小学奥数数论题型:约数与倍数
小学奥数王峰数论(3)约数_倍数_完全平方数
教 案教师:__ 王鑫___ 学生:_ 王峰 上课时间: 学生签字:__________【专题知识点概述】本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,而完全平方数的定义也很容易,故我们讲解的重点放在这些数的性质上,以及如何正确的运用这些性质解决数论问题。
一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若11(,),(,),a a a b b b a b =⨯=⨯则11(,)1a b =(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]a b a b a b ⨯=⨯注:(,)a b 表示两个数的最大公约数,[,]a b 表示两个数的最小公倍数(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210⨯⨯=,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336⨯⨯=,而6,7,8的最小公倍数为3362168÷=二、约数个数与所有约数的和(1)求任一合数约数的个数:一个合数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(31)(21)(11)43224+⨯+⨯+=⨯⨯=个。
(包括1和1400本身)(2)求任一合数的所有约数的和:一个合数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33210002357=⨯⨯⨯,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880++++++++=三、求几个分数的最小公倍数和最大公约数(1)求几个分数的最小公倍数求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;例如:求121624,,202430的最小公倍数首先将3个分数化为最简分数,123162244,, 205243305 ===由[3,2,4]12,(5,3,5)1==,所以12162412[,,]122024301==,即它们的最小公倍数是12.(2)求几个分数的最大公约数求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.例如:求121624,,202430的最大公约数首先将3个分数化为最简分数,123162244,, 205243305 ===由(3,2,4)1,[5,3,5]15==,所以1216241(,,)20243015=,即它们的最大公约数是115.四、完全平方数的性质1.常用主要性质:● 完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
奥数专题之约数倍数问题(1篇)
奥数专题之约数倍数问题(1篇)奥数专题之约数倍数问题 1关于奥数专题之约数倍数问题A卷1.1998的不同约数有()个.A.20B.16C.14D.122.如果1998×a―b×b×b×b(其中a,b为自然数),那么a的最小值是______.3.对于不小于3的自然数n,规定如下一种操作:(n)表示不是n 的约数的最小自然数,如(7)=2,(l2)=5等等,则((19)×(98))=______.(式中的×表示乘法)4.a、b为自然数,且a=1999b,则a、b的最大公约数与最小公倍数的和等于______.5.有一些四位数,它与9的差能被9整除,它与8的差能被8整除,它与7的差能被7整除,它与6的差能被6整除,这样的数有______个.6.把一块长357m,宽105m,高84m的长方体木块锯成若干个大小相同的正方体木块,要求正方体体积最大,且没有剩余的碎木块(损耗不计),所锯成的正方体木块的边长是______.B卷7.设m和n为大于0的整数,且3m+2n=225。
(1)如果m和n的最大公约数为15,则m+n=____.(2)如果m和n的最小公倍数为45,则m+n=____.8.a、b是彼此不等的非零数字,则与4017的最大公约数是____.9.一个自然数与13和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是_____。
10.两个正整数的和是60,它们的最小公倍数是273,则它们的成积是()A.273B.819C.1911D.354911.小学生小明问爷爷今年多大年纪,爷爷回答说:“我今年岁数是你今年岁数的7倍多,过几年变成你的6倍,又过几年变成你的5倍,再过若干年变成你的4倍,你说我今年多少岁?”小明计算一番,明白了爷爷今年是______岁.12.自然数a,b,c,d,e都大于1,其乘积abcde=2000,则其和a+b+c+d+e的最大值为___,最小值为___.13.用(a,b)表示a、b两数的最大公约数,[a,b]表示a、b两数的最小公倍数,例如,(4,6)=2,(4,4)=4,[4,6]=12,[4,4]=4.设a、b、c、d是不相等的自然数,(a,b)=P,(c,d)=Q,[P,Q]=x;[a,b]=M,[c,d]=N,(m,n)=Y.则().A.x是y的倍数,但x不是y的约数B.x是y的倍数或约数都有可能,但x≠yC.x是y的`倍数、约数或x=y三者必居其一D.以上结论都不对C卷14.张华、李亮、王民三位同学分别发出新年贺卡x、y、z张,如果已知x、y、z的最小公倍数为60;x、y的最大公约数为4;y、z的最大公约数为3.那么,张华发出的新年贺卡是多少张?15.甲、乙二人骑自行车于同时同地出发,沿着圆形跑道按逆时针方向行驶,甲每分钟行驶跑道的圈,乙每分钟行驶跑道的圈,那么,从出发时刻起,到他们同时回到出发地,至少需要的时间是()A分B分C分D 分16.23个不同的正整数的和是4845,问:这23个数的最大公约数可能达到的最大的值是多少?写出你的结论,并说明理由。
最新小学六年级奥数精选例题加习题编排(2)
在地铁入口,从站台到地面有一架向上的自动扶梯,涛涛乘坐扶梯时,如果每秒向上迈一级 台阶,那么他走过 20 级台阶后到达地面;如果每秒向上迈两级台阶,那么走 30 级台阶后到 达地面。从站台到地面有______级台阶。
2
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.★★有一批图书总数在 1000 本以内,若按 24 本书包成一捆,则最后一捆差 2 本;2 本包一捆,则最后一捆是 30 本.那 么这批图书共有( )本。 A.760 B.670 C.540 D.960
2004
2
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.★★★一个两位数除 310,余数是 37,这样的两位数有( ) A.21 和 33 B.91 和 33 C.39 和 21 D.39 和 91
2.★★★一个大于 1 的数去除 290,235,200 时,得余数分别为 a,a+2,a+5,则这个 自然数是( )? A.17 B.18 C.19 D.20
1
将一个三位数的个位与百位数字对调位置,得到一个新的三位数,已知这两个三位数乘积为 55872,则这两个三位数和为______。 【举一反三】 有 n 个自然数相加:1+2+…+n= aaa ,那么 a=______。
2001 个连续自然数和为 a×b×c×d,若 a、b、c、d 均为质数,则 a+b+c+d 的最小值为 ______。
3.★★★将 1 至 2008 这 2008 个自然数,按从小到大的次序依次写出,得一个多位数: 12345678910111213…20072008,试求这个多位数除以 9 的余数是( ) A.1 B.2 C.3 D.4
4.★★★★ 22003 与 20032 的和除以 7 的余数是________。 A.5 B.4 C.3 D.0
小学奥数数论竞赛常考知识点:约数与倍数
小学奥数数论竞赛常考知识点:约数与倍数
约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b 就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。
公约数的性质:1、几个数都除以它们的公约数,所得的几个商是互质数。
2、几个数的公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的公约数的约数。
4、几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18的公约数是:6,记作(12,18)=6;求公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。
小学奥数 数论 约数与倍数 完全平方数及应用(一).题库版
1.学习完全平方数的性质; 2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9. 性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是知识点拨教学目标5-4-4.完全平方数及应用(一)完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
小学奥数 约数与倍数(二) 精选例题练习习题(含知识点拨)
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;知识点拨 教学目标5-4-2.约数与倍数(二)二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
五年级奥数约数与倍数
五年级奥数约数与倍数Prepared on 21 November 2021理解记忆理论部分-☆星级☆约数和倍数;若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
☆公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
☆最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、1218的约数有:1、2、3、6、9、18那么12和18的公约数有:1、2、3、6那么12和18最大的公约数是:6记作(12,18)=6☆求最大公约数的基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
思维方法巩固训练部分-☆星级■经验规律总结:通过举例观察两个数的最大公约数与它们的和、差、积之间的关系。
1.求(26,78)、(196,165)、(55,84,141)2.两个自然数的和是88,最大公约数是8,求这两个数。
3.两个自然数的积是384,最大公约数是8,求这两个数。
4.已知两数的和是104055,这两个数的最大公约数是6937,求这两个数。
5.若两个数的积是5766,它们的最大公约数是31,求这两个数。
6.有男同学27人,女同学18人,一起去划船(每条船不超过6人),要保证每条船上男女同学都分别相等,应该租几条船?7.把一张长120厘米,宽80厘米的长方形的纸裁成同样大小的正方形(纸无剩余),至少能裁多少张?8.9.把长132厘米,宽60厘米,厚36厘米的木料,锯成尽可能大的同样的大小的正方体,求锯成的正方体的棱长与锯成的块数。
小学奥数数论问题解析:约数与倍数
小学奥数数论问题解析:约数与倍数小学奥数数论问题解析:约数与倍数奥数注重学生分析、解决问题能力的培养,有它独特的解题思路和方法,快来做做奥数题来锻炼自己吧!下面是小编为大家收集到的奥数数论问题解析约数与倍数,供大家参考。
约数与倍数已知x、y为正整数,且满足xy-( x+y )=2p+q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y ) (x≥y )考点:约数与倍数.分析:此题需分类讨论,①当x是y的倍数时,设x=ky(k是正整数).解方程k(y-2)=3;②当x不是y的倍数时,令x=ap,y=bp,a,b 互质,则q=abp.解方程abp-1=(a-1)(b-1)即可.解答:解:①当x是y的倍数时,设x=ky(k是正整数).则由原方程,得kyy-(ky+y)=2y+ky,∵y≠0,∴ky-(k+1)=2+k,∴k(y-2)=3,当k=1时,x=5,y=5;当k=3时,x=9,y=3;②当x不是y的倍数时,令x=ap,y=bp,a,b互质,则q=abp,代入原式得:abp2-(ap+bp)=2p+abp,即abp-1=(a-1)(b+1)当p=1时,a+b=2,可求得a=1,b=1,此时不满足条件;当p>1时,abp≥2ab-1=ab+(ab-1)≥ab>(a-1)(b-1)此时,abp-1=(a-1)(b+1)不满足条件;综上所述,满足条件的数对有点评:本题主要考查的`是最大公约数与最小公倍数.由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积.即(a,b)×[a,b]=a×b.所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数.。
六年级奥数思维训练--约数和倍数
====Word行业资料分享--可编辑版本--双击可删====
六年级奥数思维训练约数和倍数
课程名称:约数和倍数
整除,约数,倍数概念。
整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。
a叫b的倍数,b叫a的约数或因数。
约数和倍数相互依存,不能单独说某个数是约数或倍数。
一个数的因数中,有质数的因数叫这个数的质因数。
把一个合数用质因数相乘的形式表示出来。
一、尝试练习
例1、边长1米的正方体2100个,堆成一个实心的长方体.它的高是10米,长、宽都大于高。
问长方体长与宽的和是几米?
例2、100以内能被3与7整除的最大奇数是几?最大偶数是几?
二、训练营地
1、能同时被2,3,5,7整除的最小四位数是几?
2、有四个小朋友,他们的年龄恰好是一个比一个大一岁,他们年龄相乘的积是360,其中年龄最大的一个是多少岁?
3、四个连续的自然而数的积是3024,求此四个数。
4、两个数的和是616,其中一个数的最后一位数字是0,如果把0去掉,就与另一数相同,这两个数的差是多少?
源-于-网-络-收-集。
奥数讲义数论专题:约数与倍数
华杯赛数论专题:约数与倍数基础知识:1. 如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数.如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数. 自然数a、b、c的最大公约数通常用符号(a,b,c)表示.例如:(8,12)=4,(6,9,15)=3.2. 互质定义:如果两个或几个数的最大公约数为1,则称这两个或几个数互质.3.如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数. 自然数a、b、c的最小公倍数通常用符号[a,b,c]表示.例如:[8,12]=24,[6,9,15]=90.4.约数个数公式、约数和公式.5.求最大公约数和最小公倍数的基本方法:(1)分解质因数法:将每个数分解质因数,观察这些数中包含哪些质因数,①找公共部分,并将这些数的公共部分相乘,所得乘积即为这组数的最大公约数;②观察这些质因数的最高次方,并相乘,所得乘积即为这组数的最小公倍数.(2)辗转相除法: 两数为a、b的最大公约数(a,b)的步骤如下:用b除a,得a =bm......x(0≤x). 若x=0,则(a,b)=b;若x≠0,则再用x除b,得b=xn......y (0≤y).若y=0,则(a,b)=x,若y≠0,则继续用y除x,则继如此下去,直到能整除为止.其最后一个非零除数即为(a,b).(3)两个数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积:(a,b)×[a,b] =a×b.例题:例1.360有多少个约数?【答案】24【解答】,所以360共有24个约数.例2. 一个数是6的倍数,但它的约数之和与6互质,这个数最小是.【答案】36【解答】这个数可以表示成,与6互质,所以x≥2,y≥2,故最小数为.例3.甲、乙两个自然数的乘积比甲数的平方小1988,那么满足上述条件的自然数有几组?【答案】6组【解答】,由此得a和a-b的值为1988的互补因子.1988有(1+1)×(1+1)×(2+1)=12个约数,所以答案为6组.例4.已知将自然数84的全部约数的乘积分解质因数为,那么△+◇+□等于.【答案】24【解答】,它有3×2×2=12个约数.这些约数可以分成两两一组,使得同一组的两个数的乘积就是84,因此所有这些约数的乘积就是 .所以△+◇+□=12+6+6=24.例5.两数乘积为2800,而且已知其中一数的约数个数比另一数的约数个数多1.那么这两个数分别是 .【答案】175和16【解答】,两数的约数个数相差1,则两数约数的个数必为一奇一偶.而一个数的约数个数为奇数,它必为完全平方数,它可能是1、、、、、,经试验只有这个平方数取,另一个数为时,分别有5、6个约数.所以这两个数分别为175和16.例6.三位数A的所有奇约数之和是403,那么A最大可能是多少?【答案】900【解答】先考虑A的奇数部分B,利用奇偶分析可知B有奇数个约数,所以B是完全平方数,又403<21×21,所以B只可能是、……可得B=225. 那么A最大是225×4=900.例7.一个正整数是2004的倍数,且恰有24个约数是偶数,那么这个数最多有个约数是奇数.【答案】12【解答】2004是4的倍数,所以偶约数至少是奇约数的2倍,所以为12个.例8.小文买红蓝两种笔各1支用了17元,两种笔的单价都是整元,并且红笔比蓝笔贵.小张打算用35元来买这两种笔(允许全部买其中一种),可是他无论怎样买都不能恰好把35元用完,问红笔、蓝笔每支各多少元?【答案】红笔每支13元,蓝笔每支4元【解答】35=5×7,两种笔的单价不能是5元和7元(否则35元可全部用完);由于不是5元和7元,那么也不是17-5=12(元)和17-7=10(元);17元可用完,而35元不能用完,那么笔价不会是35-17=18(元)的约数:1、2、3、6、9、18,当然也不会是17-1=16、17-2=15、17-3=14、17-6=11、17-9=8,故笔价又排除了:1、2、3、6、8、9、11、14、15、16.综上所述,只有4和13未被排除,而4+13=17,所以红笔每支13元,蓝笔每支4元.例9.求15708和6468的最大公约数、最小公倍数.【答案】924,109956【解析】方法一:方法二:15708=6468×2+2772 6468=2772×2+9242772=924×3例10.1007、10017、100117、1001117和10011117的最大公约数是 .【答案】53【解析】因为1007×10-10017=53,所以最大公约数肯定是53或1.因为1007=53×19,而且数列中每个数都是前一个数的10倍减去53,所以只要前一个数是53的倍数那么后一个数就也是53的倍数,因此数列中每个数都是53的倍数.例11.已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【答案】147或105【解析】要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b.因为这两个数的最大公约数是21,故设a=21m,b=21n,且(m,n)=1.因为这两个数的最小公倍数是126,所以126=21×m×n,于是m×n=6,因此,这两个数的和为21+126=147,或42+63=105.所以这两个数的和为147或105.例12.已知自然数A、B满足以下两个性质:(1)A、B不互素;(2)A、B的最大公约数与最小公倍数之和为35.那么A+B的最小值是多少?【答案】25【解析】A、B的最大公约数一定是它们最小公倍数的约数.因为A、B的最大公约数与最小公倍数的和是35,所以35是两数最大公约数的倍数.它们的最大公约数可能是5或7.如果A、B的最大公约数是5,则A、B的最小公倍数是30,此时有A=5、B=30或A=10、B=15;如果A、B的最大公约数是7,则A、B的最小公倍数是28,此时有A=7,B=28.所以A+B的最小值为10+15=25.例13.两个数的最小公倍数比它们的最大公约数的3倍多15,请写出这两个数的所有可能值.【答案】1和18, 2和9, 3和24, 5和30,10和15, 15和60【解析】设两个数a、b,则[a,b]=3×(a,b)+15,且15是(a,b)的倍数,故a和b可以为1和18, 2和9, 3和24, 5和30,10和15, 15和60.例14. 三位数☆◇☆与四位数☆☆◇◇的最大公约数是22,那么☆+◇=.【答案】6【解析】两个数的最大公约数是22,☆☆◇◇是11的倍数,所以◇是偶数,22是☆◇☆的约数,☆是偶数,◇=2☆,所以◇=4,☆=2,所以◇+☆=6.例15.试用2,3,4,5,6,7六个数字组成两个三位数,使这两个三位数与540的最大公约数尽可能大?【答案】324、756【解析】因为,而2,3,4,5,6,7中只有一个5,因此这六个数字组成的两个三位数中不会有公约数5,所以这两个三位数与540的最大公约数只可能为,再进行试验,108×2=216,216中1不是已知数字,108×3=324,还剩5,6,7三个数字,而108×7=756,于是问题得到解决.例16.定义表示a和b的最大公约数,那么使得和同时成立的三位数a= .【答案】237【解析】根据题意:是21的倍数,所以a是3的倍数,a除以7余6,a+63是60的倍数,a除以4余1,a除以5余2,所以a=60×4-3=237.例18.已知a与b,a与c,b与c的最小公倍数分别是60,90和36。
五年级奥数.数论.约数与倍数(B级).学生版
因数与倍数一天,因数和倍数走到了一起。
倍数傲慢地对因数说:“哎,哥们,见了我怎么也不下拜呀?” “我为什么要拜你,你算老几呀?”因数气愤地回答。
“我是老大呀。
”“你是老大?为什么”“你说,一个数的个数有多少个呀?”“这我知道,一个数的因数有无数个。
”只见倍数慢条斯理地说:“这就对嘛,一个数的因数的个数就那么可怜的几个。
而一个数的倍数有无数个.你的家庭成员这么少,而我的家庭是这样的庞大。
你说,你不应该拜我吗?”“是的,你的家庭是庞大的,可是,你知道吗?因为你的家庭的庞大,你知道你是老几吗?我们的家庭成员是有限的,可是,我们都知道我们自己的位置。
再说,离开我们这些因数,你们这些倍数还成立吗?”因数理直气壮地回答。
只见倍数挠着耳朵,想了想,说:“对,其实我们是密不可分的好伙伴,我们谁都离不开谁。
刚才是我不对,我向你道歉了。
”“没有关系,没有关系,你知道自己错了就好。
在自然数中,我们谁离开了谁都是不存在的。
没有倍数,我是谁的因数呢?同样,没有因数,你们又是谁的倍数呢?让我们共同携手,紧密团结在一起,永远做好兄弟!”因数诚恳地说。
因数和倍数两位好伙伴的手紧紧地握在了一起。
知识框架课前预习约数与倍数一、 约数的概念与最大公约数0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 二、倍数的概念与最小公倍数1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=;②短除法求最小公倍数; 例如:2181239632,所以[]18,12233236=⨯⨯⨯=; ③[,](,)a b a b a b ⨯=. 2. 最小公倍数的性质②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;b a 即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 三、最大公约数与最小公倍数的常用性质1. 两个自然数分别除以它们的最大公约数,所得的商互质。
奥数技巧倍数与约数
奥数技巧倍数与约数在数学学科中,奥数(奥林匹克数学)是指一种高难度的数学竞赛,旨在培养学生的数学思维能力和解决问题的能力。
奥数涉及的内容广泛,其中的技巧和方法对于提高数学水平和解决实际问题非常有帮助。
本文将重点介绍奥数技巧中与倍数与约数相关的知识和方法。
1.倍数倍数是数学中的一个重要概念,指的是某个数可以被另一个数整除的情况。
具体来说,如果一个数可以被另一个数除尽,那么前者就是后者的倍数。
在奥数中,寻找和计算倍数有一些常用的技巧。
1.1 规律法对于某个给定的数,通过观察它的倍数列表,可以发现其中的规律。
例如,我们想找到50的倍数,可以列出50的倍数表:50,100,150,200,250...我们可以发现,这些数每次增加50。
因此,50的倍数可以用递推公式表示为:50n(n为正整数)这样,我们就可以快速计算任意的50的倍数。
1.2 分解法有时候,我们需要找到一个数的所有倍数。
这时可以通过分解的方法来寻找。
以10为例,我们可以将10分解为2和5的乘积。
因此,10的倍数可以由2和5的倍数相乘得到。
例如:2的倍数:2,4,6,8,10,...5的倍数:5,10,15,20,...因此,10的倍数可以由2和5的倍数相乘得到:10的倍数:10,20,30,40,...2.约数与倍数相反,约数指的是可以整除某个数的因数。
寻找和计算约数也是奥数中的常见问题。
2.1 列举法对于某个数,我们可以逐个列举出所有小于等于它的正整数,看是否可以整除该数。
这种方法适用于小数。
以12为例,我们可以列举出12的所有约数:1,2,3,4,6,12可以看到,1和12都是12的约数,2和6也都是12的约数。
其中的规律是,12的约数可以用两个数相乘得到。
因此,我们可以通过分解12来找到它的约数。
2.2 分解法分解法是寻找约数的一种常用方法。
对于一个数,我们可以将它分解为质数的乘积,然后找到所有可能的组合。
以24为例,我们将24分解为2、2、2和3的乘积:24 = 2 * 2 * 2 * 3根据分解的结果,我们可以得到24的所有约数:1,2,3,4,6,8,12,24通过分解法,我们可以更快地找到一个数的所有约数。
小学奥数 数论问题 第三、四讲 提高篇之约数与倍数
第三讲提高篇之约数与倍数(一)约数与倍数注:0被排除在约数与倍数之外最大公约数:如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数.在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数.例如(8,12) = 4,(6,9,15) =3最小公倍数:如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数.例如: [8,12] = 24,[6,9,15] = 90求最大公约数:(一)分解质因数(二)短除法求最小公倍数:(一)分解质因数(二)短除法(三)求最大公约数法最大公约数与最小公倍数的常用性质①两个自然数分别除以它们的最大公约数,所得的商互质。
②两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
③对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍课上例题【例1】把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?【例2】两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.【例3】一次考试,参加的学生中有1/7得优,1/3得良,1/2得中,其余的得差,已知参加考试的学生不满50 人,那么得差的学生有()人.课后习题基础篇:【闯关1】.两个数的差是6,它们的最大公约数可能是多少?【闯关2】张阿姨把225 个苹果、350 个梨和150 个桔子平均分给小朋友们,最后剩下9 个苹果、26个梨和6 个桔子没有分出去。
请问:每个小朋友分了多少个苹果?提高篇【闯关3】有4 个不同的正整数,它们的和是1111。
请问:它们的最大公约数最大能是多少?【闯关4】两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?巅峰篇【闯关5】甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126。
小学奥数数论题型:约数与倍数
小学奥数数论题型:约数与倍数
1.28的约数之和是多少?
2.一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24这个两位数是多少?
3.两个自然数的和是50,它们的公约数是5,则这两个数的差是多少?
4.用长是9公分、高是7公分的长方形木块叠成一正方体,至少需要这种长方体木块多少块?
5.张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得_元钱利润,那么他必须卖出苹果多少个?
6.一个公共汽车站,发出五路车,这五路车为每隔3、5、9、_、_分钟发一次,第一次同时发车以后,多少分钟又同时发第二次?
7.饲养员给三群猴子分花生,如只分给第一群,每只猴子可得_粒;如只分给第二群,每只猴子可得_5粒;如只分给第三群,每只猴子可得_粒,那么平均给三群猴子,每只猴可得花生多少粒?
8.一块长48公分、宽42公分的布。
不浪费边角料,能剪出的正方形布片多少块?
9.这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是多少?
_.把26,33,34,35,63,85,91,_3分成若干组,要求每一组中任意两个数的公约数是1,那么至少要分成多少组?
小学奥数数论题型:约数与倍数.到电脑,方便收藏和打印:。
高斯小学奥数六年级上册含答案第16讲 数论综合提高二
第十六讲 数论综合提高二本讲知识点汇总:一、约数、倍数1. 基本概念(1) 如果a 能被b 整除(也就是),则b 是a 的约数(因数),a 是b 的倍数; (2)约数具有“配对”性质:大约数对应小约数. 2. 约数个数(1)分解质因数,指数加1再相乘; (2)平方数有奇数个约数,非平方数有偶数个约数. 3. 约数和公式(1) 如果一个数的质因数分解式为,则约数和为; (2)如果一个数的质因数分解式为,则约数和为;二、公约数、公倍数1. 基本概念(1)如果a 是若干个数公有的约数,则称a 是它们的公约数,其中最大的叫做最大公约数;(2)如果b 是若干个数公有的倍数,则称b 是它们的公倍数,其中最小的叫做最小公倍数;(3)公约数是最大公约数的约数,公倍数是最小公倍数的倍数. 2. 计算方法(1)短除法; (2)分解质因数法; (3)辗转相除法(只用于计算两个数的最大公约数). 3. 基本性质(1) ; (2)两个数的最大公约数是它们和或差的约数; (3)已知两个未知数的最大公约数,可利用最大公约数把这两个数表示出来: 例如,甲、乙的最大公约数是5,则可以把甲乙分别设为5a 和5b ,其中a 、b 互质,此时甲乙的最小公倍数是5ab .4. 两个最简分数的最大公约数、最小公倍数:()[],,a b a b a b ⨯=⨯()()()2111a b c c +⨯+⨯++ 2a b c ⨯⨯ ()()22311a a b b b ++⨯+++23a b ⨯ |b a;一、约数、倍数 1. 约数的配对思想;2. 约数个数与完全平方数的关系;3. 求约数个数;4. 求约数的和;5. 利用约数个数反推原数的质因数分解形式.二、公约数、公倍数 1. 基本计算;2. 带有应用题背景的公约数公倍数计算;3. 有关最大公约数和最小公倍数的反求问题;4. 最大公约数、最小公倍数的质因数的分配.例1. 庆祝高思学校4周岁的生日,预计在12月5日高思成立日的当天举行大型的庆祝活动,由编号1~100的100名高思小明星们组成的方阵,开始都面朝东方站立,第一次所有编号是1的倍数的向左转,第二次所有编号是2的倍数的小朋友再向左转,第三次编号是3的倍数的小朋友再向左转,……,最后一次所有编号是100的倍数的小朋友再向左转,最后所有小朋友中有多少名小朋友面朝南方?「分析」首先分析出转几次的人会面朝南方,这些次数排成一列,找出这组数列的规律.练习1、有2012盏灯,分别对应编号为1至2012的2012个开关.现在有编号为1至2012的2012个人来按动这些开关.已知第1个人按的开关的编号是1的倍数,第2个人按的开关的编号是2的倍数,第3个人按的开关的编号是3的倍数,……,依次做下去,第2012个人按的开关的编号是2012的倍数.如果最开始的时候,灯全是亮着的,那么这2012个人按完后,还有多少盏灯是亮着的?经典题型 []()a c a c b d b d ⎡⎤=⎢⎥⎣⎦,,, ()[]a c a c b d b d ⎛⎫= ⎪⎝⎭,,,例2.一个数有15个约数,这个数最小是多少?第二小是多少?「分析」根据约数个数公式分析出含有15个约数的数的分解质因数形式.练习2、有10个约数的自然数最小是多少?有8个约数的最小的奇数是多少?例3.在35的倍数中,恰有35个约数的最小数是多少?(请写出质因数分解式)「分析」所求数一定含有35的质因数,再结合含有35个约数的数的分解质因数形式即可找到解题的突破口.练习3、42的倍数中,恰好有42个约数的数有多少个?例4.三个自然数乘积为86400,且这三个数的约数个数分别为8、9、10个.那么这三个自然数分别是多少?「分析」把含有8、9、10个约数的数的分解质因数形式及86400中个质因数的个数结合在一起进行分析.练习4、三个自然数乘积为5184,且这三个数的约数个数分别为A个、A+1个、A+2个.那么这三个自然数分别是多少?例5.两个整数的差为7,他们的最小公倍数和最大公约数的差是689,则这两个数分别是多少?「分析」列不定方程求解.例6.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长,亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印.问:这个花圃的周长是多少米?「分析」这是一道公约数、公倍数的问题,首先回忆一下公约数、公倍数的求法,再思考一下题中各数据之间的关系.亲和数(Amicable Pair)亲和数是一种古老的数.遥远的古代,人们发现某些自然数之间有特殊的关系:如果两个数a和b,a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数.相传,毕达哥拉斯的一个门徒向他提出这样一个问题:“我结交朋友时,存在着数的作用吗?”毕达哥拉斯毫不犹豫地回答:“朋友是你的灵魂的倩影,要象220和284一样亲密.什么叫朋友?就象这两个数,一个是你,另一个是我.”后来,毕氏学派宣传说:人之间讲友谊,数之间也有“相亲相爱”.从此,把220和284叫做“亲和数”(也叫“朋友数”或叫“相亲数”).这就是“亲和数”这个名称的来源.毕达哥拉斯首先发现220与284就是一对亲和数,在以后的1500年间,世界上有很多数学家致力于探寻亲和数,面对茫茫数海,无疑是大海捞针,虽经一代又一代人的穷思苦想,有些人甚至为此耗尽毕生心血,却始终没有收获.公元九世纪,伊拉克哲学、医学、天文学和物理学家泰比特·依本库拉曾提出过一个求亲和数的法则,因为他的公式比较繁杂,难以实际操作,再加上难以辨别真假,故它并没有给人们带来惊喜,或者走出困境.数学家们仍然没有找到第二对亲和数.距离第一对亲和数诞生2500多年以后,历史的车轮转到十七世纪,1636年,法国“业余数学家之王”费马终于找到了第二对亲和数17296和18416,这个发现也重新点燃寻找亲和数的火炬.两年之后,“解析几何之父”——法国数学家笛卡尔于1638年3月31日宣布找到了第三对亲和数9437506和9363584.费马和笛卡尔在两年的时间里,打破了二千五百年的沉寂,激起了数学界重新寻找亲和数的波涛.在十七世纪以后的岁月,许多数学家投身到寻找新的亲和数的行列,他们企图用灵感与枯燥的计算发现新大陆.可是,无情的事实使他们省悟到,已经陷入了一座数学迷宫,不可能出现法国人的辉煌了.正当数学家们真的感到绝望的时候,平地又起了一声惊雷.1747年,年仅39岁的瑞士数学家欧拉竟向全世界宣布:他找到了30对亲和数,后来又扩展到60对,不仅列出了亲和数的数表,而且还公布了全部运算过程.时间又过了120年,到了1867年,意大利有一个爱动脑筋,勤于计算的16岁中学生白格黑尼,竟然发现数学大师欧拉的疏漏——让眼皮下的一对较小的亲和数1184和1210溜掉了.这戏剧性的发现让数学家们大为惊叹.在以后的半个世纪的时间里,人们在前人的基础上,不断更新方法,陆陆续续又找到了许多对亲和数.到了1923年,数学家麦达其和叶维勒汇总前人研究成果与自己的研究所得,发表了1095对亲和数,其中最大的数有25位.同年,另一个荷兰数学家里勒找到了一对有152位数的亲和数.电子计算机诞生以后,结束了笔算寻找亲和数的历史,人们利用计算机,可以更有效率的寻找和分析亲和数,但直到今天,亲和数仍有许多未解之谜,等待着数学家和计算机专家来解决.作业1.300共多少个约数?其中有多少个是6的倍数?有多少个不是4的倍数?2.把一张长108厘米,宽84厘米的长方形纸裁成同样大小的正方形,且纸无剩余,至少能裁成多少个正方形?3.一个小于200的自然数,其最小的三个约数之和是31,那么这个自然数是多少?(请写出所有答案)4.已知两个三位数M和N互为反序数(M>N),且它们的最大公约数是6,那么N最小值是多少?5.两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是多少?第十六讲 数论综合提高二例7. 答案:5详解:从向东转向南方,可以转3次、7次、11次、15次等,即约数个数是3、7、11、…….100之内的数的约数个数最多的只有12个(有5个).有3个约数的是4、9、25、49;有7个约数的是64;有11个约数的数最小是1024.所以有5名小朋友最后是面朝南方.例8. 答案:144、324详解:有15个约数的数,质因数分解式为14或24⨯.前者最小是142,次小的是143,都很大;后者最小的是4223⨯,次小的是4232⨯,这个数最小是144,次小是324.例9. 答案:6457⨯详解:因为35含有质因数5、7,恰有35个约数的数只能含有这两个质因数,所以这个数最小是6457⨯.例10. 答案:30,36,80详解:,,,易知所求三个数为30,36,80.例11. 答案:23和30详解:两数之差为7,则他们的最大公约数可能为7或1,而689也可被最大公约数整除,所以两数的最大公约数为1,即两数互质,所以两数的最小公倍数,即两数之积为690,易知相差7且乘积为690的两个数为23和30.例12. 答案: 21.6米1025=⨯ 933=⨯ 8222=⨯⨯ 73286400235=⨯⨯练习:练习1、答案:1968简答:易知第n 号灯被按的次数等于n 的约数的个数,如果n 号灯被按灭则灯被按了奇数次,即n 有奇数个约数,也就是n 每个质因子的质数为偶数,即n 为完全平方数.易知小于2012的完全平方数有44个,所以还有1968盏灯亮着.练习2、答案:48;105练习3、答案:4032个简答:因为42含有质因数2、3、7,恰有42个约数的数只能含有这三个质因数,所以这个数最小是622374032⨯⨯=练习4、答案:12、16、27简答:把5184分解质因数得:64518423=⨯ ,可凑出三个数是12、16、27,质数个数分别是6个、5个、4个作业6. 答案:18,6,12简答:通过分解质因数可得答案为18,6,12.7. 答案:63简答:正方形边长为108和84的最大公约数12,所以可裁成63个正方形.8. 答案:25,125,161简答:首先最小的约数可知为1,则另外两个较小的约数之和为30,可知另外两个较小约数可以是5和25,则答案为25和125;7和23,则答案为161;11和19,则答案为209;13和17,则答案为221.其中小于200的为25,125,161.9. 答案:204简答:设这M abc =,N cba =,则由M 和N 是6的倍数,可知99()M N a c -=-是6的倍数,则a c -是2的倍数,又由M 是偶数可知,c 可能取2、4、6或8,带入尝试可求得N 可以为204,228,246,258,294,426,438,456,498,618,678,最小的是204.10. 答案:29简答:两数相差5,所以它们的最大公约数为5或1,所以分类讨论可得这两个数为12与17,其和为29.。
小学奥数-精讲-约数与倍数PPT
问答互动环节设计思路
自动评分
利用课件的自动评分功能,对学生的测验结果进行客观评价。
反馈与建议
根据学生的测验成绩和表现,提供针对性的反馈和建议,帮助学生改进学习方法。
设计测验题目
根据教学目标和内容,设计合理的测验题目,检验学生学习效果。
测验反馈机制构建策略
导航菜单优化建议
清晰明了
确保导航菜单清晰明了,方便学生快速找到所需内容。
例2
答案揭秘
第一群只数:5、10、15……
第二群只数:4、8、12……
第三群只数:3、6、9……
三群总只数:12、24、36……
60÷12=5 120÷24=5……
花生总数:60、120、180 ……
答:每只猴子可得5粒花生。
举一反三
练习1
用945个同样大小的正方形拼成一个长方形,有______种不同的拼法。
图片选择与处理
为图片添加必要的标注和说明文字,帮助观众更好地理解和记忆图片内容。
图片标注与说明
将多张图片进行排版和组合,形成具有逻辑关系和视觉冲击力的图表或画廊效果。
图片排版与组合
图片编辑与美化方法
选用通用的音频视频格式,确保课件能够在不同设备和平台上正常播放。
音频视频格式选择
对音频视频素材进行必要的剪辑、合并、添加字幕等处理,提高课件的观赏性和实用性。
从第一次同时发车到第二次同时发车 的时间是3,5,9,15和10的最小公倍数。
规 律 总 结
练习2
9,15和10的最小公倍数是90, 所以3,5,9,15和10的最小公倍数也是90。 从第一次同时发车后90 分钟又同时发第二次车。
参 考 答 案
方法
应用
五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)
五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)一、约数1. 根据题目选择合适的公因数问题:小明有23个同色气球和46个不同色气球,他想将这些气球分成若干组,每组要求气球个数相同且同组的气球颜色必须不同。
那小明可以将这些气球分成几个组?解答:首先,我们需要找出23和46的约数。
23的约数是1和23,46的约数是1、2、23和46。
根据题目要求,分组时气球的个数相同,且颜色不同。
如果每组的气球个数为1个,则颜色相同的气球只能分到同一组,显然不符合题意。
如果每组的气球个数为23个,则颜色相同的气球必然可以分到不同的组中,符合题意。
因此,小明可以将这些气球分成$ \frac{46}{23} = 2 $个组。
2. 利用最大公约数求解问题:小明有36个草莓和30个樱桃,他想将这些水果放在盘子里,每个盘子里的水果个数要相同且相同类别的水果只能放在同一个盘子里。
那小明可以将这些水果放在几个盘子里?解答:首先,我们需要找出36和30的最大公约数。
36和30的最大公约数是6。
根据题目要求,每个盘子里的水果个数要相同,且相同类别的水果只能放在同一个盘子里。
因此,小明可以将这些水果放在$ \frac{36}{6} = 6 $个盘子里。
二、倍数1. 确定最小公倍数问题:电车每隔15分钟经过一次车站,公交车每隔12分钟经过一次车站,那么电车和公交车将同时经过这个车站的最早的时间点是什么时候?解答:我们首先找出电车和公交车的最小公倍数。
15和12的最小公倍数是60。
根据题目,我们只需要找出电车和公交车同时经过这个车站的最早的时间点,即找出60分钟的整数倍。
因此,电车和公交车将同时经过这个车站的最早的时间点是60分钟后,即1小时后。
2. 判断是否满足给定条件问题:某工厂的产品每7天生产一批,每21天进行一次质检。
那么多少天后他们会同时发生?解答:我们首先分别找出产品生产和质检的最小公倍数。
7和21的最小公倍数是21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数数论题型:约数与倍数
1.28的约数之和是多少?
2.一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24这个两位数是多少?
3.两个自然数的和是50,它们的公约数是5,则这两个数的差是多少?
4.用长是9公分、高是7公分的长方形木块叠成一正方体,至少需要这种长方体木块多少块?
5.张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果多少个?
6.一个公共汽车站,发出五路车,这五路车为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,多少分钟又同时发第二次?
7.饲养员给三群猴子分花生,如只分给第一群,每只猴子可得12粒;如只分给第二群,每只猴子可得125粒;如只分给第三群,每只猴子可得20粒,那么平均给三群猴子,每只猴可得花生多少粒?
8.一块长48公分、宽42公分的布。
不浪费边角料,能剪出的正方形布片多少块?
9.这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是多少?
10.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的公约数是1,那么至少要分成多少组?。