西南石油大学硕士数值分析试卷及部分答案
研究生数值分析试卷.docx
2005-2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析学生所在院: _______ 学号: _________ 姓名: _______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)设求方程12-3x + 2cosx = 0根的迭代法(1) 证明对0兀0 w /?,均有lim 林,其中T 为方程的根.kT8 (2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
x } + 2X 2 - 2X 3 = 1,v 兀]+ 兀2 +兀3 = _1,2兀]+ 2兀2 +兀3 = °・a 0、a 0 ,说明对任意实数。
工0,方程组AX=b 都是0 Q,非病态的。
(范数用||・|L )四、(15分)已知y = f (x )的数据如下:求/(%)的Hermite 插值多项式H 3 (%),并给出截断误差/?(兀)=f (x ) - H 3 (x )。
五、(10分)在某个低温过程屮,函数y 依赖丁•温度兀(°C )的试验数据为已知经验公式的形式为『=仮+方兀2 ,试用最小二乘法求出a , b o 六、(12分)确定常数a, b 的值,使积分(2a 三、(8分)若矩阵A = 0J(a, /?) = !] [ax2取得最小值。
七、(14分)已知Legendre (勒让德)止交多项式厶(x )有递推关系式:'L 曲(兀)=^77 心(兀)一 -—Ln-1(兀)(斤=1, 2,…)试确定两点的高斯一勒让德(G —L )求积公式£ f (x )djc = £ f\x }) + A 2 .f (兀2)的求积系数和节点,并用此公式近似计算积分go ) = y ()儿+1 =儿+力(^心+-^2) k\=f (Xn ,yJ 忍=fg + h,y n +hk {)(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
《数值分析》A卷期末考试试题及参考答案
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析试题_A卷与答案
三.求一个次数不高于3的多项式 ,满足下列插值条件:
1
2
3
2
4
12
3
并估计误差。(10分)
四.试用 的牛顿-科特斯求积公式计算定积分 。(10分)
五.用Newton法求 的近似解。(10分)
六.试用Doolittle分解法求解方程组:
2) 的值域是定义域的子集;(2分)
3) 在其定义域内满足李普希兹条件。(2分)
3.解:参照幂法求解主特征值的流程(8分)
步1:输入矩阵A,初始向量v0,误差限,最大迭代次数N;
步2:置k:=1,μ:=0,u0=v0/||v0||∞;
步3:计算vk=Auk-1;
步4:计算
并置mk:=[vk]r, uk:=vk/mk;
(1分)
应用科特斯公式得:
(2分)
(2分)
五.解:由零点定理, 在 内有根。(2分)
由牛顿迭代格式 (4分)
取 得,
(3分)
故取 (1分)
六.解:对系数矩阵做三角分解:
分)
七.解:(1)对于方程组,雅可比方法的迭代矩阵为
(2分)
其特征多项式为 ,且特征值为
青岛科技大学试题
__2014__年~__2015___年第一学期
课程名称:数值分析专业年级:2014级(研究生)
考生学号:考生姓名:
试卷类型:A卷√B卷□考试方式:开卷√闭卷□
………………………………………………………………………………………………………
一.填空题(本大题共4小题,每小题4分,共16分)
则 (1分)
2.证:牛顿迭代格式为 (3分)
(完整)数值分析试题库与答案解析,推荐文档
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
数值分析习题(含答案)
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(2020年7月整理)数值分析试题集.doc
数值分析试题集(试卷一)一(10分)已知3409.1*1=x ,0125.1*2=x 都是由四舍五入产生的近似值,判断*2*1x x +及*2*1x x -有几位有效数字。
二(10三(15分)设],[)(4b a C x f ∈,H (x )是满足下列条件的三次多项式)()()(,)()(,)()(,)()(b c a c f c H c f c H b f b H a f a H <<'='===求)()(x H x f -,并证明之。
四(15分)计算dx x⎰+10312,210-=ε。
五(15分)在[0,2]上取2,1,0210===x x x ,用二种方法构造求积公式,并给出其公式的代数精度。
六(10分)证明改进的尢拉法的精度是2阶的。
七(10分)对模型0,<⋅='λλy y ,讨论改进的尢拉法的稳定性。
八(15分)求方程017423=--+x x x 在-1.2附近的近似值,310-=ε。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一 填空(4*2分)1 ∞=0})({k k x φ是区间[0,1]上的权函数为2)(x x =ρ的最高项系数为1的正交多项式族,其中1)(0=x φ,则=⋅⎰10)(dx x x φ-------------------,=)(1x φ------------------。
2 ⎪⎪⎭⎫ ⎝⎛-=4112A ,则=∞A -----------, =)(A ρ-----------------。
3 设⎪⎪⎭⎫⎝⎛-+=4121a A ,当a 满足条件----------------时,A 可作LU 分解。
最新(完美版)数值分析试题A08.1
中国石油大学(北京)2007--2017学年第一学期研究生期末考试试题A (闭卷考试)课程名称:数值分析 注:计算题取小数点后四位 一、填空题(每空3分,共24分)(1)设12A ⎡-=-⎥⎦,则A 的奇异值为 。
(2) 设0.00013753x =为真值0.00013759T x =的近似值,则x 有 位有效数字。
(3) 设数据123,,x x x 的绝对误差为0.002,那么123x x x -+的绝对误差约为 ____ _。
(4) )x (l ,),x (l ),x (l n 10是以01,,,,(2)n x x x n ≥为节点的拉格朗日插值基函数,则20(2)()nkk k xl x =+=∑ 。
(5) 插值型求积公式22=≈∑⎰()()nk k k x f x dx A f x 的求积系数之和0nk k A ==∑ 。
其中2x 为权函数,1≥n 。
(6)已知(3,4),(0,1)TTx y ==,求Householder 阵H 使Hx ky =,其中k R ∈。
H= 。
(7)数值求积公式112()()(0))3f x dx f f f-⎡⎤≈++⎢⎥⎣⎦⎰的代数精度为___。
(8) 下面Matlab 程序所求解的数学问题是 。
(输入向量x , 输出S ) x =input('输入x :x ='); n=length(x ); S=x (1); for i=2:nif x (i)<S ,S=x (i);else,continue;end end S二、(12分) (1)证明对任何初值 0x R ∈,由迭代公式124cos ,0,1,2, (3)k k x x k +=+= 所产生的序列{}0k k x ∞=都收敛于方程1232cos 0x x -+=的根。
(2)证明它具有线性收敛性。
三、(12分)(1)用辛浦生公式计算积分4x e dx ⎰的近似值;(2)若用复化辛浦生公式计算积分4x e dx ⎰,问至少应将区间[0,4]多少等分才能保证计算结果有五位有效数字?四、(12分) 已知数据表 2102230.510.5i iix y w --(1)构造关于点集和权的正交函数组01{(),()}x x ϕϕ;(2)利用01{(),()}x x ϕϕ拟合已知数据点,并求最小二乘拟合误差2δ。
数值分析试题A09.1
中国石油大学(北京)2008--2009学年第一学期研究生期末考试试题A (闭卷考试)课程名称:数值分析注:计算题取小数点后四位 一、填空题(共30分,每空3分)1、已知(0,1,,)k x k n = 是互异节点,()k l x 是对应节点的Lagrange 插值基函数, ()P x 是任意一个首项系数为1的1n +次多项式,则0()()()nkkk P x P x l x =-∑= 。
2、设分段多项式 3232, 01()21, 12x x x S x x bx cx x ⎧+≤≤⎪=⎨++-≤≤⎪⎩ 是以0,1,2为节点的三次样条函数,则b = ,c = 。
3、如果A 是正交矩阵,则2()Cond A = 。
4、用x = 3.141作为π的近似值,则x 有 位有效数字,其绝对误差限为 。
5、数值积分公式[]33()(1)(2)2f x dx f f ≈+⎰是否为插值型求积公式: ,其代数 精度为 。
6、下列matlab 程序中s2计算的是 ,并指明s1与s2的区别为 。
其中:10;,x aex a a x R =⨯∈。
t=0;s2=1e14; for i=1:1e6temp= 1/(1e3+i); t=t+temp; s2=s2+temp;ends1= t+1e14;二、(8分)已知函数表试利用重节点Newton 差商构造满足插值条件(0)1,(1)0,'(1)1,(2)1,P P P P ==== 的三次多项式()P x 。
(要求构造出差商表)三、(8分)已知向量(2,0,2,1)T x =,试构造Householder 变换阵,使(0,0,,0)T Hx k =,其中k R ∈。
四、(12分)已知勒让德(Legendre )正交多项式()201211,,312P P x P x ===-,试利用勒 让德正交多项式在二次多项式类{}21,H span x =中求一个多项式()S x ,使其成为()[]11x f x e =-在,上的最佳平方逼近函数,并计算出平方误差。
研究生考试数值分析试题
研究⽣考试数值分析试题研究⽣2002级数值分析⼀(12分)、对于积分=+1,2,1,0,999n dx x x n。
(1)试推导递推公式 ,2,1,19991=+-=-n nI I n n ;(2)分析上述算法的数值稳定性;(3)若上⾯算法不稳定,请选择合适的算法,并分析其稳定性。
⼆(12分)、解⽅程组= 00001.8800001.626221x x 和?=00002.8800001.626221x x ,就所观察到的现象进⾏分析。
三(12分)、设⽅程组=--=+-=+-7989783212121x x x x x x x ;(1)适当调整⽅程的排列顺序,使得⽤Gauss-Seidel 迭代法求解时收敛?说明收敛原因。
(2)取初始向量()()Tx 0,0,00=,⽤Gauss-Seidel 迭代求近似解()2x,并求其()()k k x x-+1误差。
四(12分)、(1)已知函数()4xe xf =,在[0,1]内三点0,1/2,1的函数值,求其⼆次插值的余项;(2)三个节点如何安排能使其余项达最⼩,此时⼈余项为多少?五(12分)、对于⽅程()02ln =+-x x ,若求[-1.9,-1]内的根,分别选取迭代⽅程()2ln +=x x 和2-=x e x ,它们的收敛性如何?再写出⽜顿迭代公式。
六(10分)、设()?=>+-='100,5y x x y y ,解析解xe x y -+-=25262515,分别取45.0,4.0,2.0,1.0=h ,利⽤Euler ⽅法计算得y(10)的近似值分别为1.96,1.96,5.2851,142.8863,对此现象进⾏分析。
七(10分)、设()x e x f =,分别取步长0001.0,01.0,5.0=h ,⽤中⼼差商公式计算()0f '的近似值并求出误差,对结果作分析⽐较。
⼋(10分)、求不超过2次的多项式()x P 2,使其满⾜条件:()21=f ,()32=f ,()12='f ,并写出其误差估计。
数值分析试题库与答案解析
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,342⎛⎫ ⎪=- ⎪ ⎪⎝⎭x ,则 ∞A = ., 1x = ______.3.已知y =f (x )的均差(差商)01214[,,]3f x x x =,12315[,,] 3f x x x =,23491[,,]15f x x x =,0238[,,] 3f x x x =, 那么均差423[,,]f x x x = .4.已知n =4时Newton -Cotes 求积公式的系数分别是:,152,4516,907)4(2)4(1)4(0===C C C 则)4(3C = .5.解初始值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进的Euler 方法是 阶方法;6.求解线性代数方程组123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩的高斯—塞德尔迭代公式为 ,若取(0)(1,1,1)=-x, 则(1)=x .7.求方程()x f x =根的牛顿迭代格式是 . 8.1(), (),, ()n x x x 是以整数点01, ,, ,n x x x 为节点的Lagrange 插值基函数,则()n kjk k xx =∑= .9.解方程组=Ax b 的简单迭代格式(1)()k k +=+xBx g 收敛的充要条件是 .10.设(-1)1,(0)0,(1)1,(2)5f f f f ====,则()f x 的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式()p x 满足:(1)15p =,(1)20p '=,(1)30p ''=(2)57p =,(2)72p '=.2.构造代数精度最高的形式为10101()()(1)2xf x dx A f A f ≈+⎰的求积公式,并求出 其代数精度.3.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x .4.用最小二乘法求形如2y a bx =+的经验公式拟合以下数据:5.用矩阵的直接三角分解法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x .6 试用数值积分法建立求解初值问题0(,)(0)y f x y y y '=⎧⎨=⎩的如下数值求解公式1111(4)3n n n n n hy y f f f +-+-=+++,其中(,),1,,1i i i f f x y i n n n ==-+.三、证明题(10分)设对任意的x ,函数()f x 的导数()f x '都存在且0()m f x M '<≤≤,对于满足20Mλ<<的任意λ,迭代格式1()k k k x x f x λ+=-均收敛于()0f x =的根*x .参考答案一、填空题1.5; 2. 8, 9 ; 3.9115; 4. 1645; 5. 二; 6. (1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩, ,,0.1543)7. 1()1()k k k k k x f x x x f x +-=-'-; 8. j x ; 9. ()1B ρ<; 10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题 1.差商表:233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+ 令(2)57p =,(2)72p '=,求出a 和b. 2.取()1,f x x =,令公式准确成立,得:0112A A +=,011123A A +=, 013A =, 116A =. 2()f x x =时,公式左右14=;3()f x x =时,公式左15=, 公式右524=∴ 公式的代数精度2=.3.此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。
硕士课程—数值分析题集(附答案).docx
2009-2010数值分析第一章绪论 (1)第二章函数插值 (2)第三章函数逼近 (5)第四章数值积分与数值微分 (10)第五章解线性方程组的直接解法 (12)第六章解线性方程组的迭代解法 (16)第七章非线性方程求根 (19)第九章常微分方程初值问题的数值解法 (21)第一章绪论1.1要使胸的相对误差不超过0.1%,应取几位有效数字?解:面的首位数字%=4。
设/有n位有效数字,由定理知相对误差限k(.r*)|<—xlO1^ =-xl0^1 r 1 2x4 84-xio1-" <0.1%, 8解得〃Z3.097,即需取四位有效数字.1.2 序列{/}满足关系式y,,=10y,_]-l(n = l,2,...),若y0=V2«1.41,计算到M。
,误差有多大?这个算法稳定吗?解:y0 = V2,y* =1.41,|y0 -y*| <^-xl0-2=5 ,于是|/i 一川=|1。
》0 —IT。
〉;+1| = 1。
|光 - 司 < 1。
5卜2-》;| = |10》1一1一10》;+1| = 10卜1一酣〈10逆, 一般地|儿一司<103 因此计算到Mo其误差限为1010^,可见这个计算过程是不稳定的。
1. 3计算球的体积,要使相对误差限为1%,问测量半径R时允许的相对误差限是多少?解:5,、九兀K ~-7tK R_R* R2+R*R + R*2R_R* 37?2R_R*。
,“ ,(v)= _2 ---------- 2 «■«.____________ = _____ 3 = 1% ' 4 f RR- R R 2 R-7lR 3》=一' ,即测量半径R 时允许的相对误差限是一、。
R 300300第二章函数插值2.1、利用如下函数值表构造差商表,并写出牛顿插值多项式。
进而得牛顿多项式为 地⑴=f (.%) + /■氏次』吼⑴+ /[.r (p x 1,.r 2]<»2(.r) + /[.r (p x 1,.r 2,.r 3]<»3(.r)1 1 33A^3 (x) = 3 + — (x -1) + — (x -1)(尤)-2(x- l)(x )x2. 2、已知f(-2) = 2, f(-1) = 1, f (0) = 2, f (0.5) = 3试选用合适的插值节点利用Lagrange 二次插值多项式计算f (-o.5)的近似值,使之精度 尽可能高。
数值分析试题(卷)和答案解析
试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦(10分) 七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
数值分析计算方法试题集及答案
数值分析复习试题第一章 绪论 一. 填空题 1.*x为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和 71.73≈(三位有效数字)-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。
5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。
6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 .7、 递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y =≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5 。
2013年西南石油大学研究生《数值分析》考试试卷
六、用改进的欧拉方法求解初值问题
y ' f ( x, y) y xy 2 (1 ,取 h 0.2 。 (计算过程保留四位小数) (14 分)
10 a 0 七、设 A b 10 b ,其中 det( A) 0 ,讨论线性方程组 Ax 0 a 5
《数值分析》考试试卷
考试时间 100 分钟 适用专业年级:硕士 2013 级 一、填空题(每小题 4 分,共 20 分)
1、设 x 的相对误差为 0.01,则 x 3 的相对误差为( 2、设 A ) ; ) ;
0.6 0.5 ,则 A 0.3 0.1
2
=(
3、方程组 4、设
f 雅可比迭代
法与高斯-赛德尔迭代法收敛的充要条件。 (10 分)
五、设已给出 f ( x) 的数据表: x y 0.00 1.00000 0.25 1.65534 0.50 1.55152 0.75 1.06666
1
1.00 0.72159
分别用复化梯形法 (n 4) 与复化辛普生法 (n 2) 求积分 I f ( x)dx 的近似值。 0 (14 分)
5 x1 2 x2 1 ,Jacobi 收敛的迭代矩阵是 BJ =( x 4 x 2 1 2
) ;
f ( x) x7 3x 1 ,则差商 f [20 ,21 ,...,28 ] =(
) ;
5、已知公式
1
0
f ( x)dx
1 3 2 f (0) f ( ) ,则代数精度为( 4 4 3
四 、 求 一 个 次 数 不高于 四 次 的 多 项 式 P( x) , 使它 满 足 P(0) P '(0) 0 ,
数值分析计算方法试题集及答案
第一章绪论 一. 填空题 x* -x4、 设x j —1.216, x^ - 3.654均具有3位有效数字,则 X 1X 2的相对误差限为 0.0055 ________ 。
5、 设为=1.216,x 2 =3.654均具有3位有效数字,则 为 他 的误差限为 0.01 _______________ 。
6、 已知近似值X A = 2.4560是由真值x T 经四舍五入得到,则相对误差限为0.0000204 .7、 递推公式二血 ,如果取y 0=逅".41作计算,则计算到 血时,误差为y n = 10y n-i -1, n = 1,2,11 8-10 ;这个计算公式数值稳定不稳定 不稳定 .28、 精确值二* =3.14159265…,则近似值=3.141和二2* =3.1415分别有_J3 _____________ 位和4 _ 位有效数字。
9、 若x 二e 、2.71828二x ,则x 有_6_位有效数字,其绝对误差限为 1/2*10 -。
10、 设x*的相对误差为2%,求(x*) n 的相对误差0.02n数值分析复习试题1. x 为精确值x 的近似值;y * = f x *为一元函数y1二 f X 的近似值;二f x*, y*为二元函数y2f x, y 的近似值,请写出下面的公式:*e 二 x* -x :f x*x*;r yi* :x* f f x*x*;r x*y2*f x*, y*:x(X*)+ 硏(x*,y*):y舍入误差 _______ 。
6 _____ 位和 7位; 又取 乔“.73 (三位有效数字),则1.73<丄汉10-22计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有ry2*:11、近似值x'0.231关于真值x =0.229有(2 )位有效数字;2..2001 • ”1999 。
数值分析期末考试复习题及其答案
数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛 (8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss —Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f (x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x (x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x (x-1)=442++x x 4分9. 求f (x )=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x , k=2x ,计算得: (m ,m)=dx ⎰-111=0 (m,n )=dx x ⎰-11=1 (m,k)=dx x ⎰-112=0(n,k )=dx x ⎰-113=0。