第十二讲-2聚类分析

合集下载

聚类分析简介

聚类分析简介

数据挖掘-聚类分析简介聚类分析是一种无监督学习技术,用于将数据集中的对象(例如数据点或样本)分成相似的组(簇),以便组内的对象相互之间更相似,而不同组之间的对象差异较大。

聚类分析的目标是发现数据中的隐藏模式、结构或群体,并将数据集分成具有相似性质或特征的子集。

以下是聚类分析的详细介绍:聚类的主要步骤:1.选择合适的距离度量:聚类算法需要一种方法来衡量数据点之间的相似性或距离。

常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度等。

2.选择聚类算法:选择适合数据和问题的聚类算法。

常见的聚类算法包括K均值聚类、层次聚类、DBSCAN(基于密度的聚类)、高斯混合模型等。

3.初始化:对于迭代型聚类算法(例如K均值),需要初始化聚类中心或其他参数。

初始值的选择可以影响聚类结果。

4.分配数据点到簇:根据数据点之间的相似性,将每个数据点分配到一个簇中。

不同的算法使用不同的分配策略。

5.更新簇的代表:对于迭代聚类算法,计算每个簇的新代表,通常是簇内所有数据点的平均值。

6.重复迭代:重复步骤4和步骤5,直到满足停止条件,例如簇中心不再改变或达到最大迭代次数。

7.评估聚类结果:使用合适的评估指标来评估聚类的质量。

常用的指标包括轮廓系数、Davies-Bouldin指数、互信息等。

常见的聚类算法:1.K均值聚类(K-Means Clustering):K均值是一种迭代型聚类算法,通过指定簇的数量K来将数据分成K个簇。

它以簇的中心点(均值)作为代表。

2.层次聚类(Hierarchical Clustering):层次聚类是一种层次化的聚类方法,可以创建层次化的聚类结构。

它可以是自底向上的凝聚聚类或自顶向下的分裂聚类。

3.DBSCAN(Density-Based Spatial Clustering of Applications with Noise): DBSCAN 是一种基于密度的聚类算法,能够识别不规则形状的簇,并能处理噪声数据。

聚类分析_精品文档

聚类分析_精品文档

1聚类分析内涵1.1聚类分析定义聚类分析(Cluste.Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.也叫分类分析(classificatio.analysis)或数值分类(numerica.taxonomy), 它是研究(样品或指标)分类问题的一种多元统计方法, 所谓类, 通俗地说, 就是指相似元素的集合。

聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性, 不同类中的个体差异很大。

1.2聚类分析分类聚类分析的功能是建立一种分类方法, 它将一批样品或变量, 按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富, 按其聚类的方法可分为以下几种:(1)系统聚类法: 开始每个对象自成一类, 然后每次将最相似的两类合并, 合并后重新计算新类与其他类的距离或相近性测度. 这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法): 首先对n个对象初步分类, 然后根据分类的损失函数尽可能小的原则对其进行调整, 直到分类合理为止.(3)最优分割法(有序样品聚类法): 开始将所有样品看成一类, 然后根据某种最优准则将它们分割为二类、三类, 一直分割到所需的K类为止. 这种方法适用于有序样品的分类问题, 也称为有序样品的聚类法.(4)模糊聚类法: 利用模糊集理论来处理分类问题, 它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法: 利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题, 在多元统计分析中, 可用来作预报的方法很多, 如回归分析和判别分析. 但对一些异常数据, 如气象中的灾害性天气的预报, 使用回归分析或判别分析处理的效果都不好, 而聚类预报弥补了这一不足, 这是一个值得重视的方法。

聚类分析(讲课)

聚类分析(讲课)

68
计算两两相关系数,用 系数作为距离的远近
相关系数

根据前期的调研,研究者认为移动用户应当被 分为3个主要群体,现希望得到相应的定量聚类 结果。
64
看一下统计描述
聚类的原理就是空间中 的距离,测量尺度越高 的,算距离的时候重要 性越大。 该题均值、标准差分布 较大,需要对数据进行 标化处理
看一下统计描述
生成标化后的变量
对标化后的数据聚类
对标化后的数据聚类,并保存聚类成员


几何上可以按空间距离的远近来划分类别
53
方法原理


假定研究对象均用所谓的“点”来表示。
在聚类分析中,一般的规则是将“距离”较小 的点归为同一类,将“距离”较大的点归为不 同的类。
54
方法原理

在右图中可以看到五 个样品应当可能被分 为两组或者三组, C/D组x和y的取值均 偏低,而另三个所在 组x和y的取值均偏高 分为两类或三类都是 可接受的
聚类分析
方法原理

按照个体(记录)的特征将它们分类,使同一类别 内的个体具有尽可能高的同质性,而类别之间则具 有尽可能高的异质性。 为了得到比较合理的分类,首先要采用适当的指标 来定量地描述研究对象之间的联系的紧密程度。

53
方法原理

按照个体(记录)的特征将它们分类,使同一类别 内的个体具有尽可能高的同质性,而类别之间则具 有尽可能高的异质性。 为了得到比较合理的分类,首先要采用适当的指标 来定量地描述研究对象之间的联系的紧密程度。
62
K-means Cluster过程

方法特点

要求已知类别数 可人为指定初始中心点 节省运算时间,样本量过大时有必要考虑

聚类分析方法

聚类分析方法

聚类分析方法
聚类分析是一种常用的数据挖掘方法,它可以将相似的数据点分组在一起。

在聚类分析中,数据被分为多个类别,每个类别都包含具有类似特征的数据点。

聚类分析方法有很多种,其中一种是K均值聚类。

K均值聚
类的目标是将数据点分为K个簇,使得每个数据点都属于与
其最近的质心所代表的簇。

首先,在聚类分析中,需要先选择一个初始的簇质心,然后迭代地将每个数据点分配到与其最近的质心所代表的簇中,然后更新簇质心的位置,直到达到收敛。

另一种常见的聚类分析方法是层次聚类。

层次聚类将数据点逐渐合并成一个个的簇,直到所有数据点都属于同一个簇。

层次聚类可以根据不同的相似性度量来合并簇,例如单链接、完全链接或平均链接等。

另外,谱聚类是一种基于图论的聚类方法,它利用数据点之间的相似性构建一个相似度矩阵,并将其转化为一个图。

然后,通过计算图的特征向量来对数据进行聚类分析。

聚类分析方法还有很多其他的变体和扩展,例如密度聚类、模糊聚类和网格聚类等。

这些方法可以根据具体的问题和数据类型来选择和应用。

总的来说,聚类分析方法是一种无监督学习的方法,可以用于发现数据中的内在结构和模式。

它在很多领域都有广泛的应用,
如市场分析、社交网络分析和生物信息学等。

通过应用聚类分析方法,可以帮助我们更好地理解和分析数据。

聚类分析基本讲义

聚类分析基本讲义

数据的粗聚类是两类,细聚类为4类
8
2.2 模式相似性测度
2.2.1 距 离 测 度
2.2.2 相 似 测 度 2.2.3 匹 配 测 度
9
•在聚类之前,要首先分析样品间的相似性,常
用距离来测度样品之间的相似程度。每个样品有
p个指标(变量)从不同方面描述其性质,形成 一个p维的向量。如果把n个样品看成p维空间中 的n个点,则两个样品间相似程度就可用p维空间 中的两点距离公式来度量。两点距离公式可以从 不同角度进行定义。
19
(3) 指数相关系数
2 ( x y ) 1 3 i i e( x , y ) exp[ ] 2 n i 1 4 i n
这里假设 x 和 y 的维数n相同、概率分布相同。
i2是第i个分量的方差。
性质:不受量纲变化的影响。
20
无论是夹角余弦还是相关系数,它们的绝对值都小 于1,作为变量近似性的度量工具,我们把它们统记 为cij。当∣cij∣= 1时,说明变量Xi与Xj完全相似; 当∣cij∣近似于1时,说明变量Xi与Xj非常密切;当 ∣cij∣ = 0时,说明变量Xi与Xj完全不一样;当 ∣cij∣近似于0时,说明变量Xi与Xj差别很大。据此, 我们把比较相似的变量聚为一类,把不太相似的变 量归到不同的类内。 在实际聚类过程中,为了计算方便,我们把变量间 相似性的度量公式作一个变换为 dij = 1 ∣cij∣ 或者 dij2 = 1 cij2 用表示变量间的距离远近,小则与先聚成一类, 这比较符合人们的一般思维习惯。
d ( x , y ) x y [ ( xi yi )2 ]1/ 2
i 1 n
, yn ) '
⑵ 绝对值距离(街坊距离或Manhattan距离)

聚类分析详解ppt课件

聚类分析详解ppt课件

以上我们对例6.3.1采用了多种系统聚类法进行聚类,其结果 都是相同的,原因是该例只有很少几个样品,此时聚类的过 程不易有什么变化。一般来说,只要聚类的样品数目不是太 少,各种聚类方法所产生的聚类结果一般是不同的,甚至会 有大的差异。从下面例子中可以看到这一点。
动态聚类法(快速聚类)
(4) 对D1 重复上述对D0 的两步得 D2,如此下去 直至所有元素合并成一类为止。
如果某一步Dm中最小的元素不止一个,则称此现 象为结(tie),对应这些最小元素的类可以任选一对 合并或同时合并。
27
二、最长距离法
类与类之间的距离定义为两类最远样品间的距离, 即
DKL
max
iGK , jGL
聚类分析应注意的问题
(1)所选择的变量应符合聚类的要求
如果希望依照学校的科研情况对高校进行分类,那么可以 选择参加科研的人数、年投入经费、立项课题数、支出经 费、科研成果数、获奖数等变量,而不应选择诸如在校学 生人数、校园面积、年用水量等变量。因为它们不符合聚 类的要求,分类的结果也就无法真实地反映科研分类的情 况。
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
聚类分析的种类
(1)系统聚类法(也叫分层聚类或层次聚类) (2)动态聚类法(也叫快速聚类) (3)模糊聚类法 (4)图论聚类法
系统聚类法
对比
常用的系统聚类方法
一、最短距离法 二、最长距离法 三、中间距离法 四、类平均法 五、重心法 六、离差平方和法(Ward方法)
对比
k均值法的基本步骤
(1)选择k个样品作为初始凝聚点,或者将所有样品分成k 个初始类,然后将这k个类的重心(均值)作为初始凝聚点。

聚类分析法ppt课件全

聚类分析法ppt课件全

8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024

聚类分析法ppt课件

聚类分析法ppt课件

7
(2)计算样品的距离。
d ij xi x j yi y j
8
G1
D(0)
G2 G3
G4
G5
G1 G2 G3 G4 G5
0 0.34 1.37 1.34 1.33
0 1.03 1 1.67
0 0.63 1.3
0 0.67
0
9
(3)找出D(0)非对角线上的最小元素, 将其对应的两个类合并为一个新类。
0 0.63 1.30 0 0.67
0
19
0
D(2)
1.37 0
1.67 1.30
0
20
0 1.67
D(3)
0
21
G1 G2 G3 G4 G5
0.4
0.8 1.2 1.6 2.0
聚类距离
பைடு நூலகம்22
G1 G2 G3 G4 G5
0.2 0.4 0.6 0.8 1.0
G1 G2 G3 G4 G5
0.4
0.8
1.2
1.6
2.0
聚类距离
聚类距离
23
某村对5个地块就其土壤质地和土壤有机 质含量进行了评估,结果如下。请分别 使用最长距离法和最短距离法对这5个地 块进行聚类分析,要求分为两类。
地块 A
B
C
D
E
质地 8
3
6
6
4
有机质 5
7
4
9
7
含量
24
聚类分析法
Cluster Analysis
1
聚类分析
将具有相似(similarity)性质(或距离)的 个体(样本)聚为一类,具有不同性质 的个体聚为不同的类。

聚类分析法

聚类分析法

聚类分析法聚类分析是一种常用的数据分析方法,主要用于将相似的样本归类到同一类别中。

它是数据挖掘和机器学习领域中非常重要的一项技术,被广泛应用于各个领域,如市场研究、医学诊断、社交网络分析等。

本文将介绍聚类分析的基本概念、方法和应用,并分析其优势和局限性。

聚类分析是一种无监督学习方法,它不依赖于事先标定好的训练数据集。

通过对给定的数据进行聚类,我们可以发现数据中隐藏的模式、结构和规律。

聚类分析的基本思想是通过计算样本之间的相似度或距离,将相似的样本归为一类,从而实现对数据的分类。

在聚类分析中,相似度或距离的度量是一个关键问题,常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。

聚类分析的方法主要有层次聚类和划分聚类两种。

层次聚类是将样本逐步合并或分割成不同的类别,形成层次化的分类结果。

划分聚类是将所有的样本划分为K个不相交的类别,每个类别之间是互不重叠的。

这两种方法各有优劣,选择何种方法取决于具体的问题和数据特点。

聚类分析的应用非常广泛。

在市场研究中,聚类分析可以将消费者按照其购买行为、兴趣偏好等特征划分为不同的群体,为企业提供有针对性的营销策略。

在医学诊断中,聚类分析可以将病人按照其病情特征进行分类,帮助医生进行准确的诊断和治疗。

在社交网络分析中,聚类分析可以将社交网络中的用户划分为不同的社区,研究社交网络的结构和特征。

然而,聚类分析也存在一些局限性和挑战。

首先,聚类算法的结果很大程度上依赖于选择的相似度或距离度量方法,不同的度量方法可能导致不同的聚类结果。

其次,聚类算法对初始的聚类中心的选择非常敏感,不同的初始选择可能会得到不同的聚类结果。

此外,聚类算法还面临维度灾难的问题,当数据的维度很大时,聚类算法的计算复杂度会急剧增加。

在实际应用中,我们还可以将聚类分析与其他数据挖掘方法相结合,以获得更好的分析结果。

比如,我们可以将聚类分析与关联规则挖掘结合起来,通过挖掘不同类别之间的关联规则,深入分析不同类别之间的关系。

聚类分析法 PPT课件

聚类分析法 PPT课件
所以,根据一对零件亲疏的程度,Sij值在0到1之间变化。
(二)聚类方法和类相似系数
成组技术 GT
单一样品对之间可以根据原始数据构造一定的相似系数统 计量来描述它们之间的相似性。同样,当样品合并成类时, 也可以按一定的法则构造相似系数统计量,以描述样品与 类之间或类与类之间的相似程度。
这种构造样品与类与类之间的相似系数统计量的法则称为 聚类方法,该统计量称为类相似系数。
比如学生成绩数据就可以对学生按照理科或文科成绩(或 者综合考虑各科成绩)分类。
当然,并不一定事先假定有多少类,完全可以按照数据本 身的规律来分类。
如何度量远近?
成组技术 GT
如果想要对100个学生进行分类,如果仅仅知道他们的数 学成绩,则只好按照数学成绩来分类;这些成绩在直线上 形成100个点。这样就可以把接近的点放到一类。
如果还知道他们的物理成绩,这样数学和物理成绩就形成 二维平面上的100个点,也可以按照距离远近来分类。
三维或者更高维的情况也是类似;只不过三维以上的图形 无法直观地画出来而已。在饮料数据中,每种饮料都有四 个变量值。这就是四维空间点的问题了。
成组技术 GT
如果以n个数值型变量(n维空间)来描述某一类事物,则 一个事物就是n维空间中是一个点。
令加工零件Xi与Xj使用的机床总数目分别为CI与CJ,则 有:
Ci CI Cij C j CJ Cij 将以上两式代入式1得:
Sij

CI
Cij
(式2)
CJ —Cij
相似系数Sij可以用来判定一对零件的相似程度。若一对零 件加工机床的类型与数目完全相同,则Sij=1,若没有相同 的机床,则Sij=0 。
聚类分析作分类时各类群乃至类群数事先未知,而是根据数 据的特征确定的,又称为无师可循的分类。

聚类分析方法

聚类分析方法

聚类分析方法聚类分析方法是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。

通过将数据分成不同的组别,聚类分析可以帮助我们理解数据之间的相似性和差异性,从而为后续的数据挖掘和决策提供有力支持。

在聚类分析中,最常用的方法包括层次聚类和K均值聚类。

层次聚类是一种基于数据间的相似性度量,逐步将数据点进行合并的方法。

它可以帮助我们发现数据中的层次结构,从而更好地理解数据的内在关联。

而K均值聚类则是一种基于距离度量的方法,它通过迭代的方式将数据点划分到K个簇中,每个簇的中心点代表了该簇的特征。

这两种方法各有优势,可以根据具体情况选择合适的方法进行分析。

在进行聚类分析时,我们需要首先选择合适的距离度量和相似性度量。

常用的距离度量包括欧氏距离、曼哈顿距离和闵可夫斯基距离等,而相似性度量则可以选择相关系数、余弦相似度等。

选择合适的距离度量和相似性度量对于聚类结果的准确性至关重要,因此需要认真进行选择和评估。

另外,聚类分析还需要确定合适的聚类数目。

聚类数目的选择直接影响到最终的聚类结果,因此需要通过合适的评估指标来确定最佳的聚类数目。

常用的评估指标包括轮廓系数、Calinski-Harabasz指数等,它们可以帮助我们评估不同聚类数目下的聚类效果,从而选择最佳的聚类数目。

在进行聚类分析时,我们还需要考虑数据的预处理工作。

数据预处理包括数据清洗、标准化、降维等工作,它可以帮助我们提高聚类结果的准确性和稳定性。

在进行数据预处理时,需要根据具体情况选择合适的方法和技术,从而保证数据的质量和可靠性。

总的来说,聚类分析方法是一种非常有用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构,从而为后续的数据挖掘和决策提供有力支持。

在进行聚类分析时,我们需要选择合适的方法和技术,并进行充分的数据预处理工作,从而保证分析结果的准确性和可靠性。

希望本文对聚类分析方法有所帮助,谢谢阅读!。

聚类分析—搜狗百科

聚类分析—搜狗百科

聚类分析—搜狗百科依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。

聚类分析区别于分类分析(classification analysis) ,后者是有监督的学习。

变量类型:定类变量、定量(离散和连续)变量聚类方法1,层次聚类(Hierarchical Clustering)合并法、分解法、树状图2. 非层次聚类划分聚类、谱聚类聚类方法特征:聚类分析简单、直观。

聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析;不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解;聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。

研究者在使用聚类分析时应特别注意可能影响结果的各个因素。

异常值和特殊的变量对聚类有较大影响当分类变量的测量尺度不一致时,需要事先做标准化处理。

当然,聚类分析不能做的事情是:自动发现和告诉你应该分成多少个类——属于非监督类分析方法期望能很清楚的找到大致相等的类或细分市场是不现实的;样本聚类,变量之间的关系需要研究者决定;不会自动给出一个最佳聚类结果;我这里提到的聚类分析主要是谱系聚类(hierarchical clustering)和快速聚类(K-means)、两阶段聚类(Two-Step);根据聚类变量得到的描述两个个体间(或变量间)的对应程度或联系紧密程度的度量。

可以用两种方式来测量:1、采用描述个体对(变量对)之间的接近程度的指标,例如“距离”,“距离”越小的个体(变量)越具有相似性。

2、采用表示相似程度的指标,例如“相关系数”,“相关系数”越大的个体(变量)越具有相似性。

聚类分析原理

聚类分析原理

聚类分析原理聚类分析是一种常用的数据分析方法,它可以将数据集中的个体按照相似性进行分组,从而揭示数据内在的结构和规律。

在实际应用中,聚类分析被广泛应用于市场细分、社交网络分析、生物信息学、图像处理等领域。

本文将介绍聚类分析的原理及其常见的方法。

首先,聚类分析的原理是基于样本之间的相似性进行分组。

相似的样本被归为同一类别,而不相似的样本则被划分到不同的类别中。

在进行聚类分析时,我们需要选择合适的相似性度量方法,常见的相似性度量包括欧氏距离、曼哈顿距离、余弦相似度等。

通过计算样本之间的相似性,我们可以构建出样本之间的相似性矩阵,从而为后续的聚类分析提供依据。

其次,聚类分析的方法包括层次聚类和非层次聚类两种。

层次聚类是一种自下而上或自上而下的聚类方法,它通过计算样本之间的相似性来构建聚类树,从而实现对样本的分层聚类。

非层次聚类则是一种直接将样本划分为不同类别的方法,常见的非层次聚类方法包括K均值聚类、DBSCAN聚类等。

不同的聚类方法适用于不同的数据特点和分析目的,选择合适的聚类方法对于获得准确的聚类结果至关重要。

此外,聚类分析还需要考虑到聚类数目的确定。

在进行聚类分析时,我们需要事先确定聚类的数目,这也是聚类分析的一个重要参数。

常见的确定聚类数目的方法包括肘部法则、轮廓系数法等。

通过选择合适的聚类数目,我们可以获得更加准确和有意义的聚类结果。

总之,聚类分析是一种重要的数据分析方法,它可以帮助我们揭示数据内在的结构和规律。

在进行聚类分析时,我们需要选择合适的相似性度量方法、聚类方法和确定聚类数目的方法,以获得准确和有意义的聚类结果。

希望本文能够帮助读者更好地理解聚类分析的原理和方法,从而更好地应用聚类分析于实际问题中。

聚类分析课件

聚类分析课件

聚类分析课件聚类分析课件聚类分析是一种常用的数据分析方法,它可以将一组数据分成不同的类别或簇,每个簇内的数据点具有相似的特征,而不同簇之间的数据点具有较大的差异。

聚类分析在各个领域都有广泛的应用,如市场细分、社交网络分析、医学诊断等。

在本文中,我们将介绍聚类分析的基本概念、常用算法和实际应用案例。

一、聚类分析的基本概念聚类分析的目标是通过对数据进行分组,使得每个组内的数据点相似度较高,而不同组之间的相似度较低。

聚类分析的基本概念包括距离度量和聚类算法。

1. 距离度量距离度量是衡量数据点之间相似度或差异度的标准。

常用的距离度量方法包括欧氏距离、曼哈顿距离和闵可夫斯基距离等。

欧氏距离是最常用的距离度量方法,它计算数据点在多维空间中的直线距离。

曼哈顿距离则计算数据点在坐标轴上的绝对距离,而闵可夫斯基距离则是这两种距离的一种泛化形式。

2. 聚类算法常用的聚类算法包括K-means算法、层次聚类算法和DBSCAN算法等。

K-means算法是一种迭代的、基于距离的聚类算法,它将数据点分成K个簇,使得每个簇内的数据点与该簇的中心点的距离最小。

层次聚类算法则是一种自底向上的聚类算法,它通过计算数据点之间的相似度来构建一个层次结构。

DBSCAN算法是一种基于密度的聚类算法,它将数据点分为核心点、边界点和噪声点三类,具有较好的鲁棒性和灵活性。

二、常用的聚类分析算法1. K-means算法K-means算法是一种迭代的、基于距离的聚类算法。

它的基本思想是随机选择K个初始中心点,然后将每个数据点分配到距离其最近的中心点所对应的簇中。

接着,重新计算每个簇的中心点,并重复这个过程直到收敛。

K-means算法的优点是简单易实现,但它对初始中心点的选择敏感,并且需要预先指定簇的个数K。

2. 层次聚类算法层次聚类算法是一种自底向上的聚类算法。

它的基本思想是将每个数据点看作一个独立的簇,然后通过计算数据点之间的相似度来构建一个层次结构。

多元统计分析——聚类分析

多元统计分析——聚类分析

多元统计分析——聚类分析多元统计分析中的聚类分析(Cluster Analysis)是一种将相似的个体或对象归为一类的数据分析方法。

聚类分析的目的是通过寻找数据中的相似性来识别或发现存在的模式和结构,可以帮助我们理解和解释数据中的复杂性。

聚类分析在许多领域中都得到了广泛的应用,例如市场细分、社会学、生物学、医学等。

聚类分析的基本原理是将数据样本根据其相似性归为不同的组或类。

相似性可以通过计算数据之间的距离或相似度来度量。

常用的距离度量方法有欧氏距离、曼哈顿距离、闵可夫斯基距离等,相似度度量方法有相关系数、夹角余弦等。

在聚类分析中,我们通常将相似的样本放在同一类别中,不相似的样本放在不同类别中。

聚类分析可以分为两种类型:层次聚类和划分聚类。

层次聚类是一种将数据样本分层次地组织成树状结构的聚类方法。

划分聚类则是将数据样本划分为预先确定的K个不重叠的类的聚类方法。

其中最常用的层次聚类算法有聚合法和分裂法,最常用的划分聚类算法是K均值算法。

聚类分析的基本步骤包括数据准备、相似度度量、类别划分和结果解释。

在数据准备阶段,需要选择合适的变量和样本。

相似度度量是聚类分析的核心,不同的距离或相似性度量方法可能会导致不同的聚类结构。

类别划分可以根据层次聚类算法或划分聚类算法来进行。

结果解释则是对聚类结果进行分析和解释,常用的方法包括聚类矩阵、平均距离图、树状图等。

聚类分析的优势在于能够帮助我们理解数据中的结构和模式,发现数据中的共性和差异性。

聚类分析可以为我们提供有关样本之间的关系和特征的重要信息。

此外,聚类分析还可以帮助我们进行市场细分和目标市场选择、发现新的疾病群和药物靶点等。

然而,聚类分析也存在一些局限性。

首先,聚类结果可能会受到初始聚类中心选择的影响。

其次,聚类结果的解释需要结合领域知识和专家判断,可能存在主观性。

此外,聚类分析对数据的样本大小和变量数目也有一定的要求,数据的维度增加会导致计算量的增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
聚类结果的验证和进一步分析
根据聚类树,究竟聚成几类合适?
考虑每类中含有的变量不能太少,相对均 衡
如何验证聚类结果?类间差异是否显著? 各类的特征如何?将来如何结合专业解释 ?
进行方差分析或非参数检验,理想结果类间
差异有统计学意义
17
同样数据,记录聚类结果
18
在method中必须指定标准化方法
4,聚类前应对变量作预处理,剔除无效变量以及缺失值过 多的变量。
5,一般需对变量作标准化变换,以消除量纲和变异大幅波
动的影响。
37
等间隔测度的变量选择连续变量距离测度方法Interval
离散分布的计数变量选择counts
15
对于二值变量选择Binary,1表示出现,0表示不出现
聚类谱系图(聚类树)
相对类间距离25
五类:五个变量各成一类; 四类:organic和CEC变量合并为一类 两类:organic和CECSANDFRAC一类,两外一类
方法:有多种聚类方法 聚类结果的解释和证实
5
二、相似系数
意义:用相似系数度量指标和样品间的相似程度.
1.指标(变量)间的相似系数:
①变量为计量数据 相关系数(r)
rij
lx y lxx lyy

②变量为计数数据(等级或两分类)
列联系数(C)
2 C 2 n
二、相似系数
2.个体(样品)间的相似系数
21
四、快速样品聚类 计算步骤
(k-means cluster)
1.事先人为指定分类数(k类).
2.根据数据本身的结构确定k类的原始中心点
(mean).
3.逐一计算每个记录到各个类别中心点的距离, 就近归类。计算新的中心点(用平均数表示).
4.根据新中心点(mean),计算各记录的距离.
5.重复3-4步.达到规定要求结束.
计量数据 计数变量 二值变量
对距离和相似性测度方法
聚类方法method选择 组间连接:between 组内连接within 最近邻法nearest 最远邻法futthest 重心聚类法centroid 中位数法median Ward最小方差法Ward 默认方法是非常稳健的 方法
指定哪两点间的距离作为确定是否合并的距离。
3
一、概述
4.聚类方法 根据分类样品(变量)的多少及特点。 1. 系统(层次)聚类---(例数少) 2. 非层次聚类:快速聚类(k-means) 3. 智能聚类
两步聚类---例数多(two steps) 神经网络的聚类---(自动确定类别) * SPSS软件可实现.
4
一、概述
5.步骤 选择变量 计算相似性:用距离系数或相关系数. 根据相似性对样品(变量)归类.
19
20
四、快速样品聚类(k-均值聚类法) (k-means cluster)
用于数量较大的样品聚类.占用内存少, 处理速度快。
可以完全使用系统默认值执行该命令,也可 人为干预。
必须选择聚类的变量和类数,必须至少有一 个是数值型变量。
应该制定一个表明观测量特征的变量作为标 识变量,如编号、姓名等变量。
2
一、概述
3.类型 R型聚类:即变量聚类,对n个指标(变量
或variable )归类(index-cluster-analysis)。 找出彼此独立有代表性的自变量,又不丢 失大部分信息。
Q型聚类:即样本聚类,对n个观察对象
(样品或case)归类(samples-cluster-
analysis)。
特点如下: 分类变量和连续变量都可以参与两步聚类 可以自动确定分类数 预算速度快 两步: 第一步:预聚类对每个观测量考察一遍,确定
类中心 第二步:正式聚类,使用凝聚法对特征树的叶
节点分组 33
五、两步聚类Two step
条件: 变量独立:用相关分析检验两个连续变
量间的独立性;用列联表检查分类变量 间的独立性;用Means过程检验连续变 量和分类变量间的独立性 分类变量使多项式分布:卡方检验 连续变量是正态分布:K-S
第十二讲 聚类分析 (Cluster Analysis)
古语: “物以类聚”,“人以群分” 找出特征相似的类别,研究其规律性。
一、概 述
1.概念 聚类分析是将未知现象进行归类的多元
统计方法 。高度的组内一致性;高度的组 间异质性。
2.主要用途 对研究的事物分类或做探索性的研究。
目的: 通过分类,找出同类的共性和不同类 的差异,为决策提供参考.
用个体间某变量(x)的距离(dij)表示: 欧氏距离:(Euclidean distance)
绝对 d ij ( xi x j ) 2 i和j表示不同个体
距离:
dij xi x j
距离越小,样品间相似程度越高.
7
三、系统聚类(层次聚类)
凝聚法
(hierarchical clustering) 分解法
均为计量数据
25
人为给出 分类数
保存分类 结果
标识变量
26
27
输出结果 结果1.初始类中心
系统产生的初始类中心
28
结果2.迭代过程中类中心的变化量
第一次迭代与初始类中心的距 离分别为52.265和45.793
共经过8次迭代完成聚类。当进行了第8次 迭代后,类中心几乎没有变化,结束聚类29
结果3.各观测量所属类成员表
11
analyze
对变量聚类 对观测量聚类 为连续性变量
12
输出
Plots:统计图表
Dendrogram:树 形图
Icicle:冰柱图
显示方向
如果是记录聚类还 可以通过save生成 聚类结果变量
数据标准化问题
事先通过变量的描述 性统计分析确定数据 量纲间的差异性,决 定是否要标准化
标准化,聚类变量量纲不同,数量级相差太大,需要消 除量纲影响并增强数据可比性需进行数据标准化。 正态分布数据,采用Z分数法,Z Scores 若量纲同且差异不大,选默认值none,不进行标准化14 。
22
快速聚类条件
23
快速样品聚类的原理
选k个凝聚点
初始分类
分类是否合理 是 最终分类
修改分类 否
24
快速样品聚类特点
优点: ✓ 用于数量较大的样品聚类.计算速度快. ✓ 提供统计检验比较类间的差异。 缺点:
✓ 不能自动确定类别数,根据经验确定或不 断调整类别(k)得到结果。
✓ 不能输出树状图信息,不直观. ✓ 只能对记录聚类。不能对变量聚类。变量
分解成新类. 3.重复第2步过程,直到每个个体自成一
类为止. 两种方法均是相近的聚为一类。
三、系统聚类(层次聚类)
(hierarchical clustering)
优点: 可对变量聚类,也可对记录聚类 变量可为连续也为分类变量 缺点: 数据量太大时,速度很慢
10
聚类用数据:245个记录,5个变量
34
分类变量和 连续变量
所有聚类变量 均是连续的
指定分类数
将分类结果 输出到文件
35
分类结果,多出来分类列变量
36
聚类分析总结和注意问题
1,层次聚类:变量和记录聚类。聚类图,直观、便于解释
2,k-means 聚类:主要对记录(case)聚类。
在样品量较大时,计算速度快。但结果展示不直观。
3,用于数据的探索性分析,结果解释应密切结合专业知识, 同时尝试用多种聚类方法分类,获得结论。
(一)凝聚法(合并法)步骤:
1.将每个变量(样品)各视为一类. 2.将相似系数最大(距离最小)的两类合并新
类, 计算新类与其他类的类间相似系数.
3.重复第2步过程,直到全部合并为一类. SPSS提供此法
8
三、系统聚类(层次聚类)
(hierarchical clustering)
(二)分解法步骤: 1.将所有变量(样品)视为属于一大类. 2.将相似系数最小(距离最大)的类逐层
30
输出结果
结果4. 各变量均数在3类间的统计差别
三个变量中任意一个的类间均方都远大于误差均方, 三个变量使类间无差异的加深成立的概率均小于 0.05。表明,三个变量能很好的区分各类,类间差 异足够大。H0:类均值相等,类间无差异。
31
结果5. 各个体分类后的编号和例数
32
五、两步聚类Two step
相关文档
最新文档