计算机图形与可视化课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计课程名称:计算机图形学与可视化学生姓名:
学号:
专业班级:
指导老师:
院系名称:
课程设计任务书
设
计
题
目
利用迭代函数系统生成分形图案成绩课
程设计主要内容迭代函数系统(Iteration Function System,简称IFS)是以仿射变换为框架,根据几何对象的整体与局部具有自相似的结构,将总体形状以一定的概率按不同的仿射变换迭代下去,直至得到满意的分型图形。迭代函数系统绘制分形图形有两种方法:确定性迭代算法和随机性迭代算法。本文将以此原理出发,分析分形图形的生成方法,探索一些利用IFS产生丰富的分形图形的简便方法及具体应用。
具体内容请看下面的正文。
指导教师评语建议:从学生的工作态度、工作量、设计(论文)的创造性、学术性、实用性及书面表达能力等方面给出评价。
签名: 20 年月日
目录
一.系统功能介绍 (4)
二.设计思路 (6)
三.模块图 (6)
四.小组成员及任务分配 (7)
五.主要算法介绍 (7)
六.源代码 (8)
七.程序使用说明 (8)
八.调试结果 (8)
九.总结 (14)
十.参考文献 (15)
正文:
一.系统功能介绍
迭代函数系统(Iteration Function System,简称IFS)最早是由Hutchision 在1981年提出的。美国佐治亚理工学院的M F Bamsley等人在SIGGRAMPH’88国际会议上对IFS所作的专题报告,使IFS成为分形图像压缩的基础,从而使IFS成为分形图形学最有生命力的领域之一。
迭代函数系统(IFS)是以仿射变换为框架,根据几何对象的整体与局部具有自相似的结构,将总体形状以一定的概率按不同的仿射变换迭代下去,直至得到满意的分形图形。
目前使用的迭代函数系统绘制分形图的算法主要有两种:确定性迭代算法和随机性迭代算法。它们都是通过IFS码进行迭代而产生图形的方法。
确定性迭代算法是通过仿射变换得到的。其基本原理就是找一个初始集,对集上的每一个点,根据给定的仿射变换公式进行数据变换,便可得到新的点集。这样通过多次迭代,便可绘制所需的图形。并且每个图形的局部和整体相似。只要其仿射变换系数相同,即IFS码相同,当迭代次数足够大时,最终生成的图形是相同的。
随机性迭代算法用到了概率,从而可以对图形的细节和颜色进行控制。随机性迭代算法的基本原理就是利用一个给定的IFS码{:j=1,2,…,N}(每一个仿射变换对应于一个概率),从任选的一个初始点(,)出发,依据其概率分布{,,,…,},从{:j=1,2,…,N}中选择相应的进行仿射变换,可得到新的点(,)。然后再由概率选择相应的进行变换,进而得到新的点(,)。这样反复迭代,便可得到一系列的点{(,),(,),(,),…}。这些点集显示在屏幕上,便得到一个完整的分形图。
分形,又称碎形,通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。分形思想的根源可以追溯到公元17世纪,而对分形使用严格的数学处理则始于一个世纪后卡尔·魏尔施特拉斯、格奥尔格·康托尔和费利克斯·豪斯多夫对连续而不可微函数的研究。但是分形一词直到1975年才由本华·曼德博创造出,来自拉丁文,有“零碎”、“破裂”之意。一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作
品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。
分形一般有以下特质:
1、在任意小的尺度上都能有精细的结构;
2、太不规则,以至无论是其整体或局部都难以用传统欧氏几何的语言来描述;
3、具有(至少是近似的或统计的)自相似形式;
4、一般地,其“分形维数”会大于拓扑维数;
5、在多数情况下有着简单的递归定义。
因为分形在所有的大小尺度下都显得相似,所以通常被认为是无限复杂的。自然界里一定程度上类似分形的事物有云、山脉、闪电、海岸线、雪片、植物根、多种蔬菜(如花椰菜和西兰花)和动物的毛皮的图案等等。但是,并不是所有自相似的东西都是分形,如实直线虽然在形式上是自相似的,但却不符合分形的其他特质,比如说它能被传统的欧氏几何语言所描述。
四个制造分形的一般技术如下:
1、逃逸时间分形:由空间(如复平面)中每一点的递推关系式所定义,例如曼德博集合、茹利亚集合、火烧船分形、新分形和李奥普诺夫分形等。由一次或两次逃逸时间公式的迭代生成的二维向量场也会产生分形,若点在此一向量场中重复地被通过。
2、迭代函数系统:这些分形都有着固定的几何替代规则。康托尔集、谢尔宾斯基三角形、谢尔宾斯基地毯、空间填充曲线、科赫雪花、龙形曲线、丁字方形、门格海绵等都是此类分形的一些例子。
3、随机分形:由随机而无确定过程产生,如布朗运动的轨迹、莱维飞行、分形风景和布朗树等。后者会产生一种称之为树状分形的分形,如扩散限制聚集或反应限制聚集丛。
4、奇异吸引子:以一个映射的迭代或一套会显出混沌的初值微分方程所产生。
分形也可以依据其自相似来分类,有如下三种:
1、精确自相似:这是最强的一种自相似,分形在任一尺度下都显得一样。由迭代函数系统定义出的分形通常会展现出精确自相似来。
2、半自相似:这是一种较松的自相似,分形在不同尺度下会显得大略(但非精确)相同。半自相似分形包含有整个分形扭曲及退化形式的缩小尺寸。由递推关系式定义出的分形通常会是半自相似,但不会是精确自相似。
3、统计自相似:这是最弱的一种自相似,这种分形在不同尺度下都能保有固定