安徽省阜阳市临泉县九年级数学第四次月考试题

合集下载

2024届安徽省临泉重点名校中考数学四模试卷含解析

2024届安徽省临泉重点名校中考数学四模试卷含解析

2024届安徽省临泉重点名校中考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC的度数是( )A .70°B .44°C .34°D .24°2.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .43.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为A .2B .3C .4D .84.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .585.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A.32︒B.58︒C.138︒D.148︒6.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.127.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.48.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算9.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.10.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4 时间(小时)6 7 8 9 10 A .14,9 B .9,9 C .9,8 D .8,911.下列图形中,周长不是32 m 的图形是( )A .B .C .D .12.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知圆锥的底面半径为3cm ,侧面积为15πcm 2,则这个圆锥的侧面展开图的圆心角 °.14.因式分解:-2x 2y +8xy -6y =__________.15.函数2y x =-中,自变量x 的取值范围是_____.16.若关于x 的方程(k ﹣1)x 2﹣4x ﹣5=0有实数根,则k 的取值范围是_____.17.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米18.化简21224a a a ---的结果等于__. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?20.(6分)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.21.(6分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.22.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.23.(8分)抛物线y=32+bx+c(b,c均是常数)经过点O(0,0),A(4,3),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).24.(10分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.25.(10分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.26.(12分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.27.(12分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【题目详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【题目点拨】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.2、A【解题分析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质3、C【解题分析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.4、C【解题分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【题目详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【题目点拨】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.5、D【解题分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【题目详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.6、D【解题分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【题目详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【题目点拨】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.7、C【解题分析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴2=232=4=2m n-⨯-.即2m n-的算术平方根为1.故选C.8、B【解题分析】有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【题目详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3×12×2×3=9,故选B.【题目点拨】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.9、A【解题分析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【题目点拨】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.11、B【解题分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【题目详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【题目点拨】此题考查多边形的周长,解题在于掌握计算公式.12、B【解题分析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】试题分析:根据圆锥的侧面积公式S=πrl 得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数. 解:∵侧面积为15πcm 2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π,解得:l=5,∴扇形面积为15π=, 解得:n=1,∴侧面展开图的圆心角是1度.故答案为1.考点:圆锥的计算.14、-2 y (x -1)( x -3)【解题分析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式()2243,y x x =--+ ()()213.y x x =---故答案为()()213.y x x ---点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.15、2x ≥【解题分析】根据被开方式是非负数列式求解即可.【题目详解】依题意,得20x -≥,解得:2x ≥,故答案为:2x ≥.【题目点拨】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义. 16、15k ≥ 【解题分析】当k−1=0,即k=1时,原方程为−4x−5=0,解得:x=−5 4, ∴k=1符合题意; 当k−1≠0,即k≠1时,有4)210(4(1)(5)0k k --≠⎧⎨∆=-⨯-⨯-≥⎩, 解得:k ⩾15且k≠1. 综上可得:k 的取值范围为k ⩾15. 故答案为k ⩾15. 17、 【解题分析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有, 即,,.所以两盏警示灯之间的水平距离为:18、12a -+. 【解题分析】先通分变为同分母分式,然后根据分式的减法法则计算即可.【题目详解】 解:原式22(2)(2)(2)(2)a a a a a a +=-+-+- 2(2)(2)a a a -=+- (2)(2)(2)a a a --=+- 12a =-+. 故答案为:12a -+. 【题目点拨】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解题分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【题目详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天).设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则1-36 3090 y解得y≥2.答:乙队至少施工l8天才能完成该项工程.20、(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解题分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.【题目详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.21、(1)证明见解析;(2)【解题分析】(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.【题目详解】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点E作EH⊥BD于点H.∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DH=12BD=12×6=3,∵BE=DE,∴BH=DH=3,∴BE==23,∴DE=BE=23.【题目点拨】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.22、(1)证明略(2)等腰三角形,理由略【解题分析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴OE=OF.∴△OEF为等腰三角形.23、(1)y=﹣3(x﹣52)2+2534;(52,2534);(2)①(﹣52,532)或(52,532);②(0,532);【解题分析】1)把0(0,0),A(4,4v3)的坐标代入y=﹣x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,53 2),根据OQ=OB=5,可得方程22253=52m(),解方程即可解决问题.②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【题目详解】(1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.所以抛物线的顶点坐标为(,);(2)①由题意B(5,0),A(4,4),∴直线OA的解析式为y=x,AB==7,∵抛物线的对称轴x=,∴P(,).如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四边形BOQC是平行四边形,∵BO=BC,∴四边形BOQC是菱形,设Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴点Q坐标为(﹣,)或(,);②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ 交于点H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直线BH的解析式为y=﹣x+,当y=时,x=0,∴Q(0,).【题目点拨】本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.24、(1)答案见解析;(2)AB=1BE;(1)1.【解题分析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D 在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为1.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.25、(1)见解析;(2)4.1【解题分析】试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴22125+,AD=12,∵F是AM的中点,∴AF=12AM=6.5,∵△ABM∽△EFA,∴BM AM AF AE=,即513 6.5AE=,∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.26、见解析【解题分析】连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【题目详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【题目点拨】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.27、(1)y=﹣x2+x+3;D(1,);(2)P(3,).【解题分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【题目详解】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x2+x+3=﹣(x﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E(1,),∴DE=-=,设P(m,﹣m2+m+3),则F(m,﹣m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣m2+m+3)﹣(﹣m+3)=,解得:m1=1(舍),m2=3,∴P(3,).【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.。

2024年安徽省阜阳市第九中学中考四模数学试题

2024年安徽省阜阳市第九中学中考四模数学试题

2024年安徽省阜阳市第九中学中考四模数学试题一、单选题1.如图,在△ABC 中,AB=AC,点D 是边AC 上一点,BC=BD=AD,则∠A 的大小是( ).A .36°B .54°C .72°D .30°2.下列计算正确的是( )A .236a a a ⋅=B .()326a a =C .223a a a +=D .623a a a ÷= 3.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()()222221211x x x x -=-=+- D .()2212x x x x -+=-+ 4.若实数m 满足22210⎛⎫++= ⎪⎝⎭m m ,则下列对m 值的估计正确的是( ) A .﹣2<m <﹣1 B .﹣1<m <0C .0<m <1D .1<m <25.计算51-+的结果为( )A .6-B .4-C .4D .6 6.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5cos α米B .5cos α米C .5sin α米D .5sin α米 7.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭8.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣19.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是( )A .﹣9997199B .10001199C .10001201D .999720110.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D .二、填空题11.函数y =.12.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD的余弦值是.13.如图,直线a ,b 被直线c 所截,若a b P ,12∠=∠,若340∠=︒,则4∠等于.14.对于函数6y x=,若x >2,则y 3(填“>”或“<”). 15.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是.16.如图,在平面直角坐标系中,矩形活动框架ABCD 的长AB 为2,宽AD 为2,其中边AB 在x 轴上,且原点O 为AB 的中点,固定点A 、B ,把这个矩形活动框架沿箭头方向推,使D 落在y 轴的正半轴上点D′处,点C 的对应点C′的坐标为.17.规定:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,[)x 表示最接近x 的整数(0.5x n ≠+,n 为整数),例如:[]1.31=,()1.32=,[)1.31=.则下列说法正确的是.(写出所有正确说法的序号)①当 1.7x =时,[]()[)6x x x ++=;②当 1.1x =-时,[]()[)7x x x ++=-;③方程[]()[)4311x x x ++=的解为1 1.5x <<;④当11x -<<时,函数[]()[)y x x x =++的图象与正比例函数4y x =的图象有两个交点.三、解答题18.汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少? 19.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的中垂线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明);(2)连接BD ,求证:BD 平分∠CB A .20.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .(1)求证:BG=FG ;(2)若AD=DC=2,求AB 的长.21.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.22.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.23.已知:如图,在梯形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC ,∠A =60°. 求:(1)求∠CDB 的度数;(2)当AD =2时,求对角线BD 的长和梯形ABCD 的面积.24.给定关于x 的二次函数y =kx 2﹣4kx+3(k≠0),(1)当该二次函数与x 轴只有一个公共点时,求k 的值;(2)当该二次函数与x 轴有2个公共点时,设这两个公共点为A 、B ,已知AB =2,求k 的值;(3)由于k 的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.。

九年级数学第四次月考试卷

九年级数学第四次月考试卷

1九年级数学第四次月考试卷一、填空题(24分)122x -在实数范围内有意义,则x 的取值范围是 。

2、如果关于x 的一元二次方程2230kx x --=有两个不相等的实数根,则k 的取值范围是 。

3、已知点P (m -2,3m )是直线y =2x +1上的一点,则点P 关于原点O 的对称点P ′的坐标是 。

4、一个小妹妹将10盒蔬菜的标签全部撕掉了。

现在每个盒子看起来都一样,但是她知道有三盒玉米,两盒波菜,四盒豆角,一盒土豆。

她随机地拿出一盒并打开它,则盒子里面是玉米的概率是 。

5cm的圆中,有一段弧的长度为2cm ,则这段所 对的圆周角的度数是 。

6、如图,在⊙O 中,AB 是⊙O 的直径,∠D =40°,则∠AOC 的度数为___7、方程23x x =的解是 。

8、如图的图案是由多边形ABCDE 通过旋转而得的,则旋转角是 度。

二、选择题(24分)9、下列平面图形中,既是轴对称图形,又是中心对称图形的是( )10、连掷两次骰子,它们的点数和是7的概率是( ).A 、16 B 、14 C 、116 D 、13211、如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为( )A .50B .52C .54D .5612、如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠OAC=20°,则∠AOB 的度数是( ) A. 1O ° B. 20° C. 40° D. 70°13、下列方程中,没有实数根的是( )A 、2310x x +-= B 、24510x x --= C 、211032x x ++= D 、2230x x ++= 14、弧长为3πcm ,圆心角为120°的扇形的面积是( )2cmA 、814π B 、8116π C 、274π D 、2716π15、⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .8 16、下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( )A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④. 三、解答题(12分)17、计算: 18、解方程:2(3)2(3)0x x x -+-=19.如图是在地上画出的半径分别为2m 和3m 的同心圆.现在你和另一人分别蒙上眼睛,并在一定距离外向圈内掷一粒较小的石子,规定一人掷中小圆内得胜,另一人掷中阴影部分得胜,未掷入半径为3m 的圆内或石子压在圆周上都不算.(8分)(1)你会选择掷中小圆内得胜,还是掷中阴影部分得胜?为什么? (2)你认为这个游戏公平吗?如果不公平,那么大圆不变,小圆半径是多少时, 使得仍按原规则进行,游戏是公平的?(只需写出小圆半径,不必说明原因)20. 某工厂生产的某种产品按质量分为1 0个档次.第1档次(最低档次)的产品一天能生产7 6件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数关系式;(2)若生产第x 档次的产品一天的总利润为1080元,求该产品的质量档次.(10分)四、解答题(8分)第8题图第12题图221、如图,已知等边△ABC ,以边BC 为直径的半圆与边AB 、AC 分别交于点D 、E ,过点D 作DF ⊥AC 于F 。

九年级第四次月考数学试卷

九年级第四次月考数学试卷

--------------------------------------------------------------------------------------------------A A、1号位座名姓级班--------线---------封---------密------------九年级第四次月考数学试卷得分:(本卷共八大题,计23小题,满分150分,考试时间120分钟。

)嗨!同学们好!俗话说,书山有路勤为径!同学们,在答卷前,请认真审题,只要你理解概念,仔细运算,积极思考,相信会考出理想的数学成绩!加油哦。

一、选择题(每小题4分,共40分)1、如果x(y>0)是二次根式,那么,化为最简二次根式是().yx xyA.(y>0)B.xy(y>0)C.(y>0)D.以上都不对y y2、下列图形中,是中心对称图形,但不是轴对称图形的是().A.正方形B.矩形C.菱形D.平行四边形3、方程x(x-1)=2的两根为().A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2D.x1=-1,x2=24、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().A.12人B.18人C.9人D.10人5、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2D.64cm26、如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().A.140°B.110°C.120°D.130°OBCP(1)(2)7、如图2,PA、PB分别切圆O于A、B两点,C为弧AB上一点,∠APB=30°,则∠ACB=().A.60°B.75°C.105°D.120°8、已知两圆的半径分别为5cm和7cm,圆心距为8cm,那么这两个圆的位置关系是()A.内切B.相交C.外切D.外离9、在半径为50cm的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()A.228°B.144°C.72°D.36°10、一次抛掷三枚均匀的硬币,求下列事件的概率:正好一个正面朝上的概率是()357B、C、D、8888二、填空题(每小题5分,共30分)11、已知等腰直角三角形的直角边的边长为2,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)12、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为•_________ _.13、一个小球由静止开始在一个斜坡上向下滚动, 通过仪器观察得到小球滚动的距离 s (m ) 与时间 t (s )的数据如下:时间 t (s ) 1 2 3 4 …… 距离 s (m ) 2 8 18 32 ……写出用 t 表示 s 的关系式为_______.14、边长为 a 的正三角形的内切圆半径是_________.15、粮仓顶部是一个圆锥形,其底面周长为36m ,母线长为 8m ,为防雨需在粮仓顶部铺上油毡,如果按用料的 10%计接头的重合部分,那么这座粮仓实际需用________m 2 的油毡.16、一个袋子里装有 5 个白球,3 个红球,2 个黑球,每个球除颜色外都相同,任意摸出一 个球,是黑球的概率是______________ 三、解答题: (共 80 分) 17、(每小题 6 分,满分 12 分) (1)计算:(46 -3 2 )÷2 2(2)如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,△2),画出 ABC•关于 x 轴对称 △A ′B ′△C ′,再画出 A ′B ′C ′关于 y 轴对称 △A ″B ″△C ″,那么 A ″B ″C ″与 △ABC 有什么关系,请说明理由.yB4 3 A2 1C-4 -3 -2 -1O 12 3 x-1-2-318、(本题满分 8 分)在一块长 12m ,宽 8m 的长方形平地中央,划出地方砌一个面积为 8m 2• 的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?19、(本题满分 12 分)一个小球以 10m/s 的速度在平坦地面上开始滚动,并且均匀减速,滚动 20m 后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到 5m 时约用了多少时间(精确到 0.1s )?∠20、(本题满分8分)如图,已知AB=AC,∠APC=60°(△1)求证:ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.APO CB21、(本题满分10分)如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=•A.(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.22、(本题满分10分)等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积.23、(本题满分10分)已知扇形的圆心角为120°,面积为300cm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?24、(本题满分10分)一个袋子种装有2个红球和2个绿球,任意摸出一球,记录颜色放回,在任意摸出一个球,记录颜色后放回,请你求出两次都摸到红球的概率.答案:一、CDDCD DCBCB二、11、222,12、15+15(1+x)+15(1+x)2=60,13、s=2t2,14、36a,15、158.4,16、1 5,三、17、(1)解:(46-32)÷22=46÷22-32÷22=23-3 2(△2)画图略,A″B″△C″与ABC的关系是关于原点对称.18、设宽为x,则12×8-8=2×8x+2(12-2x)x整理,得:x2-10x+22=0解得:x1=5+3(舍去),x2=5-3a ,EF=2EN= a ,∴S 正方形= a 2.19、(1)小球滚动的平均速度= 10 + 0 20=5(m/s ) 小球滚动的时间: =4(s )2 5(2) 10 - 0 4=2.5(m/s )(3)小球滚动到 5m 时约用了 xs依题意,得:x · 20 - 2.5x2=5,整理得:x 2-8x+4=0解得:x=4±2 3 ,所以 x=4-2 320、(1)证明:∵∠ABC=∠APC=60°,∠ACB=∠ABC=60°,∴△ABC 为等边三角形. (2)解:连结 OC ,过点 O 作 OD ⊥BC ,垂足为 D , 在 △R t ODC 中,DC=2,∠OCD=30°,43 3设 OD=x ,则 OC=2x ,∴4x 2-x 2=4,∴OC=21、解:(1)CD 与⊙O 相切理由:①C 点在⊙O 上(已知) ②∵AB 是直径∴∠ACB=90°,即∠ACO+∠OCB=90° ∵∠A=∠OCA 且∠DCB=∠A ∴∠OCA=∠DCB ∴∠OCD=90°综上:CD 是⊙O 的切线. (2)在 △R t OCD 中,∠D=30° ∴∠COD=60° ∴∠A=30° ∴∠BCD=30° ∴BC=BD=10∴AB=20,∴r=10 答:(1)CD 是⊙O 的切线,(2)⊙O 的半径是 10. 22、设 BC 与⊙O 切于 M ,连结 OM 、OB ,ACO B D则 OM ⊥BC 于 M ,连 OE ,作 OE ⊥EF 于 N ,则 OE=OM= 3 3a ,∠EOM=45°,OE= a ,6 6∵EN=6 6 112 6 623、∵300 π =120π R 2360∴R=30∴弧长 L=20π (cm ) (2)如图所示: ∵20 π =20 π r ∴r=10,R=30AD= 900 - 100 =20 2∴S 轴截面= 1 2×BC ×AD= 1 2×2×10×20 2 =200 2 (cm 2)因此,扇形的弧长是 20 π cm 卷成圆锥的轴截面是 200 2 cm 2.24、两次都摸到红球的概率是41 164.。

九年级上学期数学第四次月考试卷真题

九年级上学期数学第四次月考试卷真题

九年级上学期数学第四次月考试卷一、单选题1. 已知抛物线的开口向下,则的取值范围是()A .B .C .D .2. 下图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是()A .B .C .D .3. 估计+1的值()A . 在1和2之间B . 在2和3之间C . 在3和4之间D . 在4和5之间4. 将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A . ;B . ;C .;D . .5. 二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .6. 已知点,,都在二次函数的图象上,那么a、b、c的大小关系是()A .B .C .D .7. 已知二次函数图象的对称轴是直线x=1,与x轴一个交点,则与轴的另一个交点坐标是()A .B .C .D .8. 二次函数y=ax2+bx+c的自变量x与函数y的对应值如下表:x…-5-4-3-2-1…y…4-2-24…下列说法正确的是A . 抛物线的开口向下B . 当x>-3时,y随x的增大而增大C . 二次函数的最小值是-2D . 抛物线的对称轴是直线x=-二、填空题9. 计算:________.10. 北京故宫的占地面积约为720000m2,将720000用科学记数法表示为________.11. 若抛物线的图象经过原点,则的值为________.12. 抛物线与y轴的交点坐标为________.13. 关于x的二次函数的图象与x轴有交点,则m的范围是________.14. 如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为________.三、解答题15. 先化简,再求值:,其中.16. 在平面直角坐标系中,的三个顶点的坐标分别为,,.(1)画出关于原点成中心对称的,并写出点的坐标;(2)作出点关于轴的对称点,若把点向右平移个单位长度后落在的内部(不包括顶点和边界),则的取值范围是________.17. 在创建文明城市的进程中.某市为美化城市环境,计划种植树木6000棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前5天完成任务,求原计划每天植树的棵数.18. 已知二次函数.(1)将二次函数化成顶点式为________;(2)当________时,随的增大而减小;(3)当时,的取值范围是________;(4)不等式的解集为________.19. 图中是抛物线形拱桥,点处有一照明灯,水面宽,以为原点,所在直线为轴建立平面直角坐标系,以为一个单位长度,已知点的坐标为.(1)求这条抛物线的表达式;(2)当水面上升后,水面的宽为________ .20. 问题探究:如图①,在正方形中,点在边上,点在边上,且.线段与相交于点,是的中线.(1)求证:;(2)线段与之间的数量关系为________.(3)问题拓展:如图②,在矩形中,,,点在边上,点在边上,且,,线段与相交于点.若是的中线,则线段的长为________.21. 如图,抛物线的顶点为C,对称轴为直线,且经过点,与y轴交于点B.(1)求抛物线的解析式;(2)连结、,求的面积;(3)点是抛物线对称轴上一点,若为等腰三角形,请直接写出所有点的坐标.22. 已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止.甲、乙两车相距的路程(千米)与甲车的行驶时间(时)之间的函数关系如图所示.(1)乙车的速度为________千米/时,________,________.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.23. 定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN .直接写出线段MN与二次函数的相关函数的图象有两个公共点时n的取值范围.。

2024届安徽省临泉中考数学四模试卷含解析

2024届安徽省临泉中考数学四模试卷含解析

2024届安徽省临泉中考数学四模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.43.510-⨯米D.93.510-⨯米⨯米C.53.510⨯米B.43.510-2.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣53.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是54.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+15.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨6.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)7.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.8.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度9.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A.83×105B.0.83×106C.8.3×106D.8.3×10710.若x是2的相反数,|y|=3,则12y x的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或4 二、填空题(共7小题,每小题3分,满分21分)11.已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=_____(用、表示).12.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为_____.13.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A 和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.14.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.15.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).16.一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.17.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.三、解答题(共7小题,满分69分)18.(10分)已知关于x 的分式方程11m x +-=2①和一元二次方程mx 2﹣3mx+m ﹣1=0②中,m 为常数,方程①的根为非负数.(1)求m 的取值范围;(2)若方程②有两个整数根x 1、x 2,且m 为整数,求方程②的整数根.19.(5分)如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧AE 的中点,过C 作CD ⊥AB 于点D ,CD 交AE 于点F ,过C 作CG ∥AE 交BA 的延长线于点G .求证:CG 是⊙O 的切线.求证:AF =CF .若sin G =0.6,CF =4,求GA 的长.20.(8分)如图,在Rt △ABC 中,∠C=90°,O 、D 分别为AB 、AC 上的点,经过A 、D 两点的⊙O 分别交于AB 、AC 于点E 、F ,且BC 与⊙O 相切于点D .(1)求证:;(2)当AC=2,CD=1时,求⊙O 的面积.21.(10分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.22.(10分)如图,点A (m ,m +1),B (m +1,2m -3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(12分)先化简,再求值:22+x21(-)21-1xx x x x÷-+,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.24.(14分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(3取1.732,结果取整数)?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【题目点拨】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、A【解题分析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.3、D【解题分析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;5出现了2次,最多,∴众数是5,故选项C正确;极差为:14﹣5=9,故选项D错误.故选D4、A【解题分析】原式变形后,利用平方差公式计算即可得出答案.【题目详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【题目点拨】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5、C【解题分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【题目详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【题目点拨】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.6、A【解题分析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【题目详解】如图,点P的坐标为(-4,-3).故选A.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7、B【解题分析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【题目详解】分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选B.【题目点拨】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8、A【解题分析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案. 详解:∵a∥b,AP⊥BC∴两平行直线a、b之间的距离是AP的长度∴根据平行线间的距离相等∴直线a与直线b之间的距离AP的长度故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.9、C【解题分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.【题目详解】830万=8300000=8.3×106.故选C【题目点拨】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.10、D【解题分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【题目详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【题目点拨】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】根据向量的三角形法则表示出,再根据BC、AD的关系解答.【题目详解】如图,∵,,∴=-=-,∵AD∥BC,BC=2AD,∴==(-)=-.故答案为-.【题目点拨】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.12、1【解题分析】分析:根据点P的移动规律,当OP⊥BC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.详解:∵当OP⊥AB时,OP最小,且此时AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案为1.点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2.13、1.【解题分析】设P (0,b ),∵直线APB ∥x 轴,∴A ,B 两点的纵坐标都为b ,而点A 在反比例函数y=4x -的图象上, ∴当y=b ,x=-4b ,即A 点坐标为(-4b,b ), 又∵点B 在反比例函数y=2x的图象上, ∴当y=b ,x=2b ,即B 点坐标为(2b,b ), ∴AB=2b -(-4b )=6b, ∴S △ABC =12•AB•OP=12•6b•b=1. 14、2y x =-等【解题分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【题目详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-.【题目点拨】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.15、2(21)1n n x x -+ 【解题分析】 试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.16、1【解题分析】作CE ⊥AB 于E ,根据题意求出AC 的长,根据正弦的定义求出CE ,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.作CE ⊥AB 于E ,1km/h×30分钟=9km , ∴AC=9km , ∵∠CAB=45°,∴CE=AC•sin45°=9km ,∵灯塔B 在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km ,故答案为:1.【题目点拨】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键. 17、2【解题分析】∵∠ACB=90°,FD ⊥AB ,∴∠ACB=∠FDB=90°。

安徽省九年级上学期数学第四次月考试卷

安徽省九年级上学期数学第四次月考试卷

安徽省九年级上学期数学第四次月考试卷姓名:________ 班级:________ 成绩:________一、单项选择题(每小题2分,共12分) (共6题;共12分)1. (2分)(2021·佳木斯模拟) 下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .2. (2分) (2016八上·顺义期末) 下列事件中,随机事件是()A . 在地球上,抛出去的篮球会下落B . 一个标准大气压下,水加热到100℃时会沸腾C . 购买一张福利彩票中奖了D . 掷一枚普通的正方体骰子,向上一面的点数一定大于零3. (2分)(2016·沈阳) 一元二次方程x2﹣4x=12的根是()A . x1=2,x2=﹣6B . x1=﹣2,x2=6C . x1=﹣2,x2=﹣6D . x1=2,x2=64. (2分)(2021·株洲) 二次函数的图象如图所示,点在轴的正半轴上,且,设,则的取值范围为()A .B .C .D .5. (2分)(2020·海口模拟) 如图,在中,,,,将沿射线的方向平移,得到,再将绕点逆时针旋转一定角度后,点恰好与点重合,则平移的距离为()A . 2B . 3C . 4D . 56. (2分) (2018九上·东台期末) 若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于()A . 45°B . 135°C . 90°和270D . 45°和135°二、填空题(每小题3分,共24分) (共8题;共24分)7. (3分) (2019九上·宁河期中) 在直角坐标系中,点(-3,6)关于原点的对称点是.8. (3分) (2020七上·广丰期末) 所谓方程的解就是使方程中等号左右两边相等的未知数的值。

观察下面关于未知数x的方程:,请写出此方程的解:。

安徽省阜阳市临泉县九年级数学第四次月考试题

安徽省阜阳市临泉县九年级数学第四次月考试题

临泉二中2012~2013学年度九年级第四次月考数学试卷一、选择题(每小题4分,计40分)1.一个斜坡的坡角为30°,则这个斜坡的坡度为( )。

A . 1:2 B. 3 :2 C. 1: 3 D. 3 :12.一小球被抛出后,距离地面的高度h (米)与飞行的时间t (秒)之间的函数关系为:6)1(52+--=t h ,则小球距离地面的最大高度是( )A .1米B .5米C . 6米D . 7米 3.如图,P 是△ABC 中AB 上一点(AB>AC ),则下列条件不一定 能使△ACP ∽△ABC 的是( ) A .∠ACP=∠B B .BC 2=BP ·AB C .∠APC=∠AC B D .AC 2=AP · AB 4.某个图形上各点的横、纵坐标都变成原来的21,连接各点所得图形与原图形相比( ) A .完全没有变化 B .扩大为原来的2倍 C . 面积缩小为原来的41D .关于y 轴成轴对称5. 若反比例函数22)12(--=m x m y 的图象在第二、四象限,则m 的值为( )A .-1B .小于21的任意实数 C . -1或1 D .不能确定 6.若△ABC 中,锐角A 、B 满足021cos 23sin 2=⎪⎭⎫⎝⎛-+-B A ,则△ABC 是( ) A .钝角三角形 B .直角三角形 C . 等腰直角三角形 D .等边三角形 7.如图,△ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB 于点D , 则△CBD 与△ABC 的周长之比为( ) A .1︰2 B .1︰3 C .1︰4 D .1︰58.二次函数12+-=x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C ,下列说法中,错误的是( )A .△ABC 是等腰三角形B .点C 的坐标是(0,1)PCBADCB AC .AB 的长为2D .y 随x 的增大而减小9. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得的抛物线为532+-=x x y ,则有( )A .b=3,c=7B .b=-9,c=-5C .b=3,c=3D .b=-9,c=2110. 如图,△ABC 中,∠A =30°,E 为AC 上一点,且AE:EC=3:1, EF ⊥AB ,F 为垂足,连接FC ,则tan ∠CFB 的值为( ) A .32 B .334 C .332D .43 二、填空题(每小题5分,计20分)11. 已知32=b a ,则b b a += . 12. 已知α为锐角, sin(α-090)=33, 则cos α= 。

安徽省阜阳九中学2021-2022学年中考四模数学试题含解析

安徽省阜阳九中学2021-2022学年中考四模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.如图,直线y=x+3交x 轴于A 点,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰落在直线y=x+3上,若N 点在第二象限内,则tan ∠AON 的值为( )A .B .C .D .2.化简2(21)÷-的结果是( )A .221-B .22-C .12-D .2+23.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上,Rt △ABC 经过变化得到Rt △EDO ,若点B 的坐标为(0,1),OD =2,则这种变化可以是( )A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度4.下列运算正确的是( )A .(﹣2a )3=﹣6a 3B .﹣3a 2•4a 3=﹣12a 5C .﹣3a (2﹣a )=6a ﹣3a 2D .2a 3﹣a 2=2a5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( ) 百合花 玫瑰花 小华6支 5支 小红8支 3支A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元C .14支百合花比8支玫瑰花多8元D .14支百合花比8支玫瑰花少8元7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( ) A 3B .2 C .3D .(123+ 8.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A .a <13,b=13B .a <13,b <13C .a >13,b <13D .a >13,b=139.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( )A .a //bB .a -2b =0C .b =12aD .2a b = 10.若函数2y x =与y=﹣2x ﹣4的图象的交点坐标为(a ,b ),则12a b +的值是( ) A .﹣4 B .﹣2 C .1 D .2二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若PC=23,则BC 的长为______.12.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是13.如图,PA ,PB 分别为O 的切线,切点分别为A 、B ,P 80∠=,则C ∠=______.14.函数y=231x x +-中自变量x 的取值范围是_____. 15.点A(-2,1)在第_______象限.16.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为_____.三、解答题(共8题,共72分)17.(8分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?18.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC 为其一边,求点M,N的坐标.19.(8分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:.(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为公里.(直接写出结果,精确到个位)20.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.21.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.22.(10分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).23.(12分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.24.如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.2、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式2×2×2+1)2.21故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.3、C【解析】Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO =BC =2,CO =3,∴将△ABC 绕点C 顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE ;或将△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE ;故选:C .【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化 4、B【解析】先根据同底数幂的乘法法则进行运算即可。

安徽省临泉2023届中考四模数学试题含解析

安徽省临泉2023届中考四模数学试题含解析

2023年中考数学模拟试卷 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.如图,矩形OABC 有两边在坐标轴上,点D 、E 分别为AB 、BC 的中点,反比例函数y =kx (x <0)的图象经过点D 、E .若△BDE 的面积为1,则k 的值是( )A .﹣8B .﹣4C .4D .82.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 3.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )A .100cmB .10cmC .10cmD .1010cm4.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .5.下列运算正确的是( )A .32()x =x5B .55()x x -=-C .3x ·2x =6x D .32x +2 35x 5x = 6.已知矩形ABCD 中,AB =3,BC =4,E 为BC 的中点,以点B 为圆心,BA 的长为半径画圆,交BC 于点F ,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=()A.6 B.1364π+C.12﹣94πD .12﹣134π7.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个8.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-9.-3的相反数是()A.13B.3 C.13-D.-310.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=4 5,反比例函数y=48x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.30 B.40 C.60 D.80二、填空题(本大题共6个小题,每小题3分,共18分)11.在数轴上与表示的点距离最近的整数点所表示的数为_____.12.如图,在矩形ABCD 中,顺次连接矩形四边的中点得到四边形EFGH .若AB=8,AD=6,则四边形EFGH 的周长等于__________.13.如图,BD 是矩形ABCD 的一条对角线,点E ,F 分别是BD ,DC 的中点.若AB =4,BC =3,则AE+EF 的长为_____.14.若x=2-1, 则x2+2x+1=__________.15.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为__________步.16.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若S △APQ =1,则S 四边形PBCQ =__.三、解答题(共8题,共72分)17.(8分)如图,已知:C F 90∠∠==,AB DE =,CE BF =,求证:AC DF =.18.(8分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?19.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;(2)科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?20.(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.21.(8分)已知:如图,抛物线y=34x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).(1)求抛物线的解析式;(2)若点D 是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.23.(12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?24.如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x 轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB ,BC ,AC 的长分别为AB = ,BC = ,AC = ;(1)折叠图1中的△ABC ,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图1.请从下列A 、B 两题中任选一题作答,我选择 题. A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得△APD 为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由.B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点A ,P ,C 为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1、B 【解析】根据反比例函数的图象和性质结合矩形和三角形面积解答. 【详解】解:作EH OA H 于⊥,连接AE .22ABEBDEBD AD SS=∴==∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=||4,04k k k ∴=<∴=-故选B . 【点睛】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 2、D 【解析】如图,∵AD=1,BD=3,∴AD 1AB 4=, 当AE 1AC 4=时,AD AE ABAC =, 又∵∠DAE=∠BAC ,∴△ADE ∽△ABC , ∴∠ADE=∠B , ∴DE ∥BC ,而根据选项A 、B 、C 的条件都不能推出DE ∥BC , 故选D .3、C 【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长. 【详解】设母线长为R ,则圆锥的侧面积=236360R π=10π,∴R=10cm , 故选C . 【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键. 4、C 【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.5、B【解析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. ()23x=x6,故错误;B. ()55x x-=-,正确;C. 3x·2x=5x,故错误;D. 32x+2 3x不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.6、D【解析】根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:∵BC=4,E为BC的中点,∴CE=2,∴S1﹣S2=3×4﹣229039021312 3603604πππ⨯⨯-=-,故选D.【点睛】此题考查扇形面积的计算,矩形的性质及面积的计算.7、D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴AB=42,∵△DCE 的周长=1+3+22=4+22,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=42+(4﹣22)=4+22,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程9、B【解析】根据相反数的定义与方法解答.【详解】解:-3的相反数为()33 --=.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.10、B【解析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=12S菱形OBCA,结合菱形的面积公式即可得出结论.【详解】过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=4 5,∴AM=OA•sin∠AOB=45a,OM=22OA AM-=35a,∴点A的坐标为(35a ,45a).∵点A在反比例函数y=48x的图象上,∴35a•45a=1225a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=12S菱形OBCA=12OB•AM=2.故选B.【点睛】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA.二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴距离整数点3最近.12、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,2210,AB AD+=∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=12BD=5,同理,FG∥BD,FG=12BD=5,GH∥AC,GH=12AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.13、1【解析】先根据三角形中位线定理得到EF 的长,再根据直角三角形斜边上中线的性质,即可得到AE 的长,进而得出计算结果.【详解】解:∵点E ,F 分别是BD DC ,的中点,∴FE 是△BCD 的中位线,1 1.5290,3,45EF BC BAD AD BC AB BD ︒∴==∠====∴= . 又∵E 是BD 的中点,∴Rt △ABD 中,1 2.52AE BD ==,AE EF 2.5 1.54∴++==,故答案为1.【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.14、2【解析】先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可.【详解】∵-1,∴-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.15、20003【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA ,即有△CKD ∽△DHA ,由相似三角形的性质得到CK :KD=HD :HA ,求解即可得到结论.详解:∵DEFG 是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA .∵∠CKD=∠DHA=90°,∴△CKD ∽△DHA ,∴CK :KD=HD :HA ,∴CK :100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD ∽△DHA .16、1【解析】根据三角形的中位线定理得到PQ =12BC ,得到相似比为12,再根据相似三角形面积之比等于相似比的平方,可得到结果.【详解】解:∵P ,Q 分别为AB ,AC 的中点,∴PQ ∥BC ,PQ =12BC ,∴△APQ ∽△ABC , ∴APQ ABC S S =(12)2=14,∵S △APQ =1,∴S △ABC =4,∴S 四边形PBCQ =S △ABC ﹣S △APQ =1,故答案为1.【点睛】本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共8题,共72分)17、证明见解析;【解析】根据HL 定理证明Rt △ABC ≌Rt △DEF ,根据全等三角形的性质证明即可.【详解】CE BF =,BE 为公共线段,∴CE+BE=BF+BE ,即 CB EF = 又90C F ∠∠==,AB DE =在Rt ABC 与Rt DEF 中,AB DE CB EF =⎧⎨=⎩Rt ABC ∴≌Rt DEF ()HL∴AC=DF.本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.18、(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W >299时,3<x <13,∵1≤x <10,∴3<x <10,当10≤x≤15时,令W=﹣20x+520>299,得x <11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元), 即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.19、(1)A 类图书的标价为27元,B 类图书的标价为18元;(2)当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本,利润最大.(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得540540101.5x x-=,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,() 1812100016800600t tt+-≤⎧≥⎨⎩,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.20、(1)1;(2)详见解析;(3)750;(4)1 5.【解析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=1 5.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21、(1)239344y x x=--;(2)272;(3)P1(3,-3),P2(3412+,3),P3(3412-,3).【解析】(1)将,A C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据,B C的坐标,易求得直线BC的解析式.由于AB OC、都是定值,则ABC的面积不变,若四边形ABCD面积最大,则BDC的面积最大;过点D作DM y轴交BC于M,则3,34M x x⎛⎫-⎪⎝⎭,可得到当BDC面积有最大值时,四边形ABCD的面积最大值;(3)本题应分情况讨论:①过C作x轴的平行线,与抛物线的交点符合P点的要求,此时,P C的纵坐标相同,代入抛物线的解析式中即可求出P点坐标;②将BC平移,令C点落在x轴(即E点)、B点落在抛物线(即P点)上;可根据平行四边形的性质,得出P点纵坐标(,P C纵坐标的绝对值相等),代入抛物线的解析式中即可求得P点坐标.【详解】解:(1)把()(10)03A C --,,,代入234y x bx c =++,可以求得934b c =-=-, ∴239 3.44y x x =--(2)过点D 作DM y 轴分别交线段BC 和x 轴于点M N 、, 在239 3.44y x x =--中,令0y =,得124 1.x x ,==- ()40.B ∴, 设直线BC 的解析式为,y kx b =+可求得直线BC 的解析式为:3 3.4y x =- ∵S 四边形ABCD ()111553402.222ABC ADC SS DM DM =+=⨯⨯+⨯-⨯=+设239,3,44D x x x ⎛⎫-- ⎪⎝⎭ 3,3.4M x x ⎛⎫- ⎪⎝⎭ 223393333.4444DM x x x x x ⎛⎫=----=-+ ⎪⎝⎭当2x =时,DM 有最大值3.此时四边形ABCD 面积有最大值27.2(3)如图所示,如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,∵C(0,-3)∴设P1(x,-3)∴34x2-94x-3=-3,解得x1=0,x2=3,∴P1(3,-3);②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,∵C(0,-3)∴设P(x,3),∴34x2-94x-3=3,x2-3x-8=0解得x=3+412或x=3412-,此时存在点P2(3+412,3)和P3(3412-,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(412,3),P3(3412-,3).【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.22、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8 x,把A(﹣4,n)代入y=﹣8 x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.23、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.24、(1)2,3,5(1)①AD=5;②P(0,1)或(0,2).【解析】(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【详解】解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根据勾股定理得,22AB BC5.故答案为2,3,5(1)选A.①由(1)知,BC=3,AB=2,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根据勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),设P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y=5 2,∴P(0,5 2);Ⅲ、AD=DP,15=16+(y﹣5)1,∴y=1或2,∴P(0,1)或(0,2).综上所述:P(0,3)或(0,﹣3)或P(0,52)或P(0,1)或(0,2).选B.①由A①知,AD=5,由折叠知,AE=12DE⊥AC于E.在Rt△ADE中,②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴AN OA OA AC=,∴4AN=,∴AN=5,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴AN NH AH AC OC OA==,∴4558445NH AH==,∴NH=85,AH=45,∴OH=16 5,∴N(16855,),而点P1与点O关于AC对称,∴P1(321655,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣122455,).综上所述:满足条件的点P的坐标为:(0,0),(321655,),(﹣122455,).【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷一、选择题(每小题4分,计40分)1.一个斜坡的坡角为30°,则这个斜坡的坡度为( )。

A . 1:2 B. 3 :2 C. 1: 3 D. 3 :12.一小球被抛出后,距离地面的高度h (米)与飞行的时间t (秒)之间的函数关系为:6)1(52+--=t h ,则小球距离地面的最大高度是( )A .1米B .5米C . 6米D . 7米 3.如图,P 是△ABC 中AB 上一点(AB>AC ),则下列条件不一定 能使△ACP ∽△ABC 的是( ) A .∠ACP=∠B B .BC 2=BP ·AB C .∠APC=∠AC B D .AC 2=AP · AB 4.某个图形上各点的横、纵坐标都变成原来的21,连接各点所得图形与原图形相比( ) A .完全没有变化 B .扩大为原来的2倍 C . 面积缩小为原来的41D .关于y 轴成轴对称5. 若反比例函数22)12(--=m x m y 的图象在第二、四象限,则m 的值为( )A .-1B .小于21的任意实数 C . -1或1 D .不能确定 6.若△ABC 中,锐角A 、B 满足021cos 23sin 2=⎪⎭⎫⎝⎛-+-B A ,则△ABC 是( ) A .钝角三角形 B .直角三角形 C . 等腰直角三角形D .等边三角形 7.如图,△ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB 于点D , 则△CBD 与△ABC 的周长之比为( ) A .1︰2 B .1︰3 C .1︰4 D .1︰58.二次函数12+-=x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C ,下列说法中,错误的是( )A .△ABC 是等腰三角形B .点C 的坐标是(0,1) C .AB 的长为2D .y 随x 的增大而减小9. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得的抛物线为PCBADCB A532+-=x x y ,则有( )A .b=3,c=7B .b=-9,c=-5C .b=3,c=3D .b=-9,c=2110. 如图,△ABC 中,∠A =30°,E 为AC 上一点,且AE:EC=3:1, EF ⊥AB ,F 为垂足,连接FC ,则tan ∠CFB 的值为( ) A .32 B .334 C .332D .43 二、填空题(每小题5分,计20分)11. 已知32=b a ,则bb a += . 12. 已知α为锐角, sin(α-090)=33, 则cos α= 。

13.已知抛物线c bx ax y ++=2的图象如图所示,则下列结论:①a+b+c>0;②a-b+c<0;③b=-2a;④b 2-4ac ≤0;⑤abc<0,其中正确的有___________(填序号)。

14. 如图,测量河宽AB (假设河的两岸平行),在C 点测得 ∠ACB =30°,在D 点测得∠ADB =60°,又CD =60m ,则河宽 AB 为_______m (结果保留根号). 三、解答题:15. (8分)计算:︒⋅︒-︒+︒⋅︒45tan 45sin 30cos 60sin 30tan 2216、(8分)已知在△ABC 中,∠C=90°,6=a ,22=c ,解这个直角三角形。

17. (8分)国庆期间,政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)18. (8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F 。

(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB.F ECBAB AC19. (10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC , 垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1) 求证:△ADF ∽△DEC(2) 若AB =4,AD =33,AE =3,求AF 的长.20. (10分)如图,四边形ABCD 的四个顶点的坐标分别是A (1,3)、B (2,2)、C (2,1),D (3,3).(1)以原点O 为位似中心,相似比为2,将图形反向放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A 的对应点A ′的坐标(____,_____). (3)如果四边形ABCD 内部一点M 的坐标为(x ,y),写出M 的对 应点M ′的坐标。

21. (12分)已知抛物线25212-+=x x y . (1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长. (3)x 取何值时,抛物线在x 轴上方?22. (12分)如图,正方形OABC 的面积为4,点O 为坐标原点,点B 在函数)0,0(<<=x k xky 的图象上,点P (m,n )是函数)0,0(<<=x k xky 的图像上异于B 的任意一点,过点P 分别作FEDCBAx 轴、y 轴的垂线,垂足分别为E 、F 。

(1) 设矩形OEPF 的面积为S 1,判断S 1与点P 的位置是否有关_____________________(不必说明理由)。

(2)从矩形OEPF 的面积中减去与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系式,并标明m 的取值范围。

23. (14分)如图,一次函数121+=x y 的图象与x 轴交于点A ,与y 轴交于点B ,二次函数c bx x y ++=221的图象与一次函数121+=x y 的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ; (3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.答案:1~10 CC BCA DADAB 11、3512、33 13、①②⑤ 14、30 315、4316、b=2,∠A=60°、∠B=30° 17、15.6米 18. (1)用两边对应成比例夹角相等或三边对应成比例证明都可。

(2)∵△ACB ∽△DCE ,∴∠E=∠B ,∵∠B+∠A=90°,∴∠E+∠A=90°,即EF ⊥AB. 19. 证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴∠ADE=∠CED ,∠B+∠C=180°,∵∠AFE+∠AFD=180°,∠AFE=∠B ,∴∠AFD=∠C ,∴△ADF ∽△DEC ; (2)∵△ADF ∽△DEC ,∴DC AFDE AD =,即43333322AF =+)( AF=32 20.(1)略 (2)(-2,-6) (3)M(x,y)→M ’(-2x,-2y) 21,①由25212-+=x x y 得31212-+=)(x y 。

所以顶点(-1,-3),对称轴x=-1;②由025212=-+x x 得x=-1±6,所以AB=26;③6161x --<+->x 或 22.(1)S 1与点P 的位置无关;(2)∵正方形OABC 的面积为4,∴OC=OA=2.∴B(-2,2). 把B (-2,2)代入x k y =得k=-4.∴解析式为x y 4-=.∵P(m ,n )在xy 4-=的图象上, ∴m4n -= ①当P 在B 点上方时, S 2=m4-(-m )-2(-m )=4+2m (-2<m <0); ②当P 在B 点下方时, S 2=-m×(m 4-)-2×(m 4-) =4+ m8(m <-2). 23、①由121+=x y 得A(-2,0),B(0,1).把B(0,1)和D(1,0)带入二次函数c bx x y ++=221得123212+-=x x y 。

②由121+=x y 和123212+-=x x y 联立解得另外一个交点C(4,3) 所以S 四边形BCED =S △ACE -S △ABD =21×4×3-21×3×1=29③过C 作CF ⊥x 轴,垂足为F ,设点P(m,0),易证△BOP ∽△PFC,由相似三角形对应边成比例的341mm =-,解得m=1或m=3,所以存在这样的P 点,坐标为(1,0)和(3,0) 也可这样来解:设点P(x,0),则PB²=x²+1,PC²=(x -4)²+9要使得△PBC 是以P 为直角顶点的直角三角形,即PB²+PC²=BC²,即x²+1+(x -4)²+9=20 解得x=1或x=3,所以存在这样的P 点为(1,0)和(3,0)。

相关文档
最新文档