复习:第三章轴向拉伸和压缩
轴向拉伸和压缩
六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S
)
p 0.2
脆性材料
u
( bt
)
bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A
《轴向拉伸和压缩》课件
课程目标
掌握轴向拉伸和压缩的基 本原理和分析方法
了解轴向拉伸和压缩在实 际工程中的应用
培养学生的实验技能和实 践能力,提高解决实际问 题的能力
Part
02
轴向拉伸和压缩的基本概念
拉伸和压缩的定义
拉伸
物体在力的作用下沿力的方向伸 展或拉长的过程。
压缩
物体在力的作用下沿力的方向缩 短或压扁的过程。
拉伸和压缩的力分析
力的方向分析
在轴向拉伸和压缩过程中,力的方向 沿着杆件轴线,与杆件轴线重合。
力的作用点分析
力的作用点选择在杆件上,通常选择 在杆件的两端,以便于分析杆件受力 情况。
拉伸和压缩的变形分析
变形量分析
在轴向拉伸和压缩过程中,杆件会发生伸长或缩短的变形,变形量可以用伸长量或缩短 量来表示。
拉伸和压缩的分类
按变形程度
弹性变形和塑性变形
按外力性质
静力拉伸和压缩、动力拉伸和压缩、冲击拉伸和压缩
拉伸和压缩的物理模型
直杆拉伸与压缩模型
忽略横截面变化的简单拉伸与压缩模型。
弹性杆件模型
考虑横截面变化的弹性变形模型。
弹性体模型
考虑物体内部应力和应变的弹性变形模型。
Part
03
轴向拉伸和压缩的力学分析
2
引伸计:测量试样在拉伸
或压缩过程中的应变。
3
计算机和数据采集系统:
记录和处理实验数据。
实验步骤
准备试样
01 选择所需材料,制备标准试样
。
安装试样
02 将试样放置在试验机的夹具中
,确保试样轴线与拉伸或压缩 方向一致。
设定实验参数
03 设定初始实验条件,如加载速
轴向拉伸与压缩的变形概念
轴向拉伸与压缩的变形概念轴向拉伸与压缩是材料在受到外力作用下发生的一种变形形式。
这两种变形形式本质上都是由于材料内部的原子或分子受到外力的影响而改变了其平衡位置从而引起的。
轴向拉伸与压缩的变形概念可以通过弹簧的拉伸与压缩来加以理解。
首先我们来看轴向拉伸的变形。
当作用在弹簧两端的力朝相反方向拉伸时,弹簧会发生轴向拉伸的变形。
这是因为受到拉力的作用,弹簧内部原子或分子之间的间距增大,原本处于平衡位置的原子或分子会发生位移,使得整个弹簧长度增加。
这种拉力作用下的变形被称为轴向拉伸变形。
接下来我们来看轴向压缩的变形。
当作用在弹簧两端的力朝相同方向压缩时,弹簧会发生轴向压缩的变形。
这是因为受到压力的作用,弹簧内部原子或分子之间的间距减小,原本处于平衡位置的原子或分子会发生位移,使得整个弹簧长度减小。
这种压力作用下的变形被称为轴向压缩变形。
轴向拉伸与压缩的变形概念实际上可以通过杨氏模量来更加详细地描述。
杨氏模量是一个材料的机械特性参数,它描述了材料在轴向拉伸和压缩变形时的抵抗能力。
杨氏模量越大,材料的抵抗能力越强,抗拉强度也就越大。
相反地,杨氏模量越小,材料的抗拉强度越低。
在材料实际应用中,轴向拉伸与压缩的变形是非常常见的。
比如在建筑、桥梁、汽车、飞机等工程领域中,钢材往往被用于受力构件中,它能够在受到拉力或压力时保持较好的稳定性。
而在金属加工、塑料成型等制造领域中,轴向拉伸与压缩的变形则常常是一种设计和生产工艺。
例如在金属加工中,通过轴向拉伸可以制造出细丝,而通过轴向压缩则可以制造出坯料。
总结起来,轴向拉伸与压缩是材料在受到外力作用下发生的一种变形形式。
轴向拉伸是指材料的长度增加,原子或分子之间的间距变大;轴向压缩是指材料的长度减小,原子或分子之间的间距变小。
这两种变形形式与杨氏模量密切相关,它描述了材料在受力时的抵抗能力。
在工程和制造领域中,轴向拉伸与压缩的变形是非常常见的,它们对于材料的选择、设计和生产工艺具有重要意义。
轴向拉伸和压缩
§2 轴向拉压时横截面上 的内力和应力
一.轴力及轴力图 1.轴力的概念
(1)举例
F F
N
F
N
F
用截面法将杆件分成左右两部分,利用 方向的平衡可得 :
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由杆 件处于平衡状态可知,内力合力的作用线也必然 与杆件的轴线相重合。
二、应力
1、平面假设
① 实验:受轴向拉伸的等截面直杆,在外力施加之前, 先画上两条互相平行的横向线ab、cd,然后观察该两 横向线在杆件受力后的变化情况。
a
F
a b
c
c d
F
b
② 实验现象
d
变形前,我们在横向所作的两条平行线ab、cd, 在变形后,仍然保持为直线,且仍然垂直于轴线,只 是分别移至a’b’、c’d’位置。
③ 实验结论 变形前为平面的横截面,变形后仍保持为平面。 ——平面假设
F
N
N
F
平面假设
拉杆所有纵向纤维的伸长相等 材料的均匀性 各纵向纤维的性质相同
横截面上 内力是均 匀分布的
N A
(1)
A——横截面面积
拓展
——横截面上的应力
对于等直杆, 当有多段轴力时,最大轴力所对应的截 面——危险截面。危险截面上的正应力——最大工作应力, 其计算公式应为:
2)木材
各向异性材料。 3)玻璃钢:玻璃纤维与热固性树脂粘合而成的复合材料 各向异性材料。优点是:重量轻,强度高,工艺简单,耐 腐蚀。
思考题 1、强度极限b是否是材料在拉伸过程中所承受 的最大应力? 2、低碳钢的同一圆截面试样上,若同时画有两种 标距,试问所得伸长率10 和5 哪一个大?
第三章 轴向拉伸和压缩习题
第三章 轴向拉伸和压缩一、选择题( )1、轴向拉伸或压缩时,直杆横截面上的内力称为轴力,表示为_______A.N FB. FSC.Q F D.jy F( )2、截面上的内力大小,________。
A.与截面的尺寸和形状无关B.与截面的尺寸有关,但与截面的形状无关C.与截面的尺寸无关,但与截面的形状有关D.与截面的尺寸和形状都有关( )3、等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一 定是等值、_______。
A.反向、共线B.反向,过截面形心C.方向相对,作用线与杆轴线重合D.方向相对,沿同一直线作用( )4、一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N1,N2 和N3,三者的关系为_______。
A.N1≠N2 N2≠N3B.N1=N2 N2=N3C.N1=N2 N2>N3D.N1=N2 N2<N3( )5、图示阶梯形杆,CD 段为铝,横截面面积为A ;BC 和DE 段为钢,横截面面积均为 2A 。
设1-1、2-2、3-3截面上的正应力分别为σ1、σ2、σ3,则其大小次序为_______。
A.σ1>σ2>σ3B.σ2>σ3>σ1C.σ3>σ1>σ2D.σ2>σ1>σ3( )6、轴向拉伸杆,正应力最大的截面和剪应力最大的截面_______。
A.分别是横截面、450斜截面B.都是横截面C.分别是450斜截面、横截面D.都是450斜截面( )7、由变形公式Δl =Pl/EA 即E =Pl/A Δl 可知,弹性模量_______。
A.与载荷、杆长、横截面面积无关B.与载荷成正比C.与杆长成正比D.与横截面面积成正比( )8、在下列说法,_______是正确的。
A 内力随外力增大而增大B 内力与外力无关C 内力随外力增大而减小D 内力沿杆轴是不变( )9、在轴向拉伸或压缩杆件上正应力为零的截面是_______。
A.横截面B.与轴线成一定交角的斜截面C.沿轴线的截面D.不存在的( )10、一圆杆受拉,在其弹性变形范围内,将直径增加一倍,则杆的相对变形将变为原 来的_______倍。
材料力学之轴向拉伸和压缩
铸铁经球化处理成为球 墨铸铁后, 力学性能有 显著变化, 不但有较高 的强度, 还有较好的塑 性性能。
国内不少工厂成功地用 球墨铸铁代替钢材制造 曲轴、齿轮等零件。
2.6.4 金属材料在压缩时的力学性能
低碳钢压缩时的弹性模量E和屈服极限ss都与拉
伸时大致相同。屈服阶段以后, 试样越压越扁, 横截面面积不断增大, 试样抗压能力也继续增高, 因而得不到压缩时的强度极限。
冷作时效不仅与卸载 后至加载的时间间隔 有关, 而且与试样所处 的温度有关。
2.6.3 其它金属材料在拉伸时的力学性能
工程上常用的塑性材 料, 除低碳钢外, 还有 中碳钢、高碳钢和合 金钢、铝合金、青铜、 黄铜等。
其中有些材料, 如Q345 钢, 和低碳钢一样, 有 明显的弹性阶段、屈 服阶段、强化阶段和 局部变形阶段。
并用s0.2来表示, 称为名义屈
服应力。
铸铁拉伸时的力学性能
灰口铸铁拉伸时的应 力—应变关系是一段微 弯曲线, 没有明显的直 线部分。
它在较小的拉应力下就 被拉断, 没有屈服和缩 颈现象, 拉断前的应变 很小, 伸长率也很小。 灰口铸铁是典型的脆性 材料。
铸铁拉断时的最大应力 即为其强度极限, 没有屈
比较图中的Oabcdef和d'def两条曲线, 可见在第 二次加载时, 其比例极限(亦即弹性阶段)得到了 提高, 但塑性变形和伸长率却有所降低。这种现 象称为冷作硬化。冷作硬化现象经退火后又可 消除。
工程上经常利用 冷作硬化来提高 材料的弹性阶段。 如起重用的钢索 和建筑用的钢筋, 常用冷拔工艺以 提高强度。
在屈服阶段内的 最高应力和最低 应力分别称为上 屈服极限和下屈 服极限。
材料力学复习笔记
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
建筑力学与结构之轴向拉伸与压缩培训课件
拉伸时大。
b
铸铁拉应力图
压缩时的强度极限b是拉伸 时的4—5倍。
铸铁常作为受压构件使用。 铸铁破坏时断口与轴线成450。
第五节 拉压杆的强度条件及应用
一、许用应力与安全系数
(1)极限应力(危险应力、失效应力):构件发生破坏或产
生过大变形而不能安全工作时的最小应力值。“ ” (2)许用应力:构件安全工作时的最大应力。“[]”
横向 线应变:
a a
杆件在轴向拉(压)变形时,横向尺寸的改变 量称为横向变形。
a a1 a
符号: 拉伸时为负值;压缩时为正值。
第三节 轴向拉(压)杆的变形、虎克定律
三、泊松比
当杆件的变形在弹性范围内时,材料的横向线应变 与纵向线应变的比值的绝对值是一个常数,称为材料的 横向变形系数或泊松比,即
第一节 轴向拉伸和压缩时的内力
二、轴向拉(压)杆的内力及内力图
➢ 分析内力最基本的方法是截面法。
➢截面法计算内力的步骤:
①将构件沿需要求内力的位置用假设截面截开,把构 件分为两部分,取其中一部分为研究对象;
②画研究对象的受力图时,另一部分对研究对象的作 用力用内力来代替;
③根据研究对象的平衡条件列平衡方程求解内力。
第三章 轴向拉伸与压缩
• 第一节 轴向拉伸和压缩时的内力 • 第二节 轴向拉(压)杆横截面上的应力
目 • 第三节 轴向拉(压)杆的变形、虎克定律 录 • 第四节 材料在拉伸和压缩时的力学性能
• 第五节 拉(压)杆的强度条件及应用 • 第六节 拉(压)杆连接部分的强度计算
第三章 轴向拉伸与压缩
➢ 物体的简化模型,根据具体情形可分为刚体和变形体。
解: max
FN max A
材料力学 -轴向拉伸和压缩
材料力学 - 轴向拉伸和压缩材料力学是研究材料性质和行为的学科,包括弹性、塑性、疲劳、断裂等方面。
在材料力学中,轴向拉伸和压缩是重要的力学测试方法。
轴向拉伸测试轴向拉伸测试是材料测试中最常用的测试方法之一。
该测试方法涉及将试验样品拉伸至破裂点,并测量在拉伸过程中的应力和应变。
在这种测试中,试验样品的截面积比长度更重要,因为应力是由试样的横截面积决定的。
实验过程首先,通过切割样品制备试样。
样品应该是长条状,尺寸应该足够大,能够容纳拉伸机的夹具和测量设备。
然后将样品置于拉伸机上,将试样夹具固定在机器的上部,并将另一个夹具固定在机器的下部。
然后将机器调整到适当的测试条件,比如设置测试速度、卸载条件等。
开始拉伸后,由于拉伸过程会导致不均匀应变,需要使用应变计进行应变测量。
最后,测试结果应该包括应力 - 应变曲线和破坏点。
结果解释轴向拉伸测试的结果由两种性质构成:杨氏模量和屈服强度。
杨氏模量衡量材料的弹性变形特性,而屈服强度则衡量材料开始塑性变形的能力。
在拉伸试验中,将出现线性区域,在该区域,样品的杨氏模量可由应力-应变曲线的斜率计算。
当样品的应变超过线性区域后,就会进入塑性区域,此时材料会表现出不可逆的形变特性。
轴向压缩测试轴向压缩测试是一种用于测量材料在压缩负载下的应变和应力的测试方法。
在这种测试中,材料试件放置在压力夹具之间,并受到垂直于试件轴向的载荷。
压缩测试与轴向拉伸测试非常相似,但它们的结果不同。
由于材料的差异,它们所能承受的压缩力和拉伸力也会存在一定的不同。
实验过程样品制备和夹具的选择与轴向拉伸测试类似,但是在拉伸试验机与压缩机之间存在差异。
进行轴向压缩测试时,需要将夹具安装在垂直于轴向的方向上,并将试件放置在夹具内。
与轴向拉伸测试相同,需要记录测试过程中的应变和应力变化。
结果解释与轴向拉伸测试一样,轴向压缩测试的结果也由杨氏模量和屈服强度构成。
杨氏模量是指在材料的弹性变形区域中,材料的应力与应变的比例系数。
05材料力学-轴向拉伸与压缩
§5.2 拉、压杆的强度计算
保证构件不发生强度破坏并有一定安全余量的条件准则。
N ( x) max max( ) A( x)
依强度准则可进行三种强度计算: ① 校核强度:
其中:[]—许用应力, max—危险点的最大工作应力。
max
P
② 设计截面尺寸: Amin N max
1
引
言
构件是各种工程结构组成单元的统称。机械中的轴、杆
件,建筑物中的梁、柱等均称为构件。当工程结构传递运动或
承受载荷时,各个构件都要受到力的作用。为了保证机械或建 筑物的正常工作,构件应满足以下要求: 强度要求 所谓强度,是指构件抵抗破坏的能力。 刚度要求 所谓刚度,是指构件抵抗变形的能力。
稳定性要求 所谓稳定性,是指构件保持其原有平衡形态的
22
均匀材料、均匀变形,内力当然均匀分布。 2. 拉伸应力:
P
N(x)
N ( x) A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。 危险点:应力最大的点。
N ( x) max max( ) A( x)
23
能力。 构件的强度、刚度和稳定性问题与其所选用材料的力学性
质有关,而材料的力学性质必须通过实验来测定。
2
杆件在不同的外力作用下将产生不同形式的变形,主要有: 1.轴向拉伸和压缩 :其受力特点是:作用在杆件的力,大 小相等、方向相反,作用线与杆件的轴线重合,因此在这种外 力作用下,变形特点是:杆件的长度发生伸长或缩短。起吊重 物的钢索、桁架的杆件、液压油缸的活塞杆等的变形,都属于
建筑力学第3章轴向拉伸与压缩
A
F
x
0
FN 1 cos 45 FN 2 0
FN 2 45° B
F
x
F
45°
y
0
B F
C
FN 1 sin 45 - F 0
FN 1 28.3kN FN 2 -20kN
A
2、计算各杆件的应力。
45°
C
B
FN 1 28.3 10 90MPa A1 20 2 4
斜截面上全应力:
p 0 cos
k
③pa 分解为:
p
P
P
p cos 0 cos 2
p sin 0 cossin
0
2
k
k
sin2
P
P
k
反映:通过构件上一点不同截面上应力变化情况。 当 = 0时, 当 = 90°时, 当 = ±45°时, 当 = 0,90°时,
Ⅱ段柱横截面上的正应力
FN 2 - 150 103 -1.1 MPa Ⅱ 2 A2 370
所以,最大工作应力为
max= = -1.1 MPa (压应力)
三、 轴向拉(压)杆斜截面上的应力
上述讨论的横截面上的正应力是今后强度计算的基础。 但不同的材料实验表明,拉(压)杆的破坏并不总是沿横截 面发生,有时确是沿斜截面发生的,为此,应进一步讨论斜 截面上的应力。为了全面分析拉(压)杆的强度,应研究它 斜截面上的应力情况。
解(1)、(2)曲线交点处:
30
60
B 31;PB 54.4kN
1 1
PB1 ,60 A /cos60/sin604601024/ 355.44kN
拉伸和压缩
例题1 求图示各截面内力
1
2
6kN
18kN
8kN
3
4kN
1
2
3
6kN
N11
6kN
18kN
N22
6kN
18kN
8kN N33
解:
X 0
N11 6 0
N 22
18
6
0
N33 8 18 6 0
N11 6kN
N
22
12kN
N33 4kN
【例3-1】
F
F
应力增大的现象只发生在孔边附近,离孔稍远处 应力趋于平缓(应力能增大3~5倍)
屈服极限σs与拉伸时的完
全相同。但流幅稍短
图3-10
低碳钢压缩时没有强度极限
五、材料在拉、压时的力学性质
五、铸铁的压缩实验
σ 铸铁压缩应力图 σb
图3-11
σb 铸铁拉伸应力图
0
ε
铸铁压缩的σ-ε曲线与拉伸的相似,但压缩时的伸
长率要比拉伸时大,破坏时断口与轴线成45°角
铸铁压缩时的强度极限σb是拉伸时的4~5倍,所以
二、应力:描述内力在截面上的分布情况和密集 程度。-------判断杆件强度是否足够的依据。
F
F
F
F
同样的轴力,作用在不同大小的横截面上,会产生不同的结果。 所以,杆件的强度不仅与轴力有关,而且与横截面尺寸有
关。工程上常用单位面积上的内力来比较和判断杆件的强度。
二、受轴向拉伸或压缩时横截面上的内力和应力
段柱重为G1,下段柱重为G2。已知:P=15kN,G1=2.5kN,G2=10kN。
轴向拉伸与压缩的名词解释
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。
轴向拉伸和压缩—轴向拉(压)杆的变形(建筑力学)
纵向线应变
l
l
线应变--每单位长 度的变形,无量纲。
△l以杆件伸长时为正,缩短时为负; 的正负号与△l
一致,因此,拉应变为正,压应变为负。
FP
a1
a
FP
l l1
杆的横向变形为
∆a =a1-a
杆在轴向拉伸时的横向变形为负值,压缩时为正值。
同理,将杆件的横向变形 除以杆的原截面边长,得杆件单
轴向拉伸与压缩
对于长度相同,轴力相同的杆件,分母EA越大,杆的纵向 变形⊿ l 就越小。
可见EA反映了杆件抵抗拉(压)变形的能力,称为杆件的 抗拉(压)刚度。
胡克定律的另一表达形式 或 E
E
在弹性范围内,正应力与线应变成正比。
对于各段杆件截面面积不同或内力分段不同的拉压杆 ,在计算杆件变形量时,应分段计算,然后叠加,即:
位长度的横向变形
' a
a
ε′称为横向线应变。ε′的正负号与⊿a 相同,压缩时为正 值,拉伸时为负值;ε′也是一个无量纲的量。
'
泊松比μ是一个无量纲的量。它的值与材料有关,可由实 验测出。
由于杆的横向线应变ε′与纵向线应变ε总是正、负号相反, 所以
-
轴向拉伸与压缩
第四节 轴向拉(压)杆的变形
一、纵向变形和横向变形
FP
a1
a
FP
l l1
纵向变形 l l1 - l
长度量纲
将杆件的绝对伸长量△l 除以杆的原长l,得到杆件单位
FNl EA
轴向拉伸与压缩
例7-6 试求 例7-5中砖柱顶面位移。已知E=3GPa, lAB=3m, lBC=4m。
解 由于砖柱底端是固定端,所以 柱顶面位移等于全柱的总缩短变形。
轴向拉伸与压缩、圆轴扭转变形
2Fl [s ]sin 2q
欲使VBD最小, sin 2q = 1 q = 45o
§3-5 拉伸与压缩
讨论题:杆钢段AB ,[]钢=200MPa, 铜段BC和CD, []铜=70MPa;AC段截
面积 A1=100mm2 , CD段截面积 A2=50mm2 ;试校核其强度。
解(1)画轴力图
(2)求各段应力
s AB
=
9´ 103 100
MPa =
90MPa
6´ 103
s BC = -
MPa = - 60MPa 100
4´ 103
s CD =
MPa = 80MPa 50
(3)强度校核
s AB = 90MPa<[s ]钢 强度足够;
9kN
A
9kN
15kN
10kN 4kN
B
C
D
FN图 4kN
6kN
s BC = 60MPa<[s ]钢 强度足够;
式中: s 为横截面上的正应力; FN为横截面上的轴
力; A为横截面面积。
正应力 s 的正负号规定为:拉应力为正,压应力为负。
公式的使用条件:轴向拉压杆。
§3-5 直杆轴向拉伸与压缩
例3-1 如图所示圆截面杆,直径 d 40,m拉m力
试求杆横截面上的最大正应力。
F 60kN
解(1)作轴力图
FN F 60 kN
零件抵抗破坏的能力,称为强度。 零件抵抗变形的能力,称为刚度。 学习基本变形、应力、强度是为了保证材料 具有足够的使用寿命。
§3-5 直杆轴向拉伸与压缩
一、轴向拉伸与压缩时的变形特点
实验:
F
ac
a
c
F
轴向拉伸和压缩
§1 轴向拉伸和压缩的概念 §2 内力·截面法·及轴力图 §3 应力·拉(压)杆内的应力 §4 拉(压)杆的变形·胡克定律 §5 拉(压)杆内的应变能 §6 材料在拉伸和压缩时的力学性能 §7 强度条件·安全因数·许用应力 §8 应力集中的概念
§1 轴向拉伸和压缩的概念
工程中有很多构件,例如屋架中的杆,是等直杆,作 用于杆上的外力的合力的作用线与杆的轴线重合。在这种 受力情况下,杆的主要变形形式是轴向伸长或缩短。
思考:为何在F1,F2,F3作用着的B,C,D 截面处轴力图 发生突变?能否认为C 截面上的轴力为 55 kN?
例题2:试作此杆的轴力图。
q
F
F
l
F
解: FR
F
l
2l
l
1
F2 q
1
F 2
3 F
3
F F'=2ql
FR
F
F
FR = F
FR = F FR = F
FR = F
FR = F
1
F2
q
3
Fx
1
绍中编 《材料力学精讲》,p15)。
例题2 试求此正方形 砖柱由于荷载引起的横截 面上的最大工作应力。已 知F = 50 kN。
解:Ⅰ段柱横截面上的正应力
s1
FN1 A1
50103 N (0.24 m) (0.24
m)
0.87106 Pa 0.87 MPa (压应力)
Ⅱ段柱横截面上的正应力
的线应变。
F
s 90
F
t 90
s
t
s0
s0
0
0
s0
E
s s 0 cos2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FN1 FN2 F 0 Fy 0 FN2 l F x 0 M C 0
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 18 页
FN1 FN2 F 0 Fy 0 FN2 l F x 0 M C 0
Jianjun_SHI Engineering Mechanics
2P 2
工程力学
第二章 轴向拉伸和压缩
第 20 页
对B点受力分析
,建立平衡方程
P 2
Fx 0 FNBC cos 45 FNAB 0 FNAB FNBC cos 45
(2)强度校核 木杆: max 钢杆: max
工程力学
第二章 轴向拉伸和压缩
第 15 页
(2)对横梁的受力分析 图列出平衡方程:
MC 0
FN sin AC W AC 0
0.8 0.8 1.9
2 2
BC 由已知条件知:sin AB
W FN sin
0.388
由此解得, FN
W 15 38.7 kN sin 0.388
3 KH AK cos30 AK 2
在 KGA 中
AK KG AG AK sin 45 sin105 sin105 2 AD AK sin105
AK 0.073 mm
KH 0.063 mm
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 10 页
3. 变形计算 (1)建立坐标系,根据截面法计算杆件的轴力。 (2)根据轴向拉压杆件变形公式
FN l l EA
计算杆件的变形量。 (3)如果要计算结构的位移,则在上述基础 上,可利用几何法或能量法进行求解。
第二章 轴向拉伸和压缩
第5页
轴向拉压时材料力学性能
1. 低碳钢拉伸可分为以下四个阶段: 弹性阶段,屈服阶段,强化阶段,局部变形阶段 2. 两个塑性指标: 断后伸长率 断面收缩率
l1 l0 100 % l0 A0 A1 100 % A0
5 % 为塑性材料
5 % 为脆性材料
l AC
(3)A点垂直位移计算: 由变形量之间的几何关系,知
AH AK KH
V A
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 23 页
V A AH AK KH
其中,
EA lAC AK 0.186 mm cos 60 cos 60
2 2 P 8 103 F N max 2 2 2 1.57 MPa 木 10 MPa 2 3 A a 60 10 P 1 8 103 F N max 2 2 50.93 MPa 钢 160 MPa 2 A d2 10 103 4 4
工程力学
第二章 轴向拉伸和压缩
第1页
第 三 章 轴向拉伸和压缩
§3-1 §3-2 §3-3 §3-4 §3-5 §3-6 §3-7 轴向拉压杆的内力、轴力图 轴向拉压杆的应力 轴向拉压时材料的力学性能 轴向拉压杆变形的计算 轴向拉压杆的强度条件 应力集中的概念 拉伸和压缩静不定问题
Jianjun_SHI Engineering Mechanics
。
上均匀分布。
FN ② 计算公式: A
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第4页
3. 轴向拉压杆斜截面上的应力
1)斜截面上应力极值:
max 0
max
FN A
min 90
min
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 11 页
3.1 试求图中各杆1-1和2-2横截面上的轴力,并作 杆件的轴力图。 (c)
(d)
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 12 页
o
d g
f h
1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第7页
5. 轴向拉压杆的变形量
当杆件为等截面直杆、轴力为常数时,变形公式为
FN l l EA
上述变形公式中,EA称为杆件的抗拉(压)刚度,刚度越 大则变形 越小,刚度越小则变形越大。
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 19 页
P71 3.16 3.16 如图所示结构,AC和BC均为边长a =60 mm的正方形截面木杆,AB为直径d =10 mm的圆形截面钢杆,已知P=8 kN、 木材的许用应力[ 钢 ]=10 MPa、钢材的 许用应力[ 木 ]=160 MPa,试分别校核 木杆和钢杆的强度。 解:(1)计算各杆内力,对C点受力分析,建立平衡方程
解:(几何法) (1) 对A铰受力分析:
FNAB cos 45 FNAC cos30 0 FNAB 0.897 F 4.485 kN Fx 0 F 0 F sin 45 F sin 30 F 0 NAC y NAB FNAC 0.732 F 3.66 kN
0
45
FN 2A
0 ,90 0
4. 轴向拉压杆的强度问题
为保证杆件具有足够的强度,要求在载荷作用下杆件最大 的工作应力 max 不超过材料的许用应力, 即有:
max ≤
Jianjun_SHI Engineering Mechanics
工程力学
工程力学
第二章 轴向拉伸和压缩
第2页
变形体力学的基本概念:
1. 构件应满足以下三方面的要求: 强度,刚度,稳定性。 强度要求:构件抵抗破坏的能力; 刚度要求:构件抵抗变形的能力; 稳定性要求:构件保持原平衡状态的能力。 工程结构失效的形式有三种:强度失效,刚度失效, 稳定性失效。 2. 变形体基本假设: 连续性假设,均匀性假设,各项同性假设, 完全弹性/线弹性假设,小变形假设 3. 杆件变形的基本形式—— 拉(压)、剪切、扭转、弯曲
(2)建立变形协调条件: 由于CG杆始终保持水平状 态,则有 l1 l2
FN 2l2 FN1l1 再根据 l1 , l2 即有 E1 A1 E2 A2
FN1l1 FN 2l2 E1 A1 E2 A2
ll1 E2 A2 (3)联立上述三式,解得: x l2 E1 A1 l1 E2 A2
FNBC cos FNAC cos 0 Fx 0 FNBC sin FNAC sin P 0 Fy 0 P 解得, F NBC FNAC
因为, 45 (由几何条件可知),所以,
2cos
FNBC FNAC
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 17 页
3.13 如图所示,设CG为刚体,BC为铜杆,DG为钢 杆,两杆的横截面面积分别为A1和A2,弹性模量分别 为E1和E2。如要求CG始终保持水平位置,试求x。
解 :(1) CG杆的受力分析图 如下图,建立平衡方程,
FN1l1 FN2l2 l l1 l2 EA1 EA2 20 103 200 103 40 103 200 10 3 9 2 6 200 10 8 10 10 200 109 4 102 10 6 0.075 103 m 0.075 mm
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 22 页
(2)变形计算:
l AB FNAB l AB 4.485 103 2 cos 45 0.202 mm EAAB 200 109 202 106 4 FNAC l AC 3.66 103 2 cos 30 0.093 mm EAAC 200 109 242 106 4
故,木杆和钢杆强度满足。
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第 21 页
3.19 图示结构中,设AB和AC分别 为直径是20mm和24mm的圆截面杆, E = 200GPa , F = 5kN 。试求 A 点的 垂直位移。
工程力学
第二章 轴向拉伸和压缩
第9页
2. 强度计算 (1)建立坐标系,根据截面法计算杆件的轴力, 从而确定危险截面。 (2)根据轴向拉压杆件横截面上应力的公式
FN A
得到杆件的 max
(3)根据轴向拉压杆件的强度条件
max ≤
可进行强度校核、截面设计和许用载荷的计算。
上述公式只适用于应力不超过比例极限的杆件。
Jianjun_SHI Engineering Mechanics
工程力学
第二章 轴向拉伸和压缩
第8页
解题步骤: 1. 轴力的计算 (1)建立坐标系。 (2)根据载荷作用特点,分段取截面,利用平 衡方程计算各段的内力(轴力)。