KV线路过电流保护实验
110kV输电线路零序电流保护设计
摘要我国110kV及以上的电力系统均为大电流接地系统,单相接地短路将产生很大的故障相电流和零序电流。
三相式保护虽然对接地短路有保护作用。
但该保护的动作电流必须大于最大负荷电流。
因而灵敏度往往不够。
所以必须采用零序电流保护装置作为接地保护是必要的。
零序电流保护分为四段式,分别为主保护I段,II段。
后备保护III段,IV段。
在本设计当中,计算部分首先确定系统的最大最小运行方式,再通过零序电流保护的各段的整定原则计算出保护1、2、3的无时限零序电流保护的动作电流和动作时限整定值,算出各自的最小保护范围以完成灵敏度的校验。
之后计算出保护2,3的带时限零序电流保护的动作电流值,然后通过最小运行方式校验带时限电流保护的灵敏度。
最后对保护1的进行零序三段的整定计算。
图形部分画出零序电流保护的原理图以及展开图。
并介绍了方向性零序保护的原理图。
系统控制部分设计了对零序电流保护的控制。
并分析了动作过程。
关键词:零序电流;单相接地;灵敏度;原理图目录第1章绪论 (2)第2章输电线路零序电流保护整定计算 (4)2.1 零序电流Ι段整定计算 (4)2.1.1 零序电流Ι段动作电流的整定 (5)2.1.2 灵敏度校验 (10)2.1.3 动作时间的整定 (13)2.2 零序电流Ⅱ段整定计算 (13)2.3零序电流Ⅲ段整定计算 (14)第3章零序保护原理图的绘制与动作过程分析 (15)第4章 MATLAB建模仿真分析 (19)第5章课程设计总结 (22)参考文献 (23)第1章绪论1.1 零序电流保护的概况本文是针对110kV输电线路采用零序电流保护的方法进行的继电保护设计。
在正常负荷下,零序电流没有或者很小;当发生接地故障时,就一定有零序电流产生。
据统计,接地短路故障约占总故障次数的93%。
所以,采用零序电流保护装置作为接地短路保护是必要的。
零序电流保护装置简单,动作电流电流小,经济可靠,灵敏度高,正确动作率高。
因此零序电流保护在中性点直接接地的高压,超高压输变电系统中的到了广泛的应用。
220kV线路保护检验方法
注意:在试验接线中,将试验仪的UZ接于保护的开口三角电压回路L。
1、纵联方向保护检验:仅投入主保护压板1LP18(1)短接11D8—11D36,11D9—11D37;1D48—1D55(如有收发信机则将收发信机电源给上,然后将短接片置于“负载”下。
(2)模拟A相接地故障故障前正常负荷状态为12秒;直接用阻抗界面时,使Z=0.95*Zzdp2=0.95*2.18=2.07Ω,Φ=Φlm,故障时间=0.1s;用电流电压界面时,使I=3A,U=0.95*(1+0.83)*3* Zzdp2=11.37V,故障相电压超前故障相电流为零序灵敏角Ps0=80°。
(非故障相电压为正常电压,非故障相电流为0A);((4)模拟AB相间故障故障前正常负荷状态为12秒;直接用阻抗界面时,使Z=0.95*Zzdpp2=0.95*4.6=4.37Ω,Φ=Φlm,故障时间=0.1s;用电流电压界面时,使IA=3A,Uab=0.95*2*3* Zzdpp2=26.22V,故障相间电流的超前相IA滞后故障相电压超前相UA为正序灵敏角Ps1=80°,滞后相电流IB与IA 相差180°。
(非故障相电压为正常电压,非故障相电流为0A);(5)模拟BC、CA相间故障,方法同上。
(6)保护信息为D++。
2、纵联零序方向保护。
投入主保护压板1LP18和零序保护压板1LP17(1)短接1D48—1D55、11D8—11D36,11D9—11D37;(如有收发信机则将收发信机电源给上,然后将短接片置于“负载”下。
(2)模拟A相接地故障故障前正常负荷状态为12秒;用电流电压界面时,使I=(I0zdF*1.05)A,U=53V,故障相电压超前故障相电流为零序灵敏角Ps0=80°。
(非故障相电压为正常电压,非故障相电流为0A);故障时间为0.1s保护发单跳令。
(3)模拟B、C相接地故障,方法同上。
(4)用I=(I0zdF*0.95)A,检验可靠不动。
10kV线路过电流保护的整定与校核
10kV线路过电流保护的整定与校核摘要:电力系统是指以电能的生产,转换,配送,分配和使用为目的的各类电气设备,它们根据一定的技术与经济需求,而有机地组合在一起的一个联合系统。
10kV配电线路结构比较复杂,其中有的是用户专线,而用户专线只连接极少的用户群体;有的呈现出放射形状,在同一线路上,有数十个乃至数百个变电所在线路的支路上相连。
10kV线路的长度差别很大,从数十米到数十公里不等,有的线路上还连接着一个小的客户变电站或一个区域的开关变电站。
10kV输电线路是电力系统中不可忽视的重要组成部分。
1.10kV线路过电流保护的研究背景随着继电保护的发展状态和电力系统的发展,科学家们对继电保护持续地提出了新的要求,而其中,电力电子技术的发展、计算机技术的发展以及通信技术的发展又一次给继电保护技术的发展注入了新的活力。
我国的电脑继电保护技术研究早在70年代后期就已经开始,其中高校科研院所居于领导地位。
而在1984年,我国研制成功了一台输送线路的微机保护装置,这也是我国在国产输送线路的微机保护装置上的一个开始,到了20世纪90年代,我国的继电保护技术已经完全进入到了微机保护的时代。
2.研究10kV线路过电流保护目的和意义2.1研究过电流保护的目的过电流保护指的是在超过预先预定规定的某个数值时,保护装置检测并启动,并通过时间来保证动作的选择性,从而使断路器跳闸或发出相应的报警信号。
它具有大的整定电流和快速动作的特性,常用电磁型电流继电器,常用的短路保护元件为保险丝。
10kV配电线路的结构较为复杂,部分线路为用户专线,而用户专线仅与很小一部分用户群相连接;有的呈现出放射形状,在同一条线路上连接几十台变压器甚至上百台变压器在线路的分支上。
10kV线路长度可以从几十米到几十千米有着很大的区别,还有的线路上连接的有小型的用户变电站或者一个地区的开关变电站。
10kV线路在整个配电网中有着不可忽略的作用。
10kV线路过电流保护主要保护电路太大了过载保护跳闸或者熔断,保护整个电路不损坏,或者人触电不会造成太大的伤害。
过电流保护实验
实验二:过电流保护实验一、实验目的与要求熟悉过电流保护的电路图的电气连接,掌握过电流保护的工作原理。
二、实验类型验证性实验三、实验原理及说明过电流保护就是当电流超过预定最大值时,使保护装置动作的一种保护方式。
当流过被保护原件中的电流超过预先整定的某个数值时,保护装置启动,并用时限保证动作的选择性,使断路器跳闸或给出报警信号。
电网中发生相间短路故障或者非正常负载增加,绝缘等级下降等情况下,电流会突然增大,电压突然下降,过流保护就是按线路选择性的要求,整定电流继电器的动作电流的。
当线路中故障电流达到电流继电器的动作值时,电流继电器动作按保护装置选择性的要求,有选择性的切断故障线路,通过其触点启动时间继电器,经过预定的延时后,时间继电器触点闭合,将断路器跳闸线圈接通,断路器跳闸,故障线路被切除,同时启动了信号继电器,信号牌掉下,并接通灯光或音响信号。
四、实验仪器模拟变电所平台五、实验内容要求把过电流保护的电气接线图绘制出来,并结合接线图叙述其工作原理(包括断路器的合闸动作和分闸动作)。
六、实验分析与思考1. 过电流保护电路中包括哪些继电器,其分别的作用是什么?过流继电器,用于电流故障判断,如DL-31或GL-15等时间继电器,用于整定值中间继电器用于扩张接点或容量电压继电器用于欠压或过压判断信号继电器用于发信号中间继电器:用于各种保护和自动控制线路中,以增加保护和控制回路的触点数量和触点容量。
时间继电器:当加上或除去输入信号时,输出部分需延时或限时到规定时间才闭合或断开其被控线路继电器。
(识别真假事故、、、、、过电流保护)四个电流继电器:2. 继电器的线圈和接点是如何先后动作的?、继电器的动合(常开)触点在继电器线圈未通电、通电、断电时是如何动作的A:未通电,断开。
KV线路保护装置试验报告
KV线路保护装置试验报告一、试验目的本次试验旨在测试KV线路保护装置的性能和稳定性,确保其能够在实际工作中可靠地保护电力系统的正常运行。
二、试验对象本次试验的对象电力系统中的KV线路保护装置,该装置是关系到电网安全和稳定性的重要部件,需要经过严格的测试和验证。
三、试验仪器1.多功能测试仪:用于对KV线路保护装置的各项参数进行测量和校准。
2.电流、电压发生器:用于模拟实际电网中的电流和电压信号。
3.计算机:用于对试验数据的记录和分析。
四、试验内容1.装置功能测试:对KV线路保护装置的各项保护功能进行测试,包括过流保护、短路保护、接地保护等。
2.动作时间测试:测试KV线路保护装置的动作时间是否符合设计要求。
3.灵敏度测试:测试KV线路保护装置对故障信号的检测灵敏度。
4.稳定性测试:测试KV线路保护装置在长时间运行时的稳定性和可靠性。
五、试验步骤1.对KV线路保护装置进行预热,确保其处于正常运行状态。
2.使用电流、电压发生器生成各种电流和电压信号,对KV线路保护装置的各项保护功能进行测试。
3.记录并分析试验数据,对KV线路保护装置的性能和稳定性进行评估。
4.综合评估试验结果,给出合格或不合格的结论。
六、试验结果1.装置功能测试:通过对KV线路保护装置的各项保护功能测试,发现其能够准确、快速地对电网中的故障进行保护,具有良好的功能性。
2.动作时间测试:KV线路保护装置的动作时间均符合设计要求,在规定的时间内完成对故障信号的检测和处理。
3.灵敏度测试:KV线路保护装置对故障信号的检测灵敏度较高,能够准确地识别电网中的故障。
4.稳定性测试:在长时间运行的测试中,KV线路保护装置表现稳定,未出现异常情况。
七、结论根据本次试验的结果评估,KV线路保护装置经过严格的测试和验证,性能稳定可靠,能够保护电力系统的正常运行。
建议在实际工作中加强对装置的监测和维护,确保其长期稳定运行。
110Kv系统保护校验方法
110KV系统保护校验方法1常规阻抗接线图距离保护的接线仪器比较多,注意尽可能将刀闸和需要操作的设备放在一块。
相位表的电压回路使用100V的量程,即必需保证三相调压器的相间电压不得超过100V。
阻抗的电压调整应利用双臂电阻调整。
2ZJL-31X电磁型距离保护的定值整定定值的计算公式为:DKB/YB=阻抗值,一般情况下DKB为固定的,通过插拨面板上的YB插销来整定阻抗值。
面板整定YB与定值的关系:整定阻抗要比DKB大。
尤其在整定Ⅰ、Ⅱ段时,要同时考虑Ⅰ、Ⅱ段的整定阻抗均比DKB大。
在满足此条件的情况下,尽可能将DKB抽头整定得大一些。
面板上的YB为百分数,当DKB整定为1时整定的电阻为1×100/YB=Ω。
例如:中调下达定值为4.8Ω,阻抗继电器DKB整定为2.0,其面板上的YB整定如下:YB =DKB/Z×100%=2/4.8×100%。
注:图中的实心圆表示插销插入,空心圆表示插销不插入。
在整定的时候,如果在一块导板上不需要整定,它上面的“0”插孔必需要插入,否则会造成YB开路,使得距离保护测量元件的电压测量误认为电压为0V,此时保护装臵只要克服一定的死区电压后间会误动作出口。
如果一块插板中多插了一个插销,将会造成该块中的线圈绕组其中的内部接线圈发生类似于电压源内的匝间短路,会烧坏线圈(此处还有一些疑问)图如下:。
2.1ZJL-31型距离保护校验2.1.1使用仪器、工具三相保护校验仪、大功率直流电源、接触器、万用表、伏安表、计算器、定值本、兆欧表、对线灯、电流端子短接线、100mm板手、绝缘胶布,刀闸,数字毫秒计2.1.3距离保护灵敏角的测量;距离保护的的I、II段共用一个交流元件,所以灵敏角的试验只需要做其中一段就可以了。
另外如果采用从端子排上通入模拟量的方法,距离保护总电源没有时需要考虑到QHJ(I、II段切换继电器的动作情况),如果QHJ失磁(没有距离保护电源)时,则只能按做II段距离保护的定值和灵敏角,需要做I段的定值和灵敏角时,需要将切换继电器动作,才能保证I段距离保护正确动作。
实验二 过流保护实验
实验二 6-10KV 线路过流保护实验一.实验目的1.掌握过流保护的电路原理,深入认识继电器保护自动装置的二次原理接线图和展开接线图。
2.进行实际接线操作,掌握过流保护的整定调试和动作试验方法。
二.预习与思考1.为什么要选定主要继电器的动作值,并且进行整定?2.过电流保护中哪一种继电器属于测量元件?三.原理说明电力自动化与继电保护设备称为二次设备,二次设备经导线或控制电缆以一定的方式与其他电气设备相连接的电路称为二次回接线。
二次电路图中的原理接线图和展开接线图是广泛应用的两种二次接线图。
它是以两种不同的型式表示同一套继电保护电路。
1.原理接线图图12-1 6~10KV线路的过电流保护原理接线图原理接线图用来表示继电保护和自动装置的工作原理。
所有的电器都以整体的形式绘在一张图上,相互联系的流回路、电压电路和直流回路都综合在一起,为了表明这种回路对一次回路的作用,将一次回路的有关部分也画在原理接线图里,这样就能对这个回路有一个明确的整体概念。
图12-1表示6~10KV线路的过电流保护原理接线图,这也是最基本的继电保护电路。
图12-2 线路过电流保护展开图从图12-1中可以看出,整套保护装置由五只继电器组成,电流继电器KA2、KA1的线圈接于A、C两相电流互感器的二次线圈回路中,即两相两继电器式接线。
当发生三相短路或任意两相短路时,流过继电器的电流超过整定值,其常开触点闭合,接通了时间继电器KT 的线圈回路,直流电源电压加在时间继电器KT的线圈上,使其起动,经过一定时限后其延时触点闭合,接通信号继电器KS和保护出口中间继电器KM的线圈回路、二继电器同时起动,信号继电器KS触点闭合,发出6~10KV过流保护动作信号并自保持,中间继电器KM起动后把断路器的辅助触点和跳闸线圈YR二者串联接到直流电源中,跳闸线圈YR通电,跳闸电铁磁励磁,脱扣机构动作,使断路器跳闸,切断故障电路,断路器QF跳闸后,辅助触点分开,切断跳闸回路。
110Kv线路保护试验报告
900
实测
误差
实测
误差
实测
误差
Ua-Ia
Ub-Ib
Uc-Ic
Ua-Ub
Ub-Uc
Uc-Ua
六、保护定值检验
1、高频距离保护检验
(1)(Zzd为距离停信定值)
Ф=800
相别
AN
BN
CN
AB
BC
CA
0.95
Zzd
T
反向故障
T
结论:
(2)、高频零序方向保护检验
通入: U= 57VФ= 800
相别
AN
4
各插件应插、拔灵活,各插件和插座之间定位良好,插入深度合适
5
切换开关、按钮、键盘等应操作灵活,手感良好。各部件应清洁良好
6
螺丝紧固
压板螺丝紧固
端子排螺丝紧固
装置背板螺丝紧固
电源开关螺丝紧固
按钮、切换开关螺丝紧固
二、通电初步检验
保护装置的通电自检:
1、打印机与保护装置的联机试验:
2、结论:
3、软件版本号和程序校验码的核查
T
结论:
7、手合于故障线路另序电流保护检验
U=50VФ= 800
相别
AN
BN
CN
0.95I0
T
1.05I0
T
结论:
七、本次校验发现及处理的问题
一、外观及接线检查
序号
检 查 项 目
检查结果
检查人
1
保护装置各插件上的元器件的外观质量、焊接质量应良好,所有芯片应插紧,型号应正确,芯片放置位置正确
2
检查保护装置的背板接线有无断线、短路和焊接不良等现象,并检查背板上抗干扰元件的焊接、连线和元器件外观是否良好
继电保护课程设计110kv电网继电保护设计电流保护
河南科技大学课程设计说明书课程名称电力系统继电保护题目110KV电网继电保护设计-电流保护学院车辆与动力工程学院班级农业电气化与自动化091班学生姓名王唯指导教师邱兆美日期2013年1月15日110KV电网继电保护设计—电流保护摘要电力系统的发电,送电,变电和用电具有同时性,决定了它每一个过程的重要性。
电力系统要通过设计、组织,以使电力能够可靠、经济地送到用户。
在电力系统线路继电保护中,对供电系统最大的威胁就是短路故障,它会给系统带来巨大的破坏作用,因此我们必须采取措施来防范它,在这个过程中,电流保护是很重要的一部分。
要完成电力系统继电保护的基本任务,首先必须“区分”电力系统的正常、不正常工作和故障三种运行状态,“甄别”出发生故障和出现异常的元件。
本设计根据电力元件在这三种运行状态下的可测参量的“差异”,实现对正常、不正常工作和故障元件的快速“区分”,并自动、迅速、有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。
可见,继电保护对保证系统安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。
因此,在线路电流保护中合理配置继电保护装置,提高整定和校核工作的快速性和准确性,以满足现代电力系统安全稳定运行的要求,理应得到我们的重视。
关键词:输电线路,继电保护,电流保护第一章绪论1.1 继电保护概述研究电力系统故障和危及安全运行的异常情况,以探讨其对策的反事故自动化措施。
因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以称其继电保护。
1.1.1 继电保护的任务当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。
1.1.2 继电保护的作用由于电气设备内部绝缘的老化、损坏或工作人员的误操作、雷击、外力破坏等原因,可能使运行中的电力系统发生故障和不正常运行情况。
110KV线路保护试验报告
AB
动作时间(S)
动作段
0.95ZⅠ
1.05ZⅠ
0.95ZⅡ
1.05ZⅡ
0.95ZⅢ
1.05ZⅢ
反向
TV断线
结论
故障相别
BC
动作时间(S)
动作段
0.95ZⅠ
1.05ZⅠ
0.95ZⅡ
1.05ZⅡ
0.95ZⅢ
1.05ZⅢ
反向
TV断线
结论
故障相别
CA
动作时间(S)
动作段
0.95ZⅠ
1.05ZⅠ
0.95ZⅡ
1.05ZⅡ
0.95ZⅢ
1.05ZⅢ
反向
TV断线
结论
7.接地距离检验
动作值
动作时间
方向
整定值
Ⅰ段
Ⅱ段
Ⅲ段
故障相别
A
B
C
动作时间
动作段
动作时间
动作段
动作时间
动作段
0.95ZⅠ
1.05ZⅠ
0.95ZⅡ
1.05ZⅡ
0.95ZⅢ
1.05ZⅢ
反向
TV断线
结论
8.零序过电流
电流
时间
出口
整定值
动作值
结论
电流
时间
出口
整定值
动作值
结论
电流
时间
出口
整定值
动作值
结论
电流
时间
出口
整定值
动作值
结论
9.过流
电流(A)
复合电压(V)
时间(S)
方向
动作出口
整定值
动作值
结论
电流(A)
电力系统继电保护原理6到10KV线路过电流保护报告
实 验 报 告
课程名称:
电力系统继电保护
实验项目:
6到10KV线路过电流保护
一、实验目的
(1)掌握 6~10kV 线路过电流保护原理,认识二次电路图中的原理接线图和展开接线
图。
(2)熟悉本实验中继电保护实际设备与原理接线图和展开接线图的对应关系,为后续
电力控制与继电保护实验打下良好的基础。
(3)熟悉实际电路接线操作,掌握过电流保护的继电器整定调试和动作试验方法。
安全操作:在进行过电流保护操作时,必须遵循安全操作规程,戴好必要的防护用具,禁止擅自操作高压设备,确保人身安全。
五、实验内容与步骤
(1)选择电流继电器的动作值,确定线圈接线方式(串联还是并联)和时间继电器的
动作时限。(例如:额定运行时的工作电流为3A,选择DL-24C/6型电流继电器,整定动作
值4.2A;选择DS-22型时间继电器,整定动作时限2.5s;也可根据老师要求进行整定。)
维护保养:定期对过电流保护装置进行维护保养,例如清洁设备表面、检查连接螺丝是否松动等。确保装置的可靠性和稳定性。
故障排除:当线路发生过电流保护动作时,需要及时排除故障,修复设备或线路的问题。同时,要做好故障记录,分析原因,以便改进保护措施。
配合其他保护装置:过电流保护通常与其他保护装置配合使用,如距离保护、差动保护等。在操作中,需要确保各个保护装置之间的协调性和互锁性,以提高线路的安全性和可靠性。
过电流保护实验报告
过电流保护实验报告过电流保护实验报告概述:过电流保护是电力系统中一项重要的安全措施,旨在保护电力设备免受电流过载的损害。
本实验旨在通过模拟电路实验,探究过电流保护的原理和应用。
实验目的:1. 了解过电流保护的基本原理;2. 学习如何设置和调整过电流保护装置;3. 探究过电流保护的应用范围和限制。
实验材料:1. 直流电源;2. 电阻、电容和电感等基本电路元件;3. 过电流保护装置。
实验步骤:1. 搭建基本电路:使用直流电源、电阻、电容和电感等元件,搭建一个简单的电路;2. 设置过电流保护装置:将过电流保护装置连接到电路中,根据实验要求设置合适的过电流保护参数;3. 施加电流:通过调节直流电源的电压,使电路中的电流逐渐增加,观察过电流保护装置的工作情况;4. 记录数据:记录电流增加到一定程度时,过电流保护装置的动作时间和动作电流等数据;5. 分析结果:根据实验数据,分析过电流保护装置的保护特性和性能。
实验结果:根据实验数据记录和分析,我们可以得出以下结论:1. 过电流保护装置能够根据设定的参数,及时地对电路中的过电流情况进行检测和保护;2. 过电流保护装置的动作时间和动作电流与电路中的元件参数和保护设置有关;3. 过电流保护装置在保护电路免受电流过载损害的同时,也需要考虑误动作和漏动保护等问题。
实验讨论:1. 过电流保护装置的参数设置:在实际应用中,根据电路的特点和保护要求,需要合理设置过电流保护装置的参数,以确保其能够准确、可靠地进行保护;2. 过电流保护装置的应用范围和限制:过电流保护装置广泛应用于电力系统、工业自动化和家用电器等领域,但也存在一定的应用限制,例如对于瞬态过电流和高频电流的保护能力较弱;3. 过电流保护装置的发展趋势:随着电力系统的发展和智能化技术的应用,过电流保护装置正朝着更高的精度、更快的响应速度和更强的抗干扰能力方向发展。
实验结论:通过本实验,我们深入了解了过电流保护的原理和应用。
6~10kV线路过电流保护实验
手写,字迹工整,整洁,不能有勾勾画画现象,图和表格绘制规范,直线要用格尺和铅笔绘制,表格和图的文字要用铅笔填写,实验日期暂时不填注意:先把我发的这个文件通篇看完后再写,这是按照你们的实验报告格式编写的,要求同学严格按照实验报告模板填写,所以希望同学们要认真对待。
实验项目名称:6~10kV线路过电流保护实验指导教师:实验日期:实验概述:实验目的及实验设备实验目的:1. 掌握过流保护的电路原理,深入认识继电保护、自动装置的二次原理接线图和展开接线图。
2. 学会识别本实验中继电保护实际设备与原理接线图和展开接线图的对应关系,为以后各项实验打下良好的基础。
3. 进行实际接线操作, 掌握过流保护的整定调试和动作试验方法。
实验设备及仪器名称:表1 实验设备及仪器实验原理及电路图实验原理:实验线路见图1,过电流保护的动作顺序如下:当调节单相自耦调压器和变阻器R,模拟被保护线路发生过电流时,电流继电器LJ 动作(注:实验中交流电流回路采用单相式),其常开触点闭合,接通时间继电器SJ的线圈回路,SJ则动作,经过一定时限后,其延时触点闭合,接通信号继电器XJ和保护出口中间继电器BCJ的线圈回路,BCJ动作,常开触点闭合,接通了跳闸回路,(因断路器QF在合闸状态,其常开触点QF是闭合的)。
于是跳闸线圈TQ中有电流流过,使断路器跳闸,切断短路电流。
同时,XJ动作并自保持,接通光字牌GP,则光字牌亮,显示“6-10kV过流保护动作指示”。
通过实验接线整定调试后,我们会深切体会到:展开接线图表达较为清晰,易于阅读,便于了解整套装置的动作程序和工作原理,特别在复杂电路中,其优点更为突出。
电路图:直流操作电源保护操作及信号回路数字式电秒表I II IIIQFLJ(a)模拟主线路(一相)交流电流回路过电流保护保护出口及主断路器分闸过电流保护动作指示信号继电器指示灯回路信号继电器复归回路直流回路(b)图1 6~10kV线路过电流保护实验接线图实验内容及步骤:实验方案:(实验步骤、记录)1. 选择电流继电器的动作值(确定线圈接线方式)和时间继电器的动作时限。
110kV变电所的线路电流保护设计
所以
#' "P$
a]:7G#& "P)
a$ &$Q l% &0$)Q ]Na% &1%3 ]N
继电器的动作电流
#' E<F$
a],<-5N
#' "P$
a%&1%3]Na$&10N )%%% *Q
. All 动Ri作g时h限ts Reserved.
9)' a9$' e)9a%&QA 灵敏度校验
其中第一段保护由继电器 ]N$]N)]N(]?"和 $][ 构成 第 ##段保护由 ]N3]NQ]N0]5$ 和 )][ 构成第 ##段保护 由 ]N1]NT]N']N$%)]5和 (][ 构成三个部分的电流 保护整定阀值不同包括动作电流不同动作时间也不同因 此电流继电器和时间继电器的选型也不同 图中 ######段 的动作信号则分别由而信号继电器 $][)][ 和 (][ 发出根 据电路的构成情况在第 ###段采用 $%]N的电流继电器来 提高该段保护的灵敏性 图 $ 为三段式电流保护的接线原 理图
]A7-a4 #])4$4B4/- 4#'"P44$a4$&%3&l1槡%(3*) a$&1)m$&( 所以限时电流保护的灵敏度满足要求
( 定时限过电流保护的整定计算
最大负荷电流
#bB8Ja4槡)(%l%$%$%% a$%QN 动作电流为
#( "P$
a]:7]G:7A]AA#GB8Ja$
关键词变电所线路电流保护整定计算
#绪论 当电力系统有故障发生时常出现的现象有电压降低 电流增大电压和 电 流 之 间 的 相 位 变 化 因 此 必 须 利 用 继 电 保护装置对电力系统工作状态进行检测通过监测系统中的 电流电压相位等 电 气 量 的 变 化 及 时 判 断 发 现 电 力 系 统 的工作状态 继电保护的原理就是利用不同物理量的变化 特征进行继电保 护 装 置 的 设 计 从 而 实 现 对 电 力 系 统 的 继 电保 护 本 文 主 要 介 绍 $$%.Z变 电 所 的 线 路 电 流 的 保 护 设计
220kV线路保护校验
工作结束前,打印保护装置运行定值单与系统打印定值单核对正确 根据“二次安措票”逐一将安全措施恢复到开工前状态。
保护装置校验
开始校验之前,一定要记录好压板,并把所有相关压板退出 校验包括 开入开出试验(各种把手、各种按钮、各种压板都要试一遍、) 然后再看各种闭锁开入开出 然后开始校验各种逻辑(试验仪接地线要接地。)
装置采样检查
1.检查保护装置电压电流采样零漂情况; 2.检查保护装置电压电流采样精度; 3.检查保护装置额定电压电流采样准确性; 4.检查保护装置故障大电流采样准确性;
开入试验
1.保护检修状态投/退正常 2.闭锁重合闸正常 3.分相跳闸位置TWJa 4.分相跳闸位置TWJb 5.分相跳闸位置TWJc 6.远方跳闸 7.主保护投/退 8.正常低气压闭锁重合闸 9.远方跳闸 10.停用重合闸
后备保护校验
1、分相校验 2、距离保护校验 3、零序过流保护检验 4、TV断线过流保护 5、启动母差失灵保护检验 6、三相不一致保护校验
重合闸
充电条件: 1 、重合闸投入 2、无TWJ 3、无压力低闭重开入 4、无PT断线和其他闭重开入时经15S后充电完成。931在三相电压正常 后10S PT断线信号才复归。所以至少得加10+15=25S。
三相不一致
பைடு நூலகம்
SJ 三相不一致时间继电器
SZJ 中间继电器
主保护 对侧差流采样
将两侧保护装置的“TA变比系数”定值整定为1,在对侧加入三相对 称的电流,在本侧保护状态→“DSP采样值”菜单中查看对侧的三相 电流Iar、Ibr、Icr及差动电流Icda、Icdb、Icdc。
I(对侧加的电流)×CT变比系数(对侧) = I(本应该看到的电流)×CT变比系数(本侧) I(二次额定电流对侧) I(二次额定电流本侧)
输电线路的无时限过电流速断保护实验数据
输电线路的无时限过电流速断保护实验数据
输电线路是电力系统中非常重要的组成部分,而保护系统则是保障输电线路安全运行的关键。
在电力系统中,过电流是一种常见的故障类型,如果过电流得不到及时的处理和隔离,就有可能导致设备损坏甚至引发火灾等严重后果。
因此,为了有效防范过电流带来的危害,人们设计了各种保护装置,其中就包括无时限过电流速断保护。
无时限过电流速断保护是一种在电力系统中广泛应用的保护装置,其主要作用是在输电线路出现过电流时,能够迅速断开电路,以保护设备和线路不受损坏。
为了验证无时限过电流速断保护的有效性,我们进行了一系列实验,并收集了相关的数据进行分析。
在实验中,我们选取了不同额定电流的输电线路,通过人工模拟出不同级别的过电流故障,然后观察无时限过电流速断保护的响应时间和动作情况。
实验结果显示,当输电线路出现过电流时,无时限过电流速断保护能够在几十毫秒内做出反应,并迅速切断电路,有效地保护了设备和线路的安全。
通过对实验数据的统计分析,我们发现无时限过电流速断保护在不同情况下的触发时间几乎没有差异,这表明这种保护装置具有很好的稳定性和可靠性。
另外,我们还观察到在实验中,无时限过电流速断保护对不同级别的过电流故障都有良好的适应能力,能够迅速
做出动作,并有效地隔离故障,最大限度地减少了故障对系统的影响。
总的来说,通过实验数据的分析,我们验证了无时限过电流速断保护在电力系统中的重要作用,其快速、准确的动作能力能有效保护输电线路和设备的安全。
未来,我们将继续深入研究和改进保护装置的性能,以提高电力系统的可靠性和安全性,为电力生产和供应提供更好的保障。
输电线路的无时限过电流速断保护实验数据
输电线路的无时限过电流速断保护实验数据无时限过电流速断保护是输电线路上的一种重要保护措施,其作用是在输电线路发生过电流时,能够快速切断电路,保护设备和人员的安全。
本文将通过实验数据来探讨无时限过电流速断保护的效果和应用。
我们需要了解什么是无时限过电流速断保护。
无时限过电流速断保护是一种在输电线路中用于保护设备的电气装置。
它的作用是在电流异常大于额定电流时,能够迅速切断电路,防止设备受损。
无时限过电流速断保护通常由电流互感器、继电器和断路器等组成,当电流超过额定值时,继电器会触发断路器切断电路。
为了验证无时限过电流速断保护的有效性,我们进行了一系列实验。
首先,我们搭建了一个模拟输电线路的实验平台,包括发电机、变压器、输电线路和负载等。
实验中,我们设置了不同的过电流情况,如短路故障和设备故障等,以模拟实际输电线路中可能发生的异常情况。
在实验过程中,我们观察了无时限过电流速断保护的响应时间和切断电流的大小。
实验结果表明,无时限过电流速断保护在检测到过电流时能够迅速响应,并在短时间内将电路切断,有效保护了设备的安全。
此外,实验还表明,无时限过电流速断保护的切断电流大小符合设计要求,能够满足不同设备的保护需求。
无时限过电流速断保护在输电线路中有着广泛的应用。
它可以保护变压器、发电机和其他电气设备免受过电流的损害。
此外,无时限过电流速断保护还可以防止电路故障蔓延,保护整个输电系统的稳定运行。
然而,无时限过电流速断保护也存在一些问题。
首先,它需要准确地检测过电流,否则可能会误判正常电流为过电流,导致误切电路。
其次,无时限过电流速断保护在切断电路后需要手动复位,这可能会延长电路的停电时间。
此外,由于无时限过电流速断保护需要与其他保护装置配合使用,其协调性也需要重视。
无时限过电流速断保护是一种重要的电气保护装置,能够在输电线路发生过电流时快速切断电路,保护设备和人员的安全。
实验数据表明,无时限过电流速断保护具有快速响应、准确切断和可靠性高的特点。
零序反时限过电流保护校验
运行经验表明,在220KV~500KV 的输电线路上发生单相接地故障时,往往会有较大的过渡电阻存在,当导线对位于其下面的树木等放电时,接地过渡电阻可能达100~300Ω。
此时通过保护装置的零序电流很小,零序方向电流保护难以动作。
为了在这种情况下能够切除故障,可考虑采用零序反时限过电流保护。
反时限保护元件是动作时限与被保护线路中电流大小自然配合的保护元件,通过平移动作曲线,可以非常方便地实现全线的配合。
常见的反时限特性解析式大约分为三类,即标准反时限、非常反时限、极端反时限,本装置中反时限特性由整定值中反时限指数整定。
各反时限特性公式如下:a.一般反时限b.非常反时限c.极端反时限其中:tp 为时间系数,范围是(0.05~1);Ip 为电流基准值;I 为故障电流;t 为跳闸时间;注意:整定值部分反时限时间为上面三个表达式中分子的乘积值,单位是秒,因此对于长时间反时限亦能实现。
长时间反时限表达式如下:下面以PSL 603AI 数字式线路保护装置为例,介绍在“i-t 特性”菜单进行零序反时限过电流保护的校验方法。
其他具有相同保护原理的保护测试可参考此测试方法。
1、保护相关设置:(1)保护定值设置:根据上述整定值,可知本次试验选用的是零序一般反时限曲线,其动作时间(2)保护压板设置:在“距离零序保护定值”里,把控制字2(KG2)设为0000,把控制字3(KG3)设为0004,即把“KG3.2=1,零序保护为反时限”,其他均置为“0”。
其含义是:“投入不带方向的零序反时限保护”。
在保护屏上,仅投“零序总投入”硬压板。
2、试验接线:图1.8.3 P SL-603AI 零序反时限过电流保护校验接线图将测试仪的电压输出端“Ua”、“Ub”、“Uc”、“Un”分别与保护装置的交流电压“Ua”、“Ub”、“Uc”、“Un”端子相连。
将测试仪的电流输出端“Ia”、“Ib”、“Ic”分别与保护装置的交流电流“Ia”、“Ib”、“Ic”(极性端)端子相连;再将保护装置的交流电流“Ia'”、“Ib'”、“Ic'”(非极性端)端子短接后接到“Io”(零序电流极性端)端子,最后从“Io'”(零序电流非极性端)端子接回测试仪的电流输出端“In”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TKDZB-1型电力自动化及继电保护实验装置交流及直流电源操作说明实验中开启及关闭交流或直流电源都在控制屏上操作。
一、开启三相交流电源的步骤为:1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。
控制屏左侧面上安装的自耦调压器必须调在零位,即必须将调节手柄沿逆时针方向旋转到底。
2)检查无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。
此时在电源输出端进行实验电路接线操作是安全的。
3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口U、V、W处可得到0~450V的线电压输出,并可由控制屏上方的三只交流电压表指示。
当屏上的“电压指示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。
4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。
实验完毕,须将自耦调压器调回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后,需关断“电源总开关”。
二、开启单相交流电源的步骤为:1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须调至零位。
2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器”开关拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。
3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。
实验完毕,将调压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。
三、开启直流操作电源的步骤为:1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220V、1.5A不可调的直流电压输出。
接通“可调直流电压输出”开关,可获得40~220V、3A可调节的直流电压输出。
固定电压及可调电压值可由控制屏下方中间的直流电压表指示。
当将该表下方的“电压指示切换”开关拨向“可调电压”时,指示可调电源电压的输出值,当将它拨向“固定电压”时,指示输出固定的电源电压值。
2)“可调直流电源”是采用脉宽调制型开关稳压电源,输入端接有滤波用的大电容,为了不使过大的充电电流损坏电源电路,采用了限流延时保护电路。
所以本电源在开机时,约需有3~4秒钟的延时后,进入正常的输出。
3)可调直流稳压输出设有过压和过流保护告警指示电路。
当输出电压调得过高时(超过240V),会自动切断电路,使输出为零,并告警指示。
只有将电压调低(约240V以下),并按“过压复位”按钮后,能自动恢复正常输出。
当负载电流过大(即负载电阻过小),超过3A时,也会自动切断电路,并告警指示,此时若要恢复输出,只要调小负载电流(即调大负载电阻)即可。
有时候在开机时出现过流告警,这说明在开机时负载电流太大,需要降低负载电流。
若在空载下开机,发生过流告警,这是由于气温或湿度明显变化,造成光电耦合器TIL117漏电使过流保护起控点改变所致,一般经过空载开机(即开启交流电源后,再开启“可调直流电源”开关)预热几十分钟,即可停止告警,恢复正常。
电力自动化及继电保护实验的基本要求和安全操作规程1-1 实验的基本要求电力自动化及继电保护实验的目的在于培养学生掌握基本的实验方法与操作技能。
培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行电路工作状态的分析研究,得出必要结论,从而完成实验报告。
在整个实验过程中,必须集中精力,及时认真做好实验。
现按实验过程提出下列基本要求。
一、实验前的准备实验前应复习教科书有关章节内容,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验设备进行预习,熟悉组件的编号,使用及其规定值等)。
实验前应写好预习报告,经教师检查认为确实做好了实验前的准备,方可开始实验。
认真作好实验前的准备工作,对于培养学生独立工作能力,提高实验质量和保护实验设备、人身的安全等都具有相当重要的作用。
二、实验的进行1、建立小组,合理分工每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、负载、电压或电流调节、记录数据等工作每人应有明确的分工,以保证实验操作的协调,使记录的数据准确可靠。
2、选择组件和仪表实验前先熟悉该次实验所用的组件,记录继电器铭牌数据和选择合适的仪表量程,然后依次排列组件和仪表,便于测取数据。
3、按图接线根据实验线路图及所选组件、仪表,按图接线,接线要力求简单明了,接线原则应是先接串联主回路,再接并联支路。
为方便检查线路的正确性,实验线路图中的直流回路、交流回路、控制回路等应分别用不同颜色的导线连接。
4、试运行在正式实验开始之前,先熟悉仪表,然后按一定规范起动继电保护电路,观察所有仪表是否正常。
如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。
5、测取数据预习时对继电器及其保护装置的试验方法及所测数据的大小作到心中有数。
正式实验时,根据实验步骤逐次测取数据。
6、认真负责,实验有始有终实验完毕,须将数据交指导老师审阅。
经指导老师认可后,才允许拆线,并把实验所用的组件、导线及仪器等物品整理好,放至原位。
三、实验报告实验报告是根据实测数据和在实验中观察发现的问题,经过自己分析研究或分析讨论后写出的实验总结和心得体会。
实验报告要简明扼要、字迹清楚、图表整洁、结论明确。
实验报告包括以下内容:1、实验名称、专业班级、学号、姓名、实验日期、室温℃。
2、列出实验中所用组件的名称及编号,继电器铭牌数据等。
3、列出实验项目并绘出实验时所用的线路图,并注明仪表量程,电阻器阻值。
4、数据的整理和计算5、解答各个实验的思考题,部分思考题在实验前要进行抽查提问,作为学生实验预习成绩中的一部分。
6、根据数据说明实验结果与理论是否符合,可对某些问题提出一些自己的见解并最后写出结论。
实验报告应写在一定规格的报告纸上,保持整洁。
7、每次实验每人独立完成一份报告,按时送交指导老师批阅。
1-2 实验安全操作规程为了按时完成电力自动化及继电保护实验,确保实验时人身安全与设备安全,要严格遵守如下规定的安全操作规程:1、实验时,人体不可接触带电线路。
2、接线或拆线都必须在切断电源的情况下进行。
3、学生独立完成接线或改接线路后必须经指导老师检查和允许,并使组内其它同学引起注意后方可接通电源。
实验中如发生事故,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。
4、通电前应先检查所有仪表量程是否符合要求,是否有短路回路存在,以免损坏仪表或电源。
5、总电源或实验台控制屏上的电源应由实验指导教师来控制,其他人员只能经指导教师允许后方可操作,不得自行合闸。
电磁型电流继电器和电压继电器实验一、实验目的熟悉DL型电流继电器和DY型电压继电器的实际结构、工作原理、基本特性;掌握动作电流值、动作电压值及其相关参数的整定方法。
二、预习与思考1、电流继电器的返回系数为什么恒小于1?2、动作电流(压)、返回电流(压)和返回系数的定义是什么?3、实验结果如返回系数不符合要求,你能正确地进行调整吗?4、返回系数在设计继电保护装置中有何重要用途?三、原理说明DL—20c系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。
DY—20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。
DL—20c、DY—20c系列继电器的内部接线图见图1一1。
上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。
过电流(压)继电器:当电流(压)升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。
低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。
继电器的铭牌刻度值是按电流继电器两线圈串联,电压继电器两线圈并联时标注的指示值等于整定值;若上述二继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。
转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作。
12348765D L -21C D Y-21C 、26C12348765D L -23CDY-23C 、28C 12348765D L -22C D Y-22C 12348765D L -24CD Y-24C 、29C12348765DY-25C图1-1电流(电压)继电器内部接线图图1-2电流继电器实验接线图图1-3过电压继电器实验接线图四、实验设备五、验步骤和要求1、绝缘测试单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻;对于额定电压为100 伏以下者,则应用500伏兆欧表测定绝缘电阻。
测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元件(如半导体元件、电容器等)从回路中断开或将其短路。
本实验是用1000伏兆欧表测定导电回路对铁芯的绝缘电阻及不连接的两回路间的绝缘电阻,要求如下:(1)全部端子对铁芯或底座的绝缘电阻应不小于50兆欧。
(2)各线圈对触点及各触点间的绝缘电阻应不小于50兆欧。
(3)各线圈间绝缘电阻应不小于50兆欧。
将测得的数据记入表1--1,并做出绝缘测试结论。
表1一 1 绝缘电阻测定记录表2、整定点的动作值、返回值及返回系数测试实验接线图1-2、图1-3、(图1-4)分别为电流继电器及过(低)电压继电器的实验接线,可根据下述实验要求分别进行。
实验参数电流值(或电压值)可用单相自耦调压器、变流器、变阻器等设备进行调节。
实验中每位学生要注意培养自己的实践操作能力,调节中要注意使参数平滑变化。
(1)电流继电器的动作电流和返回电流测试a、选择ZB11继电器组件中的DL—24C/6型电流继电器,确定动作值并进行初步整定。
本实验整定值为2A及4A的两种工作状态见表1-2。
b、根据整定值要求对继电器线圈确定接线方式(串联或并联);查表1-5。
c、按图1--4接线,检查无误后,调节自耦调压器及变阻器,增大输出电流,使继电器动作。
读取能使继电器动作的最小电流值,即使常开触点由断开变成闭合的最小电流,记入表1-2;动表示。
继电器动作后,反向调节自耦调压器及变阻器降低输出电流,使触点开始返回作电流用Idj至原来位置时的最大电流称为返回电流,用I表示,读取此值并记入表1--2,并计算返回系数;fj继电器的返回系数是返回电流与动作电流的比值,用K表示。