泊松与拉普拉斯方程共31页文档
静电场(5) 泊松方程和拉普拉斯方程
0
Dd S
S
q
微分形式:
E
0
或(E )
7
介质方程:
D
D 0rE E
在各向同性、均匀、线性的媒质中, 由静电场的基本方程可以得出结论: 静电场是一个有通量源(静止电荷)
而没有旋涡源的矢量场。
8
根据矢量场理论,要确定一个矢量场, 必须同时给顶它的散度和旋度。 所以静电场的基本方程中包含了:
E ()
(在均匀、线性、各向同性的电介质中,为常数。)
2
(电位的泊松方程)
12
2、拉普拉斯方程
对于场中没有电荷分布(=0)的区域内:
2
(电位的泊松方程)
0 2
(电位的拉普拉斯方程)
拉普拉斯方程是泊松方程的特例。
13
2是拉普拉斯算符:二阶微分算符
直角坐标系:
r
1
r2 sin
sin
1
r 2 sin 2
2 2
15
两类问题 可以用泊松方程或拉普拉斯方程解决
1、已知:有限区域内的电荷分布, 求:电位和场强
(场域内电介质是均匀、线性和各向同性。)
求电位:
(x, y, z) 1 (x', y', z') dV '
4 V '
r
求场强:
E
1
r 2 sin
sin
1
r 2 sin 2
2 2
1 r2
r
r 2
r
0
r 2 0
18
r r
r 2 0
r r
一次积分
r2
r
C1
C1 r r 2
泊松方程和拉普拉斯方程
泊松方程和拉普拉斯方程势函数的一种二阶偏微分方程。
广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点,并且把这些商加在一起,其总和即P点的质量m k除以它们到任意观察点P的距离rk的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。
1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。
1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。
文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:,式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数ε=8.854o×10-12法/米。
在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。
在各分区的公共界面上,V满足边值关系,,式中i,j指分界面两边的不同分区,ζ为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。
有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
泊松方程和拉普拉斯方程的区别
泊松方程和拉普拉斯方程的区别泊松方程和拉普拉斯方程是数学中的两个重要方程,它们在物理、工程、计算机科学等领域都有广泛的应用。
虽然它们都属于偏微分方程,但是它们的性质和应用有很大的不同。
本文将从定义、性质和应用等方面对这两个方程进行比较和分析。
一、定义泊松方程和拉普拉斯方程都是二阶偏微分方程,它们的定义如下:泊松方程:$Delta u=f(x,y,z)$拉普拉斯方程:$Delta u=0$其中,$Delta$表示拉普拉斯算子,$u$表示待求函数,$f(x,y,z)$表示已知的函数。
泊松方程的右侧有一个非零函数,而拉普拉斯方程的右侧为零。
二、性质1.解的存在性和唯一性对于泊松方程,只有在给定边界条件的情况下才有解,并且解是唯一的。
这是由于泊松方程是一个椭圆型方程,其解析性质决定了解的存在性和唯一性。
对于拉普拉斯方程,解的存在性和唯一性则要根据边界条件和区域形状来判断。
在一些特殊的情况下,拉普拉斯方程可能没有解或者有多个解。
2.性质分析泊松方程和拉普拉斯方程的性质有很大的不同。
泊松方程是一个非齐次方程,其右侧有一个非零函数。
这意味着泊松方程的解会受到外部条件的影响,例如在流体力学中,泊松方程描述了流体中的压力分布,其解会受到外部物体的影响。
拉普拉斯方程是一个齐次方程,其右侧为零。
这意味着拉普拉斯方程的解不受外部条件的影响,它只与内部条件有关。
例如在电场中,拉普拉斯方程描述了电势的分布,其解只与内部电荷分布有关。
另外,泊松方程和拉普拉斯方程在解的性质上也有很大的不同。
泊松方程的解是一个调和函数,它具有良好的性质,例如可微性、可积性等。
而拉普拉斯方程的解则不一定是调和函数,其性质则要根据具体情况来判断。
三、应用泊松方程和拉普拉斯方程在物理、工程、计算机科学等领域都有广泛的应用。
下面分别介绍它们的应用。
1.泊松方程的应用(1)流体力学中的应用泊松方程可以描述流体中的压力分布,因此在流体力学中有广泛的应用。
例如在空气动力学中,泊松方程可以用来计算飞机翼的气动力。
泊松方程和拉普拉斯方程
泊松方程和拉普拉斯方程势函数的一种二阶偏微分方程。
广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。
1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。
1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。
文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:,式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。
在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。
在各分区的公共界面上,V满足边值关系,,式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。
有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。
各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
2.5泊松方程和拉普拉斯方程
1、求借电位φ呈完全对称分布; 2、无穷大边界面(如点电荷电场)
除上述情况外均须用其它方法求解。
解:泊松方程 2
为
0
0 x <d
<x 0
2 0 x 0d
0
x d U0 (x)
s(0) s(d)
E(x)
0x
x
d
d
0
U0
则 2
2
x2
d 2
dx2
0x 0d
d dx
0x2 20d
C1
第二章 静电场
d dx
0x2 20d
C1
0x3 60d
C1x
C2
x0 0
x d U0
C2 0
因球外无电荷,则空间电位满足拉普拉斯方程
2 0 球坐标系中
1 r2
d dr
(r2
d dr
)
0
即
r2
d
dr
C1
d
dr
C1 r2
第二章 静电场
r2
d
dr
C1
d
dr
C1 r2
C1 r
C2
而
r a时,
U0
C1 a
C2
r 时, 0 C2
故 aU0
r
C1 aU0
第二章 静电场
例:用解泊松方程的方法重求上例的电场强度。
第二章 静电场
❖ 求解泊松方程(或拉普拉斯方程):
E 给定电荷分布,求解其方程得
( E )
若已知 E、
第二章 静电场
例:导体球的电位为U,球半径为 a , 求球外的电位。(假定无穷远电位为0) 解:显然,导体球的电荷分布在球面上, 且呈球对称,故空间的电位也呈球对称, 仅是r 的函数。取球坐标系。
泊松方程和拉普拉斯方程
❖ 泊松方程:
∵
静电场为无旋场,故可引入一标量电 位 来描述之。
而
D
将
D E 及 E 代入上式中
即
E
E
的泊松方程
2
(2-5-1)
2020/6/3
第二章 2.5
1
❖ 拉普拉斯方程:
若静电场中无电荷分布时,即
0
的拉普拉斯方程
则泊松方程为:
0
0d 6
则E(x) s (0) 0x2 0 20d
E
ax
(
0x2 20d
U0 d
0d 60
)
12
2020/6/3
第二章 2.5
8
➢ 作一柱形闭合面为S,底面积为S ,
下底在左极板内,上底在 x >d 侧柱面与 ax 平行。
极板内s(0,) s(d)
S
E dS
q
0
0
闭合面上、下底处
的电场强度为零, 0x
r
)
1
r2 sin
(sin
)
1
r 2 sin2
2 2
2020/6/3
第二章 2.5
3
❖ 求解泊松方程(或拉普拉 斯方程):
给定电荷r 分布,求解其方程得
(Q E )
E
若已知
rr E、D
2020/6/3
第二章 2.5
4
例:若半径为 a 的导体球面的电位
为解U:显0 ,然球,外导无体电球荷的,电求荷空分间布的在电球位面。上,
E
故
E
ax
( 0x2 20d
U0 d
0d 60
)
1.1 拉普拉斯方程与泊松方程
泊松方程和拉普拉斯方程Poisson's equation and Laplace's equation势函数的一种二阶偏微分方程。
广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk 除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在P点的质点所受总引力的相应分力。
1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。
1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。
文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
==静电场的泊松方程和拉普拉斯方程==若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:,式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。
在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。
在各分区的公共界面上,V满足边值关系,,式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。
有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。
泊松方程和拉普拉斯方程概念分析
泊松方程和拉普拉斯方程概念分析首先,我们来介绍泊松方程。
泊松方程是一个偏微分方程,通常用于描述一个标量场的空间分布和变化。
在三维笛卡尔坐标系下,泊松方程可以写成如下形式:Δφ=f(x,y,z)其中,Δ表示拉普拉斯算子,φ表示待求解的标量场,f(x,y,z)表示已知的源函数。
泊松方程的解φ需要满足两个条件:其一是它在给定的区域内满足方程,即Δφ=f(x,y,z),其二是它在区域的边界上满足一定的边界条件。
泊松方程具有如下的一些重要性质:1.线性性:泊松方程是一个线性方程,即满足线性叠加原理。
如果φ1和φ2是泊松方程的解,那么它们的线性组合aφ1+bφ2也是泊松方程的解,其中a和b是任意常数。
2.解的存在唯一性:在给定的边界条件下,泊松方程的解存在且唯一3.平均值性质:泊松方程的解在区域中任意一点的值等于该点处的所有邻域点值的平均值。
接下来,我们来介绍拉普拉斯方程。
拉普拉斯方程是一个偏微分方程,通常用于描述一个标量场的稳定状态分布。
在三维笛卡尔坐标系下,拉普拉斯方程可以写成如下形式:Δφ=0其中,Δ表示拉普拉斯算子,φ表示待求解的标量场。
拉普拉斯方程的解φ需要满足边界条件。
拉普拉斯方程具有如下的一些重要性质:1.线性性:拉普拉斯方程也是一个线性方程。
如果φ1和φ2是拉普拉斯方程的解,那么它们的线性组合aφ1+bφ2也是拉普拉斯方程的解,其中a和b是任意常数。
2.解的存在唯一性:在给定的边界条件下,拉普拉斯方程的解存在且唯一3.零平均值性质:拉普拉斯方程的解在区域中任意一点的值等于该点处的所有邻域点值的平均值为零。
泊松方程和拉普拉斯方程在许多领域中有广泛的应用。
在电势场的分析中,泊松方程和拉普拉斯方程可以用于描述场的分布和变化,从而帮助求解电场和电势。
在热传导的研究中,拉普拉斯方程可以用于描述温度场的稳定状态。
此外,在流体力学、应力分析、声学、光学等领域中,泊松方程和拉普拉斯方程也有着重要的应用。
综上所述,泊松方程和拉普拉斯方程是数学分析中的两个重要方程。
泊松方程和拉普拉斯方程的区别
泊松方程和拉普拉斯方程的区别泊松方程和拉普拉斯方程都是常见的偏微分方程,它们在数学、物理、工程等领域中都有广泛的应用。
虽然两者都描述了物理现象中的某种量的变化,但它们的本质区别是什么呢?本文将从定义、特点、求解方法等方面来探讨泊松方程和拉普拉斯方程的区别。
一、定义泊松方程和拉普拉斯方程都是二阶偏微分方程,它们的定义如下:泊松方程:$$Delta u=f(x,y,z)$$其中$Delta$为拉普拉斯算子,$u$为未知函数,$f(x,y,z)$为已知函数。
拉普拉斯方程:$$Delta u=0$$其中$Delta$为拉普拉斯算子,$u$为未知函数。
从定义上来看,两者的区别在于$f(x,y,z)$是否为0。
泊松方程描述了一个有源场的变化,而拉普拉斯方程描述的是一个无源场的变化。
二、特点泊松方程和拉普拉斯方程的特点也有所不同。
1. 泊松方程的特点泊松方程的特点在于它描述了一个有源场的变化,即$f(x,y,z)$不为0。
这种场的变化通常是由某种源头引起的,比如电荷、密度、温度等。
因此,泊松方程在物理学中有广泛的应用,如电场、热传导、流体力学等领域。
2. 拉普拉斯方程的特点拉普拉斯方程的特点在于它描述了一个无源场的变化,即$f(x,y,z)$为0。
这种场的变化通常是由场本身的性质引起的,比如电势、重力势、流速势等。
因此,拉普拉斯方程在物理学中也有广泛的应用,如静电场、重力场、流体静力学等领域。
三、求解方法泊松方程和拉普拉斯方程的求解方法也有所不同。
1. 泊松方程的求解方法泊松方程的求解方法通常需要给出边界条件,即在一定的边界上给出$u$的值或导数,以确定唯一的解。
求解泊松方程的方法有很多种,如分离变量法、格林函数法、有限差分法、有限元法等。
其中,分离变量法是最常用的方法之一。
它将$u$表示为一系列分离的函数的乘积形式,然后通过边界条件来确定每个函数的系数。
这种方法适用于具有一定对称性的问题,如圆柱形、球形等几何体。
泊松方程和拉普拉斯方程
泊松方程和拉普拉斯方程势函数的一种二阶偏微分方程。
广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在P点的质点所受总引力的相应分力。
1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。
1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。
文中要求重视势函数V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:,式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。
在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。
在各分区的公共界面上,V满足边值关系,,式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。
有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。
各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
泊松方程和拉普拉斯方程
直角坐标系:
柱坐标系:
1 1 (r ) 2 2 2 r r r r z 球坐标系:
2 2 2
1 2 1 1 2 2 (r ) 2 (sin ) 2 2 r r r r sin r sin 2
第二章
2.5
静电场的基本方程: 无旋:
c
2.5 泊松方程和拉普拉斯方程
E dl 0
s
线性、均匀、各向同性 电介质 积 分
有散
本构关系:
2018/11/16
D E 0 r E 0 E P
1
E 0 D
D ds q
第二章
2.5
间无电荷分布,则板间电场强度 均匀;
体电荷,由于体电荷只是 函数, 故电场强度也只是
0 x 而实际上板间充满密度为 d 的
0 x d
x
U0
x
的
d
0
x 的函数。
x
8
应用高斯通量定理求解。
作一柱形闭合面为S,底面积为 S ,下底在 左极板内,上底在 处,侧柱面与 ax 平行。 2018/11/16
q E dS 0 0 S
闭合面上、下底处 x 的电场强度为零, d 侧面的法向与电场 故 q0 d 强度的方向垂直。 0 d x s (0)S 0 Sdx s (d )S 0 0 d U 0 0 0 d 则 s (d ) d 3
0
q E dS 0 S
x x 1 0 a E ( x ) a dS ( 0 ) S Sdx S x x 0 s 0 d
拉普拉斯方程与泊松方程的应用
拉普拉斯方程与泊松方程的应用拉普拉斯方程和泊松方程是数学中常见的偏微分方程,广泛应用于物理学、工程学和其他科学领域。
它们的应用范围十分广泛,涉及电磁场、流体力学、热传导和声学等领域。
一、电势与拉普拉斯方程电势是电磁场理论中一种重要的物理量,描述了电荷之间的相互作用。
根据麦克斯韦方程组,我们可以得到通过电荷分布求解电势的拉普拉斯方程。
具体来说,对于一个空间区域内的电荷分布,在给定边界条件下,拉普拉斯方程可以用来求解这个区域内的电势分布。
这个方程可以写为:∇²V = 0其中,∇²表示拉普拉斯算子,V表示电势。
求解这个方程的方法有很多,常见的包括分离变量法、格林函数法和有限差分法等。
通过求解拉普拉斯方程,我们可以得到电势的分布,从而进一步研究电场、电流和电势能等相关物理量的性质。
这在电磁场分析、电力系统设计和电子器件等领域有着重要的应用。
二、势能与泊松方程势能是描述力学系统中能量分布的一种物理量。
在研究势能的分布时,我们经常会遇到解泊松方程的问题。
泊松方程是拉普拉斯方程的一般形式,可以表示为:∇²φ = -ρ/ε₀其中,φ表示势能分布,ρ表示电荷密度,ε₀表示真空介电常数。
在给定边界条件下,求解泊松方程可以得到势能的分布情况。
泊松方程的应用广泛,如在静电场中,通过求解泊松方程可以计算电势分布,进而求得电场分布。
在流体静力学中,泊松方程也用于求解流体压力分布。
此外,泊松方程还可以应用于热传导、声学、量子力学等领域。
三、应用实例1. 电子器件设计在电子器件设计中,我们常常需要研究电荷分布对电势分布的影响。
通过求解拉普拉斯方程或泊松方程,我们可以得到电势分布情况,从而进一步了解电子器件的工作原理和性能。
2. 地球引力场研究地球引力场研究是地球物理学中的一个重要领域。
通过求解拉普拉斯方程,可以得到地球引力场的势能分布,从而了解地壳的形状和密度等信息。
3. 热传导问题热传导是工程学中一个常见的问题,如热液浅层地下采暖,建筑物的保温等。
1.1 拉普拉斯方程与泊松方程
泊松方程和拉普拉斯方程Poisson's equation and Laplace's equation势函数的一种二阶偏微分方程。
广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk 除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在P点的质点所受总引力的相应分力。
1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。
1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。
文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
==静电场的泊松方程和拉普拉斯方程==若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:,式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。
在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。
在各分区的公共界面上,V满足边值关系,,式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。
有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。
拉普拉斯方程与泊松方程
5.1.3 云与大地之间的电缆
带电的云与大地之间存在一个均匀的电场,平行与大 地的电缆相当于一根无穷长导体。在平行于电场的方 向作垂直于电缆的截面,研究该截面上的电势分布。
该问题可以用如下方程加以描述:
选择偏微分方程工具箱求解,注意:求解区域是两区 域之差;区域内选择椭圆型方程。
5.2 三维拉普拉斯方程
fun=legendre(k,z); f=fun(1,:); f0=f(1,51); Ri=2/a^2*(1/(k-1)+1/(k+2)).*ri-2/a/(k-1)*(ri/a).^k; Ro=1/a/(k/2+1)*(a./ro).^(k+1); [R,PH]=meshgrid(Ri,f); ui =ui-GM*f0*R.*PH; [R,PH]=meshgrid(Ro,f); uo=uo-GM*f0*R.*PH; end; [ro,T]=meshgrid(ro,th);Yo=ro.*cos(T);Xo=ro.*sin(T); [ri,T]=meshgrid(ri,th); Yi=ri.*cos(T); Xi=ri.*sin(T); figure(1);contour(Xo,Yo,uo,'b');hold on; axis equal; contour(Xi,Yi,ui,'r'); title('圆盘引力势等势线');
ri=r; ri(find(ri>a))=NaN;
ro=r; ro(find(ro Bqi=0; Bro=0; Bqo=0;
for k=1:2:43
fun10=legendre(k,0); P0=fun10(2);
fun=legendre(k,cos(t));