绝对值2 (1)教案

合集下载

《绝对值》教案(优秀10篇)

《绝对值》教案(优秀10篇)

【《绝对值》的课标要求】《绝对值》教案(优秀10篇)绝对值教案篇一绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。

通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:一、创设情境,复习导入。

今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。

(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?①千米,千米;②()×升。

在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。

这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。

你还能举出其他类似的例子吗?。

小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。

七年级数学《绝对值》教案【优秀6篇】

七年级数学《绝对值》教案【优秀6篇】

七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。

通过应用绝对值解决实际问题,体会绝对值的意义。

3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。

若规定向右为正,则A处记作­__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念­———绝对值。

二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。

绝对值教案(多篇)

绝对值教案(多篇)

绝对值教案(精选多篇)第一章:绝对值的概念与性质1.1 绝对值的定义引入绝对值的概念,解释绝对值表示一个数与零点的距离。

通过数轴展示绝对值的概念,让学生理解绝对值的直观意义。

1.2 绝对值的性质介绍绝对值的几个基本性质,如非负性、单调性等。

通过示例和练习,让学生掌握绝对值的性质并能够应用于解决实际问题。

第二章:绝对值的不等式2.1 绝对值不等式的形式介绍绝对值不等式的基本形式,如|x| > a 或|x| ≤b。

解释绝对值不等式的意义,并展示如何通过数轴来解绝对值不等式。

2.2 解绝对值不等式教授解绝对值不等式的方法,如分情况讨论、画数轴等。

提供练习题,让学生能够熟练解绝对值不等式,并解决实际问题。

第三章:绝对值的应用3.1 绝对值与距离解释绝对值与距离的关系,如在平面直角坐标系中两点间的距离公式。

通过实际例题,让学生应用绝对值来计算两点间的距离。

3.2 绝对值与坐标系的区域介绍绝对值在坐标系中表示区域的概念,如线段、正方形等。

引导学生通过绝对值来分析和解决坐标系中的区域问题。

第四章:绝对值与函数4.1 绝对值函数的图像介绍绝对值函数的图像特征,如V型图像和分段函数的性质。

通过图形和示例,让学生理解绝对值函数的图像特征及其应用。

4.2 绝对值函数的性质探讨绝对值函数的单调性、奇偶性等性质。

提供练习题,让学生能够分析绝对值函数的性质并解决相关问题。

第五章:绝对值的综合应用5.1 绝对值与线性方程介绍绝对值与线性方程的关系,如|ax + b| = 0 的解。

引导学生通过绝对值来解决线性方程中的问题。

5.2 绝对值与不等式组解释绝对值在不等式组中的应用,如解含有绝对值的不等式组。

提供综合练习题,让学生能够综合运用绝对值的概念和性质来解决问题。

第六章:绝对值与三角函数6.1 绝对值与正弦函数探讨绝对值与正弦函数的关系,如正弦函数的绝对值图像。

通过示例和练习,让学生理解绝对值在正弦函数中的应用。

6.2 绝对值与余弦函数介绍绝对值与余弦函数的关系,如余弦函数的绝对值图像。

绝对值2教案

绝对值2教案

学科:数学 教学内容:绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值. 2.会利用绝对值比较两个负数的大小.【重点难点解析】 明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。

一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。

【难题巧解点拨】例1 求下列各数的绝对值: -32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。

例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。

(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。

(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。

(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。

方便,同学们不妨试一试。

例3 已知a>b>0,试比较-a 与-b 的大小。

解法一:因为a>b>0,所以-a<0,-b<0, 而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。

七年级数学《绝对值》教案

七年级数学《绝对值》教案

七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。

这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。

七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。

这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。

绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。

(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。

(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。

(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。

教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。

初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。

三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。

演示法中需要的教具有多媒体和温度计。

四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。

所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。

五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。

七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a的绝对值记作|a|。

举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲解。

)强调:表示0的点与原点的距离是0,所以|0|=0。

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。

首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。

《绝对值》教案

《绝对值》教案

《绝对值》教案一、教学目标1、知识与技能目标(1)理解绝对值的概念,会求一个数的绝对值。

(2)理解绝对值的几何意义和代数意义。

2、过程与方法目标(1)通过观察、比较、归纳等方法,培养学生的逻辑思维能力。

(2)经历绝对值概念的形成过程,体会从特殊到一般、分类讨论的数学思想方法。

3、情感态度与价值观目标(1)让学生在探索绝对值的过程中,感受数学的严谨性和科学性,激发学生学习数学的兴趣。

(2)通过小组合作学习,培养学生的合作意识和团队精神。

二、教学重难点1、教学重点(1)绝对值的概念和求法。

(2)绝对值的几何意义和代数意义。

2、教学难点(1)对绝对值代数意义的理解。

(2)利用绝对值解决实际问题。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过复习数轴的知识,引出在数轴上两个点之间的距离问题,从而引入绝对值的概念。

例如,在数轴上表示数 5 和数-5 的点到原点的距离都是 5,我们把这个距离叫做 5 和-5 的绝对值。

2、讲授新课(1)绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。

例如,|5| = 5,|-5| = 5,|0| = 0(2)绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点到原点的距离。

距离总是非负的,所以绝对值总是非负的,即|a| ≥ 0。

(3)绝对值的代数意义①当 a 是正数时,|a| = a;②当 a 是 0 时,|a| = 0;③当 a 是负数时,|a| = a。

例如,|7| = 7,|0| = 0,|-3| =(-3) = 3(4)求绝对值例 1:求下列各数的绝对值:-8, 12, 0,-75解:|-8| = 8|12| = 12|0| = 0|-75| = 75例 2:已知|x| = 4,求 x 的值。

解:因为|x| = 4,所以 x = 4 或 x =-43、课堂练习(1)教材上的练习题,让学生独立完成,然后教师进行讲解和纠正。

初中数学绝对值教案

初中数学绝对值教案

初中数学绝对值教案初中数学绝对值教案在教学工作者开展教学活动前,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。

我们该怎么去写教案呢?下面是作者为大家整理的初中数学绝对值教案,仅供参考,大家一起来看看吧。

初中数学绝对值教案1一、教学目标1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法目标:(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。

通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:1、教师检查组长学案学习情况,组长检查组员学案学习情况。

(约5分钟) 2.在组长的组织下进行讨论、交流。

(约5分钟) 3、小组分任务展示。

(约25分钟)4、达标检测。

(约5分钟)5、总结(约5分钟)四、小组对学案进行分任务展示(一)、温故知新:前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?(二)小组合作交流,探究新知1、观察下图,回答问题: (五组完成)大象距原点多远?两只小狗分别距原点多远?归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。

初中数学初一数学上册《绝对值》教案、教学设计

初中数学初一数学上册《绝对值》教案、教学设计
b.探讨绝对值函数的图像特点,如y = |x|,通过绘制图像来观察函数的对称性和非负性。
c.编写一个关于绝对值的小故事或小案例,要求能够体现绝对值的概念和解题方法。
3.实践作业:鼓励学生参与实践活动,将绝对值知识应用于实际问题中。
a.调查并记录一天内家中或学校的温度变化,用绝对值表示温度差。
b.通过互联网或图书馆资源,查找绝对值在科学、工程等领域中的应用实例,并撰写简要报告。
3.情感态度与价值观:强调数学在实际生活中的重要作用,激发学生学习数学的兴趣,培养积极向上的学习态度。
4.课后作业:布置适量的课后作业,巩固所学知识,提高学生的解题能力。
五、作业布置
1.基础作业:根据课堂学习内容,布置以下基础作业,旨在巩固学生对绝对值概念的理解和应用。
a.完成课本第chapter页的练习题,包括填空、选择和解答题,要求学生在规定时间内独立完成。
2.教学过程:
a.导入:通过一个关于距离的问题,引出绝对值的概念,激发学生的好奇心。
b.新课内容:讲解绝对值的概念、性质和应用,结合数轴、几何图形等直观手段,帮助学生形象地理解。
c.例题讲解:设计不同类型的例题,由浅入深地讲解,让学生掌握解决含有绝对值问题的方法。
d.课堂练习:布置具有梯度、层次的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.通过解决实际问题,培养学生的实际应用能力,提高解决现实问题的信心。
4.培养学生的逻辑思维能力,严谨求实的科学态度,形成良好的思维习惯。
5.鼓励学生积极参与课堂讨论,尊重他人意见,培养团结协作精神。
二、学情分析
针对初中一年级学生,他们在学习《绝对值》这一章节时,已经掌握了有理数的概念、运算法则及数轴的基本知识。在此基础上,学生对绝对值的学习具备了一定的基础。然而,由于绝对值的概念较为抽象,学生可能会在理解上存在困难。因此,在教学过程中,教师需要关注以下几点:

人教版七年级上数学《 绝对值》教案

人教版七年级上数学《 绝对值》教案

《绝对值》教案一、教学目标1.知识与技能:掌握绝对值的代数意义和几何意义,能进行绝对值的简单计算。

2.过程与方法:经历观察、猜想、验证等数学活动,培养学生的逻辑推理能力和自主学习能力。

3.情感态度和价值观:感受数学与生活的联系,培养学生的数学应用意识和数学学习兴趣。

二、教学重难点1.教学重点:掌握绝对值的代数意义和几何意义,能进行简单的绝对值计算。

2.教学难点:理解绝对值的非负性,会用绝对值表示两个数之间的距离。

三、教具准备多媒体课件、黑板、粉笔。

四、教学过程设计1.导入新课,揭示课题(1)通过复习相反数的概念,引出绝对值的概念。

(2)揭示课题:今天我们将学习一种新的数学概念——绝对值。

1.探究新知,掌握概念(1)通过实例引入绝对值的概念,让学生观察并思考:这些数的绝对值有什么特点?它们的符号和大小有什么关系?(2)讲解绝对值的代数意义和几何意义,强调绝对值的非负性。

(3)通过例题和练习,让学生掌握绝对值的简单计算。

(4)引导学生用绝对值表示两个数之间的距离,理解绝对值的实际意义。

1.巩固练习,深化理解(1)出示一些练习题,让学生进行计算和判断,加深对绝对值的理解。

(2)通过讨论和交流,让学生发现绝对值在生活中的应用,培养学生的数学应用意识。

1.课堂小结,回顾反思(1)回顾本节课的学习内容,总结绝对值的定义、性质和计算方法。

(2)引导学生反思自己的学习过程和方法,提出改进意见。

(3)布置课后作业,让学生巩固所学知识。

五、教学反思本节课的教学目标是让学生掌握绝对值的代数意义和几何意义,能进行简单的绝对值计算。

在教学过程中,我注重引导学生通过观察、猜想、验证等数学活动来探究新知,培养学生的逻辑推理能力和自主学习能力。

同时,我也注重与学生的互动和交流,鼓励学生发表自己的见解和疑问,营造积极的学习氛围。

在巩固练习环节,我设计了多层次的练习题,以满足不同学生的学习需求。

在课堂小结环节,我引导学生回顾反思自己的学习过程和方法,提出改进意见,培养学生的元认知能力。

浙教版(2024)数学七年级上册《绝对值》教案及反思

浙教版(2024)数学七年级上册《绝对值》教案及反思

浙教版(2024)数学七年级上册《绝对值》教案及反思一、教学目标:【知识与技能目标】:1.掌握绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

2.理解绝对值的概念,会求一个数的绝对值。

3.能够利用绝对值比较两个有理数的大小。

【过程与方法目标】:1.通过数轴上的点到原点的距离,体会绝对值的几何意义,培养学生的数形结合思想。

2.通过具体的数值计算,归纳出绝对值的代数意义,培养学生的归纳推理能力。

3.通过比较两个有理数的绝对值大小来比较它们的大小,培养学生的逻辑思维能力。

【情感价值观目标】:1.在探究绝对值概念和性质的过程中,培养学生积极思考、勇于探索的精神。

2.感受数学的严谨性和逻辑性,体会数学在实际生活中的应用价值。

3.培养学生严谨的治学态度和勇于探索的创新精神。

二、学情分析:七年级的学生已经学习了有理数的概念、数轴等知识,为学习绝对值奠定了基础。

学生对绝对值概念的理解可能存在困难,特别是对于负数的绝对值是它的相反数这一性质,在利用绝对值比较两个有理数的大小时,可能会出现错误。

三、教材分析:《绝对值》是浙教版(2024)数学七年级上册的内容,主要旨在绝对值的概念体现了数形结合的思想方法,对于培养学生的数学思维能力具有重要意义,它是进一步学习有理数的运算和实数的基础。

教材首先通过数轴上表示数的点到原点的距离引出绝对值的概念,然后通过具体的例子让学生掌握求一个数的绝对值的方法,最后介绍了绝对值的性质和利用绝对值比较两个有理数的大小。

四、教学重难点【教学重点】:绝对值的概念和性质,利用绝对值比较两个有理数的大小。

【教学难点】:对绝对值概念的理解,特别是负数的绝对值是它的相反数这一性质。

五、教学方法和策略:【教学方法】:1.讲授法:讲解绝对值的概念、性质和求法。

2.演示法:通过数轴的直观演示,帮助学生理解绝对值的概念。

3.练习法:通过练习,让学生巩固所学知识。

【教学策略】:1.创设情境法:注重知识的形成过程,让学生在体验中学习,激发学生的学习兴趣。

绝对值教案(多篇)

绝对值教案(多篇)

绝对值教案(精选多篇)一、教学目标知识与技能:1. 理解绝对值的概念及性质。

2. 掌握绝对值的运算规则。

3. 能够运用绝对值解决实际问题。

过程与方法:1. 通过实例引导学生探究绝对值的概念。

2. 运用合作交流的方式,探索绝对值的性质和运算规律。

3. 运用绝对值解决实际问题,提高解决问题的能力。

情感态度价值观:1. 培养学生的数学思维能力,提高对数学的兴趣。

2. 培养学生合作交流、积极探究的学习态度。

二、教学重点与难点重点:1. 绝对值的概念及性质。

2. 绝对值的运算规则。

难点:1. 绝对值性质的理解和运用。

2. 绝对值在实际问题中的运用。

三、教学方法情境教学法、合作交流法、引导发现法四、教学准备教师准备:1. 绝对值的教学PPT或黑板。

2. 绝对值的练习题及答案。

学生准备:1. 笔记本、文具。

2. 已经学习过有理数的相关知识。

五、教学过程1. 导入新课:1.1 引导学生回顾有理数的概念。

1.2 提问:如何描述一个数与原点的距离?1.3 引入绝对值的概念。

2. 自主探究:2.1 让学生独立思考,尝试解释绝对值的概念。

2.2 学生之间相互交流,分享自己的理解。

2.3 教师总结并讲解绝对值的定义和性质。

3. 实例讲解:3.1 利用数轴展示绝对值的几何意义。

3.2 讲解绝对值的运算规则。

3.3 给出绝对值的练习题,让学生独立完成。

4. 合作交流:4.1 学生分组讨论,探索绝对值在实际问题中的运用。

4.2 各组汇报讨论成果,教师点评并讲解。

5. 巩固练习:5.1 给出一些有关绝对值的练习题,让学生独立完成。

5.2 教师批改作业,及时反馈答案。

6. 总结课堂:6.1 教师总结绝对值的概念、性质和运算规则。

6.2 强调绝对值在实际问题中的重要性。

7. 布置作业:7.1 让学生课后巩固绝对值的知识。

7.2 布置一些有关绝对值的练习题,让学生独立完成。

六、教学拓展1. 引导学生思考绝对值在坐标系中的应用,例如计算两点之间的距离。

2022人教版数学《绝对值2》配套教案(精选)

2022人教版数学《绝对值2》配套教案(精选)

1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。

2.使学生熟练掌握有理数绝对值的求法和有关计算问题。

(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。

3.给出一个数,能求它的绝对值。

(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

教学重点给出一个数会求它的绝对值。

教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。

【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。

记作|a|。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:1= ,|+8.2|= ;(2)|0|= ;(1)|+2|= ,5(3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数。

《绝对值教案》

《绝对值教案》

《绝对值教案》word版一、教学目标:1. 让学生理解绝对值的定义,掌握绝对值的性质。

2. 培养学生运用绝对值解决问题的能力。

3. 引导学生运用数形结合的思想方法,直观地理解绝对值。

二、教学内容:1. 绝对值的定义与性质。

2. 绝对值在实际问题中的应用。

三、教学重点与难点:1. 绝对值的定义及其性质。

2. 运用绝对值解决实际问题。

四、教学方法:1. 采用讲授法,讲解绝对值的定义与性质。

2. 采用案例分析法,分析绝对值在实际问题中的应用。

3. 采用数形结合法,让学生直观地理解绝对值。

五、教学过程:1. 导入:通过数轴引入绝对值的概念,引导学生直观地理解绝对值。

2. 新课讲解:讲解绝对值的定义与性质,让学生掌握绝对值的基本概念。

3. 案例分析:分析绝对值在实际问题中的应用,培养学生运用绝对值解决问题的能力。

4. 练习与讨论:布置练习题,让学生巩固所学知识,并进行小组讨论,交流解题心得。

5. 总结与拓展:总结本节课的主要内容,拓展绝对值在其他领域的应用。

6. 课堂小结:回顾本节课所学知识,加深对绝对值的理解。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评估:1. 课后作业:通过布置相关习题,评估学生对绝对值概念和性质的理解。

2. 课堂问答:通过提问,检查学生对绝对值知识的掌握程度。

3. 小测验:设计一份包含不同类型题目的测验,评估学生应用绝对值解决问题的能力。

七、教学资源:1. 数轴图示:用于直观展示绝对值的概念。

2. 练习题库:提供多种难度的练习题,供学生巩固知识点。

3. 教学PPT:制作精美的PPT,辅助讲解绝对值的相关概念和例题。

八、教学进度安排:1. 第一课时:介绍绝对值的定义和性质。

2. 第二课时:讲解绝对值在实际问题中的应用。

3. 第三课时:练习题讲解和讨论。

4. 第四课时:总结绝对值的知识点,拓展应用。

九、教学反思:1. 课后收集学生作业,分析学生的掌握情况,为下一步教学提供依据。

初中数学绝对值教案(5篇)

初中数学绝对值教案(5篇)

初中数学绝对值教案(5篇)初中数学绝对值教案(5篇)通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

下面是小编为大家整理的初中数学绝对值教案,如果大家喜欢可以分享给身边的朋友。

初中数学绝对值教案【篇1】一、素质教育目标(一)知识教学点1、能根据一个数的绝对值表示距离 ,初步理解绝对值的概念。

2、给出一个数,能求它的绝对值。

(二)能力训练点在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。

(三)德育渗透点1、通过解释绝对值的几何意义,渗透数形结合的思想。

2、从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

(四)美育渗透点通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。

二、学法引导1、教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现教为主导,学为主体的教学要求,注意创设问题情境,使学生自得知识,自觅规律。

2、学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)三、重点、难点、疑点及解决办法1、重点:给出一个数会求出它的绝对值。

2、难点:绝对值的几何意义,代数定义的导出。

3、疑点:负数的绝对值是它的相反数。

四、课时安排2课时五、教具学具准备投影仪(电脑)、三角板、自制胶片。

六、师生互动活动设计教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。

七、教学步骤(一)创设情境,复习导入师:以上我们学习了数轴、相反数。

在练习本上画一个数轴,并标出表示-6,0及它们的相反数的点。

学生活动:一个学生板演,其他学生在练习本上画。

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。

绝对值教案如何帮助学生彻底理解概念?

绝对值教案如何帮助学生彻底理解概念?

绝对值教案如何帮助学生彻底理解概念?绝对值是学习数学里的一个重要概念。

它不仅在初中数学中出现,更在高中数学、大学数学中大量应用。

但是,对于许多学生来说,绝对值这个概念是难以理解的。

如何帮助学生充分理解绝对值概念成为了一项重要的教学任务。

绝对值教案作为一种有针对性的教学手段,如何帮助学生彻底理解绝对值概念也变得尤为重要。

本文将探讨绝对值教案的制定和使用,以期帮助学生更好地掌握绝对值概念。

一、绝对值教案的制定1.明确绝对值概念要制定延伸绝对值教案,要理解绝对值的概念。

绝对值是一个数到0的距离,这个距离可以是正数,也可以是负数,它的值永远是正数。

绝对值具有绝对唯一性,也就是说,无论取绝对值符号前面的数是正数还是负数,绝对值的值都是正数。

只有明确了这一点,才能制定更加深入和有效的绝对值教案。

2.确定教学目标教学目标至关重要,是教案制定的基础。

根据学生的实际情况和学习需要,教师可以确定教学目标,这可以帮助学生更加理解绝对值概念。

教学目标应该包括以下几个方面:(1)全面理解绝对值的概念(2)掌握绝对值计算方法(3)熟练应用绝对值求解问题(4)能够用自己的语言解释绝对值的含义教学目标要清晰明确,不仅有利于教学,也有利于教师和学生对教学效果的评估。

3.选择合适的教学方法教学方法是指在教学中使用的方式和手段。

针对绝对值教学,可以采取许多不同的方法,如讲授、练习、探究、互动等等。

不同的教学方法适用于不同的学生,在制定绝对值教案时,要选择适合学生群体、适合教学内容的教学方法,以便达到更好的教学效果。

4.编排教学内容教学内容是指教师要传授给学生的知识和信息。

针对绝对值教学,教师可以编排许多课程内容,如“绝对值概念介绍”、“绝对值的计算方法”、“绝对值在求解问题中的应用”等等。

编排教学内容要求教师掌握教学大纲的要求,并根据学生的实际情况选择所需内容。

在编排教学内容时,教师也要注意内容的层次和逻辑,避免过多或重复内容,确保教学内容的有效性。

(教案)2.第二讲绝对值

(教案)2.第二讲绝对值
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与绝对值相关的实际问题,如数轴上两点间的距离。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。如在数轴上移动点,观察其绝对值的变化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
此外,在总结回顾环节,我尝试让学生用自己的话来总结绝对值的概念和性质,以便了解他们对知识点的掌握程度。从学生的回答来看,大部分学生对绝对值的理解较为深刻,但仍有个别学生存在误区。针对这个问题,我计划在课后进行个别辅导,帮助他们巩固知识点。
最后,我认为在本节课中,教学难点和重点的把握还有待提高。在今后的教学中,我将更加关注学生的需求,及时调整教学策略,使他们在掌握绝对值知识的同时,提高解决问题的能力。
解决方法:通过数轴上点的对称性,以及具体数值的运算,引导学生推导出绝对值的性质。
(3)绝对值在数轴上的应用:在解决数轴上两点间距离的问题时,学生可能难以将绝对值与实际应用结合起来。
解决方法:通过示例和练习,让学生将绝对值与数轴上的实际距离联系起来,提高解题能力。
(4)绝对值运算的顺序:在涉及多层绝对值时,如||a||,学生可能不清楚运算顺序。
5.练习绝对值相关的运算Hale Waihona Puke 提高解题技巧。二、核心素养目标
《数学》七年级上册第三章第一节:绝对值。
1.培养学生的数感和符号意识,理解绝对值在数学表达和问题解决中的重要作用。
2.提升学生运用数学语言进行描述、分析和解决问题的能力,特别是在绝对值相关情境中。
3.培养学生的逻辑推理能力,通过绝对值的性质探究,形成严密的数学思维。
1.讨论主题:学生将围绕“绝对值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、巩固练习
1.课本第11页练习1、2、3题。
第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,应改为“只有大小相等符号相反的数是互为相反数”。(2)正确。(3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远。”(4)正确。
师生共同完成
学生独立填空后交流、纠错、补充。
4. 培养学生积极参与探索活动,体会数形结合的方法。
教学重点
难点
正确理解绝对值的概念,能求一个数的绝对值。
正确理解绝对值的几何意义和代数意义。
教学准备
投影仪、三角板。
教学时间
一课时。
教学过程
第(1)课时
教学环节
教师活动预设
学生活动预设
设计意图
备注
情境导入
1.什么叫互为相反数?
2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?
课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值。
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│。
这里的数a可以是正数、负数和0。
例如上述的10和-10的绝对值记作│10│=10,│-10│=10,同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6, │-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0。
(3)一个负数的绝对值是它的相反数。
我们用a表示任意一个有理数,上述式子可以表示为:
①当a是正数时,│a│=_______;
②当a是负数时,│a│=_______;
③当a=0时,│a│=_______。
教师问:
(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?
(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?
绝对值的的概念是一个主要概念,也是一个难点,通过数轴使学生直观地理解绝对值的概念,掌握求绝对值的方法,然后通过练习,使学生对绝对值的概念和求绝对值的方法及时得到巩固,进而突破难点。
通过观察、讨论、归纳等方法,使学生深入理解绝对值的概念,掌握求绝对值的方法。
通过练习,巩固所学的知识,使学生对本节课的内容有一个完整系统的认识,进一步加深对绝对值概念的掌握。
2.试一试:
(1)│+2│=______,│ │=_____,│+10.6│=________。
(2)│0│=_______。
(3)│-12│=_______,│-20.8│=_______,│-32 │=_______。
3.你能从上面解答中发现什么规律吗?
(1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
回答问题。
新课讲授
在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向。
1.观察课本第11页图1.2-5,回答:
(1)两辆汽车行驶的路线相同吗?
(2)它们行驶路程的远近相同吗?
这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km。
(3)绝对值等于2的数有几个?它们是什么?
归纳:
①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,不可能是负数,即对任意有理数a,总有│a│≥0。
②两个互为相反数的绝对值相等,即│a│=│-a│。
③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零。
绝对值的代数意义:
(1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数.
我们用a表示任意一个有理数,上述式子可以表示为:
①当a是正数时,│a│=_______;
②当a是负数时,│a│=_______;
③当a=0时,│a│=_______。
课后记
教学内容
1.2.4 绝对值
课标对本节课的教学要求
1.借助数轴初步理解绝对值的概念,能求一个数的绝对值。
2.通过应用绝对值解决实际问题,体会绝对值的意义和作用。
教学目标
1.借助数轴初步理解绝对值的概念,能求一个数的绝对值。
2.通过应用绝对值解决实际问题,体会绝对值的意义和作用。
3.通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力。
学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?从而得出绝对值的代数意义。
先让学生填空,然后让学生给a取一些具体数值检验所填写的结果是否正确。
学生合作完成。
学生独立做练习1(师强调书写格式,防止出现“-8=8”的错误。)
练习2学生合作完成。
练习3学生独立完成后交流、纠错。
使学生直观地感受绝对值的意义,通过问题引发学生的思考,激发学生的学习兴趣,进而引起对绝对值意义的思索。Leabharlann 作业安排教科书14页5题。
课堂小结
一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点。
板书设计
1.2.4 绝对值
一般地,数轴上表示数a的点与原点的距离 练习:
叫做数a的绝对值,记作│a│。
这里的数a可以是正数、负数和0。
相关文档
最新文档