用PLC控制步进电机的相关指令说明

合集下载

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

实训课题三PLC实现步进电机正反转和调速控制一、实验目的1、掌握步进电机的工作原理2、掌握带驱动电源的步进电机的控制方法3、掌握DECO指令实现步进电机正反转和调速控制的程序二、实训仪器和设备1、FX2N-48MR PLC一台2、两相四拍带驱动电源的步进电机一套3、正反切换开关、起停开关、增减速开关各一个三、步进电机工作原理步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。

从图中可以看出,它分成转子和定子两部分。

定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。

共有3对。

每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。

可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。

反应式步进电动机的动力来自于电磁力。

在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。

对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。

把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。

错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。

本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。

因为中间连接的电磁铁的两根线不是直接连接的,是采用在转轴的位置用一根滑动的接触片。

这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了。

但是电机上下的磁铁是不变的,所以又可以继续吸引中间的电磁铁。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制PLC是专门用于控制工程自动化系统的一种可编程逻辑控制器,其可以通过编程来实现对各种电气设备的控制。

在实际工程中,步进电机广泛应用于自动化设备中,如数控机床、包装机械、印刷设备等。

步进电机具有分辨率高、精度高、响应速度快等优点,因此被广泛应用于各种自动化控制系统中。

在PLC实现步进电机的正反转及调整控制中,需要考虑以下几个方面:1.步进电机驱动模块选型:步进电机需要配合驱动模块进行控制,通常采用的是脉冲信号驱动方式。

在PLC控制系统中,可以选择适合的驱动模块,如常见的2相、4相步进电机驱动模块。

2.步进电机控制程序设计:通过PLC软件编程,编写程序实现步进电机的正转、反转及调整控制功能。

在程序设计中,需要考虑步进电机的控制方式、驱动模块的接口信号、脉冲信号的频率等参数。

3.步进电机正反转控制:在程序设计中,通过PLC输出脉冲信号控制步进电机的正反转运动。

具体步骤包括设置脉冲信号的频率和方向,控制步进电机按设定的脉冲信号实现正反转运动。

4.步进电机调整控制:步进电机的位置调整控制通常通过调整脉冲信号的频率和数目来实现。

通过PLC编程,实现步进电机的位置调整功能,从而实现对步进电机位置的精准控制。

5.总体控制设计:在PLC控制系统中,可以将步进电机的正反转及调整控制与其它控制功能相结合,实现对整个自动化系统的精确控制。

通过PLC编程,可以灵活设计多种控制逻辑,满足不同工程项目的需求。

综上所述,通过PLC实现步进电机的正反转及调整控制主要涉及步进电机驱动模块选型、控制程序设计、正反转控制、调整控制和总体控制设计等方面。

通过精心设计和编程,可以实现对步进电机的精确控制,满足各种自动化控制系统的要求。

PLC技术的应用将有助于提高自动化生产设备的生产效率和稳定性,推动工业自动化技术的发展。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制
一、PLC实现步进电机的控制原理
拿步进电机举例,大家可以把它想象成一个隔著一定距离的圆盘,隔着每一环的距离形成齿轮的节点。

步进电机的正向或反向转动,就是将这一环索引和圆盘一起发动转动。

步进电机的转动,是靠每一步索引圆盘来完成的,每一步都有一个控制信号来告诉电机从哪一环节点开始转动,当接收到控制信号时,电机开始转动,并且每转一圈循环转动几个索引。

1、正向、反向控制
要实现步进电机的正向反向控制,就要在PLC程序中控制信号形式来实现,一般可以使用两个控制信号,一个是正反控制信号,一个是步进电机转动的速度,要求PLC程序根据正反控制信号来实现正向和反向控制。

正反控制信号就是设置一个开关量变量,当这个开关量为ON时,电机运行正转,当开关量为OFF时,电机运行反转,具体可以采用T函数来实现,T11=1,电机正转,T12=0,电机反转。

由于步进电机的转动是一布一射的过程,所以需要用一个电位器来控制步进电机的转动速度,当电位器的旋钮调整到一定位置时,就会给出一定频率的步进信号,PLC程序可以根据此步进信号,来控制步进电机的转动速度。

PLC高速脉冲输出控制步进电机

PLC高速脉冲输出控制步进电机

PLC高速脉冲输出控制步进电机1. 背景介绍步进电机是一种常见的电动机类型,它具有精准的位置控制和高速运动的特点。

在很多工业自动化应用中,步进电机常常需要与PLC(可编程逻辑控制器)配合使用,以实现精准的位置控制和高速脉冲输出。

本文档将介绍如何通过PLC实现高速脉冲输出控制步进电机的方法和步骤。

2. 所需材料在开始之前,我们需要准备以下材料:•PLC控制器•步进电机驱动器•步进电机•连接线•电源请确保以上材料齐全并符合各自的规格要求。

3. PLC高速脉冲输出控制步进电机的步骤步骤一:连接电源和PLC控制器首先,将电源连接到PLC控制器上。

确保电源的电压和PLC控制器的额定电压匹配。

然后将PLC控制器的电源线连接到电源上,并确保连接牢固。

步骤二:连接步进电机驱动器和PLC控制器将步进电机驱动器的电源线连接到电源上,并确保连接牢固。

然后,将步进电机驱动器的控制线连接到PLC控制器上,确保连接正确。

步骤三:连接步进电机和步进电机驱动器将步进电机的线束连接到步进电机驱动器上,确保连接正确。

根据步进电机的规格要求,选择正确的接线方法。

步骤四:PLC编程在PLC编程软件中进行编程,以实现高速脉冲输出控制步进电机。

以下是一个简单的PLC编程示例:BEGINVARmotor_output: BOOL := FALSE; -- 步进电机控制信号pulse_delay: TIME := T#10MS; -- 脉冲延迟时间,控制步进电机的速度END_VAR-- 主程序WHILE TRUE DO-- 输出一个脉冲信号控制步进电机运动motor_output := NOT motor_output;DELAY pulse_delay; -- 延迟一段时间,控制步进电机的速度END_WHILE;END;以上的PLC程序实现了一个简单的高速脉冲输出控制步进电机的功能。

在主程序中,通过循环不断地输出一个脉冲信号来控制步进电机的运动,同时通过调整延迟时间来控制步进电机的速度。

PLC实训程序--步进电机的PLC控制

PLC实训程序--步进电机的PLC控制

步进电机的PLC控制一、实验目的1、掌握PLC控制的基本原理,掌握移位寄存器的使用。

2、掌握步进电机的工作原理,掌握环形分配器的使用方法。

3、掌握运用PLC驱动步进的方法。

二、实验器材1、PLC-2型可编程控制器实验台1台2、步进电机的PLC控制演示板1块3、PC机或手持编程器1台4、编程电缆1根5、自锁式连接导线若干图16.1三、实验原理与实验步骤1、步进电机的PLC控制演示板如图16.1所示。

2、实验原理本演示装置采用的四相步进电机,运用PLC设计一个步进电机的环形分配器的软件程序。

以此来实现步进电机的单步,连续运转。

四相步进电机的结构如下图所示。

演示板上四个LED发光管分别代表步进电机的四个相位。

3、设计要求:按照步进电机的工作方式,设四相线圈分别为A、B、C、D,公共端为E、F。

当电机正向转动时其工作时序如下:A→AB→B→BC→C→CD→D→DA当电机反向转动时其工作时序如下:A←AB←B←BC←C←CD←D←DA要求慢速度为I S—格,快速度为0.1S—格。

4、实验步骤:(1)打开PLC-2型实验台电源,编程器与PLC连接。

(2)根据具体情况编制输入程序,并检查是否正确。

(3)实验台与PLC-DOME008连接,检查连线是否正确。

(4)按下启动按钮,观察运行结果。

四、设计程序清单1、I/O地址分配清单:输入地址:正向启动X0 反向启动X1停止X2 速度控制X3 输出地址: A Y0 B Y1C Y2 C Y3E\F COM2、程序(1)指令表0 LD X0001 OR S02 ANI X0013 ANI X0024 OUT S06 LD X0017 OR S18 ANI X0009 ANI X00210 OUT S112 LD X00313 CJ P0 16 LDI T33 26 OUT Y01527 LDI X00328 CJ P131 P032 LDI T3333 OUT T32 K136 LD T3237 OUT T33 K140 OUT S242 OUT Y01543 P144 LD S245 PLS M1051 ANI M552 ANI M653 ANI M754 AND S155 LDI M256 ANI M357 ANI M458 ANI M559 ANI M660 ANI M761 ANI M862 AND S063 ORB68 AND S069 SFTR M0 M1 K8 K178 MPP79 AND S180 SFTL M0 M2 K8 K189 LD M190 OR M291 OR M892 OUT Y00093 LD M294 OR M395 OR M496 OUT Y00117 OUT T32 K520 LD T3221 OUT T33 K5 24 OUT S2101 LD M6102 OR M7 47 LDI M148 ANI M249 ANI M350 ANI M4103 OR M864 OUT M065 LD M800266 OR M1067 MPS104 OUT Y00397 LD M498 OR M599 OR M6100 OUT Y002105 END梯形图接线图※FX系列的输出继电器的公共端:FX2N-32MR为COM0~COM4;FX2N-48MR为COM0~COM5; FX1N-60MR为COM0~COM7五、思考题1、如果是三相步进电机,工作方式为三相六拍,程序该如何编制?2、如果是E、F公共端不接,作为二相时机使用,程序又该如何处理?。

plc步进电机控制方法攻略程序图纸

plc步进电机控制方法攻略程序图纸

PLC控制步进电机应用实例基于PLC的步进电机运动控制一、步进电机工作原理1. 步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单2. 步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,即A 与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)3. 旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。

如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。

而方向由导电顺序决定。

步进电机的静态指标术语拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。

PLC控制步进电机的应用案例

PLC控制步进电机的应用案例

P L C控制步进电机的应用案例1利用P L S Y指令任务:利用PLC作为上位机,控制步进电动机按一定的角度旋转;控制要求:利用PLC控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止电机的轴锁住;1、系统接线PLC控制旋转步进驱动器,系统选择内部连接方式;2、I/O分配X26——启动按钮,X27——停止按钮;Y1——脉冲输出,Y3——控制方向;3、细分设置在没有设置细分时,歩距角是,也即是200脉冲/转,设置成N细分后,则是200N脉冲/转;假设要求设置5细分,则是1000脉冲/转;4、编写控制程序控制程序可以用步进指令STL编写,用PLSY指令产生脉冲,脉冲由Y1输出,Y3控制方向;5、脉冲输出指令PLSY的使用脉冲输出指令PLSYM8029置1;如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲;若X10再次变为ON则脉冲从头开始输出;注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC;6、控制流程图7、梯形图程序参考8、制作触摸屏画面PLC控制步进电机的应用案例2利用定时器T246产生脉冲任务:利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态;其中:步进电机的方向控制,只需通过控制U/D-端的On 和Off就能决定电机的正传或者反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由转动状态;1、系统接线系统选择外部连接方式;PLC控制左右、旋转、上下步进驱动器的其中一个;CP+端、U/D+端——+24VDC;CP-——Y0;U/D-——Y2;PLC的COM1——GND;A、A-——电机A绕组;B、B-——电机B绕组2、I/O分配X0—正转/反转方向,X1—电机转动,X2—电机停止,X4—频率增加,X5—频率减少;Y0—脉冲输出,Y2—方向;3、编写控制程序4、制作触摸屏画面PLC控制步进电机的应用案例3利用FX2N-1PG产生脉冲任务:应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制;控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms,1、系统接线系统选择外部连接方式;PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个;VIN端、CP+端、U/D+端——+24VDC;CP-——FP;U/D-——Y4;PLC的COM1端、FX2N-1PG的COM0端——GND;A、A-——电机A绕组;B、B-——电机B绕组2、I/O分配X0—正转,X1—反转,Y4—方向;;3、编写控制程序4、制作触摸屏画面。

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种用于自动化控制系统的可编程电子设备。

在工业领域,PLC被广泛应用于各种自动化设备和机器的控制。

步进电机是一种非塔式电机,其运动是以固定的步长进行的,适用于需要精确定位的应用,如印刷机、数控机床等。

本文将介绍如何使用PLC实现步进电机的正反转和调整控制。

步进电机的正反转控制可以通过改变电机的运行顺序来实现。

一种常见的方法是使用四相步进电机,通过改变电机的相序来实现正反转。

一般来说,步进电机有两种驱动方式:全步进和半步进。

全步进驱动方式是指每次脉冲信号到达时,电机转动一个步进角度。

全步进驱动方式可以通过控制PLC输出的脉冲信号来实现。

例如,当需要电机正转时,在PLC程序中输出连续的脉冲信号,电机将按照一定的步进角度顺时针旋转。

当需要反转时,输出连续的反向脉冲信号,电机将逆时针旋转。

半步进驱动方式是指每次脉冲信号到达时,电机转动半个步进角度。

半步进驱动方式可以通过改变输出的脉冲信号序列来实现。

例如,正转时输出连续的脉冲信号序列:1000、1100、0100、0110、0010、0011、0001、1001,电机将按照半个步进角度顺时针旋转;反转时输出反向脉冲信号序列:1001、0001、0011、0010、0110、0100、1100、1000,电机将逆时针旋转。

调整控制是指通过PLC来调整步进电机的运行速度和位置。

调速控制可以通过改变输出脉冲信号的频率来实现。

例如,可以定义一个计时器来控制输出脉冲信号的频率,通过改变计时器的时间参数来改变电机的速度。

较小的时间参数将导致更快的脉冲频率,从而使电机加快转速。

位置控制可以通过记录步进电机当前的位置来实现。

可以使用PLC的存储和控制功能来记录和更新电机的位置信息。

例如,可以使用一个变量来保存电机当前的位置,并在转动过程中不断更新该变量的值。

通过读取该变量的值,可以获得电机当前的位置信息。

总结起来,使用PLC实现步进电机的正反转和调整控制可以通过控制输出的脉冲信号序列和频率来实现。

PLC如何控制步进电机

PLC如何控制步进电机

PLC如何控制步进电机PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的控制设备,通过输入/输出模块对各种机电设备进行控制。

在PLC系统中,步进电机是常见的执行元件之一,它具有准确的位置控制和高的加减速性能。

本文将介绍PLC如何控制步进电机,包括步进电机的驱动方式、PLC的控制原理及步进电机控制的程序设计。

一、步进电机的驱动方式1.串行通信驱动方式:步进电机通过串行通信驱动方式与PLC进行通信和控制。

首先,将PLC与串行通信模块相连,通过串行通信模块与步进电机控制器进行通信。

PLC通过串行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。

2.并行通信驱动方式:步进电机通过并行通信驱动方式与PLC进行通信和控制。

与串行通信驱动方式类似,首先将PLC与并行通信模块相连,通过并行通信模块与步进电机控制器进行通信。

PLC通过并行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。

3.脉冲驱动方式:步进电机通过脉冲驱动方式与PLC进行通信和控制。

在脉冲驱动方式中,需要PLC输出脉冲信号控制步进电机。

通常情况下,PLC将脉冲信号传递给步进电机驱动器,在驱动器中产生相应的控制信号,实现对步进电机的控制。

二、PLC的控制原理PLC作为控制器,一般采用扫描运行方式。

其运行原理如下:1.输入信号读取:PLC将外部输入信号输入到输入模块中,采集输入信号,并将其从输入模块传递给中央处理器(CPU)进行处理。

2. 程序执行:CPU根据事先编写好的程序进行处理,包括数据处理、逻辑运算和控制计算等。

PLC程序一般采用ladder diagram(梯形图)进行编写。

3.输出信号控制:根据程序的执行结果,CPU将处理好的数据通过输出模块发送给外部设备,用于控制和操作外部设备。

三、步进电机控制的程序设计步进电机的控制程序主要包括参数设定、模式选择、起停控制、运动控制等部分。

下面以一个简单的例子来说明步进电机控制的程序设计过程:1.参数设定:首先需要设定步进电机的一些参数,如电机型号、步距角度、运动速度等。

西门子S系列PLC控制步进电机进行正反转的方法

西门子S系列PLC控制步进电机进行正反转的方法

西门子S系列P L C控制步进电机进行正反转的方法Hessen was revised in January 20211、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(M0.X),当M.0X闭合,住程序中的反转开始运做。

这样子就OK了。

2、用PTO指令让Q0.0 OR Q0.1高速脉冲,另一个点如Q0.2做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。

3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO)// 首次扫描时,将映像寄存器位设为低// 并调用子程序0LD SM0.1R Q0.0 1CALL SBR_0NETWORK 1 // 子程序0开始LD SM0.0MOVB 16#8D SMB67 // 设置控制字节:// - 选择PTO操作// - 选择单段操作// - 选择毫秒增加// - 设置脉冲计数和周期数值// - 启用PTO功能MOVW +500 SMW68 // 将周期设为500毫秒。

MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。

ATCH INT_0 19 // 将中断例行程序0定义为// 处理PTO完成中断的中断。

ENI // 全局中断启用PLS 0 // 激活PTO操作,PLS0 =》 Q0.0MOVB 16#89 SMB67 // 预载控制字节,用于随后的// 周期改动。

NETWORK 1 // 中断0开始// 如果当前周期为500毫秒:// 将周期设为1000毫秒,并生成4次脉冲LDW= SMW68 +500MOVW +1000 SMW68PLS 0CRETINETWORK 2// 如果当前周期为1000毫秒:// 将周期设为500毫秒,并生成4次脉冲LDW= SMW68 +1000MOVW +500 SMW68PLS 0序注释艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

PLC步进指令

PLC步进指令

用步进指令编程步进顺序控制:状态寄存器、步进顺控指令。

一、状态寄存器FX2N共有1000个状态寄存器,其编号及用途见下表。

类 别 元件编号 个 数 用 途 及 特 点初始状态 S0 ~S9 10 用作SFC的初始状态返回状态 S10 ~S19 10 多运行模式控制当中,用作返回原点的状态 一般状态 S20~S499 480 用作SFC的中间状态掉电保持状态 S50~S899 400 具有停电保持功能,用于停电恢复后需继续执行的场合信号报警状态 S900~S999 100 用作报警元件使用说明:1)状态的编号必须在规定的范围内选用。

2)各状态元件的触点,在PLC内部可以无数次使用。

3)不使用步进指令时,状态元件可以作为辅助继电器使用。

4)通过参数设置,可改变一般状态元件和掉电保持状态元件的地址分配。

二、步进顺控指令FX2N系列PLC的步进指令:步进接点指令STL步进返回指令RET。

1、步进接点指令STL说明:1)梯形图符号: 。

2)功能:激活某个状态或称某一步,在梯形图上表现为从主母线上引出的状态接点。

STL指令具有建立子母线的功能,以使该状态的所有操作均在子母线上进行。

3)STL指令在梯形图中的表示:2、步进返回指令RET说明:1)梯形图符号:2)功能:返回主母线。

步进顺序控制程序的结尾必须使用RET指令。

三、状态转移图的梯形图和写指令表1、状态的三要素状态转移图中的状态有驱动负载、指定转移目标和指定转移条件三个要素。

图中Y5:驱动的负载S21:转移目标X3:转移条件。

2、状态转移图的编程方法步进顺控的编程原则:先进行负载驱动处理,然后进行状态转移处理。

3、注意事项1)程序执行完某一步要进入到下一步时,要用SET指令进行状态转移,激活下一步,并把前一步复位。

2)状态不连续转移时,用OUT指令,如图为非连续状态流程图:非连续状态流程图例:液压工作台的步进指令编程,状态转移图、梯形图、指令表如图所示。

PLC实现步进电机正反转和调速控制

PLC实现步进电机正反转和调速控制

PLC实现步进电机正反转和调速控制PLC(可编程逻辑控制器)是一种专门用于工业自动化控制系统的计算机控制设备。

它可以实现对多种设备和机器的控制,包括步进电机。

步进电机是一种通过步进角度来控制转动的电机,其转动可以精确地控制在每个步进角度停留一段时间。

步进电机的正反转和调速控制是实现工业自动化过程中常用的功能,PLC可以很好地实现这些控制。

一、步进电机的正反转控制步进电机的正反转控制是通过控制步进电机的相序来实现的。

步进电机有多种相序方式,常见的包括正向旋转、逆向旋转、双向旋转等。

PLC 可以通过控制步进电机的相序开关来实现步进电机的正反转。

在PLC中,可以使用PLC的输出口来控制步进电机的相序开关。

通过将输出口与步进电机的控制线路连接,可以控制相序开关的状态,从而控制步进电机的正反转。

例如,将PLC的一个输出口连接到步进电机的CW (Clockwise)输入线路,另一个输出口连接到步进电机的CCW(Counter Clockwise)输入线路,可以通过控制这两个输出口的状态来实现步进电机的正反转。

二、步进电机的调速控制步进电机的调速控制是通过控制步进电机的脉冲频率来实现的。

步进电机的转速与脉冲频率成正比,脉冲频率越高,步进电机的转速越快。

因此,通过控制PLC输出口给步进电机发送的脉冲频率,可以实现步进电机的调速控制。

在PLC中,可以使用定时器模块来控制步进电机的脉冲频率。

定时器模块可以通过设定计时器的定时时间和周期,来控制输出口的脉冲频率。

通过控制定时器的定时时间,可以控制步进电机每个步进角度的停留时间,从而控制步进电机的转速。

除了定时器模块,PLC还可以使用计数器模块来实现步进电机的调速控制。

计数器模块可以通过设定计数器的初始值和计数步长,来控制输出口的脉冲频率。

通过控制计数器的初始值和计数步长,可以控制步进电机每个步进角度的停留时间,从而实现步进电机的转速控制。

三、步进电机正反转和调速控制实例以下是一个使用PLC实现步进电机正反转和调速控制的实例。

用PLC什么指令可以实现步进电机的定位控制?

用PLC什么指令可以实现步进电机的定位控制?

用PLC什么指令可以实现步进电机的定位控制?在平时工作中我们经常用到定位执行元件———步进电机。

今天讲一下如何用PLC来对步进电机进行位置控制。

我们假设一个工作场景,启动后,小车自动返回ST2点,停车6秒,然后自动向ST4点运行。

到达ST4点后,停车6秒。

然后自动返回ST2点,如此往复。

当按下停止按钮后,小车需完成当前循环后停在ST3位置。

步进电机及驱动器步进电机工作原理以前讲过,现在再简要说一下:步进电机属于控制类电机,它是将脉冲信号转换成一个转动角度的电机,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,主要应用在自动化仪表、机器人、自动生产流水线、空调扇叶转动等设备。

每来一个脉冲,电机就选转一个角度,步进电机的运行,需要脉冲输入。

步进电机分为反应式、永磁式和混合式三种。

反应式步进电机:结构简单成本低,但是动态性能差、效率低、发热大、可靠性难以保证,所以现在基本已经被淘汰。

永磁式步进电机:动态性能好、输出力矩较大,但误差相对来说大一些,因其价格低广泛应用于消费性产品。

混合式步进电机:综合了反应式和永磁式的优点,力矩大、动态性能好、步距角小,精度高,但是结构相对来说复杂,价格也相对高,主要应用于工业。

步进电机工作原理图第一步:电路设计由于步进电机的功率一般比较小,并且原理简单,控制电路和主电路可以在一起绘制。

第二步:确定I/O口点数和地址的分配X0-------------------------------------------------------------启动按钮SB1X1------------------------------------------------------------停止按钮SB2X2------------------------------------------------------------ST2开关X3------------------------------------------------------------ST3开关X4------------------------------------------------------------ST4开关Y0------------------------------------------------------------脉冲输出Y1------------------------------------------------------------方向步进电机电路控制原理图第三步:设备元器件清单由于输入点数5点、输出点数位2,我们可以选型为三菱FX2N-16MR-001。

fx3u启动步进电机的dszr指令用法

fx3u启动步进电机的dszr指令用法

fx3u启动步进电机的dszr指令用法1.概述在M it su bi sh iF X3U系列P LC中,ds zr指令用来启动步进电机。

该指令提供了一种简单而有效的方式来控制步进电机的运动并实现不同的操作。

2.指令格式d s zr指令的基本格式如下:```\#MR R+D(装载的内存区域,例如Y0)+T(步进电机的动作类型)+S P(速度)+AC(加速度)+D C(减速度)+F(有效脉冲数)```3.参数解析-M RR:该参数用于控制动作。

设置为0时,步进电机正常运行;设置为1时,电机停止。

通常建议将M RR设置为0。

-D:装载的内存区域。

可以选择Y0至Y7作为内存区域。

-T:步进电机的动作类型。

可以设置为1、2或3,分别代表正转、反转和原方向。

-S P:步进电机的运动速度。

可以设置为1至65535之间的任意值。

-A C:步进电机的加速度。

可以设置为1至65535之间的任意值。

-D C:步进电机的减速度。

可以设置为1至65535之间的任意值。

-F:步进电机的有效脉冲数。

可以设置为1至65535之间的任意值。

4.实例演示以下是一个使用d szr指令启动步进电机的示例:```#M RR+Y0+1+100+500+500+500```通过上述指令,我们可以将步进电机连接到Y0内存区域,并设置为正转动作类型。

速度设置为100,加速度和减速度均为500,有效脉冲数为500。

5.注意事项在使用d sz r指令时,需要特别注意以下几点:-请确保正确设置装载的内存区域,选择适合您的应用程序的内存区域进行操作。

-请合理设置步进电机的动作类型、速度、加速度与减速度,以满足您的具体需求。

-请根据具体应用中步进电机的规格和要求,合理设置有效脉冲数,确保电机按预期方式运行。

6.总结通过ds zr指令,我们可以轻松地启动步进电机并实现不同的运动方式。

合理设置参数可以满足我们在具体应用中对步进电机的需求。

希望本文提供的关于d sz r指令的用法对您有所帮助。

用FX1S 实现PLC控制步进电机的实例(图与程序)

用FX1S 实现PLC控制步进电机的实例(图与程序)

用FX1S 实现PLC控制步进电机的实例(图与程序)原创2018-01-26 工控教练工控教练FX1s是晶体管型PLC,有两个脉冲输出端子,分别是Y0 和Y1,能同时输出两组100KHZ的脉冲。

PLS+,PLS-是步进驱动器的脉冲信号端子,DIR+,DIR-是步进驱动器的方向信号端子。

本次实例的动作方式:当正转开关X0 闭合时,电机动作到A 点停止;当反转开关X1 闭合时,电机动作到B 点停止。

1·绝对位置控制(DRVA),是指定要走到距离原点的位置,原点位置数据存放于32 位寄存器D8140 里。

当机械位于我们设定的原点位置时用程序把D8140 的值清零,也就确定了原点的位置。

·实例动作方式:正转开关X0 闭合时,电机动作到A 点停止;反转开关X1 闭合时,电机动作到B 点停止。

2 三菱FX系列PLC绝对位置控制指令DRVA应用:绝对位置控制指令DRVA的格式:DRVA D0 D2 Y0 Y2 *D0:目标位置,可以是数值或是寄存器,也就是PLC要输出的脉冲个数。

*D2:输出脉冲频率,可以是数值或是寄存器。

也就是PLC输出的脉冲频率,也就是速度*Y0:脉冲输出地址,只能是Y0或Y1。

*Y2:方向控制输出,正向是ON或是OFF,反向是OFF或是ON (根据所控制执行元件设置来确定)3下面是PLC程序的梯形图:(此程序只为说明用,实用需改善。

)·在原点时将D8140的值清零(本程序中没有做此功能)·32 位寄存器D8140 是存放Y0 的输出脉冲数,正转时增加,反转时减少。

当正转动作到A 点时,D8140 的值是3000。

此时闭合X1,机械反转动作到B 点,也就是-3000 的位置。

D8140 的值就是-3000。

·当机械从A 点向B 点动作过程中,X1 断开(如在C 点断开)则D8140 的值就是200,此时再闭合X0,机械正转动作到A 点停止。

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种电子设备,用于控制工业自动化系统中的运动和操作。

步进电机是一种常用的驱动器,它的旋转运动是通过一步一步地前进来实现的。

本文将探讨如何使用PLC来实现步进电机的正反转和调整控制。

步进电机的正反转控制是通过改变电机绕组的相序来实现的。

在PLC 中,我们可以使用输出模块来控制电机的相序。

以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。

确保正确连接。

2.编程PLC:使用PLC编程软件,编写一个控制程序来实现电机的正反转。

首先,定义输出模块的输出信号来控制电机。

然后使用程序语言来编写逻辑控制指令,根据需要来改变输出信号的状态。

为了实现正反转,需要改变输出信号的相序。

3.实现正反转控制:在编程中,定义一个变量来控制步进电机的运动方向。

当变量为正值时,电机正转;当变量为负值时,电机反转。

根据变量的值来改变输出模块的输出信号,以改变电机的相序。

4.运行程序:将PLC连接到电源,并加载程序到PLC中。

启动PLC,程序将开始运行。

通过改变变量的值,我们可以控制电机的正反转。

除了控制步进电机的正反转,PLC还可以实现步进电机的调整控制。

调整控制是通过改变电机的步距和速度来实现的。

以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。

与正反转控制相同,确保正确连接。

2.编程PLC:使用PLC编程软件编写控制程序。

首先,定义输出模块的输出信号来控制电机的相序。

然后,使用程序语言来编写逻辑控制指令,根据需要改变输出信号的状态。

为了实现调整控制,需要改变输出信号的频率和占空比。

3.实现调整控制:在编程中,定义两个变量来控制电机的步距和速度。

步距变量控制电机每一步的距离,速度变量控制电机的旋转速度。

根据变量的值来改变输出模块的输出信号,以改变电机的相序,并控制步距和速度。

4.运行程序:将PLC连接到电源,并加载程序到PLC中。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制PLC(可编程逻辑控制器)可以广泛应用于工业自动化控制系统中,包括步进电机的正反转及调整控制。

本文将详细介绍如何使用PLC实现步进电机的正反转及调整控制。

一、步进电机的原理步进电机是一种用电脉冲驱动的电动机,它是按固定顺序将电流导通到电动机的相绕组中,从而使电动机按步进的方式转动。

步进电机有两种基本的工作模式:全步进和半步进。

在全步进模式下,电机每接收到一个脉冲就向前转动一个固定的步距角度。

在半步进模式下,电机接收到一个脉冲时向前转动半个步距角度。

二、PLC实现步进电机的正反转1.硬件连接将PLC的输出端口与步进电机的驱动器相连,将驱动器的控制信号输出口与步进电机相连。

确保电源连接正确,驱动器的供电电压要符合步进电机的额定电压。

2.编写PLC程序使用PLC编程软件编写PLC程序来控制步进电机的正反转。

以下是一个简单的PLC程序示例:```BEGINMOTOR_CONTROL_TRIG:=FALSE;//步进电机控制信号MOTOR_DIRECTION:=FORWARD;//步进电机转动方向,FORWARD表示正转,REVERSE表示反转//步进电机正转控制MOTOR_FORWARD:IF(START_BUTTON=TRUE)THENMOTOR_CONTROL_TRIG:=TRUE;MOTOR_DIRECTION:=FORWARD;END_IF;//步进电机反转控制MOTOR_REVERSE:IF(STOP_BUTTON=TRUE)THENMOTOR_CONTROL_TRIG:=TRUE;MOTOR_DIRECTION:=REVERSE;END_IF;//步进电机停止控制MOTOR_STOP:IF(STOP_BUTTON=TRUE)THENMOTOR_CONTROL_TRIG:=FALSE;END_IF;END```Begitalogic Flowcode是PLC编程软件之一,提供了简单易懂的图形界面来编写PLC程序。

手把手教你PLC 1200控制步进电机

手把手教你PLC 1200控制步进电机

手把手教你PLC 1200控制步进电机1、步进电机硬件接线TB6600 升级版步进驱动器接线:控制信号连接:PUL+:脉冲信号输入正。

PUL-:脉冲信号输入负。

DIR+:电机正、反转控制正。

DIR-:电机正、反转控制负。

ENA+:电机脱机控制正(一般不接)。

ENA-:电机脱机控制负(一般不接)。

电机绕组连接A+:连接电机绕组 A+相。

A-:连接电机绕组 A-相。

B+:连接电机绕组 B+相。

B-:连接电机绕组 B-相。

备注:可以四根线两两短接,短接以后用手转动步进电机有阻力的为一组,另外一个有阻力的为另外一组,只要保证两两为一组即可,谁是 A,谁是 B 不影响,谁是+ 谁是-都没有关系,这样只会影响电机旋转的方向;电源电压连接:VCC:电源正端“+” GND:电源负端“-”细分设置:电流设置:接线图2、步进电机组态调试(1)双击TIA Portal V16软件(2)创建新项目:选择启动——创建新项目——修改项目名称、路径——创建(3)添加新设备:选择设备与网络——添加新设备——控制器——SIMATIC S7-1200——CPU——6ES7 2XX-——选择相应版本——添加(4)出现如下界面,点击步骤2获取按键,选择PG/PC接口类型、接口(接口为电脑的网卡)——点击步骤4开始搜索——出现步骤5 PLC_1——点击步骤6检测按键(5)出现步骤1 PLC界面,点击步骤2属性,修改PLC IP地址——点击步骤5脉冲发生器——选择勾选步骤6、步骤8——在步骤9位置出现脉冲输出Q0.0、方向输出Q0.1(6)在项目左侧,选择步骤1工艺对象—新增对象,步骤2运动控制下轴“TO_Axis_PTO”—点击确定(7)在轴组态常规窗口,脉冲发生器选择步骤5“Pulse_1”,显示步骤6内容(8)在扩展参数部分,电机每转脉冲数400(根据步进电机驱动器1.2.3位拨码开关的设置确定),电机每转的负载位移2mm(根据步进电机丝杠导程确定)(9)在位置限制部分,选择步骤8启用硬件限位开关,硬件下限位I0.2高电平、硬件上限位I0.4高电平(上下硬件限位根据实际PLC接线确定),步骤11速度限值的单位选择mm/S,显示步骤12内容(10)在回原点部分,步骤13归位开关选择I0.3高电平(根据PLC 硬件接线确定),选择步骤14“允许硬限位开关处自动反转”,步骤15修改接近速度、回原点速度5mm/S,然后在步骤16位置显示所有参数设置成功(11)选择步骤1 PLC,右键编译—硬件(完全重建),点击步骤4下载—步骤5装载—完成(12)选择步骤6调试,点击激活—启用,根据步骤9点动、定位、回原点命令进行步骤10调试3、步进电机程序设计(1)新建程序数据块和变量,添加以下变量(2)双击主函数main,插入控制指令。

用PLC控制步进电机的相关指令说明

用PLC控制步进电机的相关指令说明

用PLC控制步进电机的相关指令下面介绍的指令只适用于FX1S、FX1N系列的晶体管输出PLC,如高训的FX1N-60MT。

这些指令主要是针对用PLC直接联动伺服放大器,目的是可以不借助其他扩展设备(例如1GM模块)来进行简单的点位控制,使用这些指令时最好配合三菱的伺服放大器(如MR-J2)。

然而,我们也可以用这些指令来控制步进电机的运行,如高训810室的实验台架。

下面我们来了解相关指令的用法:1、脉冲输出指令PLSY(FNC57)PLSY指令用于产生指定数量的脉冲。

助记法为HZ、数目Y出来。

指令执行如下:2、带加减速的脉冲输出指令PLSR(FNC59)3、回原点ZRN(FNC156)--------重点撑握ZRN指令用于校准机械原点。

助记法为高速、减速至原点。

指令执行如下:4、增量驱动DRVI(FNC158)--------重点撑握DRVI为单速增量驱动方式脉冲输出指令。

这个指令与脉冲输出指令类似但又有区别,只是根据数据脉冲的正负多了个转向输出。

本指令执行如下:5、绝对位置驱动指令DRVA(FNC159)本指令与DRVI增量驱动形式与数值上基本一样,唯一不同之处在于[S1.]:在增量驱动中,[S1.]指定的是距离,也就是想要发送的脉冲数;而在绝对位置驱动指令中,[S1.]定义的是目标位置与原点间的距离,即目标的绝对位置。

下面以高训810室的设备为例,说明步进电机的驱动方法:在用步进电机之前,请学员考虑一下几个相关的问题:1、何谓步进电机的步距角?何为整步、半步?何谓步进电机的细分数?2、用步进电机拖动丝杆移动一定的距离,其脉冲数是如何估算的?3、在步进顺控中运用点位指令应注意什么?(切断电源的先后问题!)步进电机测试程序与接线如下:1、按下启动按钮,丝杆回原点,5秒钟后向中间移动,2秒后回到原点。

注:高训810步进电机正数为后退,Y2亮,负数为向前,Y2不亮。

向前方为向(3#带侧)运动为,向后为向(1#带侧)运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用PLC控制步进电机的相关指令
下面介绍的指令只适用于FX1S、FX1N系列的晶体管输出PLC,如高训的FX1N-60MT。

这些指令主要是针对用PLC直接联动伺服放大器,目的是可以不借助其他扩展设备(例如1GM模块)来进行简单的点位控制,使用这些指令时最好配合三菱的伺服放大器(如MR-J2)。

然而,我们也可以用这些指令来控制步进电机的运行,如高训810室的实验台架。

下面我们来了解相关指令的用法:
1、脉冲输出指令PLSY(FNC57)
PLSY指令用于产生指定数量的脉冲。

助记法为HZ、数目Y出来。

指令执行如下:
2、带加减速的脉冲输出指令PLSR(FNC59)
3、回原点ZRN(FNC156)--------重点撑握
ZRN指令用于校准机械原点。

助记法为高速、减速至原点。

指令执行如下:
4、增量驱动DRVI(FNC158)--------重点撑握
DRVI为单速增量驱动方式脉冲输出指令。

这个指令与脉冲输出指令类似但又有区别,
只是根据数据脉冲的正负多了个转向输出。

本指令执行如下:
5、绝对位置驱动指令DRVA(FNC159)
本指令与DRVI增量驱动形式与数值上基本一样,唯一不同之处在于[S1.]:
在增量驱动中,[S1.]指定的是距离,也就是想要发送的脉冲数;而在绝对位置驱动指令中,
[S1.]定义的是目标位置与原点间的距离,即目标的绝对位置。

下面以高训810室的设备为例,说明步进电机的驱动方法:
在用步进电机之前,请学员考虑一下几个相关的问题:
1、何谓步进电机的步距角?何为整步、半步?何谓步进电机的细分数?
2、用步进电机拖动丝杆移动一定的距离,其脉冲数是如何估算的?
3、在步进顺控中运用点位指令应注意什么?(切断电源的先后问题!)
步进电机测试程序与接线如下:
1、按下启动按钮,丝杆回原点,5秒钟后向中间移动,2秒后回到原点。

注:高训810步进电机正数为后退,Y2亮,负数为向前,Y2不亮。

向前方为向(3#带侧)运动为,向后为向(1#带侧)运动。

给正数DDRVI时,后退M8029不动作,没有完成标志;但给负值前进时,会有完成标志M8029的动作。

为什么会在前进时(有M8029为标志时),按停后,可以再次按X10启动起来,而在后退Y2点亮时,不能再按X10启动呢?
M8029标志位必须在同一扫描周期内捕捉,而且要紧邻相应的点位控制指令下一步!
2、另一个示例:
要求制做一个触摸屏画面,输出指定的位置(MM为单位),让步进电机运动到指定位置后停下。

假定工件指定位置大于实际位置值,电机正转到位;反之,反转到位。

且步进电
机走1MM要80个脉冲。

相关文档
最新文档