高一数学同步辅导上课讲义
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数及其性质
【要点梳理】
要点一、对数函数的概念
1.函数y=log a x(a>0,a ≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;
(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释:
(1)只有形如y=log a x(a>0,a ≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数. (2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论.
a >0
0<a <1
图象
性质
定义域:(0,+∞) 值域:R
过定点(1,0),即x=1时,y=0 在(0,+∞)上增函数 在(0,+∞)上是减函数 当0<x <1时,y <0, 当x ≥1时,y ≥0
当0<x <1时,y >0, 当x ≥1时,y ≤0
要点诠释:
关于对数式log a N 的符号问题,既受a 的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.
以1为分界点,当a ,N 同侧时,log a N>0;当a ,N 异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图
要点诠释:
由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.
2.底数变化与图象变化的规律