RFTest 操作说明文档V1.0
RFT
RFT概述RFT(Rational Functional Tester)是由IBM推出的针对Java、.Net和Web应用程序的自动化功能测试工具,拥有功能强大的编辑器并支持多种脚本语言,还集成了ScriptAssure 技术、模式匹配功能及数据驱动,以增强测试脚本的灵活性。
借助这一工具,测试人员可以轻松地录制或编写脚本来进行自动化测试,极大地提高了测试效率。
通过录制一个应用程序的测试您可以很快产生测试脚本,您还可以测试这个应用程序之中的任何对象,包括这个对象的属性和数据。
注:开始记录之前,要针对你所录的应用程序的脚本,先配置测试环境、配置测试应用程序和创建功能测试项目。
1.创建Functional Test项目文件—新建—Functional Test项目,点击弹出创建Functionnal Test项目的对话框,在该窗口需要你指定项目名称和存放该项目的路径,点击【完成】按钮,Functional Test项目创建完成。
或连接到现有项目,连接到项目后才能记录脚本。
注:如果有源控制选项可用,则不要选择将项目添加到源控制中。
如果有关联项目选项可用,则不要选择将Functional Test 项目与当前Rational 项目相关联。
2.编辑应用程序信息配置—配置应用程序进行测试,点击弹出编辑用程序信息对话框,如下图所示。
在该窗口点击【添加】按钮,在弹出的“选择应用程序种类”窗口中选择你要添加的应用程序的种类,如图所示。
然后点击【下一步】,直至完成。
3.启用环境进行测试配置—启用环境进行测试,点击弹出“启用环境”窗口,在该窗口中,你可以进行选择:注:窗口中的三个选项卡是需要用到的三个类别或领域,它们是根据您所测试的应用程序的类型而定。
(1)一般情况下,Internet Explorer是测试回放的默认浏览器,并默认被启用。
(2)选择Java选项卡,是用于测试Java应用程序的默认运行环境。
(3)如果您已经安装了Eclipse平台,那么您也可以选择Eclipse 选项卡。
RF作业指导书
‘$’SHIFT+4‘%’SHIFT+5‘^’SHIFT+6‘!’SHIFT+1‘@’SHIFT+2‘#’SHIFT+3 注.有更多符号,可点击软键盘选择需求。
4.1.7光标上下左右移动功能操作步骤:按桔黄色键,见屏幕下方有‘A’字样,选择2、4、6、8键所指方向操作,便可完成移动。
注.完成移动后要再按一下桔黄色键,取消‘A’字样,2、4、6、8键方可恢复原功能。
4.1.8 RF系统注册步骤:点击Heelp→AboutSchmidtTehet.. →Register→User:feili→SN:输入厂家提供的License Key→点击OK即可。
4.2 RF收货图例:4.2.1首先我们打开RF界面,输入用户名和密码。
4.2.2选择仓库(按“0”),进入仓库PRD1_warehse1。
4.2.3 选择收货(按“1”)。
4.2.4 输入打印机ID(默认),按回车。
4.2.5接受任务:选择标准收货(按“1”),按回车。
4.2.6输入ASN单号(10位数字),按回车。
4.2.7输入货主代码、行号(收货清单上的行号)、SKU,按回车。
4.2.8输入接收库位,分以下3种情况:(1)当所收货物是良品时,如果是1号的货物,输入1STAGE,如是2号库的,输入2STAGE (2)当所收货物有破损等异常,货物要收到待处理区时,输入1WAIT;(3)当所收货物时退回来的不良品时,输入1QCNG4.2.10按ENTER键接受。
4.2.11如该ASN有N托料,则重复6---10.注、如果SKU主档设置了要求在收货过程中进行Catch Weight/ Catch Data(采集数据/称取重量)4.3RF收货--采集箱号4.3.1采集的箱数与收货时的包装有关:包装的规则是a-b-c-d,需要采集的箱数=每个LPN的数量/c;如下图,要采集的箱数是3箱(30/10)操作步骤重复1---10.4.3.2按ENTER键会进入到以下界面。
检验科生化类风湿因子RF测定的标准操作规程
检验科生化类风湿因子测定的标准操作规程【目的】体外检测血清类风湿因子(RF)含量。
【职责】1.实验室工作人员均应熟知并严格遵守本SOP,室负责人监督落实。
2.本SOP的改动,可由任一使用本SOP的工作人员提出,并报经下述人员批准签字:室负责人、科主任。
【标本类型及实验前准备】1.受检者的准备病人空腹12h,不饮酒24h后采集血样。
体检对象抽血前应有两周的的正常状况记录。
注意有无应用影响测试项目的药物。
此外,对于体检者,采血的季节都应做相关记录,因为样本中各项目的含量有季节性变动,为了前后比较应在每年同一季节检验。
对于体检对象抽血前应有2周时间保持平时的饮食习惯,应嘱体检对象在抽血前24小时内不做剧烈运动。
2.静脉采血除非是卧床的病人,一般在采血时取坐位。
体位影响水分在血管内外的分布,会影响测试项目的浓度。
在采血前至少应静坐5分钟,一般从肘静脉取血,使用止血带的时间不超过1分钟,穿刺成功后立即松开止血带。
【仪器设备】东芝TBA-FX8全自动生化分析仪,低速离心机一、检测原理类风湿因子试剂是大小均一的聚苯乙烯乳胶颗粒悬液,颗粒表面包被有抗人γ球蛋白,样本中类风湿因子与之结合后,发生凝聚反应,并产生浊度改变。
该浊度与样本中类风湿因子浓度成正比。
通过测定600nm处吸光度值的变化,即可测得样本中类风湿因子的浓度。
二、试剂1.试剂本科使用上海复星长征医学科学有限公司RF试剂盒,为液体双试剂,各组分如下:试剂1(R1)叠氮化钠 0.1%磷酸盐缓冲液 13 mmol/L试剂2(R2)叠氮化钠 0.1%抗人γ球蛋白致敏胶乳颗粒抗原2.校准要求2.1校准品:使用与试剂配套使用的复星长征校准品对测定进行校准。
2.2校准间隔2.2.1试剂批号变更时,使用与试剂配套使用的复星长征校准品对测定进行校准后再对临床病人样本进行测定。
2.2.2室内质量控制出现问题时使用与试剂配套使用的复星长征校准品对测定进行校准并确认问题得到解决后方可对临床病人样本进行测定。
RF模块测试 fixture用户指南说明书
Printed in U.S.A.MAINTENANCE MANUALRF MODULE TEST FIXTUREGENERALSTATIC HANDLING PRECAUTIONSThe modules being tested using the TQ-0650 contain Metal Oxide Semiconductor (MOS) devices which are vul-nerable to damage from Electro-Static Discharge (ESD). As a result, extra care must be taken when handling or testing the devices, modules, or the assemblies in which they are used.To prevent damage from ESD, observe the following precautions:•Service the modules only at a static free work station or on a grounded mat.•Perform diagnostics to isolate a faulty assembly or component. Do not use canned coolant for fault isolation.•Discharge static voltage from your body by wearing a grounded antistatic wrist strap where possible.Where ground straps can not be used, touch a grounded item prior to handling a module.•Avoid touching any electrically conductive parts ofcircuit modules with your hands. When you must handle components, pick them up by the body and avoid touching the leads.•Do not remove static sensitive devices from their protective packaging until you are ready to install them. Ground the package, to dissipate any accu-mulated charge, prior to removing the component.•Ground all electrically powered test equipment.Ground test equipment leads prior to connecting to a circuit and connect the ground lead prior to con-necting the test probe. Disconnect the probe before removing the ground lead.•When soldering, be sure soldering iron is grounded using a three prong cord connected to an outlet with a known good earth ground.•Use only metalized or ESD protective vacuum-type desoldering tools.ericssonzEricsson Inc.Private Radio Systems Mountain View RoadLynchburg, Virginia 245021-800-528-7711 (Outside USA, 804-528-7711)LBI-38805AEQUIPMENT LISTThe following equipment is included in the Test Fixture TQ-0650, package:•RF Module Test Fixture (344A4153P1)•Wall Mount Power Supply (16.8 Vac, 770 mA) (19A705998P7)•DB25-DB25 PC Interface Cable (344A4136P1)•PC Programming Software (344A4148P1)RFTEST.EXE - executable for loadingSynthesizer ModulesRFTEST.OVL - default parameters•Instruction Manual, LBI-38805 APPLICATIONThis test fixture allows the technician to perform out of system testing on the following MASTR III RF modules:•Transmit Synthesizer, 19D902780•Receive Synthesizer, 19D902781•Rx Front End RF Module, 19D902782•IF Module, 19D902783•Power Amplifier, 19D902797PREPARATION FOR USEFIXTURE SETUP1.Plug in the Wall Mount Transformer to the AC powersource and connect the output cable to the POWER INconnector, J10, on the Text Fixture.2.When testing the Synthesizer Module, connect the PCInterface Cable between the connector labeled COM-PUTER (J11) and the Parallel Printer Port (LPT1 orLPT2) on a PC.3.To use programming software, insert the disk in the Adrive and type:A:RFTEST <Return>MODULE TEST SETUPSUse the appropriate module setup for the module under test.Refer to the applicable module maintenance manual for detailson alignment, tuning and troubleshooting.1. Load the Receive Synthesizer Module with the cor-rect frequency.2.Press "PUSH TO TUNE" and adjust the tuningcapacitor on the module to produce 6 Vdc at TP 3(TEST) or until the frequency at J2 is at the correctfrequency ±50 kHz.3. Reload the Receive Synthesizer Module with thecorrect frequency.4. Check that the red "MODULE FAULT" LED is notlit.5. Verify that the output frequency and level are correctat J2.6. Verify that the reference frequency and level arecorrect at J3.Copyright © April 1992, Ericsson GE Mobile Communications Inc.Figure 1 - Test Fixture Front PanelTransmit Synthesizer1.Set/adjust the module for the correct frequency.2.Load the Transmit Synthesizer Module with thecorrect frequency.3.Check that the red "MODULE FAULT" LED is notlit.4.Verify that the output frequency and level are correctat J2.5.Apply the modulating frequency at (MOD+,MOD-)and adjust module for the required deviationReceive SynthesizerLBI-3880511.Set the Signal Generator (or load the Receive Syn-thesizer Module) to the appropriate frequency, this frequency should correspond to the desired receive frequency, Fo ±21.4 MHz.2.Center the Spectrum Analyzer/Tracking Generator on the desired center frequency with about a 20 MHz span and set the reference level to about -30 dBm,the tracking generator output level output should be set to 0 dBm.3.Sequentially adjust the tuning slugs of L1 throughL5 to the heights specified in the Maintenance Man-ual for the desired center frequency.4.Sequentially adjust the tuning slugs of L1 through L5 to get the optimum frequency response.5.Check that the red "MODULE FAULT" LED is not lit.1.Set the Signal Generator to the correct IF and apply Standard Modulation at a level of -60 dBm.2.Adjust VR1 on the module to produce 1 Vrms at pin 7(V/S HI) on J14.3.Check that the red "MODULE FAULT" LED is not lit.RxRF Module (method 1)1.Set the Signal Generator 1 with 0 dBm output level (or load the Receive Synthesizer Module) to the appropri-ate local oscillator frequency.2.Set the Signal Generator 2 with 0 dBm output level to the corresponding receiver input frequency.3.Sequentially set L1 through L5 of the module to the heights in Table 2 of the Maintenance Manual for the desired input frequency.4Sequentially adjust L1 through L5 of the module togive the maximum output level on the RF Level Meter,then lock the tuning screws.5.Check that the red "MODULE FAULT" LED is not lit.LBI-388052To use Transmit Synthesizer as signal source:1.Load the Transmit Synthesizer Module with the cor-rect frequency.To use Signal Generator as signal source:1.Set Signal Generator to the correct frequency with anoutput level of +10 dBm.2.Set test fixture switch to "TX-ON".3.Adjust "POWER SET" for maximum.4.Adjust VR217 on the Power Amplifier board to pro-duce the maximum desired output power.5.Check that the red "PA ALARM" LED is not lit.6.Disconnect J104 from the power meter and check thatthe red "PA ALARM" LED is lit.MASTR III - BACKPLANE (RF CONNECTOR)CIRCUIT DESCRIPTIONThe RF Test Fixture (TQ0650) provides all of the regu-lated supplies required to power the RF Modules. A wallmount transformer steps down the AC line voltage to 22 Vacand connects to J10. This voltage is full-wave rectified bydiodes D1 through D4 and filtered by C27 and C29. Thefiltered output then drives a series of regulators to provide+13.8VF (actually 15 Vdc), +12 Vdc and +5 Vdc. Diodes D5and D6 rectify the AC from J10 at a negative potential to drivethe negative voltage regulator, U18 which provides -12 Vdc.The DB-25 Connector (J11) interfaces with an IBM PCCompatible Computer. U13 provides buffering and protec-tion for the computer’s parallel printer port and drives theappropriate data lines for the Synthesizer modules throughJ12.V olume/Squelch High is provided at TP6. R15 and C17de-emphasises the audio and U15 provides 6 dB of gain andbuffering to provide de-emphasised audio at TP7. U16 am-plifies the de-emphasised audio to provide about 1/2 W ofaudio drive for the speaker.An on-board frequency reference (U14) delivers suffi-cient drive for the Transmit Synthesizer "REF IN" input at afrequency of 12.8 MHz.The control voltage for the RF Power Amplifier is set byR27 and buffered with U17B to provide about 4 - 8 volts ofDC for power control. A comparator, U17A drives the "PAALARM" LED and is set to illuminate the LED when the PA"Power Sense" Output drops below 2.5 volts.A Low Pass Filter comprising L1, L2, C1 and C2 can beused to filter the IF Output from the RxRF Module to provideaccurate measurement for Front End tuning.LBI-388053PARTS LISTOUTLINE DIAGRAMPRINTED WIRING BOARD APRINTED WIRING BOARD BRF MODULE TEST FIXTURE344A4153P1ISSUE 1*COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGESLBI-388054SCHEMATIC DIAGRAM LBI-38805PRINTED WIRING BOARD A(19C852239, Sh. 1, Rev. 0)5SCHEMATIC DIAGRAM LBI-38805PRINTED WIRING BOARD B(19C852239, Sh. 2, Rev. 0)6LBI-38805 This page intentionally left blank7。
rft中文操作指南(上)
RFT中文操作指南(上)练习 1.1:设置 Functional TestIBM 提供 Java 运行时环境(JRE),可以安装并启用它来测试 Java 应用程序。
对于本教程,您将使用该 JRE。
如果您想测试自己的 Java 或 HTML 应用程序,就必须运行启用程序并配置您的环境和应用程序。
关于这些设置任务的更多信息,请参阅欢迎页面的“第一步”页面上的“Functional Test 入门”向导。
目前您不需要采取任何措施来使用预配置的 JRE 就可以继续操作。
设置日志记录选项Functional Test 提供了几个日志记录选项。
我们将使用 HTML 日志。
1.要验证这是您设置的选项,请单击窗口 > 首选项。
2.在“首选项”对话框的左侧窗格中,展开Functional Test,然后展开回放并单击日志记录。
3.验证日志类型字段右边的使用缺省值复选框已被选中,并且html出现(变灰)在字段中。
4.单击确定。
此设置会在您回放脚本后自动打开 HTML 日志。
创建 Functional Test 项目在开始记录之前,您必须先创建 Functional Test 项目。
1.在 Functional Test 菜单中单击文件 > 新建 > Functional Test 项目。
2.在项目名称下输入FTtutorial,不要加任何空格。
3.在项目位置下输入C:\FTproject。
Functional Test 会创建这个目录。
4.如果有源控制选项可用,则不要选择将项目添加到源控制中。
5.如果有关联项目选项可用,则不要选择将 Functional Test 项目与当前 Rational 项目相关联。
6.单击完成。
现在,在 Functional Test 透视图的左侧窗格“Functiona l Test 项目”视图中可以看到FTtutorial 项目。
现在您可以开始进入练习 1.2:记录脚本。
RFT简明操作指南
1 Rational Functional Tester概述Rational Functional Tester(以下简称RFT)是一个面向对象的、自动测试工具,它使您能够测试各种应用程序。
通过录制一个应用程序的测试您可以很快产生测试脚本,您还可以测试这个应用程序之中的任何对象,包括这个对象的属性和数据。
RFT可以给您提供一个编写脚本语言的机会和两种开发环境:Eclipse 框架中的Java或Microsoft Visual Studio开发系统中的。
RFT的基础是针对于Java、.NET的对象技术和基于Web 应用程序的录制、回放功能。
当您记录脚本时,RFT会为被测的应用程序自动创建测试对象地图。
对象地图中包含了对每个对象的识别属性。
当您在对象地图中更新记录信息时,任何使用了该对象地图的脚本会共享更新的信息,减少了维护的成本及整个脚本开发的复杂度。
对象地图还为您提供快速的方法向脚本中添加对象。
它列出应用程序中涉及到的测试对象,不论它们当前是否可视。
您可以通过依据现有地图或按需添加对象来创建新的测试对象地图。
在记录过程中您可以将验证点插入到脚本中以确定在被测应用程序建立过程中对象的状态。
验证点获取对象信息(根据验证点的类型,可以是对象属性验证点或五种数据验证点之一-- 菜单层次、表格、文本、树形层次,或列表)并在基本数据文件中存储。
文件中的信息成为随后的建立过程中对象的期望状态。
在执行完测试之后,您可以使用验证点比较器(Verification Point Comparator)进行分析,并且如果对象的行为变化了就更新基线(期望的对象状态)。
在测试对象地图中,您可以观察到与列表与地图相关的脚本,且可以使用该列表来选择要添加测试对象的多个脚本。
2. 界面(工具栏)工具栏中包含这些图标:Open the New Wizard -- 显示适当的对话框来创建许多项中的一个或录制Functional Test 脚本。
RF 设备调试手册说明书
WARNINGIF “FAIL” APPEARS ON THE DISPLAY, THECALIBRATION REQUIRED LED (LEFTCOLUMN) REMAINS LIT, OR THECALIBRATED LED (RIGHT COLUMN) DOESNOT LIGHT, THE CALIBRATION PROCESSDID NOT COMPLETE. SHOULD THISHAPPEN, CYCLE THE UNIT POWER ANDTHEN REPEAT STEP 2 ABOVE. IF “FAIL”APPEARS AGAIN, FURTHER TROUBLE-SHOOTING IS REQUIRED.3.Remove the test shunt. The RX Occupancy LED shouldlight. If the RX Occupancy LED fails to light, thecalibration process has failed (refer to the WARNINGabove). Inspect all equipment and connections andrepeat steps 1 & 2. If the calibration fails again,further troubleshooting is required.4.The RX Occupancy LED should light once the testshunt has been removed. Proceed to Receiver andTransceiver Checkout Procedures, Section 7.5.1. Receiver and Transceiver Checkout Procedures1.Scroll down the Main Menu of the Receiver untilINFO appears on the display.2.Momentarily press the MENU Button and release it.“+RX SIG LVL =” appears on the Display.3.Take note of RX SIG LVL. This is the normal receivesignal value. Verify the RX SIG LVL value is >300. Ifnot, set TX LVL to High and perform calibration andcheckout procedures again. If the value remainsbelow 300 after selecting TX LVL=High, select a lowerfrequency where RX SIG LVL value is >300.4.In the WSS containing the transmitter, remove thetransmitter’s signal to the track by disconnecting atransmitter lead from the track surge equipment.5.With the corresponding transmitter disabled, observethe RX SIG LVL. If RX SIG LVL is greater than 20, anunintended signal of like frequency may be present.WARNINGDO NOT PROCEED TO STEP 6 ANDBEYOND UNTIL THE UNINTENDED SIGNALOF LIKE FREQUENCY IS NO LONGERPRESENT (THIS MAY REQUIRE AFREQUENCY CHANGE TO AVOIDUNINTENDED HARMONICS.) THISCONDITION MUST BE RESOLVED.6.Verify that the RX LED found in the Occupancyportion of the face of the unit is de-energized. If theLED remains lit, troubleshoot the unit.7.Restore the Transmitter signal to the circuit byreconnecting the lead in the transmitter’s track surgeequipment.8.Verify that the RX LED found in the Occupancyportion of the face of the unit energizes. If the LEDsfail to light, troubleshoot the unit, re-calibrate, andperform Steps 1 - 7 again.9.Verify proper operation of the track circuitequipment before placing in service in accordancewith railroad or agency procedures and applicableFRA rules.10.Verify proper PSO 4000 operation by observing trainmoves, per railroad or agency policy.11.The system is now ready for operation.NOTEIn the text on this side of the document andon the drawing on the reverse side of thedocument, all references to Section numbersare those section numbers found within theSiemens Phase Shift Overlay 4000 (PSO 4000)Installation and Instruction Manual, SIG-00-07-06.QUICK REFERENCE GUIDEINSTALL PSO 4000TRANSMITTER/RECIEVER MODULESDocument Number SIG-QG-10-03Version A.1The following procedure should be used when installingPhase Shift Overlay 4000 (PSO 4000) Track Circuits utilizingPSO 4000 Transmitter, 7A471 and PSO Receiver, 7A473.WARNINGVERIFY THAT THE PSO 4000TRANSMITTER’S AND RECEIVER’SSOFTWARE, FREQUENCY, AND ADDRESSFORMATS ARE AS SPECIFIED BY THERAILROAD’S OR AGENCY’S APPROVEDWIRING OR INSTALLATION DIAGRAM.FAILURE TO DO SO MAY LEAD TOINCORRECT OR UNSAFE OPERATION OFTHE TRACK CIRCUIT.IF ANY RECEIVER IS CALIBRATED IN POORBALLAST CONDITIONS, IT MUST BE RE-CALIBRATED WHEN BALLAST CONDITIONSIMPROVE.FAILURE TO FOLLOW THE RAILROAD’S ORAGENCY’S APPROVED WIRING ORINSTALLATION GUIDELINES REGARDINGRECEIVER SETTINGS AND CALIBRATIONMAY LEAD TO POSSIBLE UNSAFEOPERATION OF THE TRACK CIRCUIT.AFTER CALIBRATION, VERIFY THAT THETRACK CIRCUIT DE-ENERGIZES WHEN THETRACK CIRCUIT IS SHUNTED WITH THEAPPROPRIATE CALIBRATION RESISTANCE(0.06, 0.2, 0.3, 0.4, OR 0.5 OHMS). FAILURETO DO SO MAY LEAD TO INCORRECT ORUNSAFE OPERATION OF THE TRACKCIRCUIT.FOLLOWING INSTALLATION OR AFTERANY RECEIVER MENU CHANGES HAVEBEEN MADE, RECALIBRATE THE RECEIVERAND TEST FOR PROPER OPERATION PERTHE REQUIREMENTS SPECIFIED IN TABLE7-2 AND TABLE 7-3 OF SIG-00-07-06, PSO4000 I & I MANUAL.Perform the following steps to install the PSO 4000 units:1.Install and connect all PSO equipment in the WaysideSignaling Station (WSS) per the railroad’s or agency’sapproved wiring or installation diagram.2.Connect all required wiring per the railroad’s oragency’s approved wiring or installation diagram.3.Prior to beginning programming, verify LEDfunctionality using the *CHECK LED portion of theTEST menu per Section 5.2.7.2. If any LED fails to lightfollowing test, replace the unit.4.Program each unit by performing Set to Default. Thenproceed through the setup (SETP) menu to programeach unit per the railroad’s or agency’s approvedwritten instructions.With each unit properly installed and programmed perwritten instructions, calibrate the receiver (RX) as follows:1.When the track ballast is good, connect a track testshunt (hardwire, 0.06-ohm, 0.2-ohm, or as required)across the track at the receiver track connections.When the ballast is poor, connect the shunt acrossthe track at a point 30 feet beyond the receiver trackconnections. Verify solid connections of the shunt toeach rail.2.Scroll down the Main Menu until CAL appears on thedisplay. Then:•Press the MENU Button for two (2) seconds untilRX CAL appears.•Hold the MENU Button down until the release(REL) message appears. Release the MENU Buttonimmediately once the release (REL) messageappears.•As soon as the MENU button is released, thearmed (ARMD) message appears. Immediatelypress and release the MENU Button as soon asthe ARMD message appears. This starts thecalibration process. If the MENU Button is notpressed within two (2) seconds, the calibrationprocess cancels and the calibration process mustbe restarted.•*RX CAL flashes during the calibration process.•PASS or FAIL appears for two (2) seconds whencalibration is complete. When PASS appears,continue to Step 3. If FAIL appears, theCALIBRATION REQUIRED LED remains lit-2--8--7- Copyright © 2010-2014 SiemensAll Rights ReservedPSO 4000 TRANSMITTER, 7A471PSO 4000 RECEIVER, 7A473 Array-3- -4- -5- -6-。
RF测试仪说明书
Display Measurement functions : CRT displays either polar trace or Channel I and Channel 2 rectilinear traces . Reference position : independent reference lines for Channel 1 and Channel 2 and polar center can be set to any position for calibration . Video filter : typically 100 Hz (10 kHz without filter) . Graticule size : rectilinear 10 cm by 8 cm ; polar 8 cm in diameter . Smith chart overlays : 2, 1, 0 .2 and 0 .1 full scale (furnished) . CRT photography: Tektronix C-5B Oscilloscope Camera is recommend (UV illumination will not excite P39 CRT phosphor for graticule exposure) . Resolution : 10, 2 .5, 1, 0 .25 dB magnitude per major division . 90, 45, 10, 2 .5 degrees phase per major division, Accuracy : ±2% ±0 .05 division for rectilinear trace . Within 2 .5 mm for polar trace .
RFT中文操作指南(下)
练习 1.6:回归测试在开始本练习之前,您必须先完成练习 1.5:查看验证点和对象图。
您拥有应用程序的新工作版本后,就可以通过对新工作版本回放脚本来运行您记录的自动测试。
要对新的工作版本执行脚本,则必须在脚本中更改应用程序的名称。
(您不需要对开发项目执行此操作;这里,您这样做是为了模拟如何获取应用程序的新工作版本。
)1. 在 Java 编辑器(脚本窗口)中,验证您的脚本(Classics.java)是否为活动脚本。
在脚本顶部的模板信息下面,就是启动应用程序命令:startApp("ClassicsJavaA");2. 将“A”改为“B”。
Java 代码是区分大小写的,因此务必使用大写 B。
您不需要保存或编译脚本来使更改生效。
当您运行脚本时它会自动生效。
3. 单击运行 Functional Test 脚本工具栏按钮()以回放脚本。
4. 如有必要,在选择日志对话框中选择 Classics 并单击完成。
您将被提示是否覆盖日志。
5. 单击是。
脚本开始快速回放,但在 Member Logon 对话框上接近结尾时速度变慢。
这是因为应用程序的工作版本 B 在复选框旁边的字段中具有不同的文本。
Functional Test 正在查找与工作版本 A 中记录的识别属性相匹配的对象。
稍后我们将展示如何解决这个问题。
6. 当日志在回放后打开时,请查看消息。
您将在日志中看到一条失败消息和一条警告消息。
第二个验证点(标记上的验证点)由于应用程序 中的更改而失败。
接下来,我们将考虑如何更新验证点基线以解决这个问题。
生成一条对应于密码复选框字段的对象识别警告。
在教程的以后部分中,我们还将展示 如何使用正则表达式在对象图中解决该问题。
您是否注意到 ClassicsB 的主屏幕似乎与 ClassicsA 不同,但这种情况并未导致脚本失败?存在相同的对象,但位于两个应用程序的不同位置。
这不会导致失败,因为 Functional Test 使用强健识别方法来查找对象。
RF测试仪器的使用
测试技术及仪器使用1.综测系统的搭建综测仪测试设备:PC 主机,GPIB 卡(NI-488.2),综测仪(CMU200),数控电源(KEI2303)电脑主机通过线与直流稳压电源和综测仪进行连接;通过综测软件控制使三者测试同步。
测试数据经GPIB线输入电脑进行显示测试时,稳压电源给手机;电脑主机利用测试软件经数据线控制手机自动开、关机及拨号;提供模拟基站信号并进行测试。
1.1 现场测试系统知识•在手机生产过程中,目前主要的测试包含有:PCB板测试、综合测试(点测)和天线测试(偶合测试)。
•也可分为自动测试和手动测试。
•a 综合测试•手机综合测试是指通过专用测试仪器设备模拟用户使用手机的情况对手机的整体电性能进行测试,以检验我们所生产手机的质量情况。
接触测试方式又称为点测,因其只是对手机本身的性能进行测试b b 天线测试•天线测试是专门对手机天线以及天线匹配电路进行测试,以确保手机性能的良好;天线耦合测试方式是天线与天线片之间通过空气耦合的方式进行测试,因其为非接触方式,容易受到外界各种电磁波干扰,需要将其放在屏蔽箱内进行测试,且对屏蔽箱的屏蔽要求相对较高(现在我们主要通过在屏蔽箱内加贴吸波材料来减少干扰)。
•c 板测•PCB板测试主要是对刚完成贴片的板进行相关参数的校准以及相关项目的测试,以检验该•具体校准过程如下:1、进入校准模式;2、校准VREF(参考电压);3、校准TX,分为:AFC和POWER,其中:TX_POWER中又分为:POWER_RAMP和POWER_SCALE;4、校准RX,分为:IQ和RSSI;5、测试功率等级和相位误差;6、退出测试模式。
•d 手动测试•手动测试是指不通过PC显示和软件控制,而是直接采用改变综测仪参数对手机的射频参数进行测试。
•综测仪的用途:模拟基站发射和接收信号;对接收的信号进行分析、处理,并显示到显示器上。
•本部分主要是在实际操作上讲解2 GSMa 频道间隔RX 935~960MHZ。
RF设备基本操作(学习资料)
RF设备基本操作整理:张春来前言一、所有仪器自校的目的:检查仪器各项测试功能正常,保证每次测试数据的精准性。
二、所有仪器复位的目的:使仪器恢复到初始化状态,保证仪器正常。
三、所有仪器设置GPIB的目的:使仪器能成功实现远程控制。
四、所有仪器安装软件的目的:适应新的测试需要和排除仪器软件故障。
五、所有RF测试仪器在使用前都必须提前预热30分钟,保证仪器工作时的稳定性。
第一类RF 设备∧nristu(安立)-MT8820频率范围:30M-2.7GHZ适用范围:就目前可支持测试GSM所有频段和WCDMA所有频段。
一、自校(1)Shift + Screen(备注:此功能用来仪器1和2之间的切换)(2)Std----GSM----Next----Next----Band----Clibration/Full Clibration(3)Std----W C DMA----Next----Next----Band----Clibration/Full Clibration二、复位(1)Shift + Screen(备注:此功能用来仪器1和2之间的切换)(2)Std----GSM----Preset----Preset(3)Std----WCDMA----Preset----Preset/Preset(3GP)三、从机器本身安装软件Screen----System Configuration----Standard Load四、GPIB设定Screen----System Configuration----Phone1/2----GPIB五、备注:1.MT8820有A\B\C\D不同版本之分,最主要的区别是A\B是机械式元件,C\D是电子式的元件,机械式的损耗要比电子式的大,测试没有电子式的精度高。
2.如果用在校准位,不要用C\D版本的MT8820,因为A\B的损耗大过C\D版本,如果校准位用C\D的MT8820校出来的NV会比较精确和小,会造成这个NV值在用A\B综测的时候功率偏小达不指标。
RF 容量测量仪说明书
CAPACITANCE LEVEL MEASUREMENT BASIC MEASURING PRINCIPLEA capacitor is formed when a level sensing electrode isinstalled in a vessel. The metal rod of the electrode actsas one plate of the capacitor and the tank wall (orreference electrode in a non-metallic vessel) acts as theother plate. As level rises, the air or gas normallysurrounding the electrode is displaced by materialhaving a different dielectric constant. A change in thevalue of the capacitor takes place because the dielectricbetween the plates has changed. RF (radio frequency)capacitance instruments detect this change and convertit into a relay actuation or a proportional output signal.The capacitance relationship is illustrated with thefollowing equation:C= 0.225 K( A)Dwhere:C=Capacitance in picoFaradsK=Dielectric constant of materialA=Area of plates in square inchesD=Distance between the plates in inchesMETAL SHELL MEASURED MATERIAL SENSOR INSULATIONMETAL ELECTRODEEARTH GROUNDThe dielectric constant is a numerical value on a scale of 1 to 100 which relates to the ability of the dielectric (material between the plates) to store an electrostatic charge. The dielectric constant of a material is determined in an actual test cell. Values for many materials are published by the National Institute of Standards and Technology.In actual practice, capacitance change is produced in different ways depending on the material being measured and the level electrode selection. However, the basic principle always applies. If a higher dielectric material replaces a lower one, the total capacitance output of the system will increase. If the electrode is made larger (effectively increasing the surface area) the capacitance output increases; if the distance between measuring electrode and reference decreases, then the capacitance output decreases.Level measurement can be organized into three basic categories: the measurement of non-conductive materials, conductive materials and proximity ornon-contacting measurement. While the following explanations oversimplify the measurement, they provide the basics that must be used to properly specify a capacitance measurement system.ⅢNon-Conductive Materials—As previously stated, capacitance changes as material comes between the plates of the capacitor. For example, suppose thesensor and the metal wall are measuring theincreasing level of a non-conductive hydrocarbon.Figure 1 depicts a typical system.While the actual capacitive equation is very complex, it can be approximated for the above example as follows:C=0.225 (K air x A air)+0.225 (K material x A material)D air D materialSince the electrode and tank wall are fixed in place, the distance between them will not vary. Similarly, the dielectric of air and of the measured material remain constant (air is 1 and the hydrocarbon is 10). Consequently, the capacitance output of the system example can be reduced to this very basic equation:C= (1 x A air) + (10 x A material)As this equation demonstrates, the more material in the tank, the higher the capacitance output will be. The capacitance is directly proportional to the level of the measured material.ⅢConductive Materials—The same logic for non-conductive materials applies for conductivematerials, except that conductive material acts as the ground plate of the capacitor, rather than the tankFigure 1- Capacitive MeasurementIn Non-Conductive MediaK-10Kwall. This changes the distance aspect of the equation, whereby the output would becomparatively higher than for a non-conductivematerial. However, it still remains fixed; therefore, as level rises on the vertically mounted sensor, the output increases proportionally.NOTE: A material is considered conductive when it has a conductivity value of greater than 10 microSiemens/cm.ⅢProximity (non-contacting) Measurements —The level sensing electrode is normally a flat platemounted parallel to the surface of the material. The material, if conductive, acts as the ground plate of the capacitor. As level rises to the sensor plate, the effective distance between plates is decreased, thus causing an increase in capacitance. In non-conductive materials, the vessel acts as the ground plate and the mass of material between the plates is the variable. In the measurement of non-conductive and conductive materials, the area changes and the distance is fixed. Proximity level measurement is exactly the opposite in that the area is fixed, but distance varies.Proximity level measurement does not produce a linear output and can only be used when the level varies by several inches.Some typical level sensor installations for measuring conductive and non-conductive materials and for proximity level measurement are shown in Figures 2and 3.APPLICATIONSApplications for RF point level controls and analog transmitters/controllers are widespread. Granular applications range from light powders to heavyaggregates. Applications in liquids, slurries and pastes are commonplace. Capacitance level can also be used to detect the interface between two immiscible materials.Selecting the proper level sensing electrode andinstalling it in the proper location are important factors that contribute to the success of any application. A thorough understanding of these factors is required.•Electrode Selection —The electrode is the primary measuring element and must be capable of producing sufficient capacitance change as it becomes submerged in the measured material.Several electrode types are offered, each having specific design characteristics. Capacitance (per foot of submersion) vs. dielectric constant curves are published for each type as installed in various size vessels. For non-conductive materials, these curves are non-linear. Figure 4 shows a typical set of curves. As the size of the tank gets smaller, the capacitance per foot of submersion increases. A conductive material essentially makes the tank be the size of the electrode insulation.Note: Continuous level transmitter applications require aminimum span of 10.0 pF and a maximum span of 10,000 pF.In this case, the saturation capacitance is used.Table A lists basic capacitance values for different electrodes and tank sizes.CAPACITANCE LEVEL PROBE SELECTION GUIDEThe simplest applications are clean, non-coatingconductive liquids (such as many water-based liquids)in metallic tanks. An insulated probe must be used, and the fluid is grounded to the probe through the tank. The capacitance change per foot = the saturation capacitance.Clean, non-coating conductive liquids (such as many water-based liquids) in non-metallic tanks require the use of a concentric probe. The capacitance change per foot = the saturation capacitance. See application note “RF Level Measurement in Lined Vessels withGrounded Shell” for details on lined or coated metallic tank applications. Clean, non-coating non-conductive liquids (such as many hydrocarbons ) in non-metallic tanks require the use of a concentric probe. The Figure 2Figure 3K-11GENERAL PURPOSE PROBE - TFE INSULATED70605040302010DIELECTRIC CONSTANTC A P A C I T A N C E P E R F O O T (p F )capacitance change per foot depends upon the dielectric constant of the material.Clean, non-coating non-conductive liquids (such as many hydrocarbons ) in metallic tanks require special consideration. A bare (un-insulated) probe can be used,but one must insure that the probe does not come in contact with any conductive liquid that may contaminate the non-conductive liquid (such as water in oil). If this occurs, the output will be driven to full scale, regardless of the actual level in the tank. Note that an insulated probe can also be used. The probe’s metal fitting must be grounded to the metal tank wall, and the distance from the tank wall to the probe must be constant along the entire length of the probe, to provide a linear change in analog output per change in fluid height. If this is not the case (i.e. the tank is “irregular” in shape),or if the tank is greater than 15 ft in diameter, a concentric probe should be used. The capacitancechange per foot depends upon the dielectric constant of the material, as well as the tank diameter (tank diameter does NOT effect the concentric probe).After making a preliminary probe selection based upon the above considerations, it is important to insure that the capacitance of the probe selected meets thefollowing limitations: the capacitance at zero level in the tank is less than 500 pFd, and the maximumcapacitance at full span level is more than 10 pFd but less than 10,000 pFd. Also, the zero to span ratio must not exceed 10 to 1. That is, if the zero pf value is 200,the span must be at least 20 pf.THIS IS CALCULATED AS FOLLOWS:For the LV5100 probe, TFE insulated, in a 24" tank,with a dielectric = 2 (air has a much lower dielectric, so this calculation is very conservative), the pFd per foot is 6 pFd. The maximum length of this probe is 12 ft, so that the maximum probe capacitance in the open air is = (6 x 12) + (42 pFd - gland capacitance) = 114 pFd,which is less than 500 pFd. Note that no probe has greater than 50 pFd gland capacitance.Helpful Hint500 pFd can only be exceeded with anLV5300 probe of greater than 25 ft length, or greater than 9 ft length in the LV5102 PVDF insulated heavy duty probe, or greater than 91⁄2ft length in the polyethylene insulated heavy duty probe.For the LV5100 probe, TFE insulated, in a 24" tank,with a dielectric = 2 (this is a typical value forhydrocarbons) the pFd per foot is 6 pFd. The maximum length of this probe is 12 ft, so that the maximum span capacitance is = (6 x 12) + (0 pFd - gland capacitance is not added to the span) = 72 pFd, which is greater than 10 pFd and less than 10,000 pFd. Note that if the probe were only 1 ft long, that the maximum spancapacitance would be only 6 pFd, which is less than the required 10 pFd.Helpful Hints• 10,000 pFd can only be exceeded with an LV5300 probe of greater than 39 ft length, or greater than 10 ft length in the LV5202 or LV5212 PVDF insulated enhancedperformance probe with a conductive liquid.•To have less than 10 pFd span, one must have a span of less than 1 ft fornon-conductive liquid with dielectric less than 20and in a tank greater than 1"diameter.•Note that the “Saturation Capacitance”values should be used when the liquid is conductive (i.e.above 20 microsiemens/cm),such as water-based fluids that are not ultra-pure or distilled or deionized.Field Calibration Required:Capacitive level transmitters must always be calibrated for zero and span in the field. The concentric probe can be tested in a bucket or small tank of the liquid to be measured; all other probes must be calibrated after final installation by changing the material level and adjusting the zero and span pots.Unlined Plastic Tanks:Due to the low gains in large tanks, concentric probes are recommended for unlined plastic tanks to minimize this effect and to provide a ground reference.Large Diameter Metal Tanks for Low Dielectric Fluids (such as Hydrocarbons)Due to the low gains in large tanks, concentric probes are recommended for metal tanks greater than 20 foot diameter used to measure low dielectric fluids (such as hydrocarbons). Also, if concentric probe is impractical,mount closer to tank wall if possible.•Electrode Location —Mounting positions should be carefully considered. They must be clear of the inflow of material as impingement during a filling cycle can cause serious fluctuations in the capacitancegenerated. Side mounted electrodes with point level controls are typically mounted at a downward angle to allow the measured material to drain or fall from the electrode surface.Electrodes mounted in nozzles should contain a metal “sheath” extending a few inches past the nozzle length. The sheath renders that part of theFigure 4K-12Kelectrode insensitive to capacitance change, and therefore, ignores the material which may build up in the nozzle.NOTE: In addition to the electrode selection and location factors,there are other considerations which can have a significant impact on the measurement. See “Special Considerations” below.1. Temperature —The dielectric constant of some materials varies with temperature which affects the capacitance measured by the electrode.Generally, materials with a higher dielectric constant are less affected by temperaturevariation. The temperature effect is usually given in the tables of dielectric constants.WARNINGThe effect of changing temperature and changing dielectric can not be quantified; if temperature or dielectric constant change, it is recommended that the level transmitter be calibrated at each temperature and dielectric constant value to quantify the effect of the changes .2. Moisture Content —The dielectric constant of granular materials changes with changing moisture content. This variation can cause significant measurement errors, so eachapplication must be carefully examined. Accuracy requirements determine the amount of moisture change that is tolerable.WARNINGThe effect of changing moisture content can not be quantified; if moisture content changes, it is recommended that the level transmitter be calibrated at each moisture level value toquantify the effect of the changes. In addition,the LV5000 series level transmitter should NOT be used with hygroscopic materials (i.e. those materials that absorb moisture from the atmosphere).3.Static Change —Air-conveyed, non-conductive granular materials such as nylon pellets build up a static charge on the electrode which can damage the electronic components in the measuring instruments.WARNINGThe LV5000 series level transmitter should NOT be used with materials that could build up static charges.4. Composition —The dielectric constant of the measured material must remain constant throughout its volume. Mixing materials with different dielectric constants in varying ratios will change the overall dielectric constant and theresultant capacitance generated. Solutions having a high dielectric constant are less affected due to the saturation capacitance of the electrodesystem. See capacitance vs. dielectric constant curve in Figure 4.WARNINGThe LV5000 series level transmitter should NOT be used with materials of varying compositions.5. Conductivity —Large variations in the conductivity of the measured material can introduce measurement error. The proper electrode selection can minimize this effect. A thick wall electrode insulation is recommended in this case.WARNINGThe effect of changing conductivity can not be quantified; if conductivity changes, it is recommended that the level transmitter becalibrated at each conductivity value to quantify the effect of the changes.6.Material Buildup —The most devastating effect on the accuracy of RF capacitive measurements is caused by the buildup of conductive material on the electrode surface. Non-conductive buildup is not as serious since it only represents a small part of the total capacitance. Latex, carbon black, and fine metal powders are examples of materials that produce conductive coatings.Special ConsiderationsCONTINUOUS LEVEL MEASUREMENTVarious methods are used to minimize the coating error. These include proper electrode selection, higher frequency measurements, phase shifting and conductive component subtraction circuits.Coating error is illustrated by the diagram shown in Figure 5. The submerged portion of the electrodegenerates nearly a pure capacitive susceptance. Since the electrode is insulated, a conductive component is virtually non-existent. However, the upper section of the electrode, coated with conductive material, generatesan error signal consisting of a capacitive susceptance and a conductive component. The result is anadmittance component which is 45°out of phase with the main level signal. A study of transmission line theory is required to prove this phenomenon. Anequivalent circuit for the coated section is shown as a ladder network producing the phase shifted error signal.Figure 5K-13Admittance Vector DiagramFigure 6One means of cancelling the error signal is to measure the conductive component (c) shown in Figure 6,Method A. Since the 45°relationship exists, thecapacitive error component (e) is the same magnitude and can be subtracted from the total output signal,thereby effectively canceling the error signal.Another cancellation method is to introduce a 45°phase shift to the entire measurement as shown in Figure 7,Method B. This automatically cancels the coating error portion because the conductance component (c) still has the same magnitude as the error component (e),resulting in the appropriate level signal. Instruments which incorporate these techniques are known as “admittance” types.The coating error can also be reduced by increasing the capacitive susceptance. This is accomplished by increasing the frequency of measurement and/or decreasing the electrode insulation wall thickness.It should be noted that any of these techniques cannot perfectly cancel the coating effect, but each tends to reduce the error.These are process control devices which require careful evaluation of the listed considerations to provide satisfactory results.Reproduced with the permission of Great Lakes Instruments.K-14KCANADA www.omega.ca Laval(Quebec) 1-800-TC-OMEGA UNITED KINGDOM www. Manchester, England0800-488-488GERMANY www.omega.deDeckenpfronn, Germany************FRANCE www.omega.frGuyancourt, France088-466-342BENELUX www.omega.nl Amstelveen, NL 0800-099-33-44UNITED STATES 1-800-TC-OMEGA Stamford, CT.CZECH REPUBLIC www.omegaeng.cz Karviná, Czech Republic596-311-899TemperatureCalibrators, Connectors, General Test and MeasurementInstruments, Glass Bulb Thermometers, Handheld Instruments for Temperature Measurement, Ice Point References,Indicating Labels, Crayons, Cements and Lacquers, Infrared Temperature Measurement Instruments, Recorders Relative Humidity Measurement Instruments, RTD Probes, Elements and Assemblies, Temperature & Process Meters, Timers and Counters, Temperature and Process Controllers and Power Switching Devices, Thermistor Elements, Probes andAssemblies,Thermocouples Thermowells and Head and Well Assemblies, Transmitters, WirePressure, Strain and ForceDisplacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and Strain Measurements, Load Cells, Pressure Gauges, PressureReference Section, Pressure Switches, Pressure Transducers, Proximity Transducers, Regulators,Strain Gages, Torque Transducers, ValvespH and ConductivityConductivity Instrumentation, Dissolved OxygenInstrumentation, Environmental Instrumentation, pH Electrodes and Instruments, Water and Soil Analysis InstrumentationHeatersBand Heaters, Cartridge Heaters, Circulation Heaters, Comfort Heaters, Controllers, Meters and SwitchingDevices, Flexible Heaters, General Test and Measurement Instruments, Heater Hook-up Wire, Heating Cable Systems, Immersion Heaters, Process Air and Duct, Heaters, Radiant Heaters, Strip Heaters, Tubular HeatersFlow and LevelAir Velocity Indicators, Doppler Flowmeters, LevelMeasurement, Magnetic Flowmeters, Mass Flowmeters,Pitot Tubes, Pumps, Rotameters, Turbine and Paddle Wheel Flowmeters, Ultrasonic Flowmeters, Valves, Variable Area Flowmeters, Vortex Shedding FlowmetersData AcquisitionAuto-Dialers and Alarm Monitoring Systems, Communication Products and Converters, Data Acquisition and Analysis Software, Data LoggersPlug-in Cards, Signal Conditioners, USB, RS232, RS485 and Parallel Port Data Acquisition Systems, Wireless Transmitters and Receivers。
rft检查点
1、“验证点和操作向导”的“选择对象”页面“验证点和操作向导”通过记录工具栏或Functional Tester 工具栏上的插入验证点或操作命令按钮来打开。
它用于选择应用程序中要测试的对象或图像,以及选择要对其执行的测试类型。
第一步是选择对象页面。
使用此页面上的其中一种选择方法来选择应用程序中要执行测试的对象。
当选择了对象时,在页面底部的网格中会列出对象的识别属性。
要执行图像验证测试,请使用捕获屏幕图像工具来选择图像,或者使用对象查找器工具来选择对象并创建图像验证点。
如果选择错误对象或决定测试其他对象,请使用任何方法来选择其他对象。
然后,在网格中将显示此对象。
一旦通过单击下一步按钮从该第一页前进到下一页,网格中所列的对象即是将要测试的对象。
选择测试对象后,将要在向导的下一页中选择一项操作。
在继续操作之后,始终可以单击后退按钮来选择其他对象。
可以使用下列三种选择方法:对象查找器工具使用此工具可以选择对象及该对象的所有后代、选择一个对象,或者选择对象及对象的直接子代。
这是选择对象的最常见而直接的方法。
使用鼠标抓取“对象查找器”工具图标,然后光标将变成此工具。
将此工具拖至应用程序中要选择的对象上方。
您将看到对象突出显示,并且会显示对象名。
释放鼠标按键时,将会选定此对象,并且在网格中会列出对象的识别属性。
请注意,也可使用“记录”工具栏上的“插入验证点或操作命令”按钮来直接选择对象。
如果单击此按钮并将其拖离工具栏,那么从向导的此页面起,它将变为对象选择器工具。
如果选择了选择对象后前进到下一页选项,那么在选择对象后将直接转至向导的下一页。
如果要在选择对象后停留在此页面上以查看对象识别属性,请取消选中此选项。
对象浏览器使用此方法可以浏览以查找要选择的对象。
浏览器会显示应用程序中对象的分层树。
顶级显示正在运行的任何应用程序。
在各顶级下,Functional Tester 会显示该应用程序中的对象层次结构。
它是当前可用对象的动态视图。
RF Test
RF测试过程与方法(一)发表人:中国手机研发网添加日期:2007-9-24感谢由1mp会员“dcs1800 ”和大家一起分享!RF测试主要测试参考附件RF指标可以采用MTK提供的ATE工具进行自动测试,也可以用手动测试。
手动测试过程如下(测试仪器为8960)请参考附件3。
附件1: GSM 900 MHz 手动电性能测试标准附件2: DCS 1800 MHz手动电性能测试标准附件1 :GSM 900MHz 手动电性能测试标准RF测试过程与方法(二)发表人:中国手机研发网添加日期:2007-9-25感谢由1mp会员“dcs1800”和大家一起分享!附件3:GSM测试项目¬发射机功率时域发射功率图相位误差与频率误差输出RF频谱快速BERBERIQ调整发射机功率1、与手机建立呼叫2、按下 Measurement Selection 键3、选择 Transmit Power 测试项目4、按下 Transmit Power Setup (F1)键5、设置测试参数包括:Measurement Timeout = 5.0 S说明:上图显示了一个典型的测试结果按下 Call Setup 键,查看SACCH报告窗口,将其中手机报告给基站的发射功率与实际测试到的发射功率相比较时域发射功率图1、与手机建立呼叫2、按下 Measurement Selection 键3、选择 Power vs Time 测试项目4、按下 Power vs Time Setup (F1)键5、按下 Measurement Setup 键6、设置测试参数包括:Measurement Timeout = 10 S7、按下 Measurement Offsets (F2)键注意:统计分析时允许最多设置12个具有特定 Offset 的Time Marker8、输入 Offset 值注意:Offset 是相对与一个普通突发脉冲串第0比特的位移,如果想要得到第0比特之前的测试点的测试结果,可以输入一个负值9、按下 Close Menu (F6)键上图显示了一个突发脉冲串是否在Mask范围之内,结果为Pass 或 Fail,还显示了宽带载波传输功率10、按下 Return to PvT Control (F6)键11、按下 Change View 键12、按下 Numeric 1 (F2)键查看 Offset 1-6 的测试结果,按下 Numeric 2 (F3)键查看 Offset 7-12 的测试结果上图显示了一个典型的Offset 1-6 的测试结果13、按下 Graph(F4)键查看上行突发脉冲串的完整图形图中左下角有一个全局 Pass/Fail 的标志Pass 用绿色显示,表示测试结果通过了所有的Mask要求⎫Fail 用红色显示,表示测试结果存在某部分未达到要求分别按下 F1(Full)、F2(Rising edge)、F3(Falling⎫edge)、F4(Useful)键,可以放大并查看图中特定的位置,此外,可以按下 F5(Graph Control)键设置 Marker 或改变坐标轴范围相位误差与频率误差ϖ1、与手机建立呼叫2、按下 Measurement Selection 键3、选择 Phase & Frequency Error 测试项目4、按下 Phase & Freq.(F1)键5、设置测试参数包括:Measurement Timeout = 10 S6、按下 Change View(F2)键7、按下 Graph(F2)键进入峰值相位误差图上图显示了一个典型的相位与频率误差的测试结果上图提供了两种 Pass/Fail 的结果左下角提供了一个全局性的 Pass/Fail 标志Pass 用绿色显示,表示峰值相位误差、RMS(均方根)相位误差、平均频率误差均通过Fail 用红色显示,表示测试结果存在某部分未达到要求全局性标志的右边显示了三个测试项目单独的测试结果,绿色表示通过,红色表示未通过8、按下 Graph Control(F5)键,然后按下 Marker Position (F2)键,设置 Marker 的位置9、按下 Axis Control(F1)键改变坐标轴的值,可以放大并查看图中某特定部分的详细信息上图是放大了的相位与频率误差图,横坐标轴设置为从100比特到120比特,纵坐标轴的参考点设置为5度,间隔为1度 Marker的位置设置设置为112比特,Marker位置的相位频率误差信息显示在图的顶部。
RFT使用
使用IBM Rational Functional Tester 6.1 进行功能测试: 第一部分:创建与回放测试(上)IBM Rational Functional Tester 是测试多种应用程序的面向对象自动化测试工具。
您可以通过记录应用程序的运行来快速生成测试脚本,并且您可以在应用程序中测试任何对象,包括对象属性和数据。
Rational Functional Tester 提供给您一个脚本语言和开发环境的选择-- Eclipse 框架中的Java 或Microsoft Visual Studio .NET 开发环境中的Microsoft Visual Basic .NET。
这意味着不论开发人员选择的是什么语言或平台,都应该能够将开发和自动测试整合在一起,并利用开发工具的一些特点。
简介在本文中,我们将首先介绍Rational Functional Tester 在两个环境中的实现。
对于工具的每一个版本,我们将探究用户界面及记录并执行脚本。
在进行每个环境中生成的脚本的简要比较之后,本章节将提供给您一些寻找更多帮助的信息。
基本特性Rational Functional Tester 的基础是针对于Java、.NET的对象技术和基于Web 应用程序的录制、回放功能。
工具为测试者的活动提供的自动化的帮助,如数据驱动测试。
当您记录脚本时,Rational Functional Tester 会为被测的应用程序自动创建测试对象地图。
对象地图中包含了对每个对象的识别属性。
当您在对象地图中更新记录信息时,任何使用了该对象地图的脚本会共享更新的信息,减少了维护的成本及整个脚本开发的复杂度。
对象地图还为您提供快速的方法向脚本中添加对象。
它列出应用程序中涉及到的测试对象,不论它们当前是否可视。
您可以通过依据现有地图或按需添加对象来创建新的测试对象地图。
在记录过程中您可以将验证点插入到脚本中以确定在被测应用程序建立过程中对象的状态。
蓝牙RF性能测试规范
蓝牙RF性能测试规范2 功率控制初始状态为环回,非跳频。
EUT分别工作在低、中、高三个频点,回送调制信号为PN9的DH1分组,测试仪通过LMP信令控制EUT输出功率,并测试功率控制步长的范围,规范要求在2dB和8dB 之间。
3调制特性初始状态同(2), EUT分别工作在低、中、高三个频点。
测试仪以所支持的最大分组长度发送净荷为11110000的分组,并对EUT回送的分组计算频率偏移的峰值和均值,分别记为Df1max 和Df1avg。
测试仪以所支持的最大分组长度发送净荷为10101010的分组,并对EUT 回送的分组计算频率偏移的峰值和均值,分别记为Df2max 和Df2avg,要求满足以下条件:至少99.9%的Df1max满足 140kHz< Df1max <175kHz;至少99.9%的Df2max 3115kHz;Df2avg /Df1avg 30.8。
操作:Step 1:Menu → ModulationStep 2:slave sig 1 → Testmode Type → Loopback TestsStep 3:Pattern Type →11110000(f1)→10101010 (f2)Step 4:Packet type使用DH5,频点为2024MHz⏹ spec:⏹140kHz ≤△f1avg ≤ 175kHz⏹△f1avg / △f2avg ≥ 0.8⏹△f2max ≥ 115kHz4 初始载波容限(ICFT)EUT为环回状态,回送净荷为PN9的DH1给测试仪。
测试仪先将链路置为非跳频,EUT分别工作在低、中、高三个频点,然后测试仪再将链路置为跳频。
测试仪根据4个前导码计算载波频率f0,要求与标称频率fTX的差小于75kHz。
☐操作⏹测试项目选择:Menu → Modulation⏹测试模式设置:slave sig 1 → Testmode Type → Loopback Tests⏹数据包选择:Connect Control → Slav Sig. → DH1☐Spec:⏹+/-75KHz difference to nominal carrier frequency5 载波频率漂移初始状态同(3),EUT分别工作在低、中、高三个频点,回送调制信号为10101010的DH1/DH3/DH5分组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、配置
1、点击配置图标,输入密码:LCT;或按“Alt+Ctrl+Shift+L”键进入配置界面
2、基本配置如下图
分为:仪器控制、手机控制、手机平台、测试条件等四部分
因目前手机控制部分还没有做到兼容MTK、ADI、IFX这些平台,故测试时需要选择“手动操作”,这时的开机、拨号动作需要手动或者通过Repair工具来做;
3、功能选择
如下图
本页可配置
a)测试类型选择,如:GMSK Test、GPRS Test、EDGE Test等,三选一,不可选择
多个;
b)测试项选择:如:功率、PVT、频差、相差等;
GMSK和GPRS共用左边部分,EDGE 用右边部分
4、测试参数
如下图
本页可配置:
a)调制方式,如:GMSK调制、GPRS调制、EDGE调制等,需要与“功能选择”
页保持一致,CodeScheme和MulitSlot等(GPRS、EDGE用,不过目前EDGE
还不支持);
b)信道、功率等级配置,可手动输入,也可点击“全信道”和“全功率等级”
设置;
二、保存测试结果
a) 测试完成后,请点击如下图所示红色线框内的位置
b)然后弹出如下图所示的保存文件对话框,输入文件名即可;
c)等填充完数据后,再点击Excel中的保存按钮即可;如下图中的红色线框内所示。