大学物理同步训练1-15章(第2版) 2

合集下载

大学物理

大学物理

复习参考题(课本同步训练)1(10.12)一质点作简谐振动,周期为T .质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T /4. (B) T /12 (C) T /8 (D) T /6 2(10.15)一简谐振动曲线如图所示.则振动周期是(A) 2.62 s .(B) 2.40 s . (C) 2.20 s .(D) 2.00 s .3(10.17)一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 (A) 1 s .(B) (2/3) s .(C) (4/3) s . (D) 2 s .4(10.18)一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为___________;(2)振子在平衡位置向正方向运动,则初相为_________;(3) 振子在位移为A /2处,且向负方向运动,则初相为___. 5(10.19)一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____;ω =__________;φ =________.6(10.22)一简谐振动的旋转矢量图如图所示,振幅矢量长2 cm ,则该简谐振动的初相为________.振动方程为__________.7(10.24)两个同方向的简谐振动曲线如图所示.合振动的振幅为_______,合振动的振动方程为_________.8(10.29)一简谐振动的振动曲线如图所示.求振动方程.9(11.11)机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C)其波速为10 m/s . (D)波沿x 轴正向传播.t · -- -10(11.16)一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则(A) O 点的初相为00=φ(B) 1点的初相为π-=211φ.(C) 2点的初相为π=2φ.(D) 3点的初相为π-=213φ.11(11.20)在波长为λ 的驻波中两个相邻波节之间的距离为 (A) λ .(B) 3λ /4. (C) λ /2.(D) λ /4.12(11.23)平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ________; 振幅A = ______; 频率ν = ____________.13(11.24)频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.14(11.26)频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为______.15(11.27)图为t = T / 4 时一平面简谐波的波形曲线,则其波的表达式为________________________.16(11.33)一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示求(1) x = 0处质点振动方程 (2) 该波的表达式.17(11.34)已知一平面简谐波的表达式为)37.0125cos(25.0x t y -= (SI) (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差.18(11.36)一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示. 写出此波的表达式.19(12.3)在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 (C) 传播的路程不相等,走过的光程相等.- - xuOt =t ′yx u O y20(12.4)如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A)4πn 2 e / λ.21(12.5)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(B) 使两缝的间距变小.22(12.9)用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为n 的透明薄膜,两束反射光的光程差δ =________.23(12.10)若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ.24(12.11)一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放在水中,干涉条纹的间距将为_______mm .(设水的折射率为4/3)25(12.12)一束波长为λ=600 nm (1 nm=10-9 m)的平行单色光垂直入射到折射率为n =1.33的透明薄膜上,该薄膜是放在空气中的.要使反射光得到最大限度的加强,薄膜最小厚度应为_________nm .26((12.16)在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.27(12.18)在折射率为1.52的玻璃表面镀一层MgF 2(n = 1.38)透明薄膜作为增透膜.欲使它对波长为λ = 500 nm 的单色光在正入射时尽量少反射,则薄膜的厚度最小应是多少?28(13.6)在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (B) 4 个29(13.9)对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大欲使屏幕上出现更高级次的主极大应该(B) 换一个光栅常数较大的光栅.30(13.10)一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光.n 13λ31(13.14)波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程出现主极大的衍射角ϕ应满足的条件)为__________________.32(13.15)波长为λ=550 nm(1nm=10-9m)的单色光垂直入射于光栅常数d=2×10-4cm的平面衍射光栅上,可能观察到光谱线的最高级次为第________________级.33(13.17)单缝的宽度a =0.10 mm,在缝后放一焦距为50 cm的会聚透镜,用平行绿光(λ=546 nm)垂直照射到单缝上,试求位于透镜焦平面处的屏幕上中央明条纹宽度.(1nm=10-9m)34(14.5)两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零.35(14.7)一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2.(B) 1 / 3.(C) 1 / 4 (D) 1 / 5.36(14.8)一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面(D)是部分偏振光.37(14.9)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光则知折射光为(D) 部分偏振光且折射角是30°.38(14.12)一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃板的折射率等于____________.39(14.13)假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.40(14.15)将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光换为强度相同的自然光,求透过每个偏振片后的光强. 41(14.16)如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光 判断在玻璃板下表面处的反射光是否也是线偏振光?42(15.7)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速) (A) c ·∆t (B) v ·∆t(C)2)/(1c t c v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆ [ ]43(15.8)一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是:(c 表示真空中光速) (A) v = (1/2) c . (B) v = (3/5) c . (C) v = (4/5) c . (D) v = (9/10) c .44(15.11)狭义相对论确认,时间和空间的测量值都是______________,它们与观察者的______________密切相关.45(15.12)一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为 0.8 m .则此米尺以速度v =__________________________m ·s -1接近观察者.46(15.14)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,求乙相对于甲的运动速度是(c 表示真空中光速)和乙测得两事件的空间距离.47(16.19)康普顿效应的主要特点是(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.48(16.20)光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,在以下几种理解中,正确的是(D) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程.49(16.27)康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同. 50(16.28)某一波长的X 光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.。

天津理工大学 大学物理同步训练答案 干涉

天津理工大学 大学物理同步训练答案 干涉

l
10
l
热光源中相应的波列长度只有1m的数量级
各个分子或原子的激发和辐射参差不齐
从微观上说一列列光波的发射都是偶然的,彼此之间没有 联系,因而在同一时刻各个分子或原子所发出的光波的频率、 振动方向和位相也各不相同。 当然对于大量分子和原子所组成的热光源来说,在恒定的 温度下还是存在着一定的宏观规律的。例如发射的总功率一定, 能量按各种波长的分布也一定等。 11
光源的单色性越好,则相干长度越长。
单色光源的相干长度
几十厘米
激光 单色性很高 相干长度可达数公里以上 目前最好的相干光源 已能实现两独立激光光束的干涉 18
二 相干光的获得
杨氏双缝实验为光的波 动说提供了实验基础。单色 光通过屏上的针孔S0,从S0发 出的光相当于一点光源发出 的光送出球面波。在距S0一 定距离处的屏B上有两小针孔 S1和S2 ,把由S0送出的球形波 阵面分离出两很小的部分作 为相干光源,两针孔发出的 光波相遇的区域内产生干涉 现象,即在针孔后的屏上产 生光的强度有明暗交替变化 的干涉图样。
《墨子》中的《经下》书 页 明嘉靖癸丑(1553)刻本 3
牛顿 1665年左右
太阳光谱实验 光束在棱镜中折射 后的投影形成颜色 按一定顺序排列的 光谱
牛顿认为白光 是各种不同光线的 混合,各种光线在 玻璃中受到不同程 度的折射,从而把 它们分离出来。
牛顿在作光学实验
4
把曲率半径很大的凸 透镜放在平板玻璃上,用 白光照射则可见到透镜与 玻璃接பைடு நூலகம்处周围出现一组 彩色的同心圆;用某一单 色光照射时,则会出现一 组明暗相间的同心环,称 为牛顿环。

| r2 r1 | k D D x k k 0,1,2 a a

大学物理第二版 许瑞珍 贾谊明 编著 课后答案 1-3章

大学物理第二版 许瑞珍 贾谊明 编著  课后答案 1-3章

第一章 质点的运动1-1 已知质点的运动方程为:,。

式中x 、y 的单位为m ,t 的单位为s。

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。

23010t t x +-=22015t t y -=分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。

分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = - k v 2,k 为常数。

大学物理(第二版)第十五章习题答案

大学物理(第二版)第十五章习题答案

第十五章习题15.1 解:介质中的折射率为n ,加入厚度为d 的薄膜,光程的改变为()19n d λ-=所以可以得到:1039958901011 1.530.0110n d λ--⨯⨯=+=+=⨯ 15.2 解:已知条件:6000A λ=,4m D =,垂直入射,两第五级明条纹中心之间的距离为4cm 。

2551022410m D D x d dλλ-=⨯==⨯ 双缝之间的距离:10325101046000100.610m=0.6mm 2410D d x λ---⨯⨯⨯===⨯⨯ 15.3 解:⑴ 双缝之间的距离为:0.2mm d =,缝与屏之间的距离为:1m D = 亮条纹距离零级明条纹中心的位置:D k x d λ=d xk D λ⇒=因为:4000A 8000A λ≤≤,所以可得:115d x k D λ==, 222.5d xk D λ==,即2.55k ≤≤ 第三级明纹:3310.21010106667A 13dx Dk λ--⨯⨯⨯===⨯第四级明纹:3320.21010105000A 14dx Dk λ--⨯⨯⨯===⨯ 第五级明纹:3330.21010104000A 15dx Dk λ--⨯⨯⨯===⨯ ⑵ 20mm x =,可以得到:dxk D λ=,510k ≤≤ 15k =, 33110.21020108000A 15dx Dk λ--⨯⨯⨯===⨯ 26k =,33220.21020106667A 16dx Dk λ--⨯⨯⨯===⨯ 37k =,33320.21020105714A 17dx Dk λ--⨯⨯⨯===⨯ 48k =,33440.21020105000A 18dx Dk λ--⨯⨯⨯===⨯59k =,33550.21020104444A 19dx Dk λ--⨯⨯⨯===⨯ 610k =,33660.21020104000A 110dx Dk λ--⨯⨯⨯===⨯ 15.4 解:设空气的折射率为1n ,氯气的折射率为2n ,两条光路的几何路程分别为:12,r r 。

大学物理同步训练第2版第七章静电场中的导体详解

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质一、选择题1. (★★)一个不带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为a 处(a <R )放一点电荷+q ,如图1所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为(A )q 2πε0a ⁄ (B )0(C )−q 4πε0R ⁄ (D )q 4πε0⁄∙(1a ⁄−1R ⁄)答案:D分析:由静电平衡的知识可知:①当空腔导体内放入点电荷+q 时,空腔导体的内表面会带上等量异号的电荷−q ,由电荷守恒可知不带电的空腔导体的外表面带有的+q 电荷;②当球壳接地后,球壳电势变为零,故球壳外表面电量变为零。

因此接地后去掉地线,该体系的电荷分布如图所示,球壳内表面带有−q 的电量,外表面不带电。

由电势叠加原理可得球心O 处的电势为V O =q 4πε0a +∫dq 4πε0R 内=q 4πε0a +14πε0R ∫dq 内=q 4πε0(1a −1R ) 故选项D 正确。

注:式中∫dq 内=−q 为内表面的电量之和。

【补充】带电量为Q 半径为R 的球面(电荷分布无论均匀或不均匀)在球心处产生的电势为V =Q 4πε0R ⁄。

2. 三块互相平行的导体板之间的距离d 1和d 2比板间面积线度小得多,如果d 2=2d 1,外面二板用导线连接,中间板上带电。

设左右两面上电荷面密度分别为σ1和σ2,如图2所示,则σ1σ2⁄为(A )1 (B )2 (C )3 (D )4答案:B分析:【知识点】达到静电平衡的导体:①内部电场强度为E =0,表面附近电场强度垂直于导体表面,大小为E =σε0⁄,其中σ为导体表面电荷面密度;②导体是一个等势体,导体表面为等势面;③导体内部处处无净电荷,即电荷只分布在导体的表面上,电荷面密度与导体表面的曲率有关,曲率越大(越尖)电荷面密度越大。

由静电平衡的知识点①可知,中间导体板左侧电场强度为σ1ε0⁄,右侧为σ2ε0⁄;由静电平衡的知识点②可知,用导线连接起来的左右两个导体板等势,即中间导体板与左右两导体板的电势差U 相同,由U =Ed 可得σ1ε0⁄∙d 1=σ2ε0⁄∙d 2,故σ1σ2⁄=d 2d 1⁄=2,故选项B 正确。

(完整版)大学物理(第二版)矿业大学出版社(1)

(完整版)大学物理(第二版)矿业大学出版社(1)

1.1有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度⑵ 第2秒末的瞬时速度⑶ 第2秒内的路程。

解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为()212 2.50.5m v x x =-=-=-⑵第2秒末的瞬时速度()22966m s t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象)当 1.5t s =时,速度0v =,2 3.375x m =;当1t s =时,1 2.5x m = ;当2t s =时,32x m =;所以路程为:3.375 2.5 3.3752 2.25m -+-=1.8一艘正在沿直线行驶的电船,在发动机关闭后,其加速度方向与速度方向相反,即dv/dt=-k v ∧2,试证明电艇在关闭发动机后又行驶x 距离时的速度为v=v0e ∧-kx 式中,v0是关闭发动机后的速度。

证明:由题可知:2dv dx kv kv dt dt =-=- 所以有: dv kvdx =- 变换为: dv kdx v=- 两边同时积分就可得到:00vx v dv kdx v =-⎰⎰ 0ln vv v kx =-即0ln v kx v =- 所以有0k x v v e -=1.9迫击炮射击山顶上的一个目标,已知初速度为v0,抛射角为⊙,上坡与水平面成a 角,求炮弹的射程及到达山坡时的速度。

解:炮弹的运动轨迹如上图的虚线所示,如图建立坐标轴,x y 。

将初速度0v v沿坐标轴分解可得0000cos sin x y v v v v θθ=⎧⎨=⎩⑴ 加速度g 沿坐标轴分解可得 sin cos x y a g a g αα=-⎧⎨=-⎩ ⑵ 在任意时刻t 的速度为0000cos sin sin cos x x x y y y v v a t v gt v v a t v gt θαθα=+=-⎧⎨=+=-⎩⑶任意时刻t的位移为2200220011cos sin 2211sin cos 22x x y y x v t a t v t gt y v t a t v t gt θαθα⎧=+=-⎪⎪⎨⎪=+=-⎪⎩⑷ ⑴ 炮弹射程为0y =时,所对应的x 。

物理学教程(第二版)第1-5章答案

物理学教程(第二版)第1-5章答案

第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ (C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程R m θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B). *2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin(1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m·s-2 上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m·s-2 上升时,得绳张力的值为F T =3.24 ×103 N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的. 解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来. 2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2 =2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得()m m g μm s +'''=22v 2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?题 2-10 图分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2) 且有()Rh R θ-=cos (3) 由上述各式可解得钢球距碗底的高度为 2ωg R h -=可见,h 随ω的变化而变化.2 -11 在如图(a )所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg 和2 kg 的物体A 和B ,现以50 N 的恒力F 向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A 和B 的加速度各为多少?题 2-11 图分析 在上提物体过程中,由于滑轮可以转动,所以A 、B 两物体对地加速度并不相同,故应将A 、B 和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有T 2F F =.解 隔离后,各物体受力如图(b )所示,有滑轮02T =-F F AA A A T a m g m F =- BB B B T a m g m F =- 联立三式,得2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅ 讨论 如由式a m m g m m F )()(B A B A +=+-求解,所得a 是A 、B 两物体构成的质点系的质心加速度,并不是A 、B 两物体的加速度.上式叫质心运动定理.2 -12 一质量为50 g 的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后物体作上下振动,若以物体静平衡位置为原点,向下为y 轴正向.测得其运动规律按余弦形式即)2/5cos(20.0π+=t y ,式中t 以s 计,y 以m 计,试求:(1)作用于该物体上的合外力的大小;(2)证明作用在物体上的合外力大小与物体离开平衡位置的y 距离成正比.分析 本题可直接用22d /d t y m ma F ==求解,y 为物体的运动方程,F 即为作用于物体上的合外力(实为重力与弹簧力之和)的表达式,本题显示了物体作简谐运动时的动力学特征.解 (1)由分析知F )(2/5cos 25.0d /d 22π+-===t t y ma (N )该式表示作用于物体上的合外力随时间t 按余弦作用周期性变化,F >0表示合力外力向下,F <0表示合外力向上.(2) F y t t 25.1)]2/5(cos 20.0[25.1)2/5cos(25.0-=+-=+-=ππ.由上式知,合外力F 的大小与物体离开平衡位置距离y 的大小成正比.“-”号表示与位移的方向相反.2 -13 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N, t的单位的s.在t =0时,质点位于x =5.0 m 处,其速度v 0=6.0 m·1s -.求质点在任意时刻的速度和位置.分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tm t d d 40120v =+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1 ,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0v v v v =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=t xx t t t x 020d 0.60.40.6d x =5.0+6.0t+2.0t 2 +2.0t 32 -14 轻型飞机连同驾驶员总质量为1.0 ×103 kg .飞机以55.0 m·s-1 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102 N·s-1 ,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αt m ma F -===d d v ⎰⎰-=t t m t α0d d 0v v v 得 202t mα-=v v 因此,飞机着陆10s后的速率为v =30 m·s-1 又 ⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -15 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h .把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为b v 2 ,其中b 为一常量.若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v 与y 的函数关系;(2) 如b /m =0.40m -1 ,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0 的1/10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)题 2-15 图分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力f F 的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -f F -F =ma由题意P =F 、f F =b v 2 ,而a =d v /d t =v (d v /d y ),代入上式后得-b v 2= m v (d v /d y )考虑到初始条件y 0 =0 时, gh 20=v,对上式积分,有⎰⎰=⎪⎭⎫ ⎝⎛-v v v v 0d d 0ty b m m by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1 ,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v v b m y 2 -16 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.题 2-16 图分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v /d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d v v v v 得αrg cos 2=v则小球在点C 的角速度为r αg r ω/cos 2==v 由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N N cos 3-=-=' 负号表示F ′N 与e n 反向.2 -17 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少2/0v 时,物体所经历的时间及经过的路程.题 2-17 图分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有Rm ma F n N 2v == tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得 tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v 020d d μR t tt μR R 00v v v +=(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μR s =2 -18 一物体自地球表面以速率v 0 竖直上抛.假定空气对物体阻力的值为F r =km v 2 ,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)题 2-18 图分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v v v k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v(2) 物体下落过程中,有yvmkm mg d d 2v v =+- 对上式积分,有⎰⎰--=02d d v v v v k g y y则2/1201-⎪⎪⎭⎫ ⎝⎛+=g k v v v2 -19 质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是v m .试计算从静止加速到v m /2所需的时间以及所走过的路程.分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =k v 2 ,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF mt v v v v 2101220d 1d则 3ln 2Fm t mv =又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则Fm F m x m m 22144.034ln 2v v ≈=*2 -20 在卡车车厢底板上放一木箱,该木箱距车箱前沿挡板的距离L =2.0 m,已知制动时卡车的加速度a=7.0 m·s-2 ,设制动一开始木箱就开始滑动.求该木箱撞上挡板时相对卡车的速率为多大?设木箱与底板间滑动摩擦因数μ=0.50.分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F 0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a ′为木箱相对车厢的加速度. 解 由牛顿第二定律和相关运动学规律有F 0 -f F =ma -μmg =ma′ (1) v ′ 2 =2a′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()L g a μ-='2v =1s m 9.2-⋅=第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( ) (A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( ) (A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C). 2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( ) (A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rmθmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( ) (A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin(1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则()αμααg lt cos sin cos 2-=(2)。

2025高考物理步步高同步练习选修2第一章带电粒子在匀强磁场中的运动含答案

2025高考物理步步高同步练习选修2第一章带电粒子在匀强磁场中的运动含答案

2025高考物理步步高同步练习选修2第一章3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.由q v B =m v 2r ,可得r =m v qB.2.由r =m v qB 和T =2πr v ,可得T =2πmqB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)运动电荷在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2. 质子和α粒子由静止出发经过同一加速电场加速后,沿垂直磁感线方向进入同一匀强磁场,则它们在磁场中的速度大小之比为________;轨道半径之比为________;周期之比为________. 答案 2∶1 1∶2 1∶2一、带电粒子在匀强磁场中运动的基本问题导学探究 如图1所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.图1(1)不加磁场时,电子束的运动轨迹如何?加上磁场后,电子束的运动轨迹如何?(2)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化?如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 圆 (2)变小 变大 知识深化1.分析带电粒子在磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB 知,T 与速度无关,与半径无关.质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确. 针对训练1 薄铝板将同一匀强磁场分成Ⅰ、Ⅱ两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图2所示,半径R 1>R 2.假定穿过铝板前后粒子电荷量保持不变,则该粒子( )图2A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心的确定圆心位置的确定通常有以下两种基本方法:(1)已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图3甲所示,P 为入射点,M 为出射点). (2)已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连线入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).图32.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解. 3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍 D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.如图4所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O 沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直径上的P 点,求:图4(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s(2)由T =2πm qB 知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m故粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图5所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )图5A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.针对训练3 (2020·广东中山中学高二期中)如图6所示,直线MN 上方有垂直纸面向里的匀强磁场,电子1从磁场边界上的a 点垂直MN 且垂直磁场方向射入磁场,经t 1时间从b 点离开磁场.之后电子2也由a 点沿图示方向以相同速率垂直磁场方向射入磁场,经t 2时间从a 、b 连线的中点c 离开磁场,则t 1t 2为( )图6A.23 B .2 C.32 D .3 答案 D解析 电子2以相同速率垂直磁场方向射入磁场,由带电粒子在匀强磁场中做匀速圆周运动的半径公式r =m v qB 可知,两电子运动半径相同,由周期公式T =2πm qB 可知,周期也相同,由几何关系可知,电子1运动的圆心角为π,电子2运动的圆心角为π3,由时间t =θ2πT ,可得:t 1t 2=ππ3=3,D 正确.1.(带电粒子在匀强磁场中的运动)关于带电粒子在匀强磁场中的运动,下列说法正确的是( )A .带电粒子飞入匀强磁场后,一定做匀速圆周运动B .静止的带电粒子在匀强磁场中将会做匀加速直线运动C .带电粒子在匀强磁场中做匀速圆周运动时洛伦兹力的方向总是和运动方向垂直D .当洛伦兹力方向和运动方向垂直时,带电粒子在匀强磁场中的运动一定是匀速圆周运动 答案 C解析 若带电粒子的速度方向与磁场方向平行(同向或反向),此时所受洛伦兹力为零,带电粒子做匀速直线运动,A 错误;静止的带电粒子不受洛伦兹力,仍将静止,B 错误;带电粒子在匀强磁场中做匀速圆周运动,所受洛伦兹力总跟速度方向垂直,即和运动方向垂直,C 正确;如果带电粒子以与磁场方向成某一角度进入匀强磁场,所受洛伦兹力与运动方向垂直,带电粒子不是做匀速圆周运动,D 错误.2.(半径公式、周期公式)(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R BB .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T BC .如果两粒子的质量m A =m B ,则两粒子的周期T A =T BD .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.3.(带电粒子做匀速圆周运动的分析)如图7所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子的速率v 1与MN 垂直;穿过b 点的粒子的速率v 2与MN 成60°角,设两粒子从S 点到a 、b 两点所需时间分别为t 1和t 2,则t 1∶t 2为(粒子的重力不计)( )图7A .1∶3B .4∶3C .1∶1D .3∶2 答案 D解析 粒子的运动轨迹如图所示,可求出从a 点射出的粒子对应的圆心角为90°,从b 点射出的粒子对应的圆心角为60°,两粒子相同,则两粒子做圆周运动的周期T 相同,由t =α360°T ,式中α为圆心角,可得t 1∶t 2=3∶2,故D 正确.4.(带电粒子做匀速圆周运动的分析)(2020·四川模拟)如图8,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比为v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )图8A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据轨迹图可知,甲、乙两粒子的半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.考点一 周期公式与半径公式的基本应用1.质子和一价钠离子分别垂直进入同一匀强磁场中做匀速圆周运动.如果它们的圆周运动半径恰好相等,这说明它们在刚进入磁场时( ) A .速率相等 B .动量大小相等 C .动能相等 D .质量相等答案 B解析 根据Bq v =m v 2r 得r =m vqB ,因为质子与一价钠离子电荷量相同,又是进入同一磁场,B也相同,要使半径r 相同,必然是动量大小m v 相同,所以选B.2.如图1所示,水平导线中有恒定电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )图1A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小 答案 B解析 电流在导线下方产生的磁场方向垂直纸面向外,由左手定则可知电子运动轨迹向下弯曲,又由r =m vqB 可知,B 减小,r 越来越大,则电子的轨迹是a ,故选B.3.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图2中虚线所示,不计重力,下列表述正确的是( )图2A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq ,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.4.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( ) A .轨道半径减小,角速度增大 B .轨道半径减小,角速度减小 C .轨道半径增大,角速度增大 D .轨道半径增大,角速度减小 答案 D解析 带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的速度v 大小不变,磁感应强度B 减小,由r =m v qB 可知,轨道半径增大;由T =2πmqB可知,粒子在磁场中运动的周期增大,根据ω=2πT 知角速度减小,故D 正确.考点二 带电粒子做匀速圆周运动的分析5.如图3所示,粒子a 和粒子b 所带的电荷量相同,以相同的动能从A 点射入匀强磁场中,做圆周运动的半径r a =2r b ,则下列说法正确的是(重力不计)( )图3A .两粒子都带正电,质量之比m am b =4B .两粒子都带负电,质量之比m am b =4C .两粒子都带正电,质量之比m a m b =14D .两粒子都带负电,质量之比m a m b =14答案 B解析 由动能E k =12m v 2和粒子做圆周运动的半径r =m v qB ,可得m =r 2q 2B 22E k ,而q a =q b 、E k a =E k b ,可知质量m 与半径r 的平方成正比,故m am b =4,再根据左手定则可知两粒子都带负电,故B 正确.6.如图4所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )图4A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)(2020·泉州期末)如图5所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( )图5A .电子在磁场中运动时间越长,其轨迹线越长B .电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C .在磁场中运动时间相同的电子,其轨迹不一定重合D .电子的速率不同,它们在磁场中运动的时间一定不相同 答案 BC解析 由t =θ2πT 及T =2πmBq 知,电子在磁场中运动的时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,由半径公式r =m vqB知,轨迹半径与速率成正比,则电子的速率越大,磁场中的运动轨迹半径越大,故A 错误,B 正确.由周期公式T =2πmqB 知,周期与电子的速率无关,所以在磁场中的运动周期相同,若它们在磁场中的运动时间相同,但轨迹不一定重合,比如:轨迹3、4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,即它们的速率不同,故C 正确,D 错误.8.如图6所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )图6A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.9.(2019·全国卷Ⅲ)如图7,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )图7A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB 答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πRv ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm6qB,选项B 正确,A 、C 、D 错误.10.(2020·鸡泽县第一中学高二月考)一个重力不计的带电粒子,以大小为v 的速度从坐标(0,L )的a 点,平行于x 轴射入磁感应强度大小为B 、方向垂直纸面向外的圆形匀强磁场区域,并从x 轴上b 点射出磁场,射出速度方向与x 轴正方向间的夹角为60°,如图8,求:图8(1)带电粒子在磁场中运动的轨迹半径;(2)带电粒子的比荷qm及粒子从a 点运动到b 点的时间;(3)其他条件不变,要使该粒子恰从O 点射出磁场,求粒子的入射速度大小. 答案 (1)2L (2)v 2BL 2πL 3v (3)14v解析 (1)画出粒子运动的轨迹如图,由几何知识,R cos 60°+L =R ,解得R =2L .(2)由洛伦兹力提供向心力,得 qB v =m v 2R所以q m =vRB =v 2BL粒子运动的周期T =2πR v =4πLv粒子从a 点运动到b 点的时间t =60°360°T =2πL3v(3)要使该粒子恰从O 点射出磁场,则R ′=L2由qB v ′=m v ′2R ′可知v ′=14v .11.一带电粒子的质量m =1.7×10-27kg ,电荷量q =+1.6×10-19C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图9所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)图9(1)带电粒子离开磁场时的速度多大? (2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大? 答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s. (2)由q v B =m v 2r得,轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m.由题图可知偏转角θ满足:sin θ=L r =0.1 m0.2 m =0.5,所以θ=30°=π6,由q v B =m v 2r 及v =2πrT可得带电粒子在磁场中运动的周期T =2πmqB,所以带电粒子在磁场中运动的时间t =θ2π·T =112T ,所以t =πm6qB = 3.14×1.7×10-276×1.6×10-19×0.17 s ≈3.3×10-8 s.(3)带电粒子在离开磁场时偏离入射方向的距离 d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图10所示.不考虑粒子重力影响.求:图10(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt . 答案 (1)m v 3qB 0 (2)2πmqB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2 由q v B =m v 2r 可知r =m vqB故r 1=m v 2qB 0,r 2=m v3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2 由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0,且Δt =2t 1+3t 2 解得Δt =2πmqB 0.4 质谱仪与回旋加速器[学习目标] 1.知道质谱仪的构造及工作原理,会确定粒子在磁场中运动的半径,会求粒子的比荷.2.知道回旋加速器的构造及工作原理,知道交流电的周期与粒子在磁场中运动的周期之间的关系,知道决定粒子最大动能的因素.一、质谱仪1.质谱仪构造:主要构件有加速电场、偏转磁场和照相底片. 2.运动过程(如图1)图1(1)带电粒子经过电压为U 的加速电场加速,qU =12m v 2.(2)垂直进入磁感应强度为B 的匀强磁场中,做匀速圆周运动,r =m v qB ,可得r =1B2mUq. 3.分析:从粒子打在底片D 上的位置可以测出圆周的半径r ,进而可以算出粒子的比荷. 二、回旋加速器1.回旋加速器的构造:两个D 形盒,两D 形盒接交流电源,D 形盒处于垂直于D 形盒的匀强磁场中,如图2.图22.工作原理 (1)电场的特点及作用特点:两个D 形盒之间的窄缝区域存在周期性变化的电场. 作用:带电粒子经过该区域时被加速.(2)磁场的特点及作用特点:D 形盒处于与盒面垂直的匀强磁场中.作用:带电粒子在洛伦兹力作用下做匀速圆周运动,从而改变运动方向,半个圆周后再次进入电场.判断下列说法的正误.(1)质谱仪工作时,在电场和磁场确定的情况下,同一带电粒子在磁场中的半径相同.( √ ) (2)因不同原子的质量不同,所以同位素在质谱仪中的轨迹半径不同.( √ )(3)利用回旋加速器加速带电粒子,要提高加速粒子的最终速度,应尽可能增大磁感应强度B 和D 形盒的半径R .( √ )(4)增大两D 形盒间的电压,可以增大带电粒子所获得的最大动能.( × )一、质谱仪导学探究 如图3所示为质谱仪原理示意图.设粒子质量为m 、电荷量为q ,加速电场电压为U ,偏转磁场的磁感应强度为B ,粒子从容器A 下方的小孔S 1飘入加速电场,其初速度几乎为0.则粒子进入磁场时的速度是多大?打在底片上的位置到S 3的距离多大?图3答案 由动能定理知qU =12m v 2,则粒子进入磁场时的速度大小为v =2qUm,由于粒子在磁场中运动的轨迹半径为r =m v qB =1B 2mU q ,所以打在底片上的位置到S 3的距离为2B2mUq. 知识深化1.带电粒子运动分析(1)加速电场加速:根据动能定理,qU =12m v 2.(2)匀强磁场偏转:洛伦兹力提供向心力,q v B =m v 2r.(3)结论:r =1B 2mU q ,测出半径r ,可以算出粒子的比荷qm. 2.质谱仪区分同位素:由qU =12m v 2和q v B =m v 2r 可求得r =1B2mUq.同位素电荷量q 相同,质量不同,在质谱仪照相底片上显示的位置就不同,故能据此区分同位素.(2018·全国卷Ⅲ)如图4,从离子源产生的甲、乙两种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v 1,并在磁场边界的N 点射出;乙种离子在MN 的中点射出;MN 长为l .不计重力影响和离子间的相互作用.求:图4(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比. 答案 (1)4Ul v 1(2)1∶4解析 (1)设甲种离子所带电荷量为q 1,质量为m 1,在磁场中做匀速圆周运动的半径为R 1,磁场的磁感应强度大小为B ,由动能定理有q 1U =12m 1v 12①由洛伦兹力公式和牛顿第二定律有q 1v 1B =m 1v 12R 1②由几何关系知2R 1=l ③由①②③式得,磁场的磁感应强度大小为B =4Ul v 1.④(2)设乙种离子所带电荷量为q 2,质量为m 2,射入磁场的速度为v 2,在磁场中做匀速圆周运动的半径为R 2.同理有q 2U =12m 2v 22⑤q 2v 2B =m 2v 22R 2⑥由几何关系知2R 2=l2⑦由①②③⑤⑥⑦式得,甲、乙两种离子的比荷之比为 q 1m 1∶q 2m 2=1∶4.针对训练 (2020·云南省下关第一中学高二期中)如图5所示为质谱仪的示意图,速度选择器部分的匀强电场的场强为E =1.2×105 V/m ,匀强磁场的磁感应强度为B 1=0.6 T ;偏转分离器的磁感应强度为B 2=0.8 T .求:(已知质子质量为1.67×10-27kg)图5(1)能通过速度选择器的粒子的速度大小;(2)质子和氘核以相同速度进入偏转分离器后打在照相底片上的条纹之间的距离d . 答案 (1)2×105 m/s (2)5.2×10-3 m解析 (1)能通过速度选择器的粒子所受电场力和洛伦兹力大小相等、方向相反,有eB 1v =eE 得v =E B 1=1.2×1050.6m/s =2×105 m/s.(2)粒子进入磁场B 2后做匀速圆周运动,洛伦兹力提供向心力,则eB 2v =m v 2R得R =m v B 2e设质子质量为m ,则氘核质量为2m , 故d =2m v B 2e ×2-m v B 2e ×2≈5.2×10-3 m.二、回旋加速器导学探究 回旋加速器两D 形盒之间有窄缝,中心附近放置粒子源(如质子、氘核或α粒子源),D 形盒间接上交流电源,在狭缝中形成一个交变电场.D 形盒上有垂直盒面的匀强磁场(如图6所示).图6(1)回旋加速器中磁场和电场分别起什么作用?对交流电源的周期有什么要求?在一个周期内加速几次?(2)带电粒子获得的最大动能由哪些因素决定?如何提高粒子的最大动能?答案 (1)磁场的作用是使带电粒子回旋,电场的作用是使带电粒子加速.交流电源的周期应等于带电粒子在磁场中运动的周期.一个周期内加速两次.(2)当带电粒子速度最大时,其运动半径也最大,即r m =m v m Bq ,可得E km =q 2B 2r m 22m ,所以要提高带电粒子获得的最大动能,则应尽可能增大磁感应强度B 和D 形盒的半径r m . 知识深化1.粒子被加速的条件交流电压的周期等于粒子在磁场中运动的周期. 2.粒子最终的能量粒子速度最大时的半径等于D 形盒的半径,即r m =R ,r m =m v mqB,则粒子的最大动能E km =q 2B 2R 22m. 3.提高粒子的最终能量的措施:由E km =q 2B 2R 22m 可知,应增大磁感应强度B 和D 形盒的半径R .4.粒子被加速次数的计算:粒子在回旋加速器中被加速的次数n =E kmqU (U 是加速电压的大小).5.粒子在回旋加速器中运动的时间:在电场中运动的时间为t 1,在磁场中运动的时间为t 2=n 2·T =n πm qB (n 为加速次数),总时间为t =t 1+t 2,因为t 1≪t 2,一般认为在盒内的时间近似等于t 2.(多选)(2020·山西高二期末)1930年美国物理学家Lawrence 提出回旋加速器的理论,1932年首次研制成功.如图7所示为两个半径为R 的中空半圆金属盒D 1、D 2置于真空中,金属盒D 1、D 2间接有电压为U 的交流电为粒子加速,金属盒D 1圆心O 处粒子源产生的粒子初速度为零.匀强磁场垂直两盒面,磁感应强度大小为B ,粒子运动过程不考虑相对论效应和重力的影响,忽略粒子在两金属盒之间运动的时间,下列说法正确的是( )图7。

大学物理同步训练第2版第三章刚体定轴转动详解

大学物理同步训练第2版第三章刚体定轴转动详解

mg
3g 1 cos L 1 1 1 cos mL2 2 2 2 3 L
可知当 从 0 至 90 度的过程中,角速度从小到大。 5. (☆)如图 3 所示,A、B 为两个相同的绕着轻绳的定滑轮。A 滑 轮挂一质量为 m 的物体,B 滑轮受拉力 G,而且 G=mg。设 A、B 两 滑轮的角加速度分别为βA 和βB,不计滑轮轴的摩擦,则有 (A) A B (C) A B 答案:C 分析: (定性)由于物体 m 有向下的加速度,故作用于物体上的绳子张力小于 mg,即小于 右边绳子的张力(=mg) ,故 A 滑轮受到的力矩小于 B 滑轮,故 A B 。 (定量)设圆盘转动惯量为 I ,参考计算题第 1 题的计算过程,可得 A、B 圆盘的转动角加 速度为 (B) A B (D)开始时 A B ,以后 A B
mg TA ma mgR mgR A ; GR I B B TA R I A 2 I mR I R a A
故 A B 。 6. 一轻绳跨过一具有水平光滑轴、转动惯量为 J 的定滑轮, 绳的两端分别悬 有质量为 m1 和 m2 的物体 (m1<m2) , 如图 4 所示。 绳与轮之间无相对滑动。 若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等 (C)右边大于左边 答案:C 分析: (定性)由于重的物体 m2 最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘 受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。 (定量)参考课本例题( (★)阿特伍德机:P84,例 3-5)可得 (B)左边大于右边 (D)无法判断哪边大
A J B A
6. (☆)如图 10 所示,一静止的均匀细棒,长为 L,质量为 m1,可绕通过棒的端点且垂直 于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 m1L2/3。一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v/2,则 此时棒的角速度应为 答案: 。

大学物理解题指导与练习(第二版)

大学物理解题指导与练习(第二版)

练习一 质点运动学1、C2、B3、D4、3 m, 5 m5、28(/)a j m s →→=-,2(52)(410)()r t i t j m →→→=+-+ 6(/)m s 7、22(3),162(/),8(/),x y v i j m s a i m s →→→→→=-=+=8、解:(1)000(68)v t t v dva dv adt t dt dt=⇒==-⎰⎰⎰2038v v t t ⇒-=-23810(/)v t t m s ⇒=-+,(2)0200(3810)x t t x dxv dx vdt t t dt dt=⇒==-+⎰⎰⎰320410x x t t t ⇒-=-+324101()x t t t m ⇒=-++9、解:如图,设灯与人的水平距离为1x ,灯与人头影子的水平距离为x ,则:人的速度:10dx v dt =,人头影子移动的速度:dx v dt =。

而:1H x x H h =-1dx dx H dt H h dt ⇒=-, 即:0Hv v H h=- 。

10、解(1)324()t rad θ=+2212212()24()d d t rad s t rad s dt dtθθωβ--⇒==⋅⇒==⋅22422.4(),14.4()n a R t m s a R t m s τβω--⇒==⋅==⋅ 则2t s =时, 224.8(),230.4()n a m s a m s τ--⇒=⋅=⋅(2)加速度和半径成45︒角,即n a a τ=,即42.414.4t t =32.4/14.41/6t ⇒==代入得: 2.67rad θ=练习二 牛顿力学1、C2、A3、C4、D5、6 N, 4 N6、解:(1)0,T mg α==;(2)sin ,cos T ma T mg αα==;则:tan /,a g T α==7、解 小球受重力mg 、绳的张力T 及斜面的支持力N 。

大学物理同步训练1-15章(第2版)-2

大学物理同步训练1-15章(第2版)-2

质点运动学答案一、选择题1、C2、C3、B4、B5、B6、A7、D8、C 二、填空题1、42、3m s ;9m s3、2m;6m 4/s/s5、239y x =+ 6、7、s t ∆;02tυ∆ 8、6.28m; 0;0; 6.28m/s 9、圆周运动;匀速率圆周运动 10、3.811、sin sin R ti R tj ωωωω-+;0;半径为R 的圆周 三、计算题(2)(1)(2)(1)(1.5)(1)(1)00640, 1.511(2)2642x x x xtdxt dtt ss x x x x m sms tt s υυυυυ∆-=∆=∆==-==∆=-+-=∆=∆=⨯位移==令第二秒内路程平均速率=m 时,=-=-2s负号表示速度方向沿平均速度x 轴负向2223058.365.12x y t n tn gtd a dt a ga t s ma m s ma ss υυυυ⎧=⎪⎨=⎪⎩=========时,3、2222222464(34)164002.5t n t n dsst t dt d sa t dtt t a R R m a s a Rm a s R mυυυ==+==++========当t=2s 时m=20s4、解:0230300044002232()3114366vttv xttx dv a dt dv adt dv adt t dtv v t dx v dt dx vdtdx vdt v t dt x x v t t t t =====+====+=++=++⎰⎰⎰⎰⎰⎰质点动力学答案一、选择题1、C2、C 二、填空题1、980J2、9J 三、计算题1、解:0220322202213624txtF a tmd tdtt dx t dtx t dx t dtW Fdx t t dt Jυυυ==========⎰⎰⎰⎰⎰⎰2、解:()2215030145W Fdx x x dx J ==+=⎰⎰刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。

《大学物理学》第二版下册习题解答

《大学物理学》第二版下册习题解答

大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。

力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。

•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。

•重力:地球上物体受到的引力,是一种特殊的引力。

•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。

•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。

1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。

力的分解是指将一个力按照一定的规律分解为多个力的过程。

力的合成可以使用力的三角法进行。

假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。

假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。

牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。

当物体受到外力时,按照该定律,物体会发生运动或停止运动。

1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。

大学物理II练习册答案3课件

大学物理II练习册答案3课件

大学物理练习三一.选择题1.一力学系统由两个质点组成,它们之间只有引力作用。

若两质点所受外力的矢量和为零,则此系统 [ ] (A) 动量、机械能以及对一轴的角动量都守恒。

(B) 动量、机械能守恒,但角动量是否守恒不能断定。

(C) 动量守恒,但机械能和角动量守恒与否不能断定。

(D) 动量和角动量守恒,但机械能是否守恒不能断定。

解:[ C ] 按守恒条件:∑=0iF 动量守恒,但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒。

2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉。

则物体 [ ] (A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

解:[ E ] 因对o 点,合外力矩为0,角动量守恒3.有两个半径相同,质量相等的细圆环A 和B 。

A 环的质量分布均匀,B 环的质量分布不均匀。

它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 [ ] (A)A J >B J (B) A J < B J (C) A J =B J (D) 不能确定A J 、B J 哪个大。

解:[ C ] 细圆环的转动惯量与质量是否均匀分布无关⎰==220mR dmR J4.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31m L 2,起初杆静止。

桌面上有两个质量均为m的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同的速率v 相向运动,如图所示。

当两小球同时与杆的两个端点发生完全非弹性碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为 [ ](A)L v 32. (B) L v 54 (C)L v 76 (D) Lv 98解:[ C ]角动量守恒二.填空题1.绕定轴转动的飞轮均匀地减速,t = 0时角速度ω0 =5 rad/s ,t = 20s 时角速度ω=0.8ω0,则飞轮的角加速度β= ,t=0到t=100s 时间内飞轮所转过的角度θ= 。

南华大学大物练习册二参考答案教材

南华大学大物练习册二参考答案教材

第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 关于质心,有以下几种说法,你认为正确的应该是( C )(A ) 质心与重心总是重合的; (B ) 任何物体的质心都在该物体内部; (C ) 物体一定有质心,但不一定有重心; (D ) 质心是质量集中之处,质心处一定有质量分布。

2. 任何一个质点系,其质心的运动只决定于( D )(A )该质点系所受到的内力和外力; (B) 该质点系所受到的外力;(C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。

3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。

如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A )R 4; (B) R 6; (C) R 8; (D R12。

4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B ) (A )s N ⋅820; (B) s N ⋅1020; (C) s N ⋅620; (D) s N ⋅520。

二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGMm3。

2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。

3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。

设子弹穿过两木块所用的时间分别为∆t 1和∆t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++。

大学物理同步训练第15章量子物理

大学物理同步训练第15章量子物理

(A)13.6 eV (B)12.09 eV
(C)10.20 eV
(D)1.51 eV
答案:D
分析:(参考选择题 7)������ = 3能级得电离能为
−������3
=

������1 32
=
13.6 9
=
1.51
eV
10. 具有下列哪一能量的光子,能被处在������ = 2的能级的氢原子吸收?

������2
1
6.63 × 10−34 2 6.632 × 10−48
������ = ������ → ������ = 2������ = 2 × 9.11 × 10−31 × ( 0.1 × 10−9 ) = 1.822 × 10−30
������
1
6.632 × 10−18
������ = ������ = 1.60 × 10−19 × 1.822 = 151 V
(普朗克常量ℎ = 6.63 × 10−34 J ∙ s,基本电荷������ = 1.60 × 10−19 C)
答案:C
分析:(参考选择题 1)由光电效应方程可得
ℎ������ ℎ������ ������1 = ������0 + ������������1
ℎ������ ℎ������ ������2 = ������0 + ������������2
(A)能量为hc⁄������ ,动量的大小为h⁄������
(B)能量为h⁄������ ,动量的大小为hc⁄������
(C)能量为h⁄(������������),动量的大小为h⁄������
(D)能量为hc⁄������ ,动量的大小为h⁄(������������)

南京邮电大学大物物理同步练习册2020年1月版

南京邮电大学大物物理同步练习册2020年1月版

南京邮电大学大物物理同步练习册2020年1月版1、4.我国自行研制的J-31隐形战机在起飞前从静止开始做匀加速直线运动,达到起飞速度v所需时间为t,则起飞前的运动距离为vt. [判断题] *对错(正确答案)2、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力3、61.关于微观粒子的发现与提出,下列说法正确的是()[单选题] *A.电子是英国物理学家卢瑟福发现的B.原子的核式结构模型是盖尔曼提出的C.中子是由查德威克发现的(正确答案)D.夸克是比中子、质子更小的微粒,是由英国物理学汤姆生提出的4、被活塞封闭在气缸中的一定质量的理想气体温度升高,压强保持不变,则:()*A.气缸中每个气体分子的速率都增大B.气缸中单位体积内气体分子数减少(正确答案)C.气缸中的气体吸收的热量等于气体内能的增加量D.气缸中的气体吸收的热量大于气体内能的增加量(正确答案)5、一药瓶恰能装500g酒精,现有500g蒸馏水,那么ρ酒精=8×103kg/m3,ρ水=0×103kg/m3( ) [单选题] *A.恰好能装满B.装不满(正确答案)C.装不下D.无法判断能否装下6、下列说法中正确的是()[单选题]A. 物体做匀速直线运动时,机械能不变B. 排球运动员扣球改变了排球的运动状态(正确答案)C. 向上抛出的篮球在空中上升过程中,篮球受到的合力一直向上D. 跳高运动员起跳蹬地时,运动员对地的压力小于地对运动员的支持力7、7.关于粒子和宇宙,下列说法正确的是()[单选题] *A.松软的馒头用手一捏体积会大大缩小,这说明分子间存在间隙B.原子核式结构模型提出原子是由质子和中子构成C.炒菜时油烟上升能说明分子在做无规则运动D.宇宙是一个有层次的天体结构系统,它是有起源的、膨胀的和演化的(正确答案)8、19.学校楼道内贴有“请勿大声喧哗”的标语,这是提醒同学们要控制声音的([单选题] *A.响度(正确答案)B.音调C.音色D.频率9、5.交警用电子检测设备检测汽车是否超速时测得的速度是平均速度.[判断题] *对错(正确答案)10、62.小华学习了《宇宙探秘》后,有下列认识,其中错误的是()[单选题] *A.恒星看上去似乎不动,其实时刻在运动B.牛顿创立了万有引力理论C.根据银河系的直径大约为8万光年,可知光年是时间单位(正确答案)D.宇宙是一个有层次的天体结构系统,它是有起源的、膨胀的和演化的11、42.小明在测量某种液体的密度时,根据测量数据绘制出了烧杯和液体的总质量与液体体积的关系图象如图所示,下列说法正确的是()[单选题] *A.该液体的密度是3g/cm3B.由图象可知,该液体体积越大,密度越小C.该液体体积是50cm3时,液体和烧杯的总质量是90g(正确答案)D.烧杯的质量是40kg12、质量相同的水和酒精升高温度时,水吸收的热量较多[判断题] *对错(正确答案)答案解析:升高相同的温度13、做匀速直线运动的物体,其机械能保持不变[判断题] *对错(正确答案)答案解析:匀速直线运动的物体,动能保持不变,重力势能无法判断,机械能无法判断。

大学物理同步训练第2版第一章质点运动学详解

大学物理同步训练第2版第一章质点运动学详解
2
6. (不做要求)一质点沿 x 轴运动,其速度与时间的关系为 v t 4 ,式中 v 的单位为
2
m/s, t 的单位为 s。 当 t=3s 时, 质点位于 x=9m 处, 则质点的位置与时间的关系为 答案: x t / 3 4t 12
3

分析:由定义 v dx / dt t 4 可得

d 2x d 2 y d 2z d 2r dv dv 2 2 (5) (1) (2) ( 3) (4) dt dt dt 2 dt dt dt 2
(A)只有(1)正确 (C)只有(4) (6)正确 答案:B 分析:由加速度的定义 (B)只有(1) (5)正确
v2 R
d 2s dt 2
v dx / dt 3 12t 6t 2
v(0) 3 m/s
2 3
a dv / dt 12 12t 0 t * 1 , v(1) 3 12 6 9 m/s
3. (★)一质点沿直线运动,其运动学方程为 x 5 3t t (SI) ,则在 t 由 1s 至 3s 的时 间间隔内, 质点的位移大小为 答案:2m; 6m 分析:位移 x x(3) x(1) 5 27 27 5 3 1 2 m,大小为 2m; ; 在 t 由 1s 至 3s 的时间间隔内, 质点走过的路程为 。
dx 0 dt
(B)
dx 0 dt
(C)
d (x 2 ) 0 dt
(D)
d (x 2 ) 0 dt
dx 1 d ( x 2 ) 可知 C 选项正确。 dt 2 dt
2. 质点以 v(t ) 沿 x 轴运动, dv / dt 是非零常数。当 t 0 时, v 0 ;当 t 0 时, vdv / dt (A)小于 0 答案:C

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点运动学答案一、选择题1、C2、C3、B4、B5、B6、A7、D8、C 二、填空题1、42、3m s ;9m s3、2m;6m 4/s/s5、239y x =+ 6、7、s t ∆;02tυ∆ 8、6.28m; 0;0; 6.28m/s 9、圆周运动;匀速率圆周运动 10、3.811、sin sin R ti R tj ωωωω-+;0;半径为R 的圆周 三、计算题(2)(1)(2)(1)(1.5)(1)(1)00640, 1.511(2)2642x x x xtdxt dtt ss x x x x m sms tt s υυυυυ∆-=∆=∆==-==∆=-+-=∆=∆=⨯位移==令第二秒内路程平均速率=m 时,=-=-2s负号表示速度方向沿平均速度x 轴负向2223058.365.12x y t n tn gtd a dt a ga t s ma m s ma ss υυυυ⎧=⎪⎨=⎪⎩=========时,3、2222222464(34)164002.5t n t n dsst t dt d sa t dtt t a R R m a s a Rm a s R mυυυ==+==++========当t=2s 时m=20s4、解:0230300044002232()3114366vttv xttx dv a dt dv adt dv adt t dtv v t dx v dt dx vdtdx vdt v t dt x x v t t t t =====+====+=++=++⎰⎰⎰⎰⎰⎰质点动力学答案一、选择题1、C2、C 二、填空题1、980J2、9J 三、计算题1、解:0220322202213624txtF a tmd tdtt dx t dtx t dx t dtW Fdx t t dt Jυυυ==========⎰⎰⎰⎰⎰⎰2、解:()2215030145W Fdx x x dx J ==+=⎰⎰刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。

2、14ml 23、l g 43,l g 234、 2ω05、ωωωω--B A A J )(6、ML m 23v .7、L 76v8、02ωmrJ J+ 三、计算题1、解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J β ② 1分 a =R β ③ 1分由此可得 T =m (g -a )=m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-J TR g /2 那么 mg J mR T =⎪⎪⎭⎫ ⎝⎛+21 将 J =21MR 2代入上式,得 mM m M gT 2+= 2分 图2分2、解:(1) 各物体受力情况如图 图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (3r )-Tr =14mr 2β 2分 a =r β 1分 a '=(3r )β 1分 由上述方程组解得:β=g / (12r )=16.33 rad ·s -2 2分3、解:以小球为研究对象,由转动定律βJ M =得:水平位置时:lg ml mgl ==002ββ 5分杆与水平方向夹角为60°时:' '静电场答案选择题1、C2、 B3、A 和D4、 C5、 C6、A7、 C8、 A9、 B 10、A 11、D 12、 B 13、 D 填空题1、单位正试验电荷置于该点时所受到的2、2N / C ; 向下3、-2ε0E 0 / 3 ; 4ε0E 0 / 34、包围在曲面内的净电荷 ;曲面外电荷5、高斯面上各点6、qQ / (4πε0R ) .7、-3.2×10-15 J ;2×104 V 8、-140 V . 9、⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε.计算题1、解: 选取圆心O 为原点,坐标Oxy 如图所示,其中Ox 轴沿半圆环的对称轴.在环上任意取一小段圆弧d l =R d θ,其上电荷d q =(Q d l ) / (πR )=(Q d θ) / π,它在O 点产生的场强为202204d 4d d R Q R q E εθεπ=π=在x 、y 轴方向的两个分量 θθεθd cos 4cos 202R QdE dE x π==θθεθd sin 4sin 202R QdE dE y π== 对两个分量分别积分2022/2/2022d cos 4RQ RQ dE E x x εθθεπ=π==⎰⎰ππ-2分0d sin 42/2/202=π==⎰⎰ππ-θθεRQ dE E y y由此得i R Q i E E x2022επ==i为x 轴正向的单位矢量.2、解:r ≤R 时,在球内作一半径为r 的高斯球面,按高斯定理有30123414r E r πρε=π得 r E 013ερ= 1E 方向沿半径向外. r >R 时,在球体外作半径为r 的高斯球面,按高斯定理有22/4εq E r =πd l d θ θθyxd E yd E x d EO334R q πρ=得 20320234rR r q E ερε=π= 2E 方向沿半径向外.3、 解:设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l xq x a l q U P -+π=-+π=008d 4d d εε整个杆上电荷在P 点产生的电势()⎰--+π=ll P x a l x l qU d 80ε()l lx a l l q --+π-=ln 80ε⎪⎭⎫⎝⎛+π=a l l q 21ln 80ε4、解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204rQE επ=(R 1<r <R 2) 两球的电势差 ⎰⎰π==212120124d R R R R r dr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 C静电场中的导体和电介质答案选择题 1、. D 2、 B 3、 B 4、 D 5、 D 6、C 7、A 8、 D 9、 D 10、 C 11、[ D ] 填空题1、 )2/()(21S Q Q + ; )2/()(21S Q Q - ; )S /()Q Q (212-; )2/()(21S Q Q +2、)4/()(22R Q q π+ 3、 9.1×105 C 4、 U 0 5、无极分子;电偶极子6、 E D rεε0= 7、εr ; 1 ; εr 8、σ ; σ / ( ε 0ε r )9、不变 ,减小 计算题1、图示为一半径为a 的、带有正电荷Q 的导体球.球外有一内半径为b 、外半径为c 的不带电的同心导体球壳.设无限远处为电势零点,试求内球和球壳的电势. 解:球壳内表面将出现负的感生电荷-Q ,外表面为正的感生电荷Q .按电势叠加原理(也可由高斯定理求场强,用场强的线积分计算)导体球的电势为c Qb Q a Q U 0001444εεεπ+π-π=Q abc ac bc ab ⎪⎪⎭⎫ ⎝⎛-+=04πε 球壳电势 cQU 024επ=2、 一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t (<d )的金属片,如图所示. 试求:(1) 电容C 的值(2) 金属片放在两极板间的位置对电容值有无影响?解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为 2211d E d E U U B A +=-)(210d d S q+=ε)(0t d Sq -=ε 由此得 )/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值 无影响.3、 三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C4、 一平行板电容器,其极板面积为S ,两板间距离为d (d <<S ),中间充有两种各向同性的均匀电介质,其界面与极板平行,相对介电常量分别为εr 1和εr 2,厚度分别为d 1和d 2,且d 1+d 2=d ,如图所示.设两极板上所带电荷分别为+Q 和-Q ,求: (1) 电容器的电容.(2) 电容器储存的能量.解:(1) 两极板间电位移的大小为 D =σ=Q / S在介质中的场强大小分别为E 1 = D / (ε0εr 1) = Q / (ε0εr 1S ) E 2 = D / (ε0εr 2) = Q / (ε0εr 2S ) 两板间电势差⎪⎪⎭⎫ ⎝⎛+=+=22110221112r r d d S Q d E d E U εεε()S d d Q r r r r 2101221εεεεε+= 电容 C = Q / U 121221210r r r r d d Sεεεεε+=(2) 电场能量 21221CU W =()SQ d d r r r r 210212212εεεεε+=恒定磁场答案一 选择题二.填空题三.计算题1.解:选取以O 为圆心以r 为半径宽度为dr 的圆环的微元 圆环所带电量为rdr dq πσ2=)(2122R R Q-=πσ圆环以角速度ω绕O 转动时等效的圆电流为rdr rdr T dq dI σωππσω===22 圆电流在P 点的磁感应强度d B232230232220)(2)(2x r drr x r dIr dB +=+=σωμμ整个转盘在P 点的磁感应强度B)]()[(21)(222122222221222023223021xR x x R x x R x R x r drr dB B R R +-+++-+=+==⎰⎰σωμσωμ方向沿x 轴正方向2.解:54321B B B B B B ++++=2014R I B πμ=方向向外;202024221R I R I B μμ==方向向里;03=B ;101044221R IR I B μμ==方向向里;1054R IB πμ=方向向外 1020********R IR I R I R I B μμπμπμ--+=方向向外 3.解:各边受力:(1)B l d I F d⨯=21dx x I I dF πμ21021=⇒dld I I F +=⇒ln 22101πμ方向:竖直向下 (2)θπμθtan )(2tan 21022l l d I I l BI F +== 方向:水平相右(3)B l d I F d ⨯=23dl x II dF πμ21023=⇒⎰+=⇒ld dx dxI I F θπμcos 22103dld I I F +=⇒ln cos 22103θπμ 方向:垂直杆斜向上θπμtan ln 22103d l d I I F x +-= dld I I F y +=ln 22103πμ 0=y F θπμtan )ln (2210dld d l l I I F x +-+=方向水平相左 4.解:(1)n I R S I m 241π== 21sin()42M m B R IB t k ππω=⨯=-(2)max f =电磁感应答案一.选择题1. B2. A3.D4.A5.D6.D7.D 8A 9.D 10.B 二.填空题1.t r m nI ωωμsin 20π 2.229R B ω ;O 点3.导线端点;导线中点 4. 221R B ω;沿曲线由外指向中心5.答案见图.6.20 J 7. 1:2 ;1:28.2A 9.不能 三.计算题1.解:长直导线在如图坐标x 处所产生的磁场为)(20xIB π=μ)d (20⎰⎰+==bd d xx IaBdS πμΦ)ln(20dbd Ia+π=μ∴εtI d b d a dt d d d ])(ln[20+π=Φ=μ2. 解:t 时刻通过半圆的磁通量为t rBm ωπcos 22=Φ2sin 2tr B dt d m ωωπε=Φ-=Rtr B R i 2sin 2ωωπε==LO3.解:建立坐标(如图)则:x IB π=20μ, B方向⊙εd x xI x B d )1(2v d v 0π==μ ε⎰⎰+π==x xI b a d )1(2v d a0μ a b a I +π=ln 2v0μ4.解:(1)B a U U U E O OE221ω=-=(2) 添加辅助线OF ,由于整个△OEF 内感应电动势为零,所以OFEF OE =+即可直接由辅助线上的电动势E OF 来代替OE 、EF 两段内的电动势.aa OF 245cos 2=︒=B a a B U U U F O OF22)2(21ωω==-=(3) O 点电势最高 .《机械振动》答案一、选择题CDBBB CACAA DC 二、填空题1、n T /2、T 4,2/2S3、0sin A ωϕ,-02cos ϕωA4、2rad/s ,0,t x 2cos 2=(SI ),212N ,负方向5、10cm ,π32,4.8s ,)32125cos(1.0ππ+=t x (SI ) 6、如图所示ax +d x a +bI CDvxOx7、k m π221+,02x mk 8、m k π1,mk π1 9、238kA 10、π 三、计算题1、 解:处于平衡位置时,弹簧的伸长量L ∆满足如下关系Mg L k =∆ (1)对滑块m ,M 进行受力分析,设绳子的张力为T ,则当滑块M 位移为x 时,有Ma T Mg =-a m T L x k '=+∆+-)(由于绳子不可伸长,故有a a =',则上述两式联立消去T 并考虑(1)式可得a m M kx )(+=-由上式可知滑块M 做简谐振动,其振动原频率为mM k+=ω已知0=t 时滑块M 处于负的最大位移处,即M 滑块的振幅及初相为kMgL A =∆=,πϕ=则可得M 滑块的运动方程⎪⎪⎭⎫ ⎝⎛++=πt m M kk Mg x cos (SI ) 2、 解:设该质点的简谐运动方程为)cos(ϕω+=t A x (SI )则可以知道该质点的速度满足)2cos(πϕωωυ++=t A (SI )由图可以看出速度振幅为10=A ω,利用旋转矢量法可得速度方程的初相与圆频率为ππϕ322=+→ 6πϕ=14433t ωππ∆Φ===∆ → 1030/3A ππ==因此可以得到该质点的振动方程30cos 36x t πππ⎛⎫=+ ⎪⎝⎭(SI ) 3、 解:如图所示,画出旋转矢量图,可以知道质点从2/A 处(速度为正)运动到题32/A 处(速度为正)时旋转矢量转过的角度为π1219=∆Φ已知旋转矢量的旋转角速度(即质点振动圆频率)为4/πω=,故需要的时间为319=∆Φ=∆ωt (s ) 4、 解:将振动方程2x 写为t x πcos 32=(SI )画出三个旋转矢量,如右图所示。

相关文档
最新文档