高中物理动量守恒定律试题经典
【单元练】高中物理选修1第一章【动量守恒定律】经典习题

一、选择题1.甲乙是两个完全相同的小球,在同一位置以相等的速率抛出,甲被水平抛出,乙被斜上抛,只受到重力,则下列说法正确的是( ) A .两球落地时的速度相同 B .两球落地时的重力瞬时功率相等 C .两球落地时前的重力冲量相同 D .两球落地前的动量变化快慢相同D 解析:DA .根据动能定理可知,因重力做功相同2201122mv mv mgh -= 两球落地时的速度大小相同,方向不同,选项A 错误; B .根据P=mgv y平抛的小球有22y v gh =斜上抛的小球有2212y v v gh -=其中1v 为斜抛小球的竖直分量,因速度的竖直分量不同,则重力瞬时功率不相等,选项B 错误;C .两球在空中运动,竖直方向有平抛212h gt =斜抛运动2112h v t gt =-+的时间不相等,则根据I =mgt可知,落地时前的重力冲量不相同,选项C 错误; D .根据p mg t ∆=∆可得ΔΔpmg t= 则两球落地前的动量变化快慢相同,选项D 正确。
故选D 。
2.2020年5月5日,我国在海南文昌航天发射场使用“长征五号B”运载火箭,发射新一代载人飞船试验船。
假如有一宇宙飞船,它的正面面积为21m S =,以3710m /s v =⨯的速度进入宇宙微粒尘区,尘区每31m 空间有一微粒,每一微粒平均质量5210g m -=⨯,飞船经过区域的微粒都附着在飞船上,若要使飞船速度保持不变,飞船的推力应增加( ) A .0.49N B .0.98NC .490ND .980N B解析:B选在时间t ∆内与飞船碰撞的微粒为研究对象,其质量应等于底面积为S ,高为v t ∆的圆柱体内微粒的质量。
即M mSv t =∆研究对象初动量为零,末动量为Mv ,设飞船对微粒的作用力为F ,由动量定理得0F t Mv ∆=-则2Mv mSv t vF mSv t t⋅∆⋅===∆∆ 根据牛顿第三定律可知,微粒对飞船的反作用力大小也为2mSv ,则飞船要保持匀速飞行,牵引力应增加2F F mSv '==带入数据得0.98N F '=故选B 。
高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。
高中物理动量守恒定律题20套(带答案)

1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=
=
m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.
【单元练】(必考题)高中物理选修1第一章【动量守恒定律】经典测试题(答案解析)

一、选择题1.如图所示,体积相同的匀质小球A和B并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L,B球悬线右侧有一固定的光滑小铁钉P,O2P=3 4L。
现将A向左拉开60°角后由静止释放,A到达最低点时与B发生弹性正碰,碰后B做圆周运动恰能通过P点的正上方。
已知A的质量为m,取3=1.73,5=2.24,则B的质量约为()A.0.3m B.0.8mC.m D.1.4m B解析:B设A碰前的速度大小为v,碰撞后A、B球的速度分别为v1、v2,B通过最高点时的速度大小为v3,根据机械能守恒定律有mg(L–L cos60°)=12mv2得gLA、B发生弹性正碰,则mv=mv1+m2v212mv2=1221mv+12222m v得v2=22mvm m碰后B上摆到最高点的过程,有12222m v=m2g12L+12223m vB恰好能通过最高点,则m2g=m2234vL解得m2=(455–1)m≈0.8m故选B。
2.假设将来某宇航员登月后,在月球表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m 的小球(可视为质点),如图所示,当给小球一瞬时冲量I 时,小球恰好能在竖直平面内做完整的圆周运动。
已知圆轨道半径为r ,月球的半径为R ,则月球的第一宇宙速度为( )A 5I Rm rB I R m rC I r m RD 5I rm RA解析:A小球获得瞬时冲量I 的速度为v 0,有00I p mv ∆=-=而小球恰好通过圆周的最高点,满足只有重力提供向心力2v mg m r=从最低点到最高点由动能定理可知220112=22mg r mv mv -⨯-解得22=5I g rm 月球的近地卫星最小发射速度即为月球的第一宇宙速度,满足21=v m g m R''解得15I Rv m r=故A 正确,BCD 错误。
故选A 。
3.人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。
高考物理动量守恒定律试题经典及解析

高考物理动量守恒定律试题经典及分析一、高考物理精讲专题动量守恒定律1.在图所示足够长的圆滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右边有一挡板恢还原长时,甲的速度大小为 2m/s ,此时乙还没有与P.现将两滑块由静止开释,当弹簧 P 相撞.①求弹簧恢还原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不可以再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值.【答案】 v 乙=6m/s.I =8N【分析】【详解】(1)当弹簧恢还原长时,设甲乙的速度分别为左的方向为正方向,由动量守恒定律可得:和,对两滑块及弹簧构成的系统,设向又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙恰巧不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如下图,两块同样平板P1、P2置于圆滑水平面上,质量均为m。
P2的右端固定一轻质弹簧,左端 A 与弹簧的自由端B相距 L。
物体 P 置于 P1的最右端,质量为2m且能够看作质点。
1 与P 以共同速度v0向右运动,与静止的 2 发生碰撞,碰撞时间极短,碰撞后 1 与 2P P P P 粘连在一同, P 压缩弹簧后被弹回并停在 A 点(弹簧一直在弹性限度内)。
P 与 P 之间的2动摩擦因数为μ ,求:(1)1、 2 刚碰完时的共同速度 1 和P 的最后速度v2;P P v(2)此过程中弹簧最大压缩量x 和相应的弹性势能E p。
【答案】( 1)v1v0, v23v0( 2)x v02L , E p mv02 2432g16【分析】( 1)P1、P2碰撞过程,动量守恒,mv02mv1,解得v1v0 。
2对 1、 2、P 构成的系统,由动量守恒定律,( m2m)v0 4mv2,解得v23v0P P4(2)当弹簧压缩最大时,P1、P2、P三者拥有共同速度v2,对P1、P2、P构成的系统,从P1、P2碰撞结束到 P 压缩弹簧后被弹回并停在 A 点,用能量守恒定律12mv1212mv021(m2m m) v22u(2mg)2( L x) 解得x v02L22232 g 对 P 、 P 、 P 系统从 P 、 P 碰撞结束到弹簧压缩量最大,用能量守恒定律121212mv1212mv021(m 2m m)v22u(2mg )( L x)E p222mv02最大弹性势能E P16注意三个易错点:碰撞不过P1、P2参加;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
选修1高中物理《动量守恒定律》测试题(含答案)

选修1高中物理《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl2.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动3.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a 、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落 C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落5.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J6.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 7.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==8.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
高中物理专题:动量守恒经典题目

高中物理专题:动量守恒经典题目1:小车置于光滑水平面上,一个人站在车上练习打靶,如图,除了子弹外,车、人、靶、枪的总质量为M。
n发子弹每发质量为m。
枪口和靶的距离为d。
子弹沿水平方向射出。
射中靶后即留在靶内。
待前一发打入靶中,再打下一发,n发子弹全部打完后,小车移动的总距离是多少?2:一辆平板车停在光滑水平面上,车上一人(原来也静止)用锤子敲打车的左端,在锤子连续敲打下,这辆板车将()A.左右振动B.向左运动C.向右运动D.静止不动3:质量为M的滑块带有半径为R的圆周的圆弧面,滑块静止在光滑水平面上,如图所示,质量为m的小球从离圆弧面上端h高处由静止开始落下,恰好从圆弧面最上端落入圆周内。
不计各处摩擦,试求小球从圆弧面最下端离开滑块时,滑块的速度多大?4:向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块速度方向仍沿原来方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的冲量一定相同5:运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()A.燃料推动空气,空气反作用力推动火箭B.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭6:如图所示,质量为m、半径为r的小球,放在内半径为R,质量为3m的大空心球内,大球开始静止在光滑水平面上,当小球由图中位置无初速度释放沿内壁滚到最低点时,大球移动的距离为多少?7:如图所示,一质量为m的玩具蛙蹲在质量为M的小车的细杆上,小车放在光滑的水平面上,若车长为L,细杆高为h且位于小车的中央,试问玩具蛙对地最小以多大的水平速度跳出才能落到地面上?专题:动量守恒之碰撞8:半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动。
高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
高考物理动量守恒定律试题经典及解析

高考物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得3.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求: (1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)2138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv hs M g= 【解析】 【分析】 【详解】试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得 mv 0=m +MV ①解得②系统的机械能损失为 ΔE =③由②③式得 ΔE =④(2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则⑤s=Vt ⑥ 由②⑤⑥得 S =⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.4.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞。
动量守恒测试题及答案高中

动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
高中物理动量守恒定律真题汇编(含答案)

高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高中物理动量守恒定律试题经典及解析

高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P2向左滑行距离:22222.25m2vsa'==所以P1、P2静止后距离:△S=L-S1-S2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次【解析】解:设小球m的摆线长度为l小球m在下落过程中与M相碰之前满足机械能守恒:①m和M碰撞过程是弹性碰撞,故满足:mv0=MV M+mv1 ②③联立②③得:④说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:mv1=MV M1+mv2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
选修1高中物理动量守恒定律试题(含答案)

选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
一质量为2m 的小物块从槽顶端距水平面高h 处由静止开始下滑,重力加速度为g ,下列说法正确的是( )A .物块第一次滑到槽底端时,槽的动能为43mgh B .在下滑过程中物块和槽之间的相互作用力对物块始终不做功C .全过程中物块、槽和弹簧所组成的系统机械能守恒,且水平方向动量守恒D .物块第一次被弹簧反弹后能追上槽,且能回到槽上距水平面高h 处2.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 23.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023vC.2木块的最小速度是56vD.木块3从开始运动到相对静止时位移是24vgμ4.将质量为m0的木块固定在光滑水平面上,一颗质量为m的子弹以速度v0沿水平方向射入木块,子弹射穿木块时的速度为03v.现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A.若m0=3m,则能够射穿木块B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v25.质量分别为3m和m的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v0匀速运动.某时刻剪断细绳,质量为m的物体离开弹簧时速度变为v= 2v0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A.283mv223mv B.2mv232mvC.212mv232mv D.223mv256mv6.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动D.若小球刚好到达C点,则12mh RM M=+7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m的小物块从槽上高h处开始下滑,重力加速度为g,下列说法正确的是mghA.物体第一次滑到槽底端时,槽的动能为3mghB.物体第一次滑到槽底端时,槽的动能为6C.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处8.如图所示,光滑水平面上有一质量为m=1kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1kg的物块,物块与上表面光滑的小车一起以v0=5m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则()A.碰撞结束时,小车的速度为3m/s,速度方向向左B.从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC.小车的最小速度为1m/sD.在小车速度为1m/s时,弹簧的弹性势能有最大值9.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是()A.人在船上走动过程中,人的动能是船的动能的8倍B.人在船上走动过程中,人的位移是船的位移的9倍C.人走动时,它相对水面的速度大于小船相对水面的速度D.人突然停止走动后,船由于惯性还会继续运动一小段时间10.质量相等的A、B两球在光滑水平面上,沿同一直线,同一方向运动,A球的动量P A =9kg•m/s,B球的动量P B=3kg•m/s.当A追上B时发生碰撞,则碰后A、B两球的动量可能值是()A.P A′=10kg•m/s,P B′=2kg•m/sB.P A′=6kg•m/s,P B′=4kg•m/sC.P A′=﹣6kg•m/s,P B′=18kg•m/sD.P A′=4kg•m/s,P B′=8kg•m/s11.如图所示,质量为M的长木板A静止在光滑的水平面上,有一质量为m的小滑块B 以初速度v0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是A .若只增大v 0,则滑块滑离木板过程中系统产生的热量增加B .若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少C .若只减小m ,则滑块滑离木板时木板获得的速度减少D .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小12.在采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤用水枪,由枪口射出的高压水流速度为v .设水的密度为ρ,水流垂直射向煤层表面,若水流与煤层作用后速度减为零,则水在煤层表面产生的压强为( )A .2v ρB .2 2v ρC .2 v ρD .22v ρ13.如图所示,质量为M 的薄木板静止在粗糙水平桌面上,木板上放置一质量为m 的木块.已知m 与M 之间的动摩擦因数为μ,m 、M 与桌面间的动摩擦因数均为2μ.现对M 施一水平恒力F ,将M 从m 下方拉出,而m 恰好没滑出桌面,则在上述过程中A .水平恒力F 一定大于3μ(m +M )gB .m 在M 上滑动的时间和在桌面上滑动的时间相等C .M 对m 的冲量大小与桌面对m 的冲量大小相等D .若增大水平恒力F ,木块有可能滑出桌面14.如图(a)所示,轻弹簧的两端分别与质量为 m 1和m 2的两物块A 、B 相连接,静止在光滑的水平面上若使A 以3m/s 的速度向B 运动,A 、 B 的速度图像如图(b)所示,已知m 1=2kg ,则A .物块m 2质量为4kgB .13t t 、时刻弹簧处于压缩状态C .从3t 到4t 时刻弹簧由压缩状态恢复到原长D .弹簧的最大弹性势能为6J15.如图所示,半径为R 、质量为M 的14一光滑圆槽静置于光滑的水平地面上,一个质量为m 的小木块从槽的顶端由静止滑下,直至滑离圆槽的过程中,下列说法中正确的是A .M 和m 组成的系统动量守恒B .m 飞离圆槽时速度大小为2gRM m M+ C .m 飞离圆槽时速度大小为2gRD .m 飞离圆槽时,圆槽运动的位移大小为m R m M+ 16.如图所示,质量为2m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升到距B 点所在水平线的最大高度为034h 处(不计空气阻力,小球可视为质点),则( )A .小球和小车组成的系统动量守恒B .小球离开小车后做斜上抛运动C .小车向左运动的最大距离为23R D .小球第二次在空中能上升到距B 点所在水平线的最大高度大于02h 17.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,物体B 上部半圆形槽的半径为R ,将物体A 从圆槽右侧顶端由静止释放,一切摩擦均不计。
(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。
【单元练】(必考题)高中物理选修1第一章【动量守恒定律】习题(答案解析)

一、选择题1.质量为m 的乒乓球在离台高h 处时速度刚好水平向左,大小为v 1运动员在此时用球拍击球,使球以大小为2v 的速度水平向右飞出,球拍和乒乓球作用的时间极短,则( ) A .击球前后球动量改变量的方向水平向左 B .击球前后球动量改变量的大小是21mv mv + C .击球前后球动量改变量的大小是21mv mv - D .球拍击球前乒乓球机械能不可能是2112mgh mv + B 解析:BABC .规定向右为正方向,击球前球的动量11P mv =-击球后球的动量22P mv =击球前后球动量改变量的大小是2121P P P mv mv ∆=-=+动量改变量的方向水平向右,AC 错误B 正确;D .由于没有规定重力势能的零势能的位置,所以无法确定击球前球的机械能,D 错误。
故选B 。
2.静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则下列说法中正确的是( )A .0~4s 内物体的位移为零B .0~4s 内拉力对物体做功不为零C .4s 末物体的动量为零D .0~4s 内拉力对物体的冲量不为零C解析:CA .由图象可知物体在4s 内先做匀加速后做匀减速运动,4 s 末的速度为零,位移一直增大,故A 错误;B .前2s 拉力做正功,后2s 拉力做负功,且两段时间做功代数和为零,故B 错误; CD .前4s 内I 合=(-1)×2+1×2=0则根据动量定理,4s 末的动量和冲量均为零,故C 正确,D 错误;故选C 。
3.建筑工地上需要将一些建筑材料由高处运送到低处,为此工人们设计了一个斜面滑道,如图所示,滑道长为16m ,其与水平面的夹角为37°。
现有一些建筑材料(视为质点)从滑道的顶端由静止开始下滑到底端,已知建筑材料的质量为100kg ,建筑材料与斜面间的动摩擦因数为0.5,取210m /s ,sin 370.6,cos370.8︒︒===g 。
高考物理动量守恒定律试题经典

高考物理动量守恒定律试题经典一、动量守恒定律 选择题1.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量2.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽3.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L-= 4.如图,在光滑水平面上放着质量分别为2m 和m 的A 、B 两个物块,弹簧与A 、B 栓连,现用外力缓慢向左推B 使弹簧压缩,此过程中推力做功W 。
然后撤去外力,则( )A.从撤去外力到A离开墙面的过程中,墙面对A的冲量大小为2mW B.当A离开墙面时,B的动量大小为2mWC.A离开墙面后,A的最大速度为8 9 W mD.A离开墙面后,弹簧的最大弹性势能为2 3 W5.如图所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A紧靠竖直墙.用水平力向左推B将弹簧压缩,推到一定位置静止时推力大小为F0,弹簧的弹性势能为E.在此位置突然撤去推力,下列说法中正确的是()A.在A离开竖直墙前,A、B与弹簧组成的系统机械能守恒,之后不守恒B.在A离开竖直墙前,A、B系统动量不守恒,之后守恒C.在A离开竖直墙后,A、B速度相等时的速度是22 3EmD.在A离开竖直墙后,弹簧的弹性势能最大值为3E6.如图,质量分别为m A、m B的两个小球A、B静止在地面上方,B球距地面的高度h=0.8m,A球在B球的正上方. 先将B球释放,经过一段时间后再将A球释放. 当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小为g=10 m/s2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是()A.B球第一次到达地面时的速度为4m/sB.A、B球在B球向上运动的过程中发生碰撞C.B球与A球碰撞后的速度为1m/sD.P点距离地面的高度0.75m7.如图所示,在光滑的水平面上放有一质量为M的物体P,物体P上有一半径为R的光滑四分之一圆弧轨道, 现让质量为m的小滑块Q(可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A.P、Q组成的系统动量不守恒,机械能守恒B.P移动的距离为mM m+RC.P、Q组成的系统动量守恒,机械能守恒D.P移动的距离为M mM+R8.3个质量分别为m1、m2、m3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m1:m2:m3为()A.6:3:1 B.2:3:1 C.2:1:1 D.3:2:19.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
高中物理动量守恒定律真题汇编(含答案)及解析

高中物理动量守恒定律真题汇编(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.4.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】v 0v 0【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=解得v 1=v 0,v 2=v 0视频5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
选修1高中物理动量守恒定律试题(含答案)

选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律选择题1.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。
以下判断正确的是()A.子弹在每个水球中的速度变化相同B.每个水球对子弹做的功不同C.每个水球对子弹的冲量相同D.子弹穿出第3个水球的瞬时速度与全程的平均速度相等2.如图所示,在光滑的水平面上放有一质量为M的物体P,物体P上有一半径为R的光滑四分之一圆弧轨道, 现让质量为m的小滑块Q(可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A.P、Q组成的系统动量不守恒,机械能守恒B.P移动的距离为mM m+RC.P、Q组成的系统动量守恒,机械能守恒D.P移动的距离为M m M+R3.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了()A.减小冲量B.减小动量的变化量C.增大与地面的冲击时间,从而减小冲力D.增大人对地面的压强,起到安全作用4.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m的小物块从槽上高h处开始下滑,重力加速度为g,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mgh B .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处5.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m +D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M m +6.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大gHA.当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B.摩擦力对物体产生的冲量大小为20 2E qk μC.摩擦力所做的功18W mgH=D.物体与墙壁脱离的时刻为gH tg =7.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A、B质量均为m,在水平恒力F作用下以速度v做匀速运动.在t=0时轻绳断开,A在F作用下继续前进,则下列说法正确的是()A.t=0至t=mvF时间内,A、B的总动量守恒B.t=2mvF至t=3mvF时间内,A、B的总动量守恒C.t=2mvF时,A的动量为2mvD.t=4mvF时,A的动量为4mv8.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P和Q,质量均为m,在水平恒力F作用下以速度v做匀速运动.在t=0时轻绳断开,Q在F的作用下继续前进,则下列说法正确的是()A.t=0至2mvtF=时间内,P、Q的总动量守恒B.t=0至3mvtF=时间内,P、Q的总动量守恒C.4mvtF=时,Q的动量为3mvD .3mv t F 时,P 的动量为32mv 9.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 210.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量11.如图所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到光滑水平面的距离为h .物块B 和C 的质量分别是5m 和3m ,B 与C 用轻弹簧拴接,置于光滑的水平面上,且B 物块位于O 点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B 发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为16h .小球与物块均视为质点,不计空气阻力,重力加速度为g ,则( )A .碰撞后小球A 2ghB .碰撞过程B 物块受到的冲量大小2m ghC .碰后轻弹簧获得的最大弹性势能15128mghD .小球C 的最大速度大小为5216gh 12.如图所示,一质量为m 0=0.05 kg 的子弹以水平初速度v 0=200 m/s 打中一放在水平地面上A 点的质量为m =0.95 kg 的物块,并留在物块内(时间极短,可忽略),随后物块从A 点沿AB 方向运动,与距离A 点L =5 m 的B 处的墙壁碰撞前瞬间的速度为v 1=8 m/s,碰后以v 2=6 m/s 的速度反向运动直至静止,测得物块与墙碰撞的时间为t =0.05 s,g 取10 m/s 2,则A .物块从A 点开始沿水平面运动的初速度v =10 m/sB .物块与水平地面间的动摩擦因数μ=0.36C .物块与墙碰撞时受到的平均作用力大小F =266 ND .物块在反向运动过程中产生的摩擦热Q =18 J13.质量为M 的小船在平静的水面上以速率0v 向前匀速行驶,一质量为m 的救生员站在船上相对小船静止,水的阻力不计。
高考物理动量守恒定律试题经典

高考物理动量守恒定律试题经典一、动量守恒定律选择题1.如图所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小球Q(视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,Q离开P时的动能为1kE.现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P时的动能为2kE,1k E和2k E的比值为()A.12B.34C.32D.432.如图所示,弹簧的一端固定在竖直墙壁上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始下滑,则A.在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B.在小球从圆弧槽上下滑运动过程中小球的机械能守恒C.在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D.小球离开弹簧后能追上圆弧槽3.如图所示,将一光滑的、质量为4m、半径为R的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m的物块.今让一质量也为m的小球自左侧槽口A的正上方高为R处从静止开始落下,沿半圆槽切线方向自A点进入槽内,则以下结论中正确的是()A.小球在半圆槽内第一次由A到最低点B的运动过程中,槽的支持力对小球做负功B.小球第一次运动到半圆槽的最低点B时,小球与槽的速度大小之比为41︰C.小球第一次在半圆槽的最低点B时对槽的压力为133 mgD.物块最终的动能为15mgR4.A、B两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a、b分别为A、B两球碰撞前的图线,c为碰撞后两球共同运动的图线.若A球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J5.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A .碰撞发生在M 、N 中点之外B .两球同时返回M 、N 两点C .两球回到原位置时动能比原来大些D .两球回到原位置时动能不变6.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒8.如图甲,质量M =0.8 kg 的足够长的木板静止在光滑的水平面上,质量m =0.2 kg 的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F ,4 s 后撤去力F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量守恒定律试题经典一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=3.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,162p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
中档题5.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.6.如图所示,在光滑水平面上有一个长为L 的木板B ,上表面粗糙,在其左端有一个光滑的14圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上,现有滑块A 以初速度v 0从右端滑上B 并以02v 滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)滑块与木板B 上表面间的动摩擦因数μ; (2)14圆弧槽C 的半径R 【答案】(1)20516v gL =;(2)2064v R g=【解析】由于水平面光滑,A 与B 、C 组成的系统动量守恒和能量守恒,有:mv 0=m (12v 0)+2mv 1 ① μmgL =12mv 02-12m (12v 0) 2-12×2mv 12 ②联立①②解得:μ=2516v gL. ②当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等.A 、C 组成的系统水平方向动量守恒和系统机械能守恒: m (12v 0)+mv 1=(m +m )v 2 ③ 12m (12v 0)2+12mv 12=12(2m )v 22+mgR ④ 联立①③④解得:R =264v g点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.7.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v 则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.8.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.9.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:(1)碰撞过程中系统损失的机械能;(2)碰后小球C 第一次回到最低点时的速度大小. 【答案】(1) 4 J (2) 1.6 m/s 【解析】 【详解】解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:220112 4212E Mv Mv J -⨯==损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+ 由能量守恒得:22212311122222Mv Mv mv ⨯=⨯+ 解得:3 1.6 /v m s =10.如图所示,用气垫导轨做“验证动量守恒”实验中,完成如下操作步骤:A .调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量m 1和m 2.B .安装好A 、B 光电门,使光电门之间的距离为50cm .导轨通气后,调节导轨水平,使滑块能够作_________运动.C .在碰撞前,将一个质量为m 2滑块放在两光电门中间,使它静止,将另一个质量为m 1滑块放在导轨的左端,向右轻推以下m 1,记录挡光片通过A 光电门的时间t 1.D .两滑块相碰后,它们粘在一起向右运动,记录挡光片通过_______________的时间t 2.E .得到验证实验的表达式__________________________. 【答案】匀速直线运动 小车经过光电门的时间 ()12112m m m t t +=【解析】 【详解】为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀速直线运动;根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间 设光电门的宽度为l ,则有:经过光电门的速度为11lv t = 整体经过光电门的速度为:22l v t =由动量守恒定律可知,11122(+)m v m m v =代入解得:11212()m m m t t +=。