谐波和无功功率的产生(Generation of harmonic and reactive power)
电力系统中谐波的产生机理及抑制对策
电力系统中谐波的产生机理及抑制对策发布时间:2022-07-27T07:32:59.635Z 来源:《中国电业与能源》2022年第5期3月作者:缪祥盖,姚建宁,朱庆林,马成功[导读] 随着电力电子设备的广泛应用,电力系统中的谐波分量增大,缪祥盖,姚建宁,朱庆林,马成功云南能投曲靖发电有限公司,云南曲靖 655000摘要:随着电力电子设备的广泛应用,电力系统中的谐波分量增大,谐波次数增多,给供配电线路、电力设备、电力系统中变压器、整流设备等带来危害。
文中基于谐波的产生机理分析了谐波的产生的危害,并对其电力系统中谐波抑制提出了可行的办法,经应用结果表明:三的倍数次谐波抑制电力系统中谐波效果较佳。
关键词:谐波;产生机理;抑制对策Mechanism of harmonic generation and suppression countermeasures in power systemsMiao Xianggai, Yao Jianning, Zhu Qinglin, Ma Chenggong(Yunnan Energy Investment Qujing Power Generation Co., Ltd, Qujing, Yunnan 655000, China)Abstract: With the wide application of power electronic equipment, the harmonic components in the power system have increased and the number of harmonics has increased, bringing harm to the supply and distribution lines, power equipment, transformers and rectifier equipment in the power system. In this paper, the harm of harmonics is analysed based on the mechanism of harmonic generation, and a feasible approach is proposed to suppress harmonics in the power system, which is shown by the application results: the effect of three times the number of harmonics in the power system is better.Keywords: harmonics; generation mechanism; suppression countermeasures0引言在电力标准中谐波的定义是一个周期量的正弦波分量,它的频率是基波频率的整倍数,例如基波频为50Hz,二次谐波为100Hz,三次谐波则为 150Hz……。
什么是谐波?电力系统谐波怎么产生的?老司机给你科普一下!
什么是谐波?电力系统谐波怎么产生的?老司机给你科普一下!(1)谐波的含义在振动学里认为一个振动产生的波里具有一定频率的振幅最大的正弦波叫基波。
其他高于基波频率的小波就叫作谐波。
电力系统对谐波的定义:对周期性非正弦电量(电压或电流)进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
(基波及其表达式)(基波及2.3.4次谐波)(掺入2.3.4次谐波后的复合波)(2)谐波的产生电力系统是由发电、变电、输配电和用电这四个环节所组成的整体,每个环节均有可能产生谐波。
发电环节:略...变电环节:略...输配电环节:略...用电环节:用电系统中谐波主要是由非线性负载引起,由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。
三次谐波公式:复合波公式:(3)非线性设备含义简言之,设备中产生的电流波形是断续的或突变的,它不是一个可采用线性法则进行运算的连续函数,一般要采用傅里叶级数来描述它。
例如:上图为三相整流回路,整流后的电流波形为阶梯方波,右图是按傅里叶级数展开后的频谱,可以看出五次和七次谐波比例很高。
又如:上图为单相整流回路,整流后的电流波形为断续波形,右图是按傅里叶级数展开后的频谱,其中三次谐波比例很高。
(4)三次谐波电流的特殊性三次谐波电流主要是由单相非线性负载(如荧光灯,节能灯及镇流器等)产生的。
因其频率的特殊性,三次谐波在电网中性线上产生的后果尤为严重。
在三相电网中,基波各相的相位差为120°;而三次谐波相位差为360°。
由下图可见,各相线内的三次谐波电流在中性线上汇集时,其瞬时值是直接同相相加的,故中性线上的三次谐波电流一般为约为3倍的相线上的三次谐波电流,甚至会大于相线上的基波电流。
来源:继保小知识。
浅析谐波干扰对直流电动钻机设备的影响
80变频器直流电机是目前使用比较广泛的机械,但是随着谐波含量的不断提升,就会由干扰而产生一系列的机械故障,如发电机失稳、停工期、钻悬停故障,错误的日志记录或数据不准确时,计算机操作不稳定,空调制冷能力下降等,使得过程容易产生断层问题。
1 故障现象及处理1.1 电动钻机和频率最高驱动干扰故障一个工厂ZJ70D直流电钻和70DB可变频率最高驱动支持钻井施工,顶部驱动600V电源从电钻的SCR室。
发现在调试过程中最大的驱动,卡特·彼得发生器速度,电压不稳定,无论是单机还是双编织操作不稳定,速度在1470~1520r/min,电压570~620V反复更换,不能正常钻井施工。
两家公司的制造商到现场检查各自的设备,被认为是谐波干扰的问题。
接着将驱动以及输出电缆进行排查,着重对可控硅的顶部驱动以及室内的电缆线进行排查,在对其进行分别进行调解之后,发现出现严重失误,最后可控硅电压控制模块接地,并增加了可控硅房和顶部驱动电气控制房2杆接地故障消失[1]。
1.2 发电机操作过程中的故障问题新的ZJ70DB电动钻机可以在该领域使用25台。
两个并行的cattler突然停止了好几次,一个CAT生成器被关闭。
现场的检测人员对其进行了合理维修,对于发电机的一系列数据进行检测,将PLC具体内容进行改编,但是实际问题没有得到较好的解决,所以就对谐波的干扰进行了考察。
钻机有7台逆变电机,电源线为屏蔽层,屏蔽层接收电控室,房屋用两根棍子连接地面。
在控制线和电源线分离的情况下,加上接地棒和其他方法无效,最终将电源线屏蔽层移开并悬挂,故障消失。
2 故障分析2.1 谐波产生的原因谐波产生的角度大致有2类。
其中有一种是非线性负载的谐波,直流电钻产生的谐波就是其中的一种。
[2]把600V交流电(ac)大功率可控硅(SCR)O~750大可调直流驱动直流电机和交流晶闸管整流成直流电(dc)同时产生一些5次,7次,11亚谐波,谐波含量不高,一般不会影响设备的操作,没有注意。
谐波和无功功率(王兆安)
实用文案第2章 谐波和无功功率本章首先介绍谐波的一些基本概念及谐波分析方法,并讨论在非正弦电路中的无功功率、功率因数等基本概念。
这些概念及分析方法是以后各章的基础。
本章对谐波和无功功率的产生及其危害也作简要的介绍,这些内容可使读者对谐波抑制和无功补偿的必要性有更深刻的认识。
2.1 谐波和谐波分析2.1.1 谐波的基本概念[23]在供用电系统中,通常总是希望交流电压和交流电流呈正弦波形。
正弦波电压可表示为:u t U t ()s i n ()=+2ωα (2-1) 式中 U ——电压有效值;α——初相角;ω——角频率,ω=2πf =2π/Tf ——频率;T ——周期。
正弦波电压施加在线性无源元件电阻、电感和电容上,其电流和电压分别为比例、积分和微分关系,仍为同频率的正弦波。
但当正弦波电压施加在非线性电路上时,电流就变为非正弦波,非正弦电流在电网阻抗上产生压降,会使电压波形也变为非正弦波。
当然,非正弦电压施加在线性电路上时,电流也是非正弦波。
对于周期为T =2π/ω的非正弦电压u (ωt ),一般满足狄里赫利条件,可分解为如下形式的傅里叶级数u t a a n t b n t n nn ()(c o s s i n )ωωω=++=∞∑01 (2-2)实用文案式中a u td t 00212=⎰πωωπ()() a ut n t dt n =⎰102πωωωπ()c o s () b ut n t dt n =⎰102πωωωπ()s i n () n =1, 2, 3……或ut a c n t n nn ()s i n ()ωωϕ=++=∞∑01 (2-3) 式中,c n 、ϕn 和a n 、b n 的关系为c a b n n n =+22ϕn n n a r c t g ab =(/) a c n n n=s i n ϕ b c n n n=c o s ϕ 在式(2-2)或(2-3)的傅里叶级数中,频率与工频相同的分量称为基波,频率为基波频率大于1整数倍的分量称为谐波,谐波次数为谐波频率和基波频率的整数比。
谐波及无功功率整理资料
谐波:1.什么是谐波:2.谐波的产生:正弦电压施加在非线性负载上;非正弦电流在电网阻抗上产生压降。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器会呈现比较大的背离正弦曲线波形。
谐波的危害:1.谐波对环境(电力/绿色)的危害增加谐波损耗,降低发电、输电及用电设备效率。
大量3次谐波流过中线会使线路过热甚至引发火灾。
影响各种电器设备的工作,产生机械振动、噪声和过电压,使变压器局部严重过热。
使电容器、电缆等设备过热、绝缘老化、寿命缩短、损坏。
引起供用电网中局部的并联谐振和串联谐振,使谐波放大,引起严重事故。
导致继电保护和自动装置的误动作,并使测量仪表计量不准。
对邻近的通信系统产生干扰,产生噪声降低通信质量;导致信息丢失,使通信系统无法正常工作。
2.谐波对器械的危害谐波的治理:1.无源滤波装置LC调谐滤波装置:优点:既可以补偿谐波,又可以补偿无功功率,结构简单。
缺点:补偿特性受电网阻抗和运行状态影响,易发生并联谐振,导致谐波放大,使LC滤波器烧毁。
只能补偿固定频率的谐波,补偿效果不理想。
2.有源滤波装置(APF)特点:实现动态补偿,对频率大小都变化的谐波以及变化的无功功率进行补偿,响应速度极快;可同时对谐波和无功功率进行补偿,补偿无功功率的大小可进行连续调节;补偿无功功率时不需贮能元件,补偿谐波时所需元件容量不大;即使补偿对象电流过大,APF也不会发生过载,能正常进行补偿;受电网阻抗影响不大,不易和电网阻抗发生谐振;能跟踪电网频率变化,性能不受电网频率变化影响;既可以对一个谐波和无功源补偿,也可对多个谐波和无功源集中补偿。
3.对电力电子设施本身的改造单位功率因数变流器:开发新型变流器,使其不产生谐波,并且功率因数为1。
多重化技术:适用于大功率场合,将多个方波叠加,从而消除低次的谐波,得到接近正弦波的阶梯波。
无功补偿与电力系统电流谐波的关系
无功补偿与电力系统电流谐波的关系电力系统中存在着各种不稳定因素和谐波现象,其中电流谐波对电力系统的稳定性和工作效率产生了显著影响。
为了改善电力系统的功率因数和减小电流谐波的影响,无功补偿技术被广泛应用。
本文将探讨无功补偿与电力系统电流谐波之间的关系。
一、无功补偿的基本原理无功补偿是通过引入有源或无源电力设备来提供或吸收无功功率,以实现电力系统中无功功率的平衡。
无功补偿主要由电容器和电感器组成,通过调节电容器和电感器的连接或断开来实现补偿。
二、电力系统电流谐波的产生原因电力系统中电流谐波的主要来源包括非线性负载设备、电弧炉和变频器等。
这些设备会引入非线性电流,导致电流波形变形和谐波成分增加。
电流谐波的存在会导致电力系统的损耗增加、设备寿命缩短以及对其他设备产生干扰等问题。
三、无功补偿对电流谐波的影响1. 谐波电流的消除或减小通过无功补偿,可以引入适当的电容或电感电器来抵消或吸收电力系统中的谐波电流。
无功补偿设备具有频率选择性,可以有效地减小特定谐波电流成分,从而改善电流波形和降低电流谐波。
2. 阻断电流的传播无功补偿装置的引入可以形成电子滤波器,能够阻断谐波电流的传播和扩散。
通过选择合适的无功补偿设备参数,可以提高电力系统对谐波电流的阻抗,限制谐波电流的传播范围。
3. 降低电流谐波对设备的影响电流谐波会对电力设备产生负面影响,包括增加设备的损耗、降低设备的寿命以及引起设备的工作不稳定等问题。
无功补偿对电流谐波的抑制可以减小这些负面影响,提高设备的可靠性和工作效率。
四、无功补偿与电流谐波的优化策略1. 设备的选择与优化根据电流谐波的特点和电力系统的需求,选择合适的无功补偿设备。
对于某些特定谐波成分较高的情况,可以采用有源电力滤波器来实现更精确的谐波补偿。
2. 控制策略的优化无功补偿装置的控制策略对于电流谐波的补偿效果至关重要。
通过优化控制策略,可以提高补偿设备的响应速度和准确性,更好地抑制电流谐波。
谐波的产生原因与简介
谐波的产⽣原因与简介 谐波是⼀个数学或物理学概念,是指周期函数或周期性的波形中能⽤常数、与原函数的最⼩正周期相同的正弦函数和余弦函数的线性组合表达的部分。
下⾯就让店铺来给你科普⼀下什么是谐波。
谐波的定义 谐波 (harmonic wave),从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,⼀般是指对周期性的⾮正弦电量进⾏傅⾥叶级数分解,其余⼤于基波频率的电流产⽣的电量。
从⼴义上讲,由于交流电⽹有效分量为⼯频单⼀频率,因此任何与⼯频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。
正是因为⼴义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。
谐波产⽣的原因主要有:由于正弦电压加压于⾮线性负载,基波电流发⽣畸变产⽣谐波。
主要⾮线性负载有UPS、开关电源、整流器、变频器、逆变器等。
泛⾳是物理学上的谐波,但次数的定义稍许有些不同,基波频率2倍的⾳频称之为⼀次泛⾳,基波频率3倍的⾳频称之为⼆次泛⾳,以此类推。
谐波的产⽣原因 在理想的⼲净供电系统中,电流和电压都是正弦波的。
在只含线性元件(如:电阻)的简单电路⾥,流过的电流与施加的电压成正⽐,流过的电流是正弦波。
⽤傅⽴叶分析原理,能够把⾮正弦曲线信号分解成基本部分和它的倍数。
在电⼒系统中,谐波产⽣的根本原因是由于⾮线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成⾮正弦电流,即电路中有谐波产⽣。
由于半导体晶闸管的开关操作和⼆极管、半导体晶闸管的⾮线性特性,电⼒系统的某些设备如功率转换器会呈现⽐较⼤的背离正弦曲线波形。
谐波电流的产⽣是与功率转换器的脉冲数相关的。
6脉冲设备仅有5、7、11、13、17、19 …。
n倍于电⽹频率。
功率变换器的脉冲数越⾼,最低次的谐波分量的频率的次数就越⾼。
其他功率消耗装置,例如荧光灯的电⼦控制调节器产⽣⼤强度的3 次谐波( 150 赫兹)。
谐波产生原理
谐波产生原理
谐波产生原理指的是在一个系统中产生出频率是系统基频的整数倍的波形。
下面我会详细讲解一下谐波产生的原理。
谐波产生的原理可以通过周期性运动的研究来理解。
当一个振动物体执行周期性运动时,它会以某个特定的频率振动,这个频率被称为系统的基频。
而在系统振动的过程中,还会出现其他频率的振动,这些频率是基频的整数倍,它们就是系统产生的谐波。
这些谐波波形可以通过傅里叶级数展开来表示。
谐波产生的原理可以通过物理实验来观察。
例如,当我们在一根弦上拉紧,然后用力振动它,就可以发现不仅有基频的振动,还会同时出现频率是基频的整数倍的振动。
这是因为弦在振动的过程中,产生了分立的频率振动,这些频率即为谐波。
谐波产生的原理还可以通过电路中的振荡器来解释。
在电路中,振荡器可以通过放大器和反馈电路的组合产生周期性的振荡信号。
振荡器中的放大器会不断放大反馈信号,使得系统产生自激振荡。
而在振荡器中,频率的倍数关系决定了谐波的产生。
总的来说,谐波产生的原理可以通过周期性运动研究、物理实验和电路振荡器来解释。
在系统振动的过程中,除了产生基频振动外,还会同时产生频率是基频整数倍的振动,这就是谐波的产生。
有源电力滤波器(APF)
谐波滤除器Harmonic filter谐波和无功的产生和危害Occurrence and harm of harmonics and reactive power现代工业和家电业的技术发展,使得电力电子设备被广泛使用,电力电子设备中大量使用了半导体开关器件,这些器件只允许电流在整个周期的某一部分导通,从而使用户端电网侧电流不连续,造成电流波形的失真。
另外对于三相四线制系统,如果三相负荷不平衡,会造成三相电流的不对称。
Nowadays the power and electronic equipment are widely used, these equipments adopted many semi-conductive components, which allow some section of a full current wave only, and result in discontinuous current, namely current distortion. Also for the 3-phase 4-wire system, if the three-phase load is unbalanced, it will lead to asymmetrical current.根据傅里叶(Fourier) 定理,任何周期函数可以分解为一个直流量和一系列正弦量(频率为原始周期函数频率的整数倍) 的和,频率等于是原始周期函数的正弦量称为基波,频率等于基波频率“n”倍的正弦量波形称为“n”次谐波。
可见纯正弦化的电流波形不含谐波电流成分,而前述的失真的电流波形则含有谐波电流成分。
According to Fourier theorem, any periodical function can be decomposed as DC content and the sum of series of sinusoidal contents (its freq is integer multiple of original periodical function), the sinusoidal wave with freq same as original periodical function is basic wave, “n” times of the freq of basic wave is N power harmonic, consequently pure sinusoidal current wave does not contain harmonics, distorted current has harmonic contents.下图为典型变频器的输入侧电流波形及傅里The following figure is a typical case current wave of input side in inverter and Fourier未滤波的线电源%基波值Basic wave value of unfiltered line power source未滤波的线电源Unfiltered line power source一般通过波形的“总谐波畸变率简称THD) ”来定义波形的失真程度和谐波含量:Generally total harmonic distortion rate (abbreviation: THD) is defined as distortion degree and harmonic contents.其中U1为基波的有效值,Un为“n”次谐波的有效值。
应用于微电网的并网逆变器虚拟阻抗控制技术综述
第45卷第9期电力系统保护与控制V ol.45 No.9 2017年5月1日Power System Protection and Control May 1, 2017 DOI: 10.7667/PSPC160624应用于微电网的并网逆变器虚拟阻抗控制技术综述袁 敞,丛诗学,徐衍会(新能源电力系统国家重点实验室(华北电力大学),北京 102206)摘要:微电网是由分布式电源、储能装置和负荷等组成的统一整体,随着分布式电源渗透率的不断提高,微电网的应用越发广泛。
在实际运行中,微电网中通常会出现并联逆变器功率分配不均、谐波污染、串并联谐振、故障电流和励磁涌流过大等问题。
虚拟阻抗技术能够改变并网逆变器的阻抗特性,对于上述问题的解决效果颇佳,而且实现简单,因此具有广泛的应用前景。
全面综述了虚拟阻抗的应用场景和相应的实现方法,并结合自适应虚拟阻抗这一现阶段的研究热点,探讨了未来的研究趋势和可能遇到的关键问题。
关键词:虚拟阻抗;下垂控制优化;谐波补偿;谐振抑制;故障电流限制;励磁涌流抑制Overview on grid-connected inverter virtual impedance technology for microgridYUAN Chang, CONG Shixue, XU Yanhui(State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University), Beijing 102206, China)Abstract: Microgrid is a unity composed of distributed generation, energy storing devices and load. As the penetration of distributed generation increasing, microgrid application domain is more extensive. Some problems often occur in microgrid, such as parallel inverter power distribution imbalance, harmonic pollution, series parallel resonance, fault current and inrush current. Virtual impedance technology which is achieved easily can change the impedance characteristics of grid-connected inverters and solve the above problems effectively, hence this technology has broad application prospects. This paper comprehensively introduces the application scenarios of virtual impedance and corresponding implementation methods, combined with adaptive virtual impedance that is the current hot research topics, and discusses the future research trends and key issues that may be encountered.This work is supported by National Natural Science Foundation of China (No. 51677066).Key words: virtual impedance; droop control optimizing; harmonic suppression; resonance damping; fault current limiting; inrush current suppression0 引言微电网是由分布式电源、储能装置和负荷等组成的统一整体[1-4],既可以实现并网与孤岛两种模式的无缝切换,又能够减轻新能源接入给系统带来的不利影响[5],提高供电可靠性和电能质量,近年来受到了广泛的关注。
谐波的治理以及无功功率的补偿
、有源滤波装置的适用场合
有源滤波器主要的应用范围是计算机控制系统的供电系统, 尤其是写字楼的供电系统,工厂的计算机控制供电系统。
、有源滤波装置的现状
对单台的有源滤波装置而言,其利润是可观的,但用户一 般不愿意用有源滤波,对于谐波的含量,不必滤得太干净, 只要不危害其他用电器也就可以了。
#2022
#2022
、无功补偿概述
使载大、耗增、要备时设使流、 供,,使增大无加、,备发增无 电还如线加,功大测电容电大功 质会果路,因功。量力量机和功 量使是及这而率 仪用和、视率 严电冲变是使的 表户导变在的 重压击压显设增 的的线压功增 降产性器而备加 尺起容器率加 低生无的易及, 寸动量及增, 。剧功电见线使 和及增其加会
02
近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。在各种 电力电子装置中,整流装置所占的比例最大。目前,常用的整流电路几乎都采用晶闸管相控 整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。带阻感负载的整 流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。直流侧采用电容滤波的二极管整 流电路也是严惩的谐波污染源。这种电路输入电流的基波分量相位与电源电压相位大体相同, 因而基波功率因数接近1。 但其输入电流的谐波分量却很大,给电网造成严重污染,也使得 总的功率因数很低。另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置 也会在输入侧产生大量的谐波电流。
产生的原因:由于正弦电压加压于非线 性负载,基波电流发生畸变产生谐波。 主要非线性负载有UPS、开关电源、 整流器、变频器、逆变器等。
谐波的分类
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。 谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分 析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基 波倍数的谐波的正弦波分量。 根据谐波频率的不同,可以分为:
开关电源次谐波振荡产生机理
开关电源次谐波振荡产生机理英文回答:Switching power supplies are widely used in various electronic devices due to their high efficiency and compact size. However, they can generate unwanted harmonics, including the second harmonic. The mechanism behind the generation of second harmonic oscillations in switching power supplies can be attributed to several factors.One of the main factors is the non-linear behavior of the power semiconductor devices, such as transistors or diodes, used in the power supply circuit. These devices switch on and off rapidly to regulate the output voltage. However, their switching behavior can introduce non-linearities in the current waveform, leading to the generation of harmonics. The second harmonic isparticularly significant because it is twice the frequency of the fundamental waveform.Another factor contributing to second harmonic oscillations is the parasitic capacitance and inductance present in the power supply circuit. These parasitic elements can resonate at the second harmonic frequency and cause the amplification of the second harmonic component in the output waveform. This resonance phenomenon occurs due to the interaction between the parasitic elements and the switching frequency of the power supply.Furthermore, the layout and design of the power supply circuit can also influence the generation of second harmonic oscillations. Improper placement of components or inadequate grounding can result in signal reflections and electromagnetic interference, which can further amplify the second harmonic content in the output waveform.To illustrate this mechanism, let's consider a simple example of a switching power supply driving a resistive load. When the power semiconductor device switches on, it allows current to flow through the load. However, due to the non-linear switching behavior, the current waveform may not be a perfect square wave. It may contain high-frequencycomponents, including the second harmonic. These high-frequency components can then be amplified by the parasitic capacitance and inductance in the circuit, resulting in the generation of second harmonic oscillations in the output waveform.In conclusion, the generation of second harmonic oscillations in switching power supplies can be attributedto the non-linear behavior of power semiconductor devices, the presence of parasitic capacitance and inductance, and the circuit layout and design. These factors can interact and amplify the second harmonic content in the output waveform, leading to unwanted harmonics.中文回答:开关电源由于其高效率和紧凑尺寸而被广泛应用于各种电子设备中。
谐波治理及无功功率补偿
谐波治理及无功功率补偿关于谐波在理想状态下,电网中的电流和电压都是纯粹的正统波。
近年来,随着电力电子设备的广泛应用,使电网运行中的谐波分量急剧增加,从而严重影响了电能质量,危及用电安全,造成能源浪费。
谐波是对周期性非正弦电量进行傅立叶分解,得到一系列不同频率的分量,其中大于基波频率的部分称为谐波,谐波频率与基波频率的比值称为谐波次数。
当正弦基波电压施加于非线性设备时,产生的电流与施加的电压波形不同,电流发生了畸变,即产生了谐波。
由于负荷与电网连接,谐波电流注入电网,这些设备就成为电网中的谐波源。
电网中的谐波源主要分为两类:含半导体的非线性元件,如各种整流设备、变流器、变频器等节能和控制用电力电子设备;含电弧和铁磁非线性设备的谐波源,如日光灯、交流电弧炉、变压器和铁磁谐振设备等。
目前,一般民用电网中主要产生3次、5次谐波;而工矿企业中则以5次、7次、11次谐波为主。
在含有谐波的电网中测量,我们发现在功率S与有功功率P和无功功率Q 之间的关系是:S>P+Q,余下的功率就是畸变功率C;这样,视在功率就成为三个功率向量之和,即:S=P+Q+C。
畸变功率具有无功功率的性质,因此,谐波电流的存在可看作无功功率的增加。
它的存在会增加线路和变压器的铜损耗,并使电网的功率因数降低。
例如,半导体材料生产设备产生的高次谐波电流可以达到50Hz基波的电流的60~90%,大大增加能耗和对电网的污染。
在大型商业建筑中,由于大量使用节能射灯,高次谐波电流达基波电流的40%,造成功率因数补偿柜补偿电容大量损耗。
谐波的危害目前,谐波和电磁干扰、功率因数降低并列为电力系统的三大公害。
1.对变压器而言,谐波电流可导致铜损和杂散铜损增加,谐波电压则会增加铁损。
与纯正基本波运行的正弦电流和电压相比较,谐波对变压器的整体影响是温升较高。
必须注意的是:这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。
谐波产生无功功率的原因
谐波产生无功功率的原因引言在电力系统中,无功功率是指在交流电路中产生无功电流,无功功率并不直接用于做功,而是用于维持电路的运行稳定性和电力负载的平衡。
然而,谐波电流的存在会导致无功功率的产生,给电力系统带来一系列问题。
本文将探讨谐波产生无功功率的原因,并分析其对电力系统的影响。
什么是谐波电流谐波电流是指在电力系统中,频率为基波频率整数倍的电流分量。
它是由于非线性负载或电力设备引起的,例如电子设备、电弧炉和电力电子装置等。
谐波电流会导致电流波形失真,对电力系统的稳定性和运行造成不利影响。
谐波电流引起的问题谐波电流会引起以下问题:1. 电流波形失真谐波电流的存在会使电流波形失真,波形变得不规则,增加了电力系统的谐波电压和电流的含量。
这会导致电力设备的工作效率下降,甚至可能对设备造成损坏。
2. 电压失真谐波电流会导致电压波形失真,使得电压的纹波增大,给电力设备带来额外的压力。
电压失真可能会引起电力设备故障,影响电力系统的供电质量。
3. 电力损耗增加谐波电流会导致电力系统中的电力损耗增加。
由于谐波电流的存在,电力系统中的电阻损耗和电感损耗会增加,使得电力系统的效率降低。
4. 电力设备过热谐波电流会导致电力设备过热。
由于谐波电流会增加电力设备的电流负荷,使得电力设备的温度上升,可能导致设备过载、损坏甚至发生火灾等安全隐患。
谐波产生无功功率的原因谐波电流会导致无功功率的产生,主要有以下几个原因:1. 电力设备的非线性特性电力设备的非线性特性是导致谐波电流产生的主要原因之一。
非线性负载会导致电流波形失真,产生谐波电流。
例如,电力电子装置中的整流器、逆变器等设备会引起谐波电流的产生。
2. 电力网络的阻抗不平衡电力网络的阻抗不平衡也会导致谐波电流的产生。
当电力网络中的阻抗不平衡时,谐波电流会通过不同的路径流回电源,产生无功功率。
3. 谐波电流的相位移谐波电流的相位移也会导致无功功率的产生。
由于谐波电流的相位与电压波形不同,谐波电流会引起电压和电流之间的相位差,导致无功功率的产生。
无功功率增加的原因
有关“无功功率”增加的原因
有关“无功功率”增加的原因如下:
1.感性负载增加:无功功率主要是由于感性负载(如电动机、变压器等)引起的。
当感性
负载增加时,无功功率也会相应增加。
2.系统电压波动:系统电压的波动会导致无功功率的增加。
当系统电压降低时,感性负载
的无功需求会增加,从而导致整个系统的无功功率增加。
3.谐波干扰:谐波会对电力系统中的无功功率产生影响。
谐波会导致电压波形畸变,从而
增加系统的无功功率。
4.负载不平衡:如果系统中的负载不平衡,例如三相负载不平衡,会导致无功功率的增加。
这是因为不平衡的负载会导致电流波形畸变,进而产生额外的无功功率。
为了降低无功功率,可以采取以下措施:
1.优化负载配置:合理配置感性负载和容性负载,使它们在系统中达到平衡,以减少无功
功率的产生。
2.提高系统电压稳定性:通过改善电源质量、提高系统电压稳定性等措施,可以减少因电
压波动引起的无功功率增加。
3.谐波治理:采用谐波滤波器、有源电力滤波器等设备,对系统中的谐波进行治理,以减
少谐波对无功功率的影响。
4.无功补偿:通过安装无功补偿装置(如电容器、静止无功补偿器等),对系统中的无功
功率进行补偿,以提高系统的功率因数,降低无功功率的消耗。
总之,无功功率增加的原因主要与感性负载、系统电压波动、谐波干扰和负载不平衡等因素有关。
通过优化负载配置、提高系统电压稳定性、谐波治理和无功补偿等措施,可以有效地降低无功功率的消耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐波和无功功率的产生(Generation of harmonic and reactivepower)Reactive power is also called ineffective power and reactive power. Take a simple example: for example, eat steamed stuffed bun, it was originally to eat 3 to eat, the first two buns is equivalent to reactive power, and the third baozi is active power. The common compensation is reactive power compensation in parallel with the power capacitor in the loop.Harmonics: periodic voltage and current signals of any frequency other than the fundamental frequency (50Hz or 60Hz) are called harmonics.In power system, the commonly used method to suppress harmonics is to adopt parallel passive filter or active filterPassive filters generally use capacitors and reactors in series to form a low impedance loop, which is used to absorb harmonics in the system, also known as passive filtersAccording to the harmonic condition of the system, the active filter produces a harmonic source which is the same as the harmonic direction and the current is equal to counteract the harmonic produced in the system. Also known as active filter 1, when the power is connected to inductive or capacitive load, due to inductive or capacitive load is a complex, expression power is a complex, the imaginary part is called reactive power. But the perceptual load vector angle lag, capacitive load vector angle advance. In order to make the reactive power as small as possible under the condition that the apparent powerremains the same, then adding capacitive loads to reactive power is called compensation.2, the load in a large number of utility power electronic devices, the power grid in the AC in Fourier series, found that in addition to containing the fundamental component, there are a lot more than the fundamental component of higher waves, these waves are called harmonics. There are mainly two ways to eliminate harmonics: using different connection methods of transformer to prevent harmonic transmission, or to filter harmonic with capacitor filter. Harmonic generation: nonlinear load, impact load and other large operation factors of power users, such as arc furnace, electric locomotive running on the power quality, the utility grid harmonic interference, produce large disturbance voltage, voltage fluctuation and flicker.The harm of harmonic, harmonic pollution will have an impact on the electric power equipment, power grid and power transmission lines, mainly in: the capacitor harmonic overload which seriously affect the service life; harmonic will cause increase, loss of power grid equipment, shorten the life of equipment caused by unsafe operation, cause the local substation parallel or series resonant voltage transformer, causing light damage to equipment; harmonic pollution increases the loss of transmission lines; harmonic pollution caused by the increase of the neutral line current, neutral drift; harmonics caused by the risk of instability of the cable medium is larger, more prone to failure, use Baidu Search You'll see. ah ~ ~ ~ ~ ~ this is my Baidu know you can drop further searchDefinition: strictly speaking, refers to the amount of power harmonic current in frequency with the integer multiples of the fundamental, generally refers to the periodic non sinusoidal power by means of Fourier series decomposition, other than the fundamental frequency current produces power. Broadly speaking, since the effective component of an AC network is a single frequency of the power frequency, any component that is different from the power frequency can be called harmonic,At this point, the meaning of the word "harmonic" has become somewhat inconsistent with the original intention. It is precisely because of the broad sense of harmonic concept that there is "fractional harmonics", "inter harmonics", "sub harmonic" and so on.The reason is that when the sinusoidal voltage is applied to the nonlinear load, the fundamental current is distorted and the harmonic is generated. The main nonlinear loads are UPS, switching power supply, rectifier, inverter, inverter and so on.Harmonic harm: reduce system capacity, such as transformers, circuit breakers, cables and other equipment to accelerate aging, shorten the service life of equipment, and even damage equipment, endanger the safety and stability of production, waste of electricity and so on. How is the three harmonic generation?AnswerThe word harmonics comes from acoustics. The mathematicalanalysis of harmonics has laid a good foundation in 18th Century and 19th Century. Harmonic analysis proposed by Fu Liye et alMethods are still widely used today. The harmonic problem of power system has attracted people's attention as early as 1920s and 30s. In Germany, distortion of voltage and current waveforms was caused by the use of stationary mercury arc converters. The papers on harmonic converters published by J.C.Read in 1945 are the classical papers on harmonic research in the early years.By 50s and 60s, due to the development of HVDC technology, a large number of papers were published on the harmonic problems caused by converters. Since 70s, due to the rapid development of power electronics technology, all kinds of power electronic devices are widely used in power system, industry, transportation and home, and the harm caused by harmonics is becoming more and more serious. All countries in the world pay full attention to the problem of harmonics. International conferences on harmonics have been held many times, and many countries and international academic organizations have formulated standards and regulations for limiting harmonics in power system harmonics and power equipment.The significance of harmonic research is that the harm of harmonics is very serious. Harmonics reduce the efficiency of the production, transmission and utilization of electric energy, make the electrical equipment overheat, produce vibration and noise, and make the insulation aging, shorten the service life, and even fail or burn down. Harmonics can cause partial parallel resonance or series resonance in power system,and enlarge harmonic content, resulting in the burnout of capacitor and other equipments. Harmonic will cause relay protection and automatic device misoperation, so that energy measurement confusion. For the outside of power system, harmonic will cause serious interference to communication equipment and electronic equipment.2. harmonic suppressionTo solve the problem of harmonic pollution in power electronic devices and other harmonic sources, there are two basic ideas: one is to install the harmonic compensation device to compensate harmonics, which are applicable to all kinds of harmonic sources; the other is to reconstruct the power electronics equipment, the stage does not produce harmonic wave, and the power factor can control the power electronic device is 1, which of course only apply as the main harmonic sources.The traditional method of installing harmonic compensator is to adopt LC tuned filter. This method can not only compensate harmonics but also compensate reactive power, and has simple structure and has been widely used. The main drawback of this method is that the compensation characteristic is affected by the grid impedance and the operation state, and the parallel resonance is easy to occur with the system, resulting in harmonic amplification,Make the LC filter overloaded or even burned. In addition, it can only compensate the harmonic of fixed frequency, and the compensation effect is not ideal.3., reactive compensation is alsoIt is very easy to understand the active power, but it is not easy to deeply understand the reactive power. In sinusoidal circuits, the concept of reactive power is clear, and there is no generally accepted definition of reactive power in the presence of harmonics. However, the importance of reactive power is consistent with the importance of reactive power compensation. Reactive power compensation should include compensation of fundamental reactive power and harmonic reactive power.Reactive power is very important to the operation of power supply system and load. The impedance of the network components of an electric power system is mainly inductive. Therefore, roughly speaking, in order to transmit active power, requires the sending end and receiving end voltage of a phase difference, which can be implemented in a wide range; and in order to transport the reactive power requires a voltage amplitude difference, this can only be achieved in a narrow range. Not only most network components consume reactive power, but most of the loads also require reactive power. Reactive power required for network components and loads must be obtained from somewhere in the network. Obviously, these reactive power, if all provided by the generator and transmitted over long distances, are unreasonable and usually not possible. The reasonable method is to generate reactive power in the place where the reactive power is needed, which is reactive power compensation.The main function of reactive compensation is the following:(1) increase the power factor of the power supply system and load, reduce the equipment capacity and reduce the power loss.(2) stabilize the voltage of the receiving end and the power grid to improve the quality of the power supply. The dynamic reactive power compensation device can also improve the stability of the transmission system and improve the transmission capacity in the appropriate place of long distance transmission lines.(3) the load imbalance in three-phase electric railway and the other occasions, through appropriate verification can balance three-phase active power and reactive power and reactive load.Two, harmonic and reactive power generationIn industrial and living electrical loads, the resistive load occupies a large proportion. Asynchronous motors, transformers, fluorescent lamps and so on are typical resistive loads. The reactive power consumed by induction motors and transformers occupies a high proportion in the reactive power provided by the power system. Reactors and overhead lines in power systems also consume some reactive power. A resistive load must absorb reactive power to work properly, which is determined by its nature.Nonlinear devices such as power electronic devices also consume reactive power, especially various phase control devices. For example, phase controlled rectifier, phase controlled AC power regulating circuit and cycloconverter, at the same time, thefundamental current lags behind the grid voltage and consumes a great deal of reactive power. In addition, these devices also produce a large amount of harmonic currents, and the harmonic sources are designed to consume reactive power. The fundamental current phase of diode rectifier circuit is approximately the same as that of grid voltage, so the fundamental reactive power is not consumed at all. However, it also generates a large amount of harmonic currents, and therefore consumes a certain amount of reactive power.In recent 30 years, the application of power electronic devices is becoming more and more widespread,It also makes the power electronic device become the biggest harmonic source. In all kinds of power electronic devices, rectifier devices account for the largest proportion. At present, the rectifier circuit usually adopts thyristor phase controlled rectifier circuit or diode rectifier circuit, among which three-phase bridge and single-phase bridge rectifier circuit are the most. The harmonic pollution and power factor hysteresis produced by rectifier circuits with resistive loads are well known. The diode rectifier circuit with capacitor filter on the DC side is also a severely punished harmonic pollution source. The fundamental component of the input current in this circuit is approximately the same as the phase of the supply voltage, so the fundamental power factor is close to 1. However, the harmonic component of the input current is very large, which causes serious pollution to the power grid and makes the total power factor very low. In addition, the power electronic devices using phase controlled AC power adjustment circuit and cycloconverter also produce a largeamount of harmonic currents at the input side.。