线性代数97年考研试题

合集下载

1997年考研数学试题详解及评分参考

1997年考研数学试题详解及评分参考

(A)为正常数
(B)为负常数
(C)恒为零
(D)不为常数
【答】 应选(A).
【解】 因函数 e sin t s in t 是以 2p 为周期的周期函数,故
ò ò ò ò F (x) = x+2p esint sin tdt = 2p esint sin tdt = - 2p esint d cos t = 0 + 2p cos2 t esint dt > 0.
郝海龙:考研数学复习大全·配套光盘·1997 年数学试题详解及评分参考
【解】由题意, f (x) 在 x 轴的上方、单调下降且是上凹的,
(如右图所示),设 S1 、S2 、S3 分别为图中所示区域的面积, 显然有 S1 < S2 < S3 . 故选(B).
ò (3) 设 F (x) = x + 2p e sin t s in td t ,则 F (x) x
(B) 连续, 偏导数不存在.
(C) 不连续, 偏导数存在.
(D) 不连续, 偏导数不存在.
【答】 应选(C).
【解】
令y
= kx ,则 lim x®0 y =kx
xy x2 + y2
k = 1+ k2
,因 k 不同时, k 1+ k2
的值不同,
( ) 故极限 lim x®0 y®0
xy x2 + y2
……2 分
Ñò ò 于是 I = (z - y)dx + (x - z)dy + (x - y)dz = - 0 (2(sinq + cosq ) - 2cos 2q -1)dq
C
2p
=
-[2(- cosq

华东师范大学1997-2015年高等代数考研真题及解答完整版

华东师范大学1997-2015年高等代数考研真题及解答完整版

华东师范大学1997年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:11222221122111112211...1(1)(1) (1)(1)(1)...(1)(1)(1)...(1)n n nn n n n n n x x x x x x x x x x x x x x x x x x ------------二.(15分)设5200200000520022A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭,求正交矩阵T,使'1T AT T AT -=为对角形矩阵,并写出这个对角形矩阵.三.(15分)设200201A a b c ⎛⎫⎪= ⎪ ⎪-⎝⎭是复矩阵.1.求出A 的一切可能的Jordan 标准形;2.给出A 可对角化的一个充要条件.四.(15分)已知3阶实数矩阵()ij A a =满足条件(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式,且331a =-,求: 1.A2.方程组123001x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的解.五.(15分)证明:一个非零复数α是某一有理系数非零多项式的根⇔存在一个有理系数多项式()f x 使得1().f αα=六.(15分)设A 是n 阶反对称阵。

证明:1.当n 为奇数时|A|=0.当n 为偶数时|A|是一实数的完全平方;2.A 的秩为偶数 .七.(15分)设V 是有限维欧氏空间.内积记为(,)αβ.又A 设是V 的一个正交变换。

记{}{}12|,,|V V V V ααααααα=A =∈=-A ∈,求证:1.12,V V 是v 的子空间;2. 12.V V V =⊕八.(15分)设n 阶实数方阵的特征值全是实数且A 的所有1阶主子式之和为0,2阶主子式之和也为0.求证:0n A =九.(15分)设A,B 均是正定矩阵,证明: 1 .方程0A B λ-=的根均大于0; 2 .方程0A B λ-=所有根等于1⇔A=B.华东师范大学1998年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:131********...2223333 (336)...n n n n n n n n n n n n n n-------------二.(10分)证明:方程组111122121122221122...0...0(1) 0n n n ns s sn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解全是方程1122...0(2)n n b x b x b x +++=的解的充分必要条件是:12(,...,)n b b b β=可由向量组12,...,s ααα线性表示,其中12(,,...,)(1,2,...,).i i i in i s αααα==三(15分)设32()f x x ax bx c =+++是整系数多项式,证明:若ac+bc 为奇数,则f(x)在有理数域上不可约.四(15分)设A 是非奇异实对称矩阵,B 是反对称实方阵。

1997考研数一真题解析

1997考研数一真题解析

1997年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim1,lim 1x x x x x x→→+==.【解析】将原式的分子、分母同除以x2001sin 13sin cos 3cos3.ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x→→++==++++评注:使用洛必达法则的条件中有一项是0g x→''应存在或为,而本题中,[]201(3sin cos )3cos 2cos sin1cos (1cos )ln(1)sin ln(1)1x x x xx→→'+++=+'++-+++极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量.(2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1tx 111n n n nnnn n n na ttna tt a t ∞∞∞+-==='==∑∑∑.由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒1n nn a t ∞='∑的收敛半径为3.从而2111n n n n n n t a t na t∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<(2,4)-.幂级数的收敛区间指的是开区间,不考虑端点.对于n n n a x ∞=∑,若1n n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ⇒11n n naa R+→+∞=,因为1n n na a +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x yeπ【解析】求切线方程的主要问题是求其斜率x k y '=,而x y '可由e θρ=的参数方程cos cos ,sin sin x e y e θθρθθρθθ⎧⎪⎨⎪⎩求得:2sin cos sin cos ,1cos sin cos sin xxy e e y y x e e θθθπθθθθθθθθθθθθ='++''='--,所以切线的方程为2(0)y e x π-=--2x y eπ.本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系.(4)【答案】3t 【解析】由0AB =,对B 按列分块,设B βββ=[][][],,,,0,0,0AB A A A A ββββββ===,即βββ是齐次方程组0Ax =的解.又因B O ≠0Ax =有非零解,那么1221024343373031131A tt t --==+=+=-,由此可得3t .若熟悉公式0=()3r B n ≤=,可知3,亦可求出.(5)【答案】25利用全概率公式.求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.设事件i A =“第i 个人取得黄球”,1,2i =,则完全事件组为,A A (分别表示第一个人取得黄球和第一个人取得白球).根据题设条件可知1202505P A =黄球的个数球的总数;1303505P A =白球的个数球的总数;20119|50149P A A--(第一个人取得黄球的条件下,黄球个数变成0119,球的总数变成50149,第二个人取得黄球的概率就为1949);20|49P A A =(第一个人取得白球的条件下,黄球个数亦为20,球的总数变成50-1=49,第二个人取得黄球的概率就为2049).故应用全概率公式21211212193202||5495495P A P A P A A P A P A A =+=⋅⋅=.方法二:利用“抽签原理”.只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到.犹如几个人抽奖,其中只有一张彩票有奖,那么这几个人先抽与后抽,抽到有奖彩票的概率是一样的,这就是我们抽奖的公平性,此题中取到黄球的可能有20个,所以第二个人取到黄球的概率为202505=.【相关知识点】1.全概率公式:2121121||P A P A P A A P A P A A=+;2.古典型概率公式:i i A P A =有利于事件的样本点数样本空间的总数.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)【答案】(C)【解析】这是讨论f x y 在(0,0)点是否连续,是否存在偏导数的问题.按定义(0,0)(0,0)(,0),(0,)x y f df df y x dxy dy==∂∂==∂∂,(,0)0(),(0,)0()f x x f y y =∀=∀,⇒∃偏导数且(0,0)(0,0)0,0f f .再看f x y 在(0,0)是否连续?由于2(,)(0,0)01lim(,)lim(0,0)2x y xx f x y f →→===≠+,因此f x y在(0,0)不连续.应选(C).①证明分段函数在某点连续,一般要用定义证,有难度.证明分段函数x y在某点000M x y 不连续的方法之一是:证明点沿某曲线趋于0M f x y的极限不存在或不为f x y.②证明(,)(,)lim (,)x y x y f x y →不存在的重要方法是证明点沿两条不同曲线趋于000M x y f x y的极限不想等或沿某条曲线趋于y的极限不存在.对于该题中的f x y ,若再考察(,)(0,0)(,)(0,0)01lim(,)lim 00lim (,)2y x y xf x y f x y →→→====≠=,(,)(0,0)lim(,)f x y →⇒不存在.C a bE Dxy OAB 由本例可见,函数在一点处不连续,但偏导数却可以存在.容易找到这种例子,例如(,),f x y x y 它在点0,0)处连续,但(0,0)'与(0,0)y f '都不存在.可见二元函数的连续性与偏导数的存在性可以毫无因果关系.(2)【答案】(B)用几何意义.由)0,()0f x '''<>可知,曲线是上半平面的一段下降的凹弧,y f x =的图形大致如右图.1baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S ,应选(B).观察法.因为是要选择对任何满足条件的都成立的结果,故可以取满足条件的特定的来观察结果是什么.例如取21(),[1,2]f x x x=∈21213211115248S dx S S S S S x ====⇒<<⎰.【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,'<所以是单调递减的,故(),f b >从而12()()()()()baS f x dx f b a f b b a S ==->-=⎰ξ.为证31S S >,令1()()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''ϕηηη拉格朗日中值定理0>,所以是单调递增的,故,在上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02b a b f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S ,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数在积分区间,]上连续,则在上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2.拉格朗日中值定理:如果函数满足在闭区间,]上连续,在开区间内可导,那么在内至少有一点ξ,使等式()()()f a f b a ξ'=-成立.(3)【答案】(A)【解析】由于函数sin sin tet 是以2π为周期的函数,所以,22sin sin 0()sin sin x tt xF x etdt e tdt +==⎰⎰ππ,F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.划分in t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin tttt ut tF x e tdte tdt etdte tdte u duee tdt--==+=⎰⎰⎰πππππππ当0t π0>,sin 0,t e -->所以0>.选(A).用分部积分法.22sin sin 022sin sin 0220sin 2sin 20()sin cos cos cos (11)cos cos 0.tttttt F x etdte d tettde e et dt e t dt ==-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可.(4)【答案】(D)三条直线交于一点的充要条件是方程组222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩有唯一解.将上述方程组写成矩阵形式:32A X b⨯=33ab ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c c c -⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔()2r A r A b (方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组线性相关.所以应选(D).用排除法.(A)ααα线性相关,当ααα时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)ααα线性无关,3α不能由线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩(,,)r ααα=秩,当)α=(,)1r =时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D).应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来.(5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+b c为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后r θ,或先r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先r θ后z 方便.采用柱面坐标,先后,为此,作平面.{}(,,)|2,,z D x y z x y z z z =+≤=82zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dzd dr ππθ==将投影到平面,得圆域{}(,)|16,x y x y +≤用柱面坐标先后,有22248433210242(8).r r I x y dv ddr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】写出的参数方程,然后用曲线积分化为定积分的公式.由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0.在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有2222222()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdtz t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--+=+--+⎰⎰⎰⎰⎰⎰⎰用斯托克斯公式来计算.记为平面2z +=上所围有限部分,由的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰.S 在xy 平面上的投影区域xy D 为1+≤.将第二类曲面积分化为二重积分得原积分xyD dxdyπ=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数x t 的变化率,即dxdt,由题意可立即建立初值问题0(),(0).dx kx N x dt ⎧⎪⎨⎪=⎩把方程分离变量得,dxkdt x N x=-dx kdt N x N x -.积分可得11ln x kt c N N x -,1kNtkNt cNe x ce=+.以0(0)=代入确定00x c N x =-,故所求函数为0.kNtkNtNx e x N x x e=-+四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1)【分析】求出曲面:0S x y z +-=在点0(1,2,5)M -(位于S 上)处的切平面方程,再写出L 的参数方程,L 上的点的坐标应满足切平面方程,由此定出参数a 与b .【解析】曲面S 在点0M 的法向量{2,2,1}{2,4,1}M n x y =-=--.切平面∏的方程是2(1)4(2)(5)0x y z --+--=,即2450x y z ---=.将直线L 的方程改写成参数方程,(1) 3.y x bz a x ab ⎧⎨=---⎩将它代入平面∏方程得24()(1)350x x b a x ab -----++-=(5)420a x b ab +++-=.解得5,2=-=-.(2)【分析】(sin )xz f e y =是由一元函数z f u =与二元函数sin xu e y =复合而成的二元函数,它满足方程2xe z .(*)为了求f u ,我们将用复合函数求导法,导出z x ∂∂,z y ∂∂,22z x ∂∂,22zy∂∂与(),()f u f u '''的关系,然后由(*)式导出f u 满足的常微分方程,从而求出f u .【解析】先用复合函数求导法导出2222()()sin ,()()cos ,()sin ()sin ,()cos ()sin .x xx x xx zuz uf u f u e y f u f u e y y yz z f u e y f u e y f u e y f u e y x y''''∂∂''''''=+=-∂∂将后两式代入(*)得f u e e f u''+==()()0f u f u ''.这是二阶线性常系数齐次方程,相应的特征方程2λ的特征根为1=±,因此求得uuf uC eC e-1、2为任意常数.五、(本题满分6分)【分析】通过变换将x ϕ化为积分上限函数的形式,此时0x ≠,但根据x A x→=,知(0)0f =,从而1(0)(0)0fdt ϕ⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定xϕ'在0x =处的连续性.【解析】由题设0x A x→=知,0,(0),f A '且有.又1(0),xf u dux f xt dtu xtxxϕ≠⎰⎰于是2(0),xxf x f u duxx x ϕ-'=≠⎰由导数定义,有02000()(0)(0)limxx x x f u du x f xAxx xϕϕϕ→→→-'==⎰.而22lim ()limlimlimxxx x x x xf x f u duf u dux x ϕ→→→→-'=⎰⎰(0)AAA ϕ'=-==,从而知xϕ'在0x =处连续.评注:对1x f xt dt ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由1xxf u du x ϕ=⎰得到的xϕ'也附加有条件0≠.从而(0)应单独去求.六、(本题满分8分)【解析】(1)先证n a 单调有界.显然0(1,2,)n a n >= ,由初等不等式:对∀非负数,必有2x y +≥1(21(1,2,)n n na a n a +=+≥⋅== .再考察121111(1(1)1221n n n a a a +=+≤+=.因此,n a 单调下降且有界,存在极限nn a →+∞.(2)方法1:由n a 单调下降11110n n n n n a a aa a +++-⇒-=≥.⇒原级数是正项级数.现适当放大,注意1n a ≥1111.nn n n n n n aa aa a a a ++++-≤-=≤-11nn n aa ∞+=-∑的部分和1n k k n k S a a a a ∞++==-=-∑,11lim lim n n n n S a a +→+∞→+∞⇒=-存在,可见级数11n n n a a∞+=-∑收敛.由比较判别法知,级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛.方法2:令11nnn ab a +,利用递推公式,有2212211lim lim 41n n nn n n n n b a a b a a ρ+→∞→∞+==⋅⋅=<+,由比值判别法知级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛.【评注】由证明中可见,有下述结论:11n n n aa∞+=-∑收敛⇔nn a →∞存在.在考研题中多次用到这个知识点,考生可倍加注意.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因线性无关,是方程组0=的解,由解空间的基的定义,是解空间的基.用施密特正交化方法先将其正交化,令:11,1,2,3,521,1,4,11,1,2,32,1,5,3.153TTTT βααββαβββ=-=---将其单位化,有1212121,1,2,3,2,1,5,3TTββηηββ==--,即为所求的一个标准正交基.此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可.由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中3α是线性相关的(注意αα),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即00021253a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=.(II)将(1)解得的30a ,b =-=代入矩阵A 212533102A -⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦.其特征方程为3212533(1)0,102E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1λλλ===-.312()5232101E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦,从而1λ只有一个线性无关的特征向量,故A 不能相似对角化.相似于对角阵A的每个重特征值有个线性无关的特征向量.八、(本题满分5分)【解析】由于ij B E A=是初等矩阵11ij i E j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)因为A 可逆,0A ≠0ij ij B E A E A A ==⋅=-≠,所以B 可逆.(2)由ij B E A =,知11111.ij ij ij ijABA E AAA E E E -----====①本题考查初等矩阵的概念与性质,要知道初等变换与初等矩阵左右乘的关系以及初等矩阵的逆矩阵的三个公式.有的考生写不出初等矩阵ij E ,或将B 写成ij B AE =,或不知道1ij ij E E -=,或认为A B =±,而不知道BA等,这些要引起注意.②经初等变换矩阵的秩不变,易知r B r A n,也可证明可逆.九、(本题满分7分)【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B .【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有33(1),0,1,2,3.k k kp X k C p p k -==-=再由离散型随机变量分布函数的定义,有kk xF x p ≤=∑,(1)当0x <()k k xF x p ≤∑;(2)当x ≤<,3003003223270())555125kk xF x p p P X C -≤⎛⎫=====-== ⎪⎝⎭∑;(3)当x ≤<,{}{}1131327228101()(1)12555125kk xF x p p p P X P X C -≤==+==+==+-=∑;(4)当x ≤<,12012k k xF x p p p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=;(5)当3x ≥时{}{}{}{}012301231kk xF x p p p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581,12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:(1),0,1,,kkn k n P X k C p p k n-==-= .2.离散型随机变量分布函数的定义:i iF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、(本题满分5分)【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望);最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数.【解析】(1)矩估计由期望的定义:11100()()(1)(1)E X xf x dx x x dx x dxθθθθ+∞+-∞==+=+1211001(1)(1)x x dx θθθθθθθ+++=+=+=++⎰.样本均值11ni i X X n ==∑,用样本均值估计期望有EX X=12X θθ+=+,解得未知参数θ的矩估计量为:^.1X Xθ-=-(2)最大似然估计设,,...,nx x x 是相应于样本,,...,n X X X 的样本值,则样本的似然函数为:1(1)01(1,2,,)0 .nn i i i x x i n L θθ=⎧+<<=⎪=⎨⎪⎩∏ 其他当ix 10nii x θ=>∏,又1θ>-θ+>n.所以.111ln ln (1)ln(1)ln ln(1)ln n n nn i i i i i i L x n x n x θθθθθθ===⎡⎤=+=++=++⎢⎥⎣⎦∑∑∏.(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便)1ln ln 1nii d L nx d θθ=+∑.令1ln ln 01ni i d L nx d θθ==+=+∑,解得θ的最大似然估计值为^11ln nii nxθ=∑,从而得θ的最大似然估计量为:^11ln nii nXθ=∑.。

1997-2001 年线性代数考研试题

1997-2001 年线性代数考研试题

A k -1 ≠0,证明向量组 , A , A k 1 是线性无关的.
五 本题满分 5 分
a11 x1 a12 x 2 , , a1, 2 n x 2 n 0 a x a x , , a x 0 21 1 22 2 2, 2 n 2 n 已 知 线 性 方 程 组 (I) 的一个基础解系为 a n1 x1 a n 2 x 2 , , a n , 2 n x 2 n 0
五 本题满分 5 分
1 1 1 2 已知 A 0 1 1 ,且 A - AB I ,其中 I 是三阶单位矩阵,求矩阵 B. 0 0 1
六 本题满分 8 分
2x 1 x 2 x 3 1 λ 取何值时,方程组 x 1 x 2 x 3 2 无解,有唯一解或有无穷多解?并在有 4 x 5 x 5 x 1 2 3 1
是齐次线性方程组 BX=0 的解向量,求 BX=0 的解空间的一个标准正交基.
1 2 1 2 (2)已知 3 1 是矩阵 A 5 a 的一个特征向量. 1 1 b 2
(i)试确定参数 a,b 及特征向量 所对应的特征值; (ii)问 A 能否相似于对角形?说明理由. 四 本题满分 5 分 设 A 是 n 阶可逆方阵,将 A 的第 i 行和第 j 行对换后得到的矩阵记为 B. (1) 证明 B 可逆; (2) 求 AB-1 .
s x y P 化为椭圆柱面方程 2 4 2 4 ,求 a, b 的值和正交矩阵 P. z
四 (本题满分 4 分) 设 A 是 n 阶矩阵,若存在正整数 k,使线性方程组 A k x = 0 有解向量α ,且

1997考研数学二真题及答案解析

1997考研数学二真题及答案解析

x=0
(3) ∫
dx = x(4 − x)
.
∫ (4)
+∞ 0
x2
dx + 4x
+
8
=
.
(5) 已知向量组α1 =(1, 2, −1,1),α2 =(2, 0,t, 0),α3 =(0, −4,5, −2) 的秩为 2,则 t =
.
二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一项符 合题目要求,把所选项前的字母填在题后的括号内)
α3
方法 2:利用秩的定义.
α1 由于 r = α2
α3
r= ( A)
2,则矩阵 A 中任一三阶子行列式应等于零.
α1 1 2 −1 1
α 2
=
2
0
t
0
,
α3 0 −4 5 −2
应有
1 2 −1 1 2 −1 1 2 −1 2 0 t = 0 −4 t + 2 = 0 −4 t + 2 = 0 , 0 −4 5 0 −4 5 0 0 3 − t

六、(本题满分 8 分)
设函数 f (x) 在闭区间[0,1] 上连续,在开区间 (0,1) 内大于零,并满足 xf = ′(x) f (x) + 3a x2 ( a 为常数),又曲线 y = f (x) 与=x 1,=y 0 所围成的图形 S 的面积值为 2,求函数 2 y = f (x) ,并问 a 为何值时,图形 S 绕 x 轴旋转一周所得的旋转体的体积最小.
2
2
的结论.

1997 年全国硕士研究生入学统一考试数学二试题解析
一、填空题(本题共 5 分,每小题 3 分,满分 15 分.把答案在题中横线上.)

1997考研数学一真题及答案解析

1997考研数学一真题及答案解析

1997年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1) 2013sin coslim(1cos )ln(1)x x x x x x →+=++ . (2) 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 .(3) 对数螺线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 .(4) 设12243311A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B为三阶非零矩阵,且0AB =,则t = .(5) 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 二元函数22, (,)(0,0),(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在(2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>令12(),()()ba S f x dx S fb b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 213S S S << (C) 312S S S << (D) 231S S S << (3) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(4) 设111122232333,,,a b c a b c a b c ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则三条直线1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 ( )(A) 123,,ααα线性相关 (B) 123,,ααα线性无关(C) 秩123(,,)r ααα=秩12(,)r αα (D) 123,,ααα线性相关,12,αα线性无关(5) 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是 ( )(A) 8 (B) 16 (C) 28 (D) 44三、(本题共3小题,每小题5分,满分15分.)(1) 计算22(),I x y dV Ω=+⎰⎰⎰其中Ω为平面曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周形成的曲面与平面8z =所围成的区域.(2) 计算曲线积分()()()C z y dx x z dy x y dz -+-+-⎰,其中C 是曲线221,2,x y x y z ⎧+=⎨-+=⎩从z轴正向往z 轴负向看,C 的方向是顺时针的.(3) 在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N ,在0t =时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为()x t (将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求()x t .四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1) 设直线0,:30x y b L x ay z ++=⎧⎨+--=⎩在平面∏上,且平面∏与曲面22z x y =+相切于点(1,2,5)-,求,a b 之值.(2) 设函数()f u 具有二阶连续导数,而(sin )xz f e y =满足方程22222xz z e z x y∂∂+=∂∂,求()f u .五、(本题满分6分)设()f x 连续,1()(),x f xt dt ϕ=⎰且0()limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11112,(),1,2,...,2n n na a a n a +==+=证明: (1) lim n n a →∞存在;(2) 级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)(1) 设B 是秩为2的54⨯矩阵,123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T Tααα==--=--是齐次线性方程组0Bx =的解向量,求0Bx =的解空间的一个标准正交基.(2) 已知111ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量.(Ⅰ) 试确定参数,a b 及特征向量ξ所对应的特征值; (Ⅱ) 问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1) 证明B 可逆; (2) 求1AB -.九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25.设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为(1), 01,()0, x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数.12,,,n x x x 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和最大似然估计法求θ的估计量.1997年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim 1,lim 1x x x x x x→→+==.【解析】将原式的分子、分母同除以x ,得2001sin 13sin cos 3cos3limlim .ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x x x x x→→++==++++ 评注:使用洛必达法则的条件中有一项是0()lim()x x f x g x →''应存在或为∞,而本题中, []200111(3sin cos )3cos 2cos sinlimlim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x xx x x x x→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量. (2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1t x =-,则()1212111n n n n n nn n n na ttna tta t ∞∞∞+-==='==∑∑∑. 由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒()1nn n a t ∞='∑的收敛半径为 3.从而()2111n n n n n n t a t na t ∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<,即(2,4)-.评注:幂级数的收敛区间指的是开区间,不考虑端点. 对于n n n a x ∞=∑,若1limn n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ,则⇒11limn n n a a R +→+∞=,因为1lim n n naa +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x y e π+=【解析】求切线方程的主要问题是求其斜率x k y '=,而x y '可由e θρ=的参数方程cos cos ,sin sin x e y e θθρθθρθθ⎧==⎪⎨==⎪⎩ 求得: 2sin cos sin cos ,1cos sin cos sin x x y e e y y x e e θθθπθθθθθθθθθθθθ='++''====-'--, 所以切线的方程为2(0)y e x π-=--,即2x y e π+=.评注:本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系.(4)【答案】3t =-【解析】由0AB =,对B 按列分块,设[]123,,B βββ=,则[][][]123123,,,,0,0,0AB A A A A ββββββ===,即123,,βββ是齐次方程组0Ax =的解.又因B O ≠,故0Ax =有非零解,那么()1221024343373031131A tt t --==+=+=-, 由此可得3t =-.评注:若熟悉公式0AB =,则()()3r A r B n +≤=,可知()3r A <,亦可求出3t =-. (5)【答案】25【解析】方法1:利用全概率公式.求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.设事件i A =“第i 个人取得黄球”,1,2i =,则完全事件组为11,A A (分别表示第一个人取得黄球和第一个人取得白球).根据题设条件可知{}1202505P A ===黄球的个数球的总数;{}1303505P A ===白球的个数球的总数;{}2120119|50149P A A -==-(第一个人取得黄球的条件下,黄球个数变成20119-=,球的总数变成50149-=,第二个人取得黄球的概率就为1949);{}2120|49P A A =(第一个人取得白球的条件下,黄球个数亦为20,球的总数变成50-1=49,第二个人取得黄球的概率就为2049).故应用全概率公式{}{}{}{}{}21211212193202||5495495P A P A P A A P A P A A =+=⋅+⋅=.方法二:利用“抽签原理”.只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到.犹如几个人抽奖,其中只有一张彩票有奖,那么这几个人先抽与后抽,抽到有奖彩票的概率是一样的,这就是我们抽奖的公平性,此题中取到黄球的可能有20个,所以第二个人取到黄球的概率为202505=. 【相关知识点】1.全概率公式: {}{}{}{}{}2121121||P A P A P A A P A P A A =+; 2. 古典型概率公式:()i i A P A =有利于事件的样本点数样本空间的总数.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】这是讨论(,)f x y 在(0,0)点是否连续,是否存在偏导数的问题.按定义00(0,0)(0,0)(,0),(0,)x y f d f df x f y x dx y dy ==∂∂==∂∂, 由于 (,0)0(),(0,)0()f x x f y y =∀=∀,⇒∃偏导数且(0,0)(0,0)0,0f f x y∂∂==∂∂. 再看(,)f x y 在(0,0)是否连续?由于222(,)(0,0)01lim(,)lim (0,0)2x y x y xx f x y f x x →→===≠+,因此(,)f x y 在(0,0)不连续.应选(C).评注:① 证明分段函数在某点连续,一般要用定义证,有难度.证明分段函数(,)f x y 在某点000(,)M x y 不连续的方法之一是:证明点(,)x y 沿某曲线趋于0M 时,(,)f x y 的极限不存在或不为00(,)f x y .② 证明00(,)(,)lim (,)x y x y f x y →不存在的重要方法是证明点(,)x y 沿两条不同曲线趋于000(,)M x y 时,(,)f x y 的极限不想等或沿某条曲线趋于0M 时,(,)f x y 的极限不存在.对于该题中的(,)f x y ,若再考察(,)(0,0)(,)(0,0)1lim (,)lim00lim (,)2x y x y y x y xf x y f x y →→→====≠=, (,)(0,0)lim (,)x y f x y →⇒不存在.由本例可见,函数在一点处不连续,但偏导数却可以存在.容易找到这种例子,例如(,),f x y x y =+它在点(0,0)处连续,但(0,0)x f '与(0,0)y f '都不存在.可见二元函数的连续性与偏导数的存在性可以毫无因果关系.(2)【答案】(B)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(B).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x=∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰. 【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()ba S f x dx fb a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02b a b f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以, 22sin sin 0()sin sin x tt xF x etdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t t u t t F x e tdt e tdt e tdte tdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,tt e e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.tt ttt t F x etdt e d tettde e et dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可.(4)【答案】(D)【解析】方法1:三条直线交于一点的充要条件是方程组111111222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩ 有唯一解.将上述方程组写成矩阵形式:32A X b ⨯=,其中112233a b A a b a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c b c c -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔[]()2r A r A b ==(方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组12,αα线性相关.所以应选(D). 方法2:用排除法.(A)123,,ααα线性相关,当123ααα==时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)123,,ααα线性无关,3α不能由12,αα线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩123(,,)r ααα=秩12(,)r αα,当123(,,)r ααα=12(,)1r αα=时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D).评注:应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来. (5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后(,)r θ,或先(,)r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先(,)r θ后z 方便.【解析】方法1:采用柱面坐标,先(,)r θ后z ,为此,作平面z z =.{}22(,,)|2,,z D x y z x y z z z =+≤=82220()zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dz d dr ππθ==⎰⎰ 方法2:将Ω投影到xOy 平面,得圆域{}22(,)|16,D x y x y =+≤用柱面坐标先z 后(,)r θ,有22248422330021024()2(8).23r r I x y dv d dr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰评注:做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】方法1:写出C 的参数方程,然后用曲线积分化为定积分的公式.由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0. 在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有222022220()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdt z t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--++-=+--+=-=-⎰⎰⎰⎰⎰⎰⎰方法2:用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围有限部分,由L 的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰. S 在xy 平面上的投影区域xy D 为221x y +≤.将第二类曲面积分化为二重积分得原积分22xyD dxdy π=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数()x t 的变化率,即dxdt,由题意可立即建立初值问题 0(),(0).dxkx N x dtx x ⎧=-⎪⎨⎪=⎩ 把方程分离变量得,()dx kdt x N x =-111()dx kdt N x N x+=-.积分可得 11ln xkt c N N x=+-,1kNt kNtcNe x ce =+. 以0(0)x x =代入确定00x c N x =-,故所求函数为000.kNtkNtNx e x N x x e=-+四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1)【分析】求出曲面22:0S x y z +-=在点0(1,2,5)M -(位于S 上)处的切平面方程,再写出L 的参数方程,L 上的点的坐标应满足切平面方程,由此定出参数a 与b . 【解析】曲面S 在点0M 的法向量{2,2,1}{2,4,1}M n x y =-=--.切平面∏的方程是2(1)4(2)(5)0x y z --+--=,即 2450x y z ---=.将直线L 的方程改写成参数方程,(1) 3.y x b z a x ab =--⎧⎨=---⎩ 将它代入平面∏方程得24()(1)350x x b a x ab -----++-=,即(5)420a x b ab +++-=.解得5,2a b =-=-.(2)【分析】(sin )xz f e y =是由一元函数()z f u =与二元函数sin xu e y =复合而成的二元函数,它满足方程22222x z ze z x y∂∂+=∂∂. (*)为了求()f u ,我们将用复合函数求导法,导出z x ∂∂,z y ∂∂,22z x ∂∂,22zy∂∂与(),()f u f u '''的关系,然后由(*)式导出()f u 满足的常微分方程,从而求出()f u . 【解析】先用复合函数求导法导出22222222()()sin ,()()cos ,()sin ()sin ,()cos ()sin .x x x x x x z u z u f u f u e y f u f u e y x x y y zzf u e y f u e y f u e y f u e y xy∂∂∂∂''''====∂∂∂∂∂∂''''''=+=-∂∂将后两式代入(*)得 222222()()x xz z f u e e f u x y∂∂''+==∂∂,即 ()()0f u f u ''-=.这是二阶线性常系数齐次方程,相应的特征方程210λ-=的特征根为1λ=±,因此求得12()u u f u C e C e -=+,其中1C 、2C 为任意常数.五、(本题满分6分)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而1(0)(0)0f dt ϕ==⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又 10()()()(0),xf u du x f xt dtu xtx xϕ==≠⎰⎰于是 02()()()(0),xxf x f u dux x xϕ-'=≠⎰由导数定义,有0200()()(0)()(0)limlimlim22xx x x f u du x f x Axx x ϕϕϕ→→→-'====⎰. 而 02200()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续. 评注:对1()()x f xt dt ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由1()()xx f u du x ϕ=⎰得到的()x ϕ'也附加有条件0x ≠.从而(0)ϕ'应单独去求.六、(本题满分8分)【解析】(1)先证n a 单调有界.显然0(1,2,)n a n >=,由初等不等式:对∀非负数,x y必有x y +≥,易知 1111()21(1,2,)22n n n a a n a +=+≥⋅==.再考察 121111(1)(1)1221n n n a a a +=+≤+=.因此,n a 单调下降且有界,存在极限lim n n a →+∞.(2)方法1:由n a 单调下降11110n n n n n a a a a a +++-⇒-=≥. ⇒原级数是正项级数.现适当放大,注意1n a ≥,得111101.n n n n n n n a a a a a a a ++++-≤-=≤- 11()nn n aa ∞+=-∑的部分和1111()n k k n k S a a a a ∞++==-=-∑,11lim lim n n n n S a a +→+∞→+∞⇒=-存在,可见级数11()n n n a a ∞+=-∑收敛.由比较判别法知,级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 方法2:令11nn n a b a +=-,利用递推公式,有 221221111lim lim 0141n n n n n n n n b a a b a a ρ+→∞→∞++-==⋅⋅=<+, 由比值判别法知级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 【评注】由证明中可见,有下述结论:11()nn n aa ∞+=-∑收敛⇔lim n n a →∞存在.在考研题中多次用到这个知识点,考生可倍加注意.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.) 【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因12,αα线性无关,12,αα是方程组0Bx =的解,由解空间的基的定义,12,αα是解空间的基.用施密特正交化方法先将其正交化,令:[][][][]1121221111,1,2,3,(,)521,1,4,11,1,2,32,1,5,3.(,)153TT T T βααββαβββ===-=---=--将其单位化,有]]1212121,1,2,3,2,1,5,3T T ββηηββ====--, 即为所求的一个标准正交基.评注:此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可. 由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中12,,αα3α是线性相关的(注意12323ααα-=),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即 0002125312a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=. (II)将(1)解得的30a ,b =-=代入矩阵A ,得212533102A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 其特征方程为3212533(1)0,102E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1231λλλ===-.由于 312()5232101r E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦, 从而1λ=-只有一个线性无关的特征向量,故A 不能相似对角化. 评注:A 相似于对角阵⇔A 的每个i r 重特征值有i r 个线性无关的特征向量.八、(本题满分5分)【解析】由于ij B E A =,其中ij E 是初等矩阵10111ij i E j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)因为A 可逆,0A ≠,故0ij ij B E A E A A ==⋅=-≠,所以B 可逆.(2)由ij B E A =,知11111().ij ij ij ij AB A E A AA E E E -----====评注:①本题考查初等矩阵的概念与性质,要知道初等变换与初等矩阵左右乘的关系以及初等矩阵的逆矩阵的三个公式.有的考生写不出初等矩阵ij E ,或将B 写成ij B AE =,或不知道1ij ij E E -=,或认为A B =±,而不知道B A =-等,这些要引起注意.②经初等变换矩阵的秩不变,易知()()r B r A n ==,也可证明B 可逆.九、(本题满分7分) 【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B .【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有{}33(1),0,1,2,3.k kk p X k C p p k -==-=再由离散型随机变量分布函数的定义,有()kk xF x p≤=∑,(1)当0x <时,()0kk xF x p≤==∑;(2)当01x ≤<,{}300300322327()0()(1)555125k k xF x p p P X C -≤⎛⎫=====-==⎪⎝⎭∑;(3)当12x ≤<,{}{}1131013272281()01()(1)12555125k k xF x p p p P X P X C -≤==+==+==+-=∑; (4)当23x ≤<, {}{}{}012()012kk xF x pp p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=; (5)当3x ≥时{}{}{}{}0123()01231k k xF x p p p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:{}(1),0,1,,kkn kn P X k C p p k n -==-=.2.离散型随机变量分布函数的定义:{}()i ix xF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、(本题满分5分) 【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望);最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数. 【解析】(1)矩估计 由期望的定义:1110()()(1)(1)E X xf x dx x x dx x dx θθθθ+∞+-∞==+=+⎰⎰⎰1211001(1)(1)22x x dx θθθθθθθ+++=+=+=++⎰.样本均值11n i i X X n ==∑,用样本均值估计期望有EX X =,即12X θθ+=+,解得未知参数θ的矩估计量为:^21.1X Xθ-=- (2)最大似然估计设 12,,...,n x x x 是相应于样本12,,...,n X X X 的样本值,则样本的似然函数为:1(1)01(1,2,,)0 .nn ii i x x i n L θθ=⎧+<<=⎪=⎨⎪⎩∏其他当01i x <<时,10ni i x θ=>∏,又1θ>-,故10θ+>,即()10nθ+>.所以()0L θ>.111ln ln (1)ln(1)ln ln(1)ln n n nn i i i i i i L x n x n x θθθθθθ===⎡⎤=+=++=++⎢⎥⎣⎦∑∑∏.(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便)1ln ln 1ni i d L nx d θθ==++∑. 令1ln ln 01n i i d L nx d θθ==+=+∑, 解得θ的最大似然估计值为^11ln nii nxθ==--∑,从而得θ的最大似然估计量为:^11ln nii nXθ==--∑.。

1997-09,13华东师大高等代数考研真题

1997-09,13华东师大高等代数考研真题

四(15 分)设 A 是实矩阵,Α' 是 A 的转置矩阵,求证:(1)ΑΑ' 与 A 的秩相等。
(2)当 A 是满秩时, ΑΑ' 是正定的。
n 五(20 分)设 A 是 阶方阵,证明:(1)A 的特征多项式 f (x) 与 A 的最小多项
式 m(x) 的根相同。(2)若 A 的特征根互异,则 m(x) = f (x) 。
g(λ) =
(
f
f (λ (λ), f
) (λ)'
)
,(
f
(λ)' 称为
f
(λ) 的一阶微商)。证明:A
与一个对角矩阵相似
的充要条件是 g(A) = 0.
n 六(15 分)假设 A 是 维欧氏空间 V 的线性变换,Α* 是同一空间 V 的变换。且
对 ∀α, β ∈V , 有 (Αα, β ) = (α, Α*β ). 证明:1 Α* 是线性变换。 2 Α 的核等于 Α*
( A) (2, 4); (B) (−4, 2); (C) (−2,3); (D) (2, −3).
8. 若 5 个方程 7 个未知量的齐次线性方程组的系数矩阵的秩为 3,则其线性无关解向量的最大个数
2.给出 A 可对角化的一个充要条件.
四.(15 分)已知 3 阶实数矩阵 A = (aij ) 满足条件 aij = Aij (i, j = 1, 2,3) ,其中 Aij 是 aij
的代数余子式,且 a33 = −1,求:1. A
2.方程组
A
⎛ ⎜ ⎜
x1 x2
⎞ ⎟ ⎟
=
⎛ ⎜ ⎜
0 0
⎞ ⎟ ⎟
n 足条件αTβ = 0 ,令 阶方阵 Α = αT β 。(1) 求 A2 ;(2) 矩阵 A 的特征值和特征

1997年全国硕士研究生入学统一考试数学一试题

1997年全国硕士研究生入学统一考试数学一试题

1997年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1) 2013sin coslim(1cos )ln(1)x x x x x x →+=++ . (2) 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 .(3) 对数螺线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 .(4) 设12243311A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为三阶非零矩阵,且0AB =,则t = .(5) 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 二元函数22, (,)(0,0),(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在(2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>令12(),()()ba S f x dx S fb b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 213S S S << (C) 312S S S << (D) 231S S S <<(3) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(4) 设111122232333,,,a b c a b c a b c ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则三条直线1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 ( )(A) 123,,ααα线性相关 (B) 123,,ααα线性无关(C) 秩123(,,)r ααα=秩12(,)r αα (D) 123,,ααα线性相关,12,αα线性无关(5) 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是( )(A) 8 (B) 16 (C) 28 (D) 44三、(本题共3小题,每小题5分,满分15分.)(1) 计算22(),I x y dV Ω=+⎰⎰⎰其中Ω为平面曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周形成的曲面与平面8z =所围成的区域.(2) 计算曲线积分()()()Cz y dx x z dy x y dz -+-+-⎰,其中C 是曲线221,2,x y x y z ⎧+=⎨-+=⎩从z轴正向往z 轴负向看,C 的方向是顺时针的.(3) 在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N ,在0t =时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为()x t (将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求()x t .四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1) 设直线0,:30x y b L x ay z ++=⎧⎨+--=⎩在平面∏上,且平面∏与曲面22z x y =+相切于点(1,2,5)-,求,a b 之值.(2) 设函数()f u 具有二阶连续导数,而(sin )xz f e y =满足方程22222x z ze z x y∂∂+=∂∂,求()f u .五、(本题满分6分)设()f x 连续,1()(),x f xt dt ϕ=⎰且0()limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11112,(),1,2,...,2n n na a a n a +==+=证明: (1) lim n n a →∞存在;(2) 级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)(1) 设B 是秩为2的54⨯矩阵,123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T T ααα==--=--是齐次线性方程组0Bx =的解向量,求0Bx =的解空间的一个标准正交基.(2) 已知111ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量.(Ⅰ) 试确定参数,a b 及特征向量ξ所对应的特征值; (Ⅱ) 问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1) 证明B 可逆; (2) 求1AB -.九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25.设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为(1), 01,()0, x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数.12,,,n x x x 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和最大似然估计法求θ的估计量.1997年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim1,lim 1x x x x x x→→+==. 【解析】将原式的分子、分母同除以x ,得2001sin 13sin cos 3cos3limlim .ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x x x x x→→++==++++ 评注:使用洛必达法则的条件中有一项是0()lim()x x f x g x →''应存在或为∞,而本题中, []200111(3sin cos )3cos 2cos sinlimlim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x xx x x x x→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量. (2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1t x =-,则()1212111n n n n n nn n n na ttna tta t ∞∞∞+-==='==∑∑∑. 由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒()1nn n a t ∞='∑的收敛半径为 3.从而()2111n n n n n n t a t na t ∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<,即(2,4)-.评注:幂级数的收敛区间指的是开区间,不考虑端点. 对于n n n a x ∞=∑,若1limn n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ,则⇒11limn n n a a R +→+∞=,因为1lim n n na a +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x y e π+=【解析】求切线方程的主要问题是求其斜率x k y '=,而x y '可由e θρ=的参数方程cos cos ,sin sin x e y e θθρθθρθθ⎧==⎪⎨==⎪⎩ 求得: 2sin cos sin cos ,1cos sin cos sin x x y e e y y x e e θθθπθθθθθθθθθθθθ='++''====-'--, 所以切线的方程为2(0)y e x π-=--,即2x y e π+=.评注:本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系. (4)【答案】3t =-【解析】由0AB =,对B 按列分块,设[]123,,B βββ=,则[][][]123123,,,,0,0,0AB A A A A ββββββ===,即123,,βββ是齐次方程组0Ax =的解.又因B O ≠,故0Ax =有非零解,那么()12210243433730311301A tt t --==+=+=-, 由此可得3t =-.评注:若熟悉公式0AB =,则()()3r A r B n +≤=,可知()3r A <,亦可求出3t =-. (5)【答案】25【解析】方法1:利用全概率公式.求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.设事件i A =“第i 个人取得黄球”,1,2i =,则完全事件组为11,A A (分别表示第一个人取得黄球和第一个人取得白球).根据题设条件可知{}1202505P A ===黄球的个数球的总数;{}1303505P A ===白球的个数球的总数;{}2120119|50149P A A -==-(第一个人取得黄球的条件下,黄球个数变成20119-=,球的总数变成50149-=,第二个人取得黄球的概率就为1949);{}2120|49P A A =(第一个人取得白球的条件下,黄球个数亦为20,球的总数变成50-1=49,第二个人取得黄球的概率就为2049).故应用全概率公式{}{}{}{}{}21211212193202||5495495P A P A P A A P A P A A =+=⋅+⋅=. 方法二:利用“抽签原理”.只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到.犹如几个人抽奖,其中只有一张彩票有奖,那么这几个人先抽与后抽,抽到有奖彩票的概率是一样的,这就是我们抽奖的公平性,此题中取到黄球的可能有20个,所以第二个人取到黄球的概率为202505=. 【相关知识点】1.全概率公式: {}{}{}{}{}2121121||P A P A P A A P A P A A =+; 2. 古典型概率公式:()i i A P A =有利于事件的样本点数样本空间的总数.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】这是讨论(,)f x y 在(0,0)点是否连续,是否存在偏导数的问题.按定义00(0,0)(0,0)(,0),(0,)x y f d f df x f y x dx y dy ==∂∂==∂∂, 由于 (,0)0(),(0,)0()f x x f y y =∀=∀,⇒∃偏导数且(0,0)(0,0)0,0f f x y∂∂==∂∂.再看(,)f x y 在(0,0)是否连续?由于222(,)(0,0)01lim(,)lim (0,0)2x y x y xx f x y f x x →→===≠+,因此(,)f x y 在(0,0)不连续.应选(C).评注:① 证明分段函数在某点连续,一般要用定义证,有难度.证明分段函数(,)f x y 在某点000(,)M x y 不连续的方法之一是:证明点(,)x y 沿某曲线趋于0M 时,(,)f x y 的极限不存在或不为00(,)f x y .② 证明00(,)(,)lim (,)x y x y f x y →不存在的重要方法是证明点(,)x y 沿两条不同曲线趋于000(,)M x y 时,(,)f x y 的极限不想等或沿某条曲线趋于0M 时,(,)f x y 的极限不存在.对于该题中的(,)f x y ,若再考察(,)(0,0)(,)(0,0)1lim (,)lim 00lim (,)2x y x y y x y xf x y f x y →→→====≠=, (,)(0,0)lim (,)x y f x y →⇒不存在.由本例可见,函数在一点处不连续,但偏导数却可以存在.容易找到这种例子,例如(,),f x y x y =+它在点(0,0)处连续,但(0,0)x f '与(0,0)y f '都不存在.可见二元函数的连续性与偏导数的存在性可以毫无因果关系.(2)【答案】(B)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(B).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x=∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰. 【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()baS f x dx f b a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理 由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02b a b f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以,22sin sin 0()sin sin x tt xF x etdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t t u t t F x e tdt e tdt e tdte tdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,t te e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.t t t tt t F x e tdt e d te ttde e e t dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可. (4)【答案】(D)【解析】方法1:三条直线交于一点的充要条件是方程组111111222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩ 有唯一解.将上述方程组写成矩阵形式:32A X b ⨯=,其中112233a b A a b a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c b c c -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔[]()2r A r A b ==(方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组12,αα线性相关.所以应选(D). 方法2:用排除法.(A)123,,ααα线性相关,当123ααα==时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)123,,ααα线性无关,3α不能由12,αα线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩123(,,)r ααα=秩12(,)r αα,当123(,,)r ααα=12(,)1r αα=时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D).评注:应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来. (5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后(,)r θ,或先(,)r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先(,)r θ后z 方便.【解析】方法1:采用柱面坐标,先(,)r θ后z ,为此,作平面z z =.{}22(,,)|2,,z D x y z x y z z z =+≤=82220()zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dz d dr ππθ==⎰⎰ 方法2:将Ω投影到xOy 平面,得圆域{}22(,)|16,D x y x y =+≤用柱面坐标先z 后(,)r θ,有22248422330021024()2(8).23r r I x y dv d dr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰评注:做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】方法1:写出C 的参数方程,然后用曲线积分化为定积分的公式.由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0. 在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有222022220()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdt z t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--++-=+--+=-=-⎰⎰⎰⎰⎰⎰⎰方法2:用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围有限部分,由L 的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰. S 在xy 平面上的投影区域xy D 为221x y +≤.将第二类曲面积分化为二重积分得原积分22xyD dxdy π=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数()x t 的变化率,即dxdt,由题意可立即建立初值问题 0(),(0).dxkx N x dtx x ⎧=-⎪⎨⎪=⎩ 把方程分离变量得,()dxkdt x N x =-111()dx kdt N x N x +=-. 积分可得 11ln x kt c N N x =+-,1kNtkNtcNe x ce =+.以0(0)x x =代入确定00x c N x =-,故所求函数为000.kNtkNtNx e x N x x e =-+四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1)【分析】求出曲面22:0S x y z +-=在点0(1,2,5)M -(位于S 上)处的切平面方程,再写出L 的参数方程,L 上的点的坐标应满足切平面方程,由此定出参数a 与b . 【解析】曲面S 在点0M 的法向量{2,2,1}{2,4,1}M n x y =-=--.切平面∏的方程是2(1)4(2)(5)0x y z --+--=,即 2450x y z ---=.将直线L 的方程改写成参数方程,(1) 3.y x b z a x ab =--⎧⎨=---⎩将它代入平面∏方程得24()(1)350x x b a x ab -----++-=,即(5)420a x b ab +++-=.解得5,2a b =-=-.(2)【分析】(sin )x z f e y =是由一元函数()z f u =与二元函数sin x u e y =复合而成的二元函数,它满足方程22222x z ze z x y∂∂+=∂∂. (*) 为了求()f u ,我们将用复合函数求导法,导出z x ∂∂,z y ∂∂,22z x ∂∂,22zy∂∂与(),()f u f u '''的关系,然后由(*)式导出()f u 满足的常微分方程,从而求出()f u . 【解析】先用复合函数求导法导出22222222()()sin ,()()cos ,()sin ()sin ,()cos ()sin .x x x x x x z u z uf u f u e y f u f u e y x xy yz z f u e y f u e y f u e y f u e y x y∂∂∂∂''''====∂∂∂∂∂∂''''''=+=-∂∂将后两式代入(*)得 222222()()x x z zf u e e f u x y∂∂''+==∂∂,即 ()()0f u f u ''-=.这是二阶线性常系数齐次方程,相应的特征方程210λ-=的特征根为1λ=±,因此求得12()u u f u C e C e -=+,其中1C 、2C 为任意常数.五、(本题满分6分)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而1(0)(0)0f dt ϕ==⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又 10()()()(0),xf u du x f xt dtu xtx xϕ==≠⎰⎰于是 02()()()(0),xxf x f u dux x xϕ-'=≠⎰由导数定义,有02()()(0)()(0)limlimlim22xx x x f u du x f x Axx x ϕϕϕ→→→-'====⎰.而 0022000()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx xϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续. 评注:对1()()x f x t d t ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由01()()xx f u du xϕ=⎰得到的()x ϕ'也附加有条件0x ≠.从而(0)ϕ'应单独去求.六、(本题满分8分)【解析】(1)先证n a 单调有界.显然0(1,2,)n a n >=,由初等不等式:对∀非负数,x y必有x y +≥易知 1111()21(1,2,)22n n n a a n a +=+≥⋅==.再考察 121111(1)(1)1221n n n a a a +=+≤+=.因此,n a 单调下降且有界,存在极限lim n n a →+∞.(2)方法1:由n a 单调下降11110n n n n n a a aa a +++-⇒-=≥. ⇒原级数是正项级数.现适当放大,注意1n a ≥,得111101.n n n n n n n a a aa a a a ++++-≤-=≤- 11()nn n aa ∞+=-∑的部分和1111()n k k n k S a a a a ∞++==-=-∑,11lim lim n n n n S a a +→+∞→+∞⇒=-存在,可见级数11()n n n a a ∞+=-∑收敛.由比较判别法知,级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 方法2:令11nn n a b a +=-,利用递推公式,有 221221111lim lim 0141n n n n n n n n b a a b a a ρ+→∞→∞++-==⋅⋅=<+, 由比值判别法知级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛.【评注】由证明中可见,有下述结论:11()nn n aa ∞+=-∑收敛⇔lim n n a →∞存在.在考研题中多次用到这个知识点,考生可倍加注意.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.) 【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因12,αα线性无关,12,αα是方程组0Bx =的解,由解空间的基的定义,12,αα是解空间的基.用施密特正交化方法先将其正交化,令:[][][][]1121221111,1,2,3,(,)521,1,4,11,1,2,32,1,5,3.(,)153TT T T βααββαβββ===-=---=--将其单位化,有]]1212121,1,2,3,2,1,5,3T T ββηηββ====--, 即为所求的一个标准正交基.评注:此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可. 由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中12,,αα3α是线性相关的(注意12323ααα-=),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即 0002125312a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=.(II)将(1)解得的30a ,b =-=代入矩阵A ,得212533102A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 其特征方程为3212533(1)0,12E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1231λλλ===-.由于 312()5232101r E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦, 从而1λ=-只有一个线性无关的特征向量,故A 不能相似对角化.评注:A 相似于对角阵⇔A 的每个i r 重特征值有i r 个线性无关的特征向量.八、(本题满分5分)【解析】由于ij B E A =,其中ij E 是初等矩阵10111ij i E j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)因为A 可逆,0A ≠,故0ij ij B E A E A A ==⋅=-≠,所以B 可逆. (2)由ij B E A =,知11111().ij ij ij ij ABA E A AA E E E -----====评注:①本题考查初等矩阵的概念与性质,要知道初等变换与初等矩阵左右乘的关系以及初等矩阵的逆矩阵的三个公式.有的考生写不出初等矩阵ij E ,或将B 写成ij B AE =,或不知道1ij ij E E -=,或认为A B =±,而不知道B A =-等,这些要引起注意.②经初等变换矩阵的秩不变,易知()()r B r A n ==,也可证明B 可逆.九、(本题满分7分) 【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B .【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有{}33(1),0,1,2,3.k kk p X k C p p k -==-=再由离散型随机变量分布函数的定义,有()kk xF x p≤=∑,(1)当0x <时,()0kk xF x p≤==∑;(2)当01x ≤<,{}300300322327()0()(1)555125k k xF x p p P X C -≤⎛⎫=====-==⎪⎝⎭∑; (3)当12x ≤<,{}{}1131013272281()01()(1)12555125k k xF x p p p P X P X C -≤==+==+==+-=∑; (4)当23x ≤<, {}{}{}012()012kk xF x pp p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=; (5)当3x ≥时{}{}{}{}0123()01231k k xF x p p p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:{}(1),0,1,,kkn kn P X k C p p k n -==-=.2.离散型随机变量分布函数的定义:{}()i ix xF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、(本题满分5分) 【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望);最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数. 【解析】(1)矩估计 由期望的定义:1110()()(1)(1)E X xf x dx x x dx x dx θθθθ+∞+-∞==+=+⎰⎰⎰121101(1)(1)22xx dx θθθθθθθ+++=+=+=++⎰. 样本均值11ni i X X n ==∑,用样本均值估计期望有EX X =,即12X θθ+=+,解得未知参数θ的矩估计量为:^21.1X Xθ-=- (2)最大似然估计设 12,,...,n x x x 是相应于样本12,,...,n X X X 的样本值,则样本的似然函数为:1(1)01(1,2,,)0 .nn ii i x x i n L θθ=⎧+<<=⎪=⎨⎪⎩∏其他当01i x <<时,10n i i x θ=>∏,又1θ>-,故10θ+>,即()10nθ+>.所以()0L θ>.111ln ln (1)ln(1)ln ln(1)ln n n nn i i i i i i L x n x n x θθθθθθ===⎡⎤=+=++=++⎢⎥⎣⎦∑∑∏.(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便)1ln ln 1ni i d L nx d θθ==++∑. 令 1ln ln 01n i i d L nx d θθ==+=+∑,解得θ的最大似然估计值为^11ln nii nxθ==--∑,从而得θ的最大似然估计量为:^11ln nii nXθ==--∑.。

1997-2011数学三考研真题及答案解析

1997-2011数学三考研真题及答案解析

1997年全国硕士研究生入学统一考试经济数学三试题详解及评析一、 填空题(1) 设()()ln f x y f x e =其中f 可微,则dy =_________________.【答】 ()()()()1ln ln f x e f x f x f x dx x ⎡⎤′′+⎢⎥⎣⎦【详解】()()()()()()ln ln ln f x f x f x dy d f x edf x e f x de ⎡⎤==⋅+⎡⎤⎣⎦⎣⎦ ()()()()()1 ln ln f x f xf x dx e f x e f x dx x ⎡⎤′′=⋅+⋅⎢⎥⎣⎦()()()()()1 ln ln f x f x f x dx e f x e f x dx x ⎡⎤′′=⋅+⋅⎢⎥⎣⎦(2) 若()()1201,1f x f x dx x=++则()10f x dx =∫_______________. 【答】4ππ−【详解】 设()10,f x dx A =∫则()1120001dx A f x dx A x ==+⋅+∫∫∫ (11arctan arcsin 00244A x x A ππ=+⋅+=+故.4A ππ=−(3) 差分方程12tt t y y t +−=的通解为t y =____________. 【答】 ()22tC t +−【详解】 齐次差分方程10t t y y +−=的通解为.C C 为任意常数设()2tat b +是差分方程12tt t y y t +−=的一个特解,则1, 2.a b ==−因此()22t t y C t =+−为所求通解.(4) 若二次型()2221231231223,,22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是_______. 【答】t <<【详解】 f 正定的充分必要条件是f 对应矩阵的各阶顺序主子式大于零,因此210110,2012tt >解得t <<(5) 设随机变量X 和Y 相互独立且都服从正态分布()20,3N ,而19,,X XL 和19,,Y Y L 分别式来自总体X 和Y的简单随机样本,则统计量U =服从__________分布,参数为_____________. 【答】 ,9t 【详解】 令,,1,2,,933i i i i X YX Y i ′′===L 则()()~0,1,~0,1,1,2,,9i i X N Y N i ′′=L()219~0,3,X X X N ′′′=++L ()219~9Y Y Y ′′′=++ΧL因此U ′′′′=== 由于()()2~0,1,~93X N Y ′′Χ 故()~9U t .二、选择题(1) 设()()561cos 2sin ,,56xx x f x t dt g x −==+∫则当0x →时,()f x 是()g x 的()A 低阶无穷小 ()B 高阶无穷小()C 等阶无穷小 ()D 同阶但不等价的无穷小【 】【答】 应选()B【详解】 利用洛必达法则,有()()()()224534000sin sin 1cos sin 1cos lim lim limx x x f x x g x x x x x →→→⋅−−==++ ()423434001cos 4limlim 0.x x x x x x x→→−===++ (2) 若()()()f x f x x −=−∞<<+∞,在(),0−∞内()0,f x ′>且()0,f x ′′<则在()0,+∞内有()()()()()()0,0 0,0A f x f x B f x f x ′′′′′′><>> ()()()()()()0,0 0,0C f x f x D f x f x ′′′′′′<><>【 】【答】 应选()C【详解】 由()(),f x f x −=得()()()(),f x f x f x f x ′′′′′−=−=可见当()0,x ∈+∞时,(),0x −∈−∞,且()()()()0,0f x f x f x f x ′′′′′=−−<=−<所以应选()C .(2) 设向量123,,ααα线性无关,则下列向量组中,线性无关的是()122331,,A ++−αααααα ()1223123,,2B ++++ααααααα ()1223312,23,3C +++αααααα()123123123,2322,355D ++−++αααααααα−α【 】【答】 应选()C 【详解】()()()()()()()()1223311223123:0:20A B +−++−=+−+++=αααααααααα−ααα可见()()A B 、中向量组线性相关,()()C D 、不能直接观察出,对于()C ,令()()()11222333122330k k k +++++=αααααα即()()()13112223322330k k k k k k +++++=ααα由于123,,ααα线性无关,故1312230220330k k k k k k +=⎧⎪+=⎨⎪+=⎩ 因上述齐次线性方程组的系数行列式101220120,033=≠,故方程组由惟一零解,即1230k k k ===,故()C 中向量组线性无关,应选()C .(4) 设,A B 为同阶可逆矩阵,则()A AB =BA()B 存在可逆矩阵P ,使1−P AP =B ()C 存在可逆矩阵C ,使T C AC =B ()D 存在可逆矩阵P 和Q ,使PAQ =B【 】【答】 应选().D【详解】 由题设,A B 可逆,若取1,,−P =B Q =A 则1,−=PAQ =BAA B 即A 与B等价,可见().D 成立矩阵乘法不满足交换律,故()A 不成立;任意两个同阶可逆矩阵,不一定是相似的或合同的,因此()()B C 、均不成立.(5) 设两个随机变量X 与Y 相互独立且同分布:{}{}111,2P X P Y =−==−={}{}111,2P X P Y ====则下列各式中成立的是(){}(){}112A P X Y B P X Y ====(){}(){}110 144C P X YD P XY +====【 】【答】 应选().A 【详解】{}{}{}1,11,1P X Y P X Y P X Y ====+=−=−11111,22222=×+×= 而{}{}110,1.24P X Y P XY +====三、在经济学中,称函数()()11xxxQ x A KL δδ−−−⎡⎤=+−⎣⎦为固定替代弹性生产函数,而称函数1xQ AK Lδδ−=为Cobb -Douglas 生产函数(简称C-D 生产函数)试证明:当0x →时,固定替代弹性生产函数变为C-D 同阶生产函数,即有()0lim x Q x Q →=【详解】 ()()1ln ln ln 1x xQ x A K L x δδ−−⎡⎤=−+−⎣⎦ 而且()()()00ln 1ln 1ln lim lnlim 1x xx x x x x x K L K K L LxK Lδδδδδδ−−−−−−→→⎡⎤+−−−−⎣⎦=+− ()()1ln 1ln ln K L AK L δδδδ−=−−−=−所以()()()110lim ln ln ln ln x Q x A K L AK L δδδδ−−→=+=于是()10lim .x Q x AK L Q δδ−→==四、设(),,u f x y z =有连续偏导数,()y y x =和()z z x =分别是由方程0xy e y −=和0x e xz −=所确定,求.dudx【详解】(), du f f dy f dz dx x y dx z dx∂∂∂=+⋅+⋅∗∂∂∂ 由0xye y −=得0xydy dye y xdx dx⎛⎞+−=⎜⎟⎝⎠ 211xy xy dy ye y dx xe xy==−− 由0xe xz −=,得0zdz dzez x dx dx−−= z dz z z dx e x xz z==−− 代入()∗式得2.1du f y f z f dx x xy y xz x z∂∂∂=++∂−∂−∂五、一商家销售某种商品的价格满足关系70.2p x =−(万元/吨),x 为销售量(单位:吨),商品的成本函数是31C x =+(万元) (1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时的销售量;(2) t 为何值时,政府税收总额最大.【详解】 (1) 设T 为总税额,则T tx =;商品销售总收入为()270.270.2,R px x x x x ==−=−利润函数为()2270.2310.24 1.R C T x x x tx x t x π=−−=−−−−=−+−−令0,d dxπ=即0.440,x t −+−= 由于220.40,d x dx π=−<因此()542x t =−即为最大利润时的销售量. (3) 将()542x t =−代入T tx =,得 ()25451022t T t t t −=⋅=−由1050dTt dt=−=得惟一驻点2t = 由于2250,d Tdt=−<可见当2t =时T 有极大值,此时政府税收总额最大.六、设函数()f x 在[)0,+∞上连续、单调不减且()0.f x ≥试证函数()()01, 00, 0x nt f t dt x F x x x ⎧>⎪=⎨⎪=⎩∫ 在[)0,+∞上连续且单调不减(其中0n >) 【详解1】 显然当0x >时()F x 连续,又()()()()0000lim limlim 00xn nx x x t f t dt F x x f x F x+++→→→====∫故()F x 在[)0,+∞上连续 对于()0,x ∈+∞有()()()()()11022xn n n n x f x t f t dtx f x f xF x xxξξ++−−′==∫ ()()()()()()1 ,nn n n n x f x f f x x f x f x xξξξξξ+−+−⎡⎤−⎣⎦==其中0x ξ<<.因此,由()f x 在[)0,+∞上连续、单调不减知()()f x f ξ≥,又n n x ξ>,于是()0F x ′≥故()F x 在[)0,+∞上连续且单调不减. 【详解2】 连续性的证明同上,由于()()()()()1022xxxn n n n x f x t f t dtx f x dx t f t dtF x xx+−−′==∫∫∫()()020.x n nx f x t f t dtx ⎡⎤−⎣⎦=≥∫可见()F x 在[)0,+∞上连续且单调不减.七、从点()11,0P 做x 轴垂线,交抛物线2y x =于点()11,1Q ;再从1Q 做抛物线的切线与x轴交于2P ,然后又从2P 做x 的垂线,交抛物线于点2Q ,依次重复上述过程得到一系列的点1122,,,,,.n n P Q P Q P Q L L(1)求;n OP(2)求级数1122n n Q P Q P Q P ++++L L 的和。

1997考研数二真题及解析

1997考研数二真题及解析

1997年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5分,每小题3分,满分15分.把答案填在题中横线上.)(1) 已知2(cos ),0,(),x x x f x a x -⎧≠⎪=⎨=⎪⎩在0x =处连续,则a = .(2)设lny =则0x y =''= .(3)=⎰.(4)2048dxx x +∞=++⎰.(5) 已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)t ααα=-==--的秩为2,则t = .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 设0x →时,tan xx ee -与n x 是同阶无穷小,则n 为 ( )(A) 1 (B) 2 (C) 3 (D) 4 (2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>记12(),()()baS f x dx S f b b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 231S S S << (C) 312S S S << (D) 213S S S <<(3) 已知函数()y f x =对一切x 满足2()3[()]1xxf x x f x e -'''+=-,若00()0(0),f x x '=≠则 ( ) (A) 0()f x 是()f x 的极大值 (B) 0()f x 是()f x 的极小值(C) 00(,())x f x 是曲线()y f x =的拐点(D) 0()f x 不是()f x 的极值,00(,())x f x 也不是曲线()y f x =的拐点 (4) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(5) 设22,,(),(),[()]2,0,x x x x g x f x g f x x x x x -≤⎧<⎧==⎨⎨+>-≥⎩⎩则为 ( ) (A) 22,02,0x x x x ⎧+<⎨-≥⎩ (B) 22,02,0x x x x ⎧-<⎨+≥⎩(C) 22,02,0x x x x ⎧-<⎨-≥⎩ (D) 22,02,0x x x x ⎧+<⎨+≥⎩三、(本题共6小题,每小题5分,满分30分.) (1)求极限limx (2) 设()y y x =由2arctan 25tx t y ty e =⎧⎨-+=⎩所确定,求dydx . (3) 计算22(tan 1)x e x dx +⎰.(4) 求微分方程222(32)(2)0x xy y dx x xy dy +-+-=的通解.(5) 已知22123,,x x x x x x xy xe e y xe e y xe e e --=+=+=+-是某二阶线性非齐次微分方程的三个解,求此微分方程.(6) 已知111011001A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,且2A AB E -=,其中E 是三阶单位矩阵,求矩阵B .四、(本题满分8分.)λ取何值时,方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有惟一解或有无穷多解?并在有无穷多解时写出方程组的通解.五、(本题满分8分)设曲线L 的极坐标方程为()r r θ=,(,)M r θ为L 上任一点,0(2,0)M 为L 上一定点,若极径0OM OM 、与曲线L 所围成的曲边扇形面积值等于L 上0,M M 两点间弧长值的一半,求曲线L 的方程.六、(本题满分8分)设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足()()xf x f x '=+232a x (a 为常数),又曲线()y f x =与1,0x y ==所围成的图形S 的面积值为2,求函数()y f x =,并问a 为何值时,图形S 绕x 轴旋转一周所得的旋转体的体积最小.七、(本题满分8分.)已知函数()f x 连续,且0()lim2x f x x→=,设10()()x f xt dt ϕ=⎰,求()x ϕ',并讨论()x ϕ'的连续性.八、(本题满分8分)就k 的不同取值情况,确定方程sin 2x x k π-=在开区间(0,)2π内根的个数,并证明你的结论.1997年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】12e-【解析】由于()f x 在0x =处连续,故22ln ()ln(cos )ln cos 0(0)lim ()lim lim lim xf x x xxx x x x f f x eee --→→→→====22001(sin )ln cos ln cos cos lim lim 20lim x x x xx x x x xx eee→→-→===洛必达sin 1lim 2cos 2x xx xee →--==【相关知识点】1.函数()y f x =在点0x 连续:设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()(),x x f x f x →=则称函数()f x 在点0x 连续.2.如果函数在0x 处连续,则有000lim ()lim ()()x x x x f x f x f x →+→-==.(2)【答案】32-【解析】题目考察复合函数在某点处的高阶导数,按照复合函数求导法则具体计算如下:21ln(1)ln(1)2y x x ⎡⎤=--+⎣⎦, 221121()2112(1)1x x y x x x x -'=-=---+-+, 2222112(1)(1)x y x x -''=---+,032x y =''=-. 【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅或dy dy dudx du dx=⋅. (3)【答案】2arcsin2x C -+或2arcsin C + 【解析】题目考察不定积分的计算,分别采用凑微分的方法计算如下: 方法1:原式2()2arcsin 2x d x C --==+=.方法2:原式2==22arcsin 2dC ==+. (4)【答案】8π 【解析】题目考察广义积分的计算,采用凑微分的方法,结合基本微分公式表计算如下:原式20022()1224(2)21()2x d dx x x +∞+∞+==++++⎰⎰ 0121arctan ()222248x πππ+∞+==-=. (5)【答案】3【解析】方法1:利用初等变换.以123,,ααα为行构成34⨯矩阵,对其作初等变换:[][]()[][]()12122332112111211200042204520452121104220030A t t t ,t +⨯-+⨯---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==→-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥→-+-⎢⎥⎢⎥-⎣⎦ααα因为()1232r A r ,⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ααα所以303t ,t -==. 方法2:利用秩的定义.由于()1232r r A ,ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦则矩阵A 中任一三阶子行列式应等于零. 12312112000452t ααα-⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,应有121121121204204200450453t t t t---=-+=-+=---, 解得3t =.方法3:利用线性相关性.因为()()1232r ,,r A ,ααα==故123,,ααα线性相关,⇔以123T T T,,ααα组成的线性齐次方程组1122330T T Tx x x BX ααα++==有非零解,因[][]()[][][][]()[][][]()[][]()1231221243132241142212020415102120120044011025003022000T T T t B ,,t ,t t ⎛⎫⨯- ⎪+⨯-⎝⎭++⨯--+⨯-+⨯-⎡⎤⎢⎥-⎢⎥⎡⎤==⎣⎦⎢⎥-⎢⎥-⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥+-+⎢⎥⎢⎥--⎣⎦⎣⎦ααα故0BX =有非零解⇔3t =.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】题目考察无穷小量的性质和无穷小量的比较,采用洛必达法则计算如下:tan tan 00222311200001lim lim tan sec 1tan 1lim lim lim lim ,33x x x xx n nx x n n n n x x x x e e e e x x x x x x x nx nx x -→→=--→→→→--=⋅--=====洛必达 tan x x e e -与3x 同阶,故应选(C).(2)【答案】(D)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(D).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x =∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰.【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()ba S f x dx fb a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02bab f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(B)【解析】题目考察函数的极值点与拐点问题,分析如下:由0()0f x '=知0x x =为()f x 的驻点.把0x x =代入恒等式000()1x x f x e-''=-,即001()x e f x x --''=.由于分子、分母同号,故0()0f x ''>,因此驻点0x x =为极小值点.应选(B).(4)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以,22sin sin 0()sin sin x tt xF x etdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t t u t t F x e tdt e tdt e tdte tdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,tt e e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.tt t tt t F x etdt e d te ttde e e t dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可. (5)【答案】(D)【解析】题目考察函数的复合问题,分清内层函数的定义域与值域,要注意内层函数的值域又构成了外层函数的定义域.当0x <时,2()0f x x =>,则2[()]()22g f x f x x =+=+; 当0x ≥时,()0f x x =-≤,则[()]2()2()2g f x f x x x =-=--=+.故22,0[()]2,0x x g f x x x ⎧+<=⎨+≥⎩,因此应选(D).三、(本题共6小题,每小题5分,满分30分.) (1)【分析】这是∞∞型的极限,可以设法约去分子、分母中极限为∞的因子,从而转化为确定型的极限.在计算过程中应注意x 趋于负无穷.x =-(0)x <,则原式1lim11x ===.(2)【解析】题目考察参数方程所确定的函数的微分法.t x t y y x ''=',211t x t'=+, t y '可由第二个方程两边对t 求导得到:2220t t t y tyy y e ''--+=,解得22(1)t t y e y ty -'=-.由此,有22(1)()2(1)t x t y e y ty +-'=-. (3)【解析】题目考察,不定积分的换元与分部积分法,难度不大,具体计算如下:原式22222(sec 2tan )sec 2tan x x x e x x dx e xdx e xdx =+=+⎰⎰⎰222tan tan tan xx x ed x xde e x C =+=+⎰⎰分部.(4)【解析】题目考察齐次微分方程的通解,分别利用齐次方程的求解方法和凑全微分方法计算如下:方法1:所给方程是齐次方程.令y xu =,则dy xdu udx =+,代入原方程得23(1)(12)0u u dx x u du +-+-=,分离变量得21231u du dx u u x-=-+-, 积分得 22(1)131d u u dx u u x+-=-+-⎰⎰, 即 231u u Cx -+-=. 以y u x =代入得通解22C x xy y x+-=. 方法2:用凑全微分的方法求解.由于222(32)(2)x xy y dx x xy dy +-+- 222223(())(())x dx yd x x dy y dx xd y =++-+ 322()()()d x d x y d xy =+- 322()d x x y xy =+-,故通解为: 322x x y xy C +-=.(5)【解析】13x y y e --=与212x xy y e e --=-都是相应齐次方程的解,1312()()y y y y -+-2x e =也是相应齐次方程的解,x e -与2x e 是两个线性无关的相应齐次方程的解;而2x x y e xe --=是非齐次方程的解.下面求该微分方程:方法1:由x e -,2xe 是齐次解,知121,2r r =-=是特征方程的两个根,特征方程为(1)(2)0r r +-=,即220r r --=,相应的齐次微分方程为:20y y y '''--=.设所求非齐次方程为:2()y y y f x '''--=,把非齐次解xxe 代入,便得()()()2()(12)x x x x f x xe xe xe x e '''=--=-.所求方程为:2(12)xy y y x e '''--=-.方法2:由于通解为:212x x xy c e c e xe -=++,求出2122(1)x x x y c e c e x e -'=-+++,2124(2)x x x y c e c e x e -''=+++,并消去1c ,2c ,便得微分方程2(12)xy y y x e '''--=-.(6)【答案】021000000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦【解析】由题设条件2A AB E -=,把A 提出来得()A A B E -=,因为11101110001A -==-≠-,由此知道A 是满秩的,所以A 可逆,两边左乘 1A -,从而有1A B A --=,1B A A -=-.(或2A AB E -=,2AB A E,=-A 可逆,两边左乘 1A -,得()121B A A E A A --=-=-).用矩阵的初等变换求1A -.[][][]()[][][][]()[]()131********111100110101011010010011001001001001100112010011001001A E E A +⨯-++⨯-⨯----⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥⎡⎤→=⎣⎦⎢⎥⎢⎥-⎣⎦得 1112011001A ---⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 从而得 1111112021011011000001001000B A A ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦.四、(本题满分8分.)【解析】方法1:对原方程组的增广矩阵作初等行变换:[][][][][]()[][]213153252112111122103455165506211210354009A b ++⨯-+⨯--⎡⎤⎡⎤⎢⎥⎢⎥=-→+-⎢⎥⎢⎥⎢⎥⎢⎥----+-⎣⎦⎣⎦-⎡⎤⎢⎥→+-⎢⎥⎢⎥+⎣⎦λλλλλλλλλλ 当45λ≠-且1λ≠时,()[]3r A r A b ==,即方程组的系数矩阵与增广矩阵的秩相等且等于未知量的个数,故原方程组有唯一解.当45λ=-时,()[]23r A r A b =≠=,即方程组的系数矩阵与增广矩阵的秩不相等,故原方程组无解.当1λ=时,原方程组的同解方程组为123121x x x x +-=⎧⎨=⎩ 1, 原方程组有无穷多解,其通解为12311x ,x k,x k.=⎧⎪=-+⎨⎪=⎩(k 为任意常数).(或[][][]123110011TTTx ,x ,x ,,k ,,=-+(k 为任意常数)) 方法2:原方程组系数矩阵的行列式()()2121111015445545A λλλλλλλ--=-=-=-+-,故知:当45λ≠-且1λ≠时,()[]3r A r A b ==,即方程组的系数矩阵与增广矩阵的秩相等且等于未知量的个数,故原方程组有唯一解.当45λ=-时,对原方程组的增广矩阵作初等行变换,得 [][][][][]152532421151045510455411245510455105455100094551A b ⨯⨯+⎡⎤--⎢⎥----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦()[]r A r A b ,≠即方程组的系数矩阵与增广矩阵的秩不相等,故原方程组无解.当1λ=时,对原方程组的增广矩阵作初等行变换,得[][][][]()[][]()[][][]1232321212314321111112111211120333011145510999000↔+⨯+⨯-⨯+⨯----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦()[]23r A r A b ==<,即方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,故原方程组有无穷多解,其通解为12311x ,x k,x k.=⎧⎪=-+⎨⎪==⎩(k 为任意常数).(或[][][]123110011TTTx ,x ,x,,k ,,=-+(k 为任意常数))五、(本题满分8分)【解析】由已知条件得2001122r d θθθθ=⋅⎰⎰.两边对θ求导,得2r =(隐式微分方程),解出r ',得 r '=±分离变量,得d θ=±.由于1()1arccos d r =-=⎰, 或sec 1arccos r tdt t r====⎰⎰,两边积分,得 1arccos c rθ=±+. 代入初始条件(0)2r =,得1arccos 23c π==,1arccos 3r πθ⇒=±.即L 的极坐标方程为113cos()cos sin 322r πθθθ=±≡, 从而,L 的直角坐标方程为32x y =.六、(本题满分8分)【解析】由23()()2a xf x f x x '=+,有 2()()32xf x f x a x '-=,即()3()2f x ax '=, 从而得 ()32f x a x C x =+,即23()2a f x x Cx =+.又由题设知,面积113()()2222a a CS f x dx Cx dx ==+=+=⎰⎰,得4C a =-,从而23()(4)2a f x x a x =+-. 旋转体体积 21122200316()[(4)]()23033a a a V a y dx x a x dx πππ==+-=++⎰⎰. 由1()()0153a V a π'=+=,解得惟一驻点5a =-;又由()015V a π''=>,5a =-是极小值点也是最小值点.(易验证,此时215()92f x x x =-+在(0,1]恒正.)七、(本题满分8分.)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而10(0)0f dt ϕ==⎰(),由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续性的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又1()()()(0),xf u du x f xt dt u xtx xϕ==≠⎰⎰从而 02()()()(0)xxf x f u dux x xϕ-'=≠⎰.由导数定义,有2()()(0)limlim22xx x f u du f x Ax x ϕ→→'===⎰.由于 02200()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续.八、(本题满分8分)【解析】设()sin 2f x x x π=-,研究()f x 在(0,)2π内的极值情况,从而判定它与水平线y k =的交点个数.由()1cos 02f x x π'=-=解得()f x 在(0,)2π内的唯一驻点02arccosx π=;由co s x 在(0,)2π单调减,()f x '在点0x 由负变正,0x 是()f x 的极小点也是最小点.最小值0000()sin 2f x x x y π=-;由此,最大值(0)()02f f π==(显然00y <).当0k ≥或0k y <时,()y f x =与y k =没有交点;当0k y =时,两者有唯一交点;当00y k <<时,两者有两个交点.评注:也可以设()sin 2g x x x k π=--,研究它的零点个数.。

1997考研数二真题及解析

1997考研数二真题及解析

1997年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5分,每小题3分,满分15分.把答案填在题中横线上.)(1) 已知2(cos ),0,(),x x x f x a x -⎧≠⎪=⎨=⎪⎩在0x =处连续,则a = .(2)设lny =则0x y =''= .(3)=⎰.(4)2048dxx x +∞=++⎰.(5) 已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)t ααα=-==--的秩为2,则t = .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 设0x →时,tan xx ee -与n x 是同阶无穷小,则n 为 ( )(A) 1 (B) 2 (C) 3 (D) 4 (2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>记12(),()()baS f x dx S f b b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 231S S S << (C) 312S S S << (D) 213S S S <<(3) 已知函数()y f x =对一切x 满足2()3[()]1xxf x x f x e -'''+=-,若00()0(0),f x x '=≠则 ( ) (A) 0()f x 是()f x 的极大值 (B) 0()f x 是()f x 的极小值(C) 00(,())x f x 是曲线()y f x =的拐点(D) 0()f x 不是()f x 的极值,00(,())x f x 也不是曲线()y f x =的拐点 (4) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(5) 设22,,(),(),[()]2,0,x x x x g x f x g f x x x x x -≤⎧<⎧==⎨⎨+>-≥⎩⎩则为 ( ) (A) 22,02,0x x x x ⎧+<⎨-≥⎩ (B) 22,02,0x x x x ⎧-<⎨+≥⎩(C) 22,02,0x x x x ⎧-<⎨-≥⎩ (D) 22,02,0x x x x ⎧+<⎨+≥⎩三、(本题共6小题,每小题5分,满分30分.) (1)求极限limx (2) 设()y y x =由2arctan 25tx t y ty e =⎧⎨-+=⎩所确定,求dydx . (3) 计算22(tan 1)x e x dx +⎰.(4) 求微分方程222(32)(2)0x xy y dx x xy dy +-+-=的通解.(5) 已知22123,,x x x x x x xy xe e y xe e y xe e e --=+=+=+-是某二阶线性非齐次微分方程的三个解,求此微分方程.(6) 已知111011001A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,且2A AB E -=,其中E 是三阶单位矩阵,求矩阵B .四、(本题满分8分.)λ取何值时,方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有惟一解或有无穷多解?并在有无穷多解时写出方程组的通解.五、(本题满分8分)设曲线L 的极坐标方程为()r r θ=,(,)M r θ为L 上任一点,0(2,0)M 为L 上一定点,若极径0OM OM 、与曲线L 所围成的曲边扇形面积值等于L 上0,M M 两点间弧长值的一半,求曲线L 的方程.六、(本题满分8分)设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足()()xf x f x '=+232a x (a 为常数),又曲线()y f x =与1,0x y ==所围成的图形S 的面积值为2,求函数()y f x =,并问a 为何值时,图形S 绕x 轴旋转一周所得的旋转体的体积最小.七、(本题满分8分.)已知函数()f x 连续,且0()lim2x f x x→=,设10()()x f xt dt ϕ=⎰,求()x ϕ',并讨论()x ϕ'的连续性.八、(本题满分8分)就k 的不同取值情况,确定方程sin 2x x k π-=在开区间(0,)2π内根的个数,并证明你的结论.1997年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】12e-【解析】由于()f x 在0x =处连续,故22ln ()ln(cos )ln cos 0(0)lim ()lim lim lim xf x x xxx x x x f f x eee --→→→→====22001(sin )ln cos ln cos cos lim lim 20lim x x x xx x x x xx eee→→-→===洛必达sin 1lim 2cos 2x xx xee →--==【相关知识点】1.函数()y f x =在点0x 连续:设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()(),x x f x f x →=则称函数()f x 在点0x 连续.2.如果函数在0x 处连续,则有000lim ()lim ()()x x x x f x f x f x →+→-==.(2)【答案】32-【解析】题目考察复合函数在某点处的高阶导数,按照复合函数求导法则具体计算如下:21ln(1)ln(1)2y x x ⎡⎤=--+⎣⎦, 221121()2112(1)1x x y x x x x -'=-=---+-+, 2222112(1)(1)x y x x -''=---+,032x y =''=-. 【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅或dy dy dudx du dx=⋅. (3)【答案】2arcsin2x C -+或2arcsin C + 【解析】题目考察不定积分的计算,分别采用凑微分的方法计算如下: 方法1:原式2()2arcsin 2x d x C --==+=.方法2:原式2==22arcsin 2dC ==+. (4)【答案】8π 【解析】题目考察广义积分的计算,采用凑微分的方法,结合基本微分公式表计算如下:原式20022()1224(2)21()2x d dx x x +∞+∞+==++++⎰⎰ 0121arctan ()222248x πππ+∞+==-=. (5)【答案】3【解析】方法1:利用初等变换.以123,,ααα为行构成34⨯矩阵,对其作初等变换:[][]()[][]()12122332112111211200042204520452121104220030A t t t ,t +⨯-+⨯---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==→-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥→-+-⎢⎥⎢⎥-⎣⎦ααα因为()1232r A r ,⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ααα所以303t ,t -==. 方法2:利用秩的定义.由于()1232r r A ,ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦则矩阵A 中任一三阶子行列式应等于零. 12312112000452t ααα-⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,应有121121121204204200450453t t t t---=-+=-+=---, 解得3t =.方法3:利用线性相关性.因为()()1232r ,,r A ,ααα==故123,,ααα线性相关,⇔以123T T T,,ααα组成的线性齐次方程组1122330T T Tx x x BX ααα++==有非零解,因[][]()[][][][]()[][][]()[][]()1231221243132241142212020415102120120044011025003022000T T T t B ,,t ,t t ⎛⎫⨯- ⎪+⨯-⎝⎭++⨯--+⨯-+⨯-⎡⎤⎢⎥-⎢⎥⎡⎤==⎣⎦⎢⎥-⎢⎥-⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥+-+⎢⎥⎢⎥--⎣⎦⎣⎦ααα故0BX =有非零解⇔3t =.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】题目考察无穷小量的性质和无穷小量的比较,采用洛必达法则计算如下:tan tan 00222311200001lim lim tan sec 1tan 1lim lim lim lim ,33x x x xx n nx x n n n n x x x x e e e e x x x x x x x nx nx x -→→=--→→→→--=⋅--=====洛必达 tan x x e e -与3x 同阶,故应选(C).(2)【答案】(D)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(D).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x =∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰.【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()ba S f x dx fb a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02bab f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(B)【解析】题目考察函数的极值点与拐点问题,分析如下:由0()0f x '=知0x x =为()f x 的驻点.把0x x =代入恒等式000()1x x f x e-''=-,即001()x e f x x --''=.由于分子、分母同号,故0()0f x ''>,因此驻点0x x =为极小值点.应选(B).(4)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以,22sin sin 0()sin sin x tt xF x etdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t t u t t F x e tdt e tdt e tdte tdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,tt e e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.tt t tt t F x etdt e d te ttde e e t dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可. (5)【答案】(D)【解析】题目考察函数的复合问题,分清内层函数的定义域与值域,要注意内层函数的值域又构成了外层函数的定义域.当0x <时,2()0f x x =>,则2[()]()22g f x f x x =+=+; 当0x ≥时,()0f x x =-≤,则[()]2()2()2g f x f x x x =-=--=+.故22,0[()]2,0x x g f x x x ⎧+<=⎨+≥⎩,因此应选(D).三、(本题共6小题,每小题5分,满分30分.) (1)【分析】这是∞∞型的极限,可以设法约去分子、分母中极限为∞的因子,从而转化为确定型的极限.在计算过程中应注意x 趋于负无穷.x =-(0)x <,则原式1lim11x ===.(2)【解析】题目考察参数方程所确定的函数的微分法.t x t y y x ''=',211t x t'=+, t y '可由第二个方程两边对t 求导得到:2220t t t y tyy y e ''--+=,解得22(1)t t y e y ty -'=-.由此,有22(1)()2(1)t x t y e y ty +-'=-. (3)【解析】题目考察,不定积分的换元与分部积分法,难度不大,具体计算如下:原式22222(sec 2tan )sec 2tan x x x e x x dx e xdx e xdx =+=+⎰⎰⎰222tan tan tan xx x ed x xde e x C =+=+⎰⎰分部.(4)【解析】题目考察齐次微分方程的通解,分别利用齐次方程的求解方法和凑全微分方法计算如下:方法1:所给方程是齐次方程.令y xu =,则dy xdu udx =+,代入原方程得23(1)(12)0u u dx x u du +-+-=,分离变量得21231u du dx u u x-=-+-, 积分得 22(1)131d u u dx u u x+-=-+-⎰⎰, 即 231u u Cx -+-=. 以y u x =代入得通解22C x xy y x+-=. 方法2:用凑全微分的方法求解.由于222(32)(2)x xy y dx x xy dy +-+- 222223(())(())x dx yd x x dy y dx xd y =++-+ 322()()()d x d x y d xy =+- 322()d x x y xy =+-,故通解为: 322x x y xy C +-=.(5)【解析】13x y y e --=与212x xy y e e --=-都是相应齐次方程的解,1312()()y y y y -+-2x e =也是相应齐次方程的解,x e -与2x e 是两个线性无关的相应齐次方程的解;而2x x y e xe --=是非齐次方程的解.下面求该微分方程:方法1:由x e -,2xe 是齐次解,知121,2r r =-=是特征方程的两个根,特征方程为(1)(2)0r r +-=,即220r r --=,相应的齐次微分方程为:20y y y '''--=.设所求非齐次方程为:2()y y y f x '''--=,把非齐次解xxe 代入,便得()()()2()(12)x x x x f x xe xe xe x e '''=--=-.所求方程为:2(12)xy y y x e '''--=-.方法2:由于通解为:212x x xy c e c e xe -=++,求出2122(1)x x x y c e c e x e -'=-+++,2124(2)x x x y c e c e x e -''=+++,并消去1c ,2c ,便得微分方程2(12)xy y y x e '''--=-.(6)【答案】021000000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦【解析】由题设条件2A AB E -=,把A 提出来得()A A B E -=,因为11101110001A -==-≠-,由此知道A 是满秩的,所以A 可逆,两边左乘 1A -,从而有1A B A --=,1B A A -=-.(或2A AB E -=,2AB A E,=-A 可逆,两边左乘 1A -,得()121B A A E A A --=-=-).用矩阵的初等变换求1A -.[][][]()[][][][]()[]()131********111100110101011010010011001001001001100112010011001001A E E A +⨯-++⨯-⨯----⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥⎡⎤→=⎣⎦⎢⎥⎢⎥-⎣⎦得 1112011001A ---⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 从而得 1111112021011011000001001000B A A ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦.四、(本题满分8分.)【解析】方法1:对原方程组的增广矩阵作初等行变换:[][][][][]()[][]213153252112111122103455165506211210354009A b ++⨯-+⨯--⎡⎤⎡⎤⎢⎥⎢⎥=-→+-⎢⎥⎢⎥⎢⎥⎢⎥----+-⎣⎦⎣⎦-⎡⎤⎢⎥→+-⎢⎥⎢⎥+⎣⎦λλλλλλλλλλ 当45λ≠-且1λ≠时,()[]3r A r A b ==,即方程组的系数矩阵与增广矩阵的秩相等且等于未知量的个数,故原方程组有唯一解.当45λ=-时,()[]23r A r A b =≠=,即方程组的系数矩阵与增广矩阵的秩不相等,故原方程组无解.当1λ=时,原方程组的同解方程组为123121x x x x +-=⎧⎨=⎩ 1, 原方程组有无穷多解,其通解为12311x ,x k,x k.=⎧⎪=-+⎨⎪=⎩(k 为任意常数).(或[][][]123110011TTTx ,x ,x ,,k ,,=-+(k 为任意常数)) 方法2:原方程组系数矩阵的行列式()()2121111015445545A λλλλλλλ--=-=-=-+-,故知:当45λ≠-且1λ≠时,()[]3r A r A b ==,即方程组的系数矩阵与增广矩阵的秩相等且等于未知量的个数,故原方程组有唯一解.当45λ=-时,对原方程组的增广矩阵作初等行变换,得 [][][][][]152532421151045510455411245510455105455100094551A b ⨯⨯+⎡⎤--⎢⎥----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦()[]r A r A b ,≠即方程组的系数矩阵与增广矩阵的秩不相等,故原方程组无解.当1λ=时,对原方程组的增广矩阵作初等行变换,得[][][][]()[][]()[][][]1232321212314321111112111211120333011145510999000↔+⨯+⨯-⨯+⨯----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦()[]23r A r A b ==<,即方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,故原方程组有无穷多解,其通解为12311x ,x k,x k.=⎧⎪=-+⎨⎪==⎩(k 为任意常数).(或[][][]123110011TTTx ,x ,x,,k ,,=-+(k 为任意常数))五、(本题满分8分)【解析】由已知条件得2001122r d θθθθ=⋅⎰⎰.两边对θ求导,得2r =(隐式微分方程),解出r ',得 r '=±分离变量,得d θ=±.由于1()1arccos d r =-=⎰, 或sec 1arccos r tdt t r====⎰⎰,两边积分,得 1arccos c rθ=±+. 代入初始条件(0)2r =,得1arccos 23c π==,1arccos 3r πθ⇒=±.即L 的极坐标方程为113cos()cos sin 322r πθθθ=±≡, 从而,L 的直角坐标方程为32x y =.六、(本题满分8分)【解析】由23()()2a xf x f x x '=+,有 2()()32xf x f x a x '-=,即()3()2f x ax '=, 从而得 ()32f x a x C x =+,即23()2a f x x Cx =+.又由题设知,面积113()()2222a a CS f x dx Cx dx ==+=+=⎰⎰,得4C a =-,从而23()(4)2a f x x a x =+-. 旋转体体积 21122200316()[(4)]()23033a a a V a y dx x a x dx πππ==+-=++⎰⎰. 由1()()0153a V a π'=+=,解得惟一驻点5a =-;又由()015V a π''=>,5a =-是极小值点也是最小值点.(易验证,此时215()92f x x x =-+在(0,1]恒正.)七、(本题满分8分.)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而10(0)0f dt ϕ==⎰(),由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续性的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又1()()()(0),xf u du x f xt dt u xtx xϕ==≠⎰⎰从而 02()()()(0)xxf x f u dux x xϕ-'=≠⎰.由导数定义,有2()()(0)limlim22xx x f u du f x Ax x ϕ→→'===⎰.由于 02200()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续.八、(本题满分8分)【解析】设()sin 2f x x x π=-,研究()f x 在(0,)2π内的极值情况,从而判定它与水平线y k =的交点个数.由()1cos 02f x x π'=-=解得()f x 在(0,)2π内的唯一驻点02arccosx π=;由co s x 在(0,)2π单调减,()f x '在点0x 由负变正,0x 是()f x 的极小点也是最小点.最小值0000()sin 2f x x x y π=-;由此,最大值(0)()02f f π==(显然00y <).当0k ≥或0k y <时,()y f x =与y k =没有交点;当0k y =时,两者有唯一交点;当00y k <<时,两者有两个交点.评注:也可以设()sin 2g x x x k π=--,研究它的零点个数.。

1997考研数学三真题及答案解析

1997考研数学三真题及答案解析

(B) f (x) 0 , f (x) 0 (D) f (x) 0 , f (x) 0
()
(3) 设向量组1 ,2 ,3 线性无关,则下列向量组中,线性无关的是
()
(A) 1 2 ,2 3 ,3 1 (B) 1 2 ,2 3 ,1 22 3 (C) 1 22 , 22 33 , 33 1 (D) 1 2 3 , 21 32 223 , 31 52 53
8
4
{1 X 1} 出现的条件下, X 在 (1,1) 内的任一子区间上取值的条件概率与该子区间长
度成正比.试求 X 的分布函数 F (x) P{X x} .
十二、(本题满分 6 分) 游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第 5 分钟、25 分钟和 55 分钟
从底层起行. 假设一游客在早晨八点的第 X 分钟到达底层候梯处,且 X 在[0, 60] 上均匀分
设函数 f (x) 在[0, ) 上连续、单调不减且 f (0) 0 ,试证函数
F
(
x)
1 x
x t n f (t)dt,
0
若x 0,
0,
若x 0,
在[0, ) 上连续且单调不减(其中 n 0 ).
七、(本题满分 6 分)
从点 P1(1, 0) 作 x 轴的垂线,交抛物线 y x2 于点 Q1(1,1) ;再从 Q1 作这条抛物线的切线 与 x 轴交于 P2 ,然后又从 P2 作 x 轴的垂线,交抛物线于点 Q2 ,依次重复上述过程得到一系列 的点 P1,Q1; P2 ,Q2;; Pn,Qn; .
x2 y24t2
2
九、(本题满分 6 分)
设 A 为 n 阶非奇异矩阵, 为 n 维列向量, b 为常数.记分块矩阵

1997考研数一真题答案及详细解析

1997考研数一真题答案及详细解析

(5)【答案】 2 5
【解析】方法 1:利用全概率公式. 求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用
全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.
设事件 Ai “第 i 个人取得黄球”, i 1, 2 ,则完全事件组为 A1, A1 (分别表示第一个人
公式.
2. 拉格朗日中值定理:如果函数 f (x) 满足在闭区间 [a, b] 上连续,在开区间 a,b 内可导,
那么在 a,b 内至少有一点 (a b) ,使等式 f (b) f (a) f ()(b a) 成立.
(3)【答案】(A)
【解析】由于函数 esint sin t 是以 2 为周期的函数,所以,
(1)【答案】(C)
【解析】这是讨论 f (x, y) 在 (0, 0) 点是否连续,是否存在偏导数的问题.按定义
f (0, 0) d f (x, 0) , f (0, 0) d f (0, y) ,
x dx
x0 y
dy
y0
由于
f (x, 0) 0(x), f (0, y) 0(y) ,
偏导数且
E A
a O
C B
bx
方法 2:观察法.因为是要选择对任何满足条件的 f (x) 都成立的结果,故可以取满足条件的
特定的
Hale Waihona Puke f(x)来观察结果是什么.例如取
f
(x)
1 x2
, x [1, 2] ,则
S1
2 1
1 x2
dx
1 2
,S2
1 4
, S3
5 8
S2
S1
S3
.
【评注】本题也可用分析方法证明如下:

[VIP专享]1997年全国硕士研究生入学统一考试数学三试题

[VIP专享]1997年全国硕士研究生入学统一考试数学三试题

(1) 设 f (x) 1cosx sin t2dt, g(x) x5 x6 ,则当 x 0 时, f (x) 是 g(x) 的
0
56
()
(A) 低阶无穷小 (C) 等价无穷小
(B) 高阶无穷小 (D) 同阶但不等价的无穷小
(2)
若 f (x)Байду номын сангаас f (x)( x ) ,在 (, 0) 内 f (x) 0 ,且 f (x) 0 ,则在
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档