是.2==3.=4.比较大小:-5.把根号-外的因式移到根号内得62=,那么必须满足的条件是()A.a取全体实数B.0a≥C.a>0D.a<07.计算10253⋅的结果应该是()A.300B.C.D8.下列计算准确的是( )A==B==C541==-=D==9.在下列运算:=-==()3515==-⨯-=5===中,准确的有()A.0个B.1个C.2个D.3个10.已知为正实数,下列等式中,一定成立的是()A=B22a b=+C.2a b=+D a b=-11.化简:(1;(2(3;(4(5) ;(6) ;(7) .12.填空(1=(2=(3=(4=(5=(6= (7= (8= (9=(10= (11)×= (12= 13.判断下列各式是否准确,不准确的请改正: (1(2=4×=414.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是 ( ) A .cm B .cm C .9cm D .27cm15.化简( ) ABC .D .16.等式1112-=-⋅+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-117.下列各等式成立的是 ( ) A .8B .C .D .=18. 自由落体的公式为S=12gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为720m ,则下落的时间是_________. 19.计算下列各式:(2) (--(3)(4) -(5)(6)20.大家都知道当0a ≥时,a =,实质上当0a ≤时,a =-.这是因为a ==-.这个性质反过来同样成立,请使用上述结论,将下列根号外的因式移至根号内.(1) ;(2) -.21.cm,这边上的求此三角形的面积.22.已知矩形的宽为,长为, 求矩形的面积.23.一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米?(设计人:周海燕)二次根式的乘除(第2课)【预习引领】计算下列各式,观察计算结果,你发现了什么规律?(1=;(2=,.【要点梳理】1.二次根式的除法法则:=0a≥,b>0)即两个二次根式相除,把被开方数相除,根指数不变.例1 计算下列各题:(1;(2;(3;(4);【课堂操练】1.计算下列各式:(1;(2(3;(4(52.商的算术平方根的性质:=(0a≥,b>0)例2 化简:;练习:化简下列各式:(1)(2)(3)(4)(5) ;(6) .例3 观察下列各式及其验证过程:=:(1)按照上述两个等式及其验证过程的基本思路,猜想;(2)针对上述各式反映的规律,写出用n(n为自然数,且2n≥)表示的等式,并证明它成立.2.最简二次根式满足下列条件:(1) 被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式称为最简二次根式.例4下列二次根式中哪些是最简二次根式,哪些不是?,,(8)a>b)【课后盘点】1)A.27B.27CD2.阅读下列运算过程:====数学上将这种把分母的根号去掉的过程称作“分母有理化”,()A.2 B.6 C.13D3.如果(y>0)是二次根式,那么,化为最简二次根式是()A(y>0)By>0)C(y>0)D.以上都不对4.把(a-1中根号外的(a-1)移入根号内得()A B.D.5.在下列各式中,化简正确的是()A B±12C D.6的结果是()A.-3B.C.-3D.7.分母有理化: (1)66=_________;(2) ;(3) =______.8.已知x=3,y=4,z=5,最后结果是_______.9.(x ≥0)10.化简二次根式号后的结果是___ .11分母有理化为.12=成立的条件是a b=ab的代数式表示为.14.·(-)÷(m>0,n>0)15.-3÷()×(a>0)16.若y且x、y为实数,17.=,且x为偶数,求(1+x)的值.18.先化简,再求值.32322222b b ab ba b a a b ab a b+-÷--+-,其中a=,b=19.先将2x-,然后自选一个x合适的值,代入化简后的式子求值.20.已知x为奇数,且=求.21.已知a阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:解:-aa-a·1a=(a-122. 如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.23.在直角坐标系中,一次函数y kx b=+经过点(和(-,求原点o到该直线的距离.24.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-=-,同理可得:,……从计算结果中找出规律,并利用这一规律计算(+++……))的值.(设计人:周海燕)BAC。

二次根式乘除-经典教学教辅文档

二次根式乘除-经典教学教辅文档
例2 计算:
练习1 计算以下各式:
作业:
教科书第10页,习题16.2第1,3(1)(2),8(1)题.
七、教学评价(创建量规,向先生展现他们将被如何评价(来自教师和小组其他成员的评价),也能够创建一个自我评价表,这样先生可以用它对本人的学习进行评价)
本节课计算简单,但是题的类型较多,需求先生练习扎实。经过练习可以发现先生对法则的运用掌握很好,但是二次根式的化简很迷茫。在以后的教学中要多加练习。
3.培养先生的探求发现能力。
五、重点、难点
二次根式乘法法则的探求和运用.
六、教学过程
成绩1 当a 是正数或0 时, 是实数吗?取a 值分
别为1,2,3,4,5试一试!
类比有理数的运算,你认为任何两个实数之间可以
进行哪些运算?
加、减、乘、除四则运算
成绩2 两个二次根式能否进行加、减、乘、除运
算?怎样运算?让我们从研讨乘法开始.
请写出两个二次根式,猜一猜,它们的积该当是多
少?
特殊化,从能开得尽方的
二次根式乘法运算开始考虑!
计算以下式子,并观察它们之间有甚么联系?
能用字母表示你所发现的规律吗?
二次根式乘法法则:普通地有来自(a≥0,b≥0 ).
二次根式与二次根式相乘,等于各被开方数相乘
的算术平方根.反之: (a≥0,b≥0 )
能试着说说上述公式成立的理由吗?
附件2:教学设计模板
教学设计
课题名称:16.2 二次根式的乘除(1)
姓名
工作单位
学科年级
八年级数学
教材版本
新人教版
一、课程标准要求
归纳出二次根式的乘法法则,并运用这个法则进行二次根式的计算和化简.
二、教材地位作用(用知识结构图阐明)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的乘除教案
第一课时
教学内容 a ·b =ab (a ≥0,b ≥0),反之ab =a b (a ≥0,b ≥0)及其运用. 教学目标
a b ab a ≥0,b ≥0)ab a b (a ≥0,b ≥0),并利用它们进行计算和化简
a b ab (a ≥0,b ≥0)并运用它进行计算;•ab a b (a ≥0,b ≥0)并运用它进行解题和化简. 教学重难点关键
a b ab a ≥0,b ≥0)ab a b a ≥0,b ≥0)及它们的运用.
a b ab a ≥0,b ≥0).
关键:要讲清ab (a<0,b<0)=a b ,如(2)(3)-⨯-=(2)(3)--⨯--或(2)(3)-⨯-23⨯23
教学过程
一、复习引入
(学生活动)请同学们完成下列各题.
1.填空
(14949⨯=______;
(21625=_______1625⨯.
(31003610036⨯.
参考上面的结果,用“>、<或=”填空. 4×9_____49⨯,16×25_____1625⨯,100×3610036⨯ 2.利用计算器计算填空 (1236,(22510 (35630(44520,
(5)7×10______70. 老师点评(纠正学生练习中的错误) 二、探索新知 (学生活动)让3、4个同学上台总结规律. 老师点评:(1)被开方数都是正数; (2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为
a ·
b =ab .(a ≥0,b ≥0)
反过来: ab =a ·b (a ≥0,b ≥0)
例1.计算
(1)5×7 (2)1
3×9 (3)9×27
(4)12×6 分析:直接利用a ·b =ab (a ≥0,b ≥0)计算即可.
解:(1)5×7=35
(2)1
3×9=1
93⨯=3
(3)9×27=292793⨯=⨯=93
(4)12×6=1
62⨯=3
例2 化简
(1)916⨯ (2)1681⨯ (3)81100⨯
(4)229x y (5)54
分析:利用ab =a ·b (a ≥0,b ≥0)直接化简即可.
解:(1)916⨯=9×16=3×4=12
(2)1681⨯=16×81=4×9=36
(3)81100⨯=81×100=9×10=90
(4229x y 2322x y 232x 2y
(5)54=96
⨯=23×6=36三、巩固练习
(1)计算(学生练习,老师点评)
①16×8②36×210③5a·1
5 ay
(2) 化简: 20; 18; 24; 54; 22
12a b 教材P11练习全部
四、应用拓展
例3.判断下列各式是否正确,不正确的请予以改正:(1)(4)(9)49
-⨯-=-⨯-
(2)
12
4
25
×25=4×
12
25
×25=4
12
25
25123
解:(1)不正确.
(4)(9)
-⨯-49
⨯49×3=6 (2)不正确.
12 4 2525
112
25
25=
112
25
25
⨯112167
⨯=7
五、归纳小结
本节课应掌握:(1a b=ab=(a≥0,b≥0)ab a b(a≥0,b
≥0)及其运用.
六、布置作业
1.课本P15 1,4,5,6.(1)(2).
2.选用课时作业设计.
3.课后作业:《同步训练》。

相关文档
最新文档