第7章 多元函数微分学
第七讲 多元函数微分学(基础班 专转本第七章)
类似地,当 x固定在 x 0,而 y 在 y 0处有改变量 y ,如 极 限 lim
y0
存在,则称此极限为函
z f ( x, y )在点( x 0 ,y 0 )处对 y 的偏导数,记为
则称二元函数 z f ( x , y) 在点 P0 ( x 0 , y 0 )处连续.如果 f ( x , y) 在区域 D 内的每一点都连续, 则称 f ( x , y) 在区域 D 上连续. 注:类似的,我们也可以定义二元函数间断点的概念 二、偏导数与全微分 引例 一定量理想气体的压强 P,体积 V,热力学 度 T 三者之间的关系为 RT P (R 为常量 ).
第七讲 多元函数微分学 §1 多元函数微分学 一、多元函数的概念 人们在实践中,还会遇到许多依赖与两个或两个以上自变 量的函数,称这种函数为多元函数。
2
RT
定量理想气体的压强 p V (R是常数) 1.二元函数的定义 设有三个变量 x, y和 z,如果当变量 x, y在它们的
(V , T ) V 0, T T
x 0 0 y
xy 1 1
,
f y
x 0 0 y
,zy
x 0 y 0
或f y ( x 0 , y 0 )
.
lim
lim
xy 1 1
t 11
2
lim f ( x , y ) f ( x 0 , y0 )
dPT常数
第七讲 多元函数微分学
e x cos y
x 1 o y x 2 yo 2
求 极 限 例4 求极限 lim
xy
l i m
解: 这里 就不能直 接带入 x 0, y 0
高等数学多元函数微分学习题集锦
+
f y ⋅ gz ⋅ hx g y ⋅ hz
⎞ ⎟⎟⎠ dx.
即
du dx
=
fx
−
fy ⋅ gx gy
+
f y ⋅ gz ⋅ hx . g y ⋅ hz
第七章、多元函数微分法 习题课
解法3 隐函数求导法,
⎧u = f ( x, y),
⎪ ⎨
g
(
x,
y,
z)
=
0,
⎪⎩ h ( x , z ) = 0.
求 ∂z , ∂2z , ∂ 2z . ∂y ∂y2 ∂x∂y
解
∂z ∂y
=
x
3
⎛ ⎜⎝
f1′x +
f2′
1 x
⎞ ⎟⎠
f12′
xy y
x y
= x4 f1′+ x2 f2′,
x
∂2z ∂y 2
=
x4 ⋅
⎛ ⎜⎝
f1′1′x +
f1′2′
1 x
⎞ ⎟⎠
+
x2
⋅
⎛ ⎝⎜
f 2′′1 x
+
f2′′2
1 x
dx
dx
− xf ′d y + dz = f + xf ′ dx dx
F1′
+ F2′
d d
y x
+F3′
d d
z x
=
0
F2′
d d
y x
+
F3′
d d
z x
=
−
F1′
∴ dz = dx
−x f′ f +xf′
F2′
高等数学下册第7章多元函数微分法及其应用 (7)
故当 y y0, x x0时,有 f ( x, y0 ) f ( x0 , y0 ),
5
说明一元函数 f ( x, y0 )在 x x0处有极大值,
必有
f x ( x0 , y0 ) 0;
类似地可证
f y ( x0 , y0 ) 0.
从几何上看,这时如果曲面 z f ( x, y) 在点
21
例6
求椭球面
x2 a2
y2 b2
z2 c2
1 的内接长方体,
使长方体的体积为最大.
解 设长方体与椭球面在第一卦限内的接点坐标为
(x, y, z),则内接长方体的体积为8x构yz造, 函数
F
( x,
y,
z)
8 xyz
(
x2 a2
y2 b2
z2 c2
1),
得方程组
8
yz
2x a2
0,
8 xz
2y b2
求出实数解,得驻点.
第二步 对于每一个驻点( x0 , y0 ),
求出二阶偏导数的值A、B、C.
第三步 定出AC B2 的符号,再判定是否是极值.
8
例1 求函数f ( x, y) x3 y3 3x2 3 y2 9x的极值.
解 先解方程组
f x ( x, y) 3x2 6x 9 0,
x y 1 3,z 2 3 和 2
x y 1 3,z 2 3 2
dmax 9 5 3, dmin 9 5 3.
25
例8. 求函数f(x, y)=xy在闭区域x2 y2 1上的
最大值与最小值
解 由fx(x, y)=y=0, fy(x, y)得=x到=0函, 数在区域内 的唯一驻点为(0,0),且 f(0,0)下=0面.考虑函数在区域 的边界x2+ y2=1上的最大值与最小值.设
微积分第2版-朱文莉第7章 多元函数微分学习题祥解
习题7.1(A)1、求点(2,1,3)A -关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
解 (1)(2,1,3)--,(2,1,3)--, (2,1,3);(2)x 轴:(2,1,3)-,y 轴:(2,1,3)---,z 轴:(2,1,3)-; (3) (2,1,3)--。
2、在空间直角坐标系中,指出下列各点在哪个卦限?(4,3,5)A -,(2,3,4)B -,(2,3,4)C --,(2,3,1)D --并求点(4,3,5)A -分别到(1)坐标原点;(2)各坐标轴;(3)各坐标面的距离。
解 A 点在第4卦限; B 点在第5卦限;C 点在第8卦限;D 点在第3卦限。
(1) A =(4,3,5)-(2) A 到x =A 到y =A 到z 5=;(3) A 到坐标面xy 5=;A 到坐标面yz 4=;A 到坐标面xz 3=。
3、在z 轴上求一点M ,使该点与点(4,1,7)A 和(3,5,2)B 的距离相等。
解 因为所求点在z 轴上, 所以设该点为(0,0,)M z , 由题意有MA MB , 即222222(4)1(7)35(2)z z两边平方, 解得149z, 于是所求点为14(0,0,)9M . 4、写出球心在点(1,3,2)--处,且通过点(1,1,1)-的球面方程。
解 由2222000()()()xx yy zz R ,得2222(1())(113())(12)R则3R ,从而球面方程为2222(1)(3)(2)3x yz5、下列各题中方程组各表示什么曲线?(1)2248,8;x y z z(2)2225,3;x y z x(3)2224936,1;x y z y (4)2244,2.x y z y解 (1) 双曲线;(2) 圆;(3) 椭圆;(4) 抛物线。
6、描绘下列各组曲面在第一卦限内所围成的立体的图形。
(1) 0,0,0,1x y z x y z ===++=;(2) 2222220,0,0,,x y z x y R y z R ===+=+=。
高等数学习题详解-第7章多元函数微分学
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
多元函数微分学选择题
第七章 多元函数微分学1 多元函数题目尽量简单,难难度系数在0.1-0.5每个题目都标上难难度系数),格式如下: 选择题:1、设。
,则。
等于( )(c, 难难度系数0.1) A 、 B 、 C 、 D 、 1、2200lim3x y xyx y →→+之值为( )(B, 难难度系数0.2)A 、 0B 、 不存在C 、13 D 、 142、若()(),ln 1ln xy xy e f x y x x e x ⎛⎫-=-⎪⎝⎭,则(),f x y 等于( )(D, 难难度系数0.2) A 、1xye B 、x x e yC 、 xxe D 、 2x yxe ye3、已知ln x y x =是微分方程yx y x y ϕ⎛⎫'=+ ⎪⎝⎭的解,则x y ϕ⎛⎫ ⎪⎝⎭的表达式为( )(A, 难难度系数0.3) A 、22y x - B 、22y x C 、22x y- D 、22x y4、设函数(),zf x y =的定义域为(){},01,01D x y x y =≤≤≤≤,则函数()23,z f x y =的定义域为( )(B, 难难度系数0.3) A 、 (){},01,01D x y x y =≤≤≤≤ B 、 (){},11,01D x y x y =-≤≤≤≤C 、(){},01,11D x y x y =≤≤-≤≤ D 、 (){},11,11D x y x y =-≤≤-≤≤ 5、下列函数中,在点()0,0处连续的函数是( )(c, 难难度系数0.3)A 、33x y z x y +=+ B 、()()()()222,,0,010,,0,0xyx y x y z x y -⎧≠⎪++=⎨⎪=⎩C 、sin(),00,0xy x z xx ⎧≠⎪=⎨⎪=⎩ D 、 ()()()(),,0,00,,0,0x y x y x y z x y -⎧≠⎪+=⎨⎪=⎩6、设()22,f x y x y x y +-=-,则(),f x y =( )(D, 难难度系数0.1)A 、22x y - B 、 22x y + C 、 2()x y - D 、 xy7、22(,)(,)limx y x yx xy y →∞∞+=-+( )(A, 难难度系数0.3)A 、 0B 、 1C 、1- D 、 ∞8、设(),,0,xyx y x y f x y x y ⎧≠⎪-=⎨⎪=⎩,则(),f x y 在()0,0点( )(D, 难难度系数0.2) A 、 极限存在且为1 B 、极限存在且为1- C 、 连续 D 、 极限不存在9、设()()()()()242,,0,0,0,,0,0x yx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,则( )(c, 难难度系数0.2)A 、 极限()(,)(0,0)lim,x y f x y →存在,但(),f x y 在点()0,0处不连续 B 、 极限()(,)(0,0)lim ,x y f x y →存在,且(),f x y 在点()0,0处连续 C 、 极限()(,)(0,0)lim,x y f x y →不存在,但(),f x y 在点()0,0处不连续 D 、 极限()(,)(0,0)lim,x y f x y →不存在,但(),f x y 在点()0,0处连续 10、函数()1,sin cos f x y x y=的间断点为( )(D, 难难度系数0.1)A 、(),x y ,其中2,1,1,2,x y n n π===±±B 、 (),x y ,其中2,1,1,2,2x y n n ππ==+=±±C 、(),x y ,其中,1,1,2,x y n n π===±±D 、(),x y ,其中,,1,1,2,2x n y n n πππ==+=±±11、下列式子正确的是( )(D, 难难度系数0.3) A 、2200lim 0x y xyx y →→=+ B 、 00lim0x y xy x y →→=+ C 、 32600lim 0x y xy x y →→=+ D 、 2244lim 0x y x y x y →∞→∞+=+12、00limx y xyx y →→+之值为( )(B, 难难度系数0.2)A 、 0B 、 不存在C 、∞ D 、 1-13、2(,)lim x y →=( )(A, 难难度系数0.2)A 、 12B 、 不存在C 、 1-D 、 ∞的不存在14、设()22,f x y x y x y +-=-,则(),f x y =( )(B, 难难度系数0.1)A 、()22y x y x ⎛⎫+- ⎪⎝⎭B 、211y x y ⎛⎫- ⎪+⎝⎭ C 、 11y x y ⎛⎫- ⎪+⎝⎭D 、 22x y - 15、函数22ln 4x y z +-=的定义域是( )(c, 难难度系数0.2)A 、 224x y +≥且20x y >≥B 、 224x y +>且20x y ≥≥C 、224x y +>且20x y >≥ D 、 224x y +≥且20x y ≥≥16、已知函数()2,4f x y x y =+,则(),f x y xy -=( )(B, 难难度系数0.2)A 、 ()2x y - B 、()2x y + C 、24x y - D 、 24x y +17、已知函数()33,2f x y x y =+,则(),f y x --=( )(C, 难难度系数0.1)A 、332xy - B 、 332y x + C 、 332x y -- D 、 332x y -+18、已知函数()2,2x y f x y x y-=-,则()1,3f =( )(B, 难难度系数0.1)A 、15 B 、 5 C 、 15- D 、 5- 19、已知函数()22,3f x y x y x y -+=+,则(),f x y =( )(D, 难难度系数0.2)A 、223()()x y x y -++B 、22()3()x y x y -++C 、22xxy y ++ D 、 22x xy y -+20、已知函数(),32f x y x y =+,则()(),,f xy f x y =( )(B, 难难度系数0.2)A 、32x y +B 、364xy x y ++ C 、36xy x + D 、34xy y +20、()2222arcsin ln 14x y z x y +=++-的定义域是( )(D, 难难度系数0.2) A 、(){}22,14x y x y ≤+≤ B 、(){}22,14x y x y <+< C 、(){}22,14x y xy ≤+< D 、 (){}22,14x y x y <+≤21、)]ln(ln[x y x z -=的定义域是( )(D, 难难度系数0.2)A 、(){},0,1x y x x y x <<<+B 、 (){},,0,1x y x y x >≥+C 、(){}(){},,0,1,0,1x y x y x x y x x y x >≥+⋃<<<+ D 、 (){}(){},,0,1,0,1x y x y x x y xx y x>>+⋃<<<+ 22、()()ln arcsin 3z y x x =-+-的定义域是( )(C, 难难度系数0.2)A 、(){},,,2,24x y y x y x x >≤≤< B 、(){},,,2,24x y y x y x x >≤<≤ C 、(){},,,2,24x y y x y x x >≤≤≤ D 、(){},,,2,24x y y x y x x ><≤≤23、02sin limx y xyx →→=( )(A, 难难度系数0.1)A 、2 B 、1 C 、0 D 、不存在24、()2222001lim52sin34x y xy x y →→+=+( )(D, 难难度系数0.2)A 、不存在B 、∞C 、1D 、 025、(,)(0,0)limx y →=( )(A, 难难度系数0.2)A 、14B 、∞C 、1D 、 0 26、00x y →→=( )(D, 难难度系数0.2)A 、∞B 、1C 、0D 、 16-27、二重极限22400lim x y xy x y →→+值为( )(C, 难难度系数0.2)A 、1B 、∞C 、不存在D 、028、二重极限26300lim y x yx y x +→→值为( )(D, 难难度系数0.2)A 、1B 、∞C 、0D 、不存在 29、二重极限()102lim1xx y xy →→+=( )(A, 难难度系数0.2)A 、 2eB 、1C 、∞D 、 030、22()lim (e x y x y x y -+→+∞→+∞+=)( )(C, 难难度系数0.2)A 、1B 、∞C 、0D 、不存在31、函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x xxyy x f 的连续范围是( )(D, 难难度系数0.3) A 、220xy +≠ B 、0xy ≠ C 、0x ≠ D 、 全平面32、函数2222y x z y x+=-在22y x =处( )(B, 难难度系数0.1)A 、不能判定B 、间断C 、连续D 、不间断也不连续 33、函数2sinzx xy=在0xy =处( )(A, 难难度系数0.1) A 、连续 B 、不能判定 C 、不间断也不连续 D 、间断34、函数⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xy y x f 在)0,0(点( )(A, 难难度系数0.2)A 、间断B 、连续C 、极限存在D 、不间断也不连续 35、函数()22(,)ln f x y x y =+在点)0,0(( )(B, 难难度系数0.2)A 、连续B 、 间断C 、极限存在D 、不间断也不连续2 偏导数1、设(),f x y 在点()00,x y 处偏导数存在,则()()00000,,limx f x x y f x x y x∆→+∆--∆=∆( )(c, 难难度系数0.2) A 、()00,x f x y ' B 、 ()002,x f x y ' C 、 ()002,x f x y ' D 、()001,2x f x y ' 2、设(),ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则()1,0y f '=( )(B, 难难度系数0.3)A 、 1B 、 12C 、 2D 、 0 3、若()22,f xy x y x y xy +=++,则(),x f x y =( )(A, 难难度系数0.3)A 、1- B 、 2y C 、 ()2x y + D 、 2x4、二元函数()()()()()22,,0,0,0,,0,0xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点()0,0处( )(c, 难难度系数0.2) A 、 连续,偏导数存在 B 、连续,偏导数不存在 C 、不连续,偏导数存在 D 、 不连续,偏导数不存在 5、已知(),f x y = )(D, 难难度系数0.3)A 、 ()()0,0,0,0x y f f ''都存在B 、 ()0,0x f '不存在(),0,0y f '存在C 、()0,0x f '存在(),0,0y f '不存在 D 、 ()0,0x f '(),0,0y f '都不存在6、二元函数()()()()()242,,0,0,0,,0,0x yx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点()0,0处( )(c, 难难度系数0.3)A 、 连续,偏导数存在B 、连续,偏导数不存在C 、不连续,偏导数存在D 、 不连续,偏导数不存在7、设函数(),z f x y =满足222fy∂=∂,且()(),01,,0y f x f x x ==,则(),f x y =( )(B, 难难度系数0.4) A 、21xy y -+ B 、 21xy y ++ C 、221x y y -+ D 、 221x y y ++8、设(),zf x y =在点()00,x y 处偏导数存在,则()00,x y zx ∂=∂( )(B, 难难度系数0.3)A 、()()00000,,limx f x x y y f x y x ∆→+∆+∆-∆ B 、 ()()00000,,lim x f x x y f x y x ∆→+∆-∆C 、()()0000,,limx f x x y f x y x ∆→+∆-∆ D 、 ()()0000,,lim x f x y x f x y x∆→+-∆9、若()22,f xy x y x y xy +=+-,则()(),,x y f x y f x y +=( )(c, 难难度系数0.3)A 、22x y + B 、 23y + C 、 23y - D 、 23x +10、二元函数),(y x f 在点),(00y x 处的两个偏导数),(00y x f x '和),(00y x f y '都存在,是),(y x f 在该点连续的( )条件(D,难难度系数0.3)A 、 充分条件但非必要条件B 、 必要条件但非充分条件C 、 充分必要条件D 、 既非充分条件也非必要条件 11、二元函数(),f x y 在点()0,0处连续,且偏导数存在,()0,00f =,则当()(),0,0x y ≠时,(),f x y 可以等于下列四个式子中的( )(c, 难难度系数0.3)A 、2422x y x y ++ BCD 、22xy x y +12、已知(),f x y = )(c, 难难度系数0.3)A 、 ()()0,0,0,0x y f f ''都存在B 、 ()0,0x f '不存在(),0,0y f '存在C 、()0,0x f '存在(),0,0y f '不存在 D 、 ()0,0x f '(),0,0y f '都不存在13、二元函数()()()()()544,,0,0,0,,0,0x xyx y x y f x y x y ⎧+≠⎪+=⎨⎪=⎩,则()0,0x f =( )(c, 难难度系数0.3)A 、 0B 、∞C 、 1D 、 不存在但不是无穷大14、二元函数()()()()()3322,,0,0,0,,0,0x y xy x y x y f x y x y ⎧-≠⎪+=⎨⎪=⎩,则下列各式错误的是( )(c, 难难度系数0.4) A 、()0,0x f =0 B 、()0,x f y y =- C 、()0,01xy f = D 、 ()0,01xy f =-15、曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是( )(c, 难难度系数0.3)A 、2π B 、 3π C 、4π D 、 6π 16、设x zy =,则xy z =()(c, 难难度系数0.2)A 、1ln x xy x -B 、()1ln x y x y -+C 、()11ln x y x y -+D 、2ln x y x17、()22,f x y xy x y π=---,则(,)f x y x∂=∂( )22y x y --(c, 难难度系数0.2)A 、22y x y π--- B 、 22y x y -- C 、2y x - D 、 22y x y --18、设()22,f x y xy x y e =--+,则(,)f x y y∂=∂( )(B, 难难度系数0.2)A 、22y x y e --- B 、2x y - C 、 22y x y -- D 、 22y x y --19、已知理想气体状态方程RT PV =,则=∂∂⋅∂∂⋅∂∂PT T V V P ( )(A, 难难度系数0.3 A 、1- B 、 1 C 、 2 D 、 没意义20、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则()0,0x f =( )(C,难难度系数0.3)A 、 1B 、1- C 、 0 D 、 不存在21、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则()0,1x f =( )(A,难度系数0.3) A 、1- B 、 1 C 、 0 D 、 不存在22、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则()0,x f y =( )(B,难度系数0.3)A 、yB 、y -C 、x -D 、123、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则(),0y f x =( )(A,难度系数0.3)A 、xB 、y -C 、x -D 、124、设)cos()2cos(),(y x y x y x f +-=,则=')4,(ππyf ( )(D,难度系数0.3)A 、0BC 、D 、 -25、设y x y x u arcsin)1(-+=,则xu∂∂在(2,1)的值是( )(A,难度系数0.1)A 、1B 、1-C 、0D 、226、设(ux y =+-,则(,1)x f x 的值是( )(A,难度系数0.1)A 、1B 、1-C 、0D 、2 27、设(21)arcsinx ux y y =+-,则xu ∂∂在(1,2)的值是( )(D,难度系数0.3)A 、1-B 、1+C 、1-D 、 31+28、设(21)arccosx u x y y=+-,则xu ∂∂在(1,2)的值是( )(B,难度系数0.3)A 、1-B 、1-C 、1+D 、 31+29、设(1)arctanx u y y y =+-,则xu ∂∂在(1,2)的值是( )(D,难度系数0.3)A 、15 B 、 15- C 、25- D 、 2530、设2arctan (21)arccoty xue y y=+-,则xu ∂∂在(1,2)的值是( )(C,难度系数0.3)A 、35 B 、35- C 、 65- D 、6531、设(21)arctanyux x x=+-,则u y ∂∂在(1,1)-的值是( )(B,难度系数0.3)A 、32 B 、 12 C 、12- D 、1 32、设2arctan 2y ux x =+,则uy∂=∂( )(D,难度系数0.3) 33、设2arcsin 2y ux y =+,则ux∂=∂( )(A,难度系数0.3)A 、212y yx - B 、22ln yxx C 、2ln y x x D 、2122214y yx x -++34、设(),z f x y x y ==+()3,4x f =( )(D,难度系数0.3)A 、35 B 、85 C 、15 D 、 2535、设(),ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则1x y f y ==∂=∂( )(C,难度系数0.3)A 、23 B 、13 C 、12D 、 1 36、设2e xyu =, 则2u uxy x y∂∂+=∂∂( )(C,难度系数0.4) A 、1 B 、224xy x eyC 、0D 、224xy x ey-37、设2x yue=,则2ux y∂=∂∂( )(D,难度系数0.3) A 、22x yxe B 、2x ye C 、()2321x yyx e+ D 、()2221xyx x y e +38、设2sin xu xz y=+,则42u x y z ∂=∂∂∂( )(A,难度系数0.3) A 、0 B 、2xz C 、2z D 、21sin xy y-39、设xyz ln =,则22zx ∂=∂( )(D,难度系数0.4) A 、1 B 、0 C 、2ln 2ln ln x y y y x + D 、 2ln 2ln ln xy y y x- 40、设xyzln =,则2zx y∂=∂∂( )(C,难度系数0.3) A 、0 B 、ln 2ln ln 1xx y y x - C 、 ln ln ln 1x y x y xy ⋅+ D 、 2ln 2ln ln x y y y x - 41、设yxz u arctan =,则222222u u u x y z ∂∂∂++=∂∂∂( )(C,难度系数0.3)A 、()2224xyzxy-+ B 、()2224xyzxy-+ C 、 0 D 、1A 、B 、C 、连续D 、 不连续 42、设()22,f xy x y x y -=+,则1f f x y y∂∂+=∂∂( )(D,难度系数0.3) A 、0 B 、1 C 、2 D 、43 全微分及其应用1、函数(),zf x y =在点()00,x y 处具有偏导数()()0000,,,x y f x y f x y ''是函数在该点可微的( )(A,难度系数0.2)A 、 必要条件但非充分条件B 、充分条件但非必要条件C 、 充分必要条件D 、 既非充分条件也非必要条件 2、二元函数(),f x y 在点()0,0处可微的一个充分条件是( )(C,难度系数0.3)A 、()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B 、()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-= C 、()(,0,0,0,0lim0x y f x y f →-=D 、()()0lim ,00,00x x x f x f →''-=⎡⎤⎣⎦,且()()0lim 0,0,00y y y f y f →''⎡⎤-=⎣⎦ 3、若函数(),f x y 在点()00,x y 处的偏导数存在,则(),f x y 在该点处函数( )(D,难度系数0.3)A 、 有极限B 、连续C 、可微D 、 A 、B 、C 都不成立 4、考虑二元函数(),f x y 的下面4条性质:①(),f x y 在点()00,x y 处连续, ②(),f x y 在点()00,x y 处的两个偏导数连续, ③(),f x y 在点()00,x y 处可微, ④(),f x y 在点()00,x y 处的两个偏导数存在若用“P Q ⇒”表示可由性质P 推出性质Q ,则有( )(A,难度系数0.3) A 、②⇒③⇒① B 、③⇒②⇒① C 、③⇒④⇒① D 、 ③⇒①⇒④ 5、设z=()1,1dz =( )(B,难度系数0.3)A 、()12dx dy + B 、 dx dy + C 、 ()13dx dy + D 、)dx dy + 6、设1zx uy ⎛⎫= ⎪⎝⎭,则()1,1,1du=( )(B,难度系数0.3)A 、dx dy dz ++B 、 dx dy -C 、 dx dz -D 、 dy dz -7、设cos ,sin x r y r θθ==,则xdy ydx -=( )(B,难度系数0.2)A 、2rd rdr θ+ B 、 2r d θ C 、 rdr D 、 rd θ8、在下列条件中,使函数(),z f x y =在点()00,x y 处可微,且全微分为零的是( )(D,难度系数0.3) A 、 具有偏导数且()()0000,0,,0x y f x y f x y ''== B 、()00,x y f∆=C 、()0022,sin x y x y f∆+∆∆=D 、()()0022,x y fx y ∆=∆+∆9、下列函数在点()0,0处可微的是( )(C,难度系数0.3)A、z =B 、()()()(),0,00,,0,0x y z x y ≠==⎩ C 、()()()()()22221sin ,,0,00,,0,0x y x y x y z x y ⎧+≠⎪+=⎨⎪=⎩ D 、()()()()22,,0,00,,0,0xy x y x y z x y ⎧≠⎪+=⎨⎪=⎩10、若()()(),,zf x y x yg x y ==+,(),g x y 在点()0,0处连续,则(),f x y 在该点处结论错的是( )(C,难度系数0.3)A 、 有极限B 、连续C 、不可微D 、 dz dx dy =+11、若函数(),f x y 在点()00,x y 处不连续,则( )、(D,难度系数0.1) A 、()00,f x y 必不存在 B 、()()00(,),lim,x y x y f x y →必不存在C 、()()0000,,,x y f x y f x y 必不存在D 、 (),f x y 在()00,x y 必不可微12、函数(),f x y 在点(),x y 处可微是它在该点偏导数z x ∂∂与z y∂∂连续的( )条件(A,难度系数0.2) A 、 必要 B 、 充分 C 、 充要 D 、 无关 13、设432z x y x =+,则()1,2dz =( )(C,难度系数0.2)A 、()3342423x ydx x y dy ++ B 、1234dx dy + C 、 3412dx dy + D 、3412dx dy -14、arctanxz y=,则dz =( )(D,难度系数0.2) A 、22xdy ydx x y -+ B 、22xdx ydy x y -+ C 、22ydx xdy x y ++ D 、 22ydx xdyx y -+15、(),fx y 在()00,x y 的一阶偏导数连续是(),f x y 在()00,x y 可微的( )条件(B,难度系数0.2)A 、 必要B 、 充分C 、 充要D 、 无关16、若(),f x y =()1,1df=( )(D,难度系数0.2)A 、22xdx ydy x y ++ B 、221xdx ydyx y +++ C 、2dx dy+ D 、3dx dy+17、u =()0,1处的du =( )(B,难度系数0.3)A 、2dxB 、dxC 、()2222yx dx xydy x y--+ D 、222y dx xydyx y-+ 18、设yx yx y x z-+++=arctanln 22,则d z =( )(D,难度系数0.3) A 、()()22x y dy x y dxx y --++ B 、()()22x y dx x y dyx y --++C 、()()22x y dx x y dyx y ++-+ D 、()()22x y dx x y dyx y -+++19、设(),zf x y =在点()00,x y 处的全增量为z ∆,全微分为dz ,则(),z f x y =在点()00,x y 处的全增量与全微分的关系式是( )(B,难度系数0.2) A 、zdz ∆= B 、()z dz o dz ∆=+ C 、()z dz o z ∆=+ D 、()z dz o dx ∆=+20、函数)ln(22z y x u++=,则在点)1,0,1(A 处的全微分为( )(C,难度系数0.2)A 、22dx ydy zdz x y z ++++ B 、2222dx ydy zdzx y z ++++ C 、22dx dz + D 、2dx dz+ 21、函数32),(y x y x f =在点)0,0(处( )(D,难度系数0.3)A 、两个偏导函数连续B 、可微C 、连续且两个偏导数)0,0(),0,0(y x f f ''都不存在 D 、 连续且两个偏导数)0,0(),0,0(y x f f ''都存在,但不可微22、若(),z f x y =在点()00,x y 处可微,则下列结论错误的是( )(B,难度系数0.3)A 、(),z f x y =在点()00,x y 处连续B 、()(),,,x y f x y f x y 在点()00,x y 处连续C 、()(),,,x y f x y f x y 在点()00,x y 处存在D 、 曲面(),zf x y =在点()()0000,,,x y f x y 处有切平面23、二元函数),(y x f 在点),(000y x M 处连续,且),(00y x f x '和),(00y x f y '都存在,这是),(y x f 在点可微的( )条件(B,难度系数0.2)A 、 充分非必要B 、必要非充分C 、 充分必要D 、 既非充分亦非必要 24、.难度0、3答案 设2yu x =,则du =( )(A,难度系数0.3)A 、22212ln y y y xdx yx xdy -+ B 、2221ln y y y xdx x xdy -+C 、221()y y x dx dy -+ D 、22212ln y y y x dy yx xdx -+25、函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=( )(C,难度系数0.1)A 、0.20B 、0.20-C 、0.2040402004-D 、0.2040402004 26、函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全微分d z =( )(C,难度系数0.1)A 、0.20B 、0.2040402004C 、0.2040402004-D 、0.20- 27、x y ucos )(ln =,则d u =( )(A,难度系数0.3)A 、cos cos (ln)ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦ B 、cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤⋅+⎢⎥⎣⎦C 、cos sin (ln)ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦ D 、cos cos (ln )ln ln sin ln x x y y xdx dy y ⎡⎤-⋅+⎢⎥⎣⎦28、z yxu)(=,则d u =( )(D,难度系数0.3)A 、11()ln z x x dx dy dz y x y y ⎛⎫-+ ⎪⎝⎭ B 、()ln z x z z x dx dy dz y x y y ⎛⎫-++ ⎪⎝⎭ C 、()ln z x z z x dx dy dz y x y y ⎛⎫++ ⎪⎝⎭ D 、()ln z x z z x dx dy dz y x y y ⎛⎫-+ ⎪⎝⎭ 29、2221zy x u++=,则d u =( )(C,难度系数0.3)A 、()()32222xy zxdx ydy zdz -++++ B 、()()32222xy zxdx ydy zdz -++++ C 、 ()()32222x y z xdx ydy zdz --++++ D 、()()32222xy zxdx ydy zdz ++++30、(),f x y =()0,0处( )(C,难度系数0.3)A 、不连续B 、()0,0x f 与()0,0y f 不存在C 、 不可微D 、可微31、设xy zxe y =+,则()1,1dz =( )(B,难度系数0.2)A 、edx dy +B 、 ()21edx e dy ++C 、xyedx dy + D 、()()211xy xy xy e dx x e dy +++4 多元复合函数的求导法则1、设(),u f x y =,且cos ,sin x r y r θθ==,其中f 具有二阶连续的偏导数,则22uθ∂=∂( )(C,难度系数0.3) A 、 2222sin cos xx yy r f r f θθ+B 、 22222sin sin 2cos xx xy yy r f r f r f θθθ-+C 、 22222sin sin 2cos cos sin xx xy yy x y r f r f r f rf rf θθθθθ-+--D 、2222sin cos cos sin xx yy x y r f r f rf rf θθθθ+--2、设(),,tf x xy xyz =,其中f 具有连续二阶偏导数,则2ty z∂=∂∂( )(D,难度系数0.3) A 、2132333xyf x yf xyzf ++ B 、 222333x yf x yzf +C 、2223333x yf x yzf f ++ D 、 2223333x yf x yzf xf ++3、设(),,tf x xy xyz =,其中f 具有连续二阶偏导数,则22tx∂=∂( )(D,难度系数0.3)A 、222112233f y f y z f ++B 、 2121323222yf yzf y zf ++C 、 2222112233121323222y f yf y z f f yzf y zf +++++D 、2222112233121323222f y f y z f yf yzf y zf +++++4、设函数()()(),ux y x y x y ϕϕ=++-,其中函数ϕ具有二阶导数,则必有( )(B,难度系数0.3) A2222u u x y ∂∂=-∂∂ B 2222u u x y ∂∂=∂∂ C 20u x y ∂=∂∂ D 2220u ux x y∂∂+=∂∂∂ 5、设()(),,,zf x v vg x y ==,其中,f g 均有二阶连续导数,则( )(C,难度系数0.3)A2222f f vx v x ∂∂∂+∂∂∂ B222222f f v f vx v x v x∂∂∂∂∂++∂∂∂∂∂C222222222f f v fv f v x x v x v x v x∂∂∂∂∂∂∂⎛⎫+++ ⎪∂∂∂∂∂∂∂∂⎝⎭ D2222222f fv f v x v x v x∂∂∂∂∂⎛⎫++ ⎪∂∂∂∂∂⎝⎭6、设函数222200,0x y z x y +≠=+=⎩,又,x t y t ==,则t dzdt ==( )(C,难度系数0.3) A 、 0 B、 C 、D 、 17、设函数()()()(),x yx yux y x y x y t dt ϕϕψ+-=++-+⎰,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(B,难度系数0.4)A2222u u x y ∂∂=-∂∂ B 2222u u x y ∂∂=∂∂ C 222u u x y y ∂∂=∂∂∂ D 222u ux y x ∂∂=∂∂∂ 8、设函数()21ax e y z u a -=+,又sin ,cos y a x z x ==,则du dx=( )(A,难度系数0.3)A 、sin ax e x B 、cos ax e x C 、21(cos sin )1ax e a x x a ++ D 、 21cos 1axe x a + A 、 B 、 C 、 D 、 9、设()v uf z,=,其中e ,x u v x y -==+,下面运算中( )(B,难度系数0.3):e x z f f I x u v-∂∂∂=-+∂∂∂,222:v f y x z II ∂∂=∂∂∂A 、I 、II 都不正确B 、I 正确,II 不正确C 、I 不正确,II 正确D 、 I 、II 都正确10、设(),u f x y xz =+有二阶连续偏导数,则2ux y∂=∂∂( )(C,难度系数0.3) A 、 ()2111222f xf x z f xzf ++++ B 、 1222xf xzf +C 、21222f xf xzf ++ D 、 22xzf11、设()(),,,,zf x y z yg x t ==,其中,f g 可微,则zx∂=∂( )(B,难度系数0.3) A 、()(),,,y x f x y z g x t - B 、 1x y x z f f g f +-C 、 ()(),,,y x f x y z g x tD 、1x y x zf fg f ++12、若设()22222,f x y x y M x y∂++=∂∂,其中f为二次连续可微函数,则( )(D,难度系数0.3)A 、2f f M x u v ∂∂⎛⎫=+ ⎪∂∂⎝⎭ B 、 22222f f M x u v ⎛⎫∂∂=+ ⎪∂∂⎝⎭C 、22222f f M xy u v ⎛⎫∂∂=- ⎪∂∂⎝⎭ D 、 22224f f M xy uv ⎛⎫∂∂=- ⎪∂∂⎝⎭13、若函数(),x y uxyf f t xy ⎛⎫+= ⎪⎝⎭为可微函数,且满足()22,u u x y G x y u x y ∂∂-=∂∂,则(),G x y 必等于( )(B,难度系数0.3) A 、x y + B 、 x y - C 、 22x y - D 、 ()2x y +14、设()()2,zf x yg x xy =-+,其中f有二阶连续导数,g 有二阶连续偏导数,则下列正确的是( )(C,难度系数0.3)A2x x xy zf g yg x∂''=++∂ B2,,2xy x xy xy xy xy z f xg g xyg x y ∂'''''''=-+++∂∂ C2122222z f xg g xyg x y ∂'''''''=-+++∂∂ D 2122222zf xg g xyg x y∂'''''''=-++-∂∂ 15、设函数()2222,z x y u x y ϕ=+=+,其中函数ϕ可微,则下列四个式子正确的是( )(B,难度系数0.2) Az u x u x ϕ∂∂∂=⋅∂∂∂ B z d u x du x ϕ∂∂=⋅∂∂ C z d du x du dx ϕ∂=⋅∂ D z du x u dxϕ∂∂=⋅∂∂16、设y zxyf x ⎛⎫= ⎪⎝⎭,且()f u 可导,则z x x ∂+∂z y y ∂∂为( )(D,难度系数0.2)A 、2xy B 、 ()2x y z + C 、()2x y + D 、 2z17、设)(22y x z-=ϕ,其中ϕ具有连续的导数,则下列等式成立的是( )(C,难度系数0.2)A 、y z y x z x∂∂=∂∂ B 、 y z x x z y ∂∂=∂∂ C 、 y z x x z y ∂∂-=∂∂ D 、 yzy x z x ∂∂-=∂∂5 隐函数求导法1、设有三元方程ln 1xzxy z y e-+=,根据隐函数存在定理,存在点()0,1,1的一个邻域,在此邻域内该方程( )(D,难度系数0.3)A 、只能确定一个具有连续偏导数的隐函数(),z z x y =B 、可确定俩个具有连续偏导数的隐函数(),y y x z =和(),z z x y =C 、 可确定俩个具有连续偏导数的隐函数(),x x y z =和(),z z x y =D 、 可确定俩个具有连续偏导数的隐函数(),x x y z =和(),y y x z =2、已知,tan ,cos zxx y z e xe t y t +-===,则220t d zdt ==( )(D,难度系数0.3)A 、12 B 、 14 C 、 18 D 、 138- 3、若(),u u x y =为可微函数,且满足()22,1,y x y x uu x y x x==∂==∂,则必有2y x u y=∂=∂( )(C,难度系数0.3)A 、 1B 、12 C 、 12- D 、 1- 4、设函数(),z z x y =由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( )(B,难度系数0.3) A 、 x B 、 z C 、 x - D 、 z -5、设(),z z x y =由方程()22y z xf y z +=-确定,f 可微,则z zxy x y∂∂+=∂∂( )(B,难度系数0.3)A 、xB 、yC 、zD 、 1 6、设函数(),z f x y =由方程()x y z x y z e-++++=确定,则( )(C,难度系数0.3)A 、z zx y∂∂≠∂∂ B 、2222z z x y ∂∂≠∂∂ C 、 222z z x y y ∂∂=∂∂∂ D 、 222z z x x y ∂∂≠∂∂∂7、设(),z x y 由方程()22ln 0xz xyz xyz -+=确定,则zx∂=∂( )(C,难度系数0.2)A 、z x B 、 x z C 、 z x - D 、 x z- 8、设ln x zz y=,则()0,1=dz ( )(B,难度系数0.2) A 、1122dx dy + B 、 1122dx dy - C 、 dx dy + D 、 dx dy - 9、设(),0f x az y bz ++=,则z zab x y∂∂+=∂∂( )(C,难度系数0.3) A 、0 B 、1 C 、1- D 、 ab10、设(),z z x y =由方程222124y z x ++=确定,则( )(C,难度系数0.3) A 、2z xx z∂=-∂ B 、 224z x z ∂=-∂ C 、 2223416z x x z z ∂=--∂ D 、2223416z x x z z∂=-+∂11、由方程2222=+++z y x xyz 所确定的函数),(y x z z =在点()1,0,1-处的全微分=dz ( )(C,难度系数0.3)A dy -B dy +C 、 dx -D 、dx +12、设⎪⎭⎫⎝⎛=z y z x ϕ,其中ϕ为可微函数,则z z x y x y ∂∂+=∂∂( )(D,难度系数0.3) A 、()x y z + B 、0 C 、z - D 、 z13、若(),zz x y =由方程,0y z F x x ⎛⎫= ⎪⎝⎭确定,则z z x y x y ∂∂+=∂∂( )(A,难度系数0.3)A 、zB 、z -C 、0D 、 114、由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数dz dx =( )(B,难度系数0.3)A 、13y z - B 、 13x z + C 、13x z - D 、13yz+15、设函数()zf u =,又方程()()d xyu u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),Pt u ϕ'连续,且()1u ϕ'≠、 则()()z zP y P x x y∂∂+=∂∂( )(A,难度系数0.3) A 、 0 B 、1 C 、2 D 、()()xPy yP x +6 方向导数与梯度1、函数(),arctanxf x y y =在点()0,1处的梯度等于( )(A,难度系数0.2) A 、iB 、i- C 、jD 、j-2、设2uxy z =-,则在点()1,2,2-处方向导数的最大值为( )(C,难度系数0.2) A 、 1 B 、 2 C 、 3 D 、 4 3、设2uxy z =,则在点()01,1,1M 处方向导数的最大值为( )(D,难度系数0.2)A 、B 、 4C 、 1D 、4、函数(),zf x y =在点()0,0处的两个偏导数()()0,0,0,0x y f f ''都存在,则在点()0,0处,函数(),z f x y =( )(B,难度系数0.2)A 、 沿x 轴的正向和负向的方向导数比相等B 、关于x 连续,关于y 也连续C 、 沿x 轴的正向和负向的方向导数比相等D 、 连续 5、设22223326ux y z xy x y z =++++--在原点沿()1,2,1方向的方向导数为( )(C,难度系数0.2) A 、B 、C 、D 、 6、函数(),f x y 在点(),x y 处可微是它在该点有方向导数的( )条件(D,难度系数0.1)A 、无关B 、充要C 、必要D 、充分7、在梯度向量的方向上,函数的变化率( )(B,难度系数0.1) A 、 B 、最大 C 、 D 、8、函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是( )(B,难度系数0.2)A 、0B 、cos cos cos αβγ++ C 、1 D 、{cos ,cos ,cos }αβγ9、函数xyxu =在点)1,1,1(的梯度为( )(B,难度系数0.3)A 、{}1,1- B 、 {}1,1,0- C 、{}1,1,0- D 、{}1,1-10、二元函数),(y x f 在点),(00y x 处的两个偏导数),(00y x f x '和),(00y x f y '都存在,则),(y x f ( )(D,难度系数0.2)A 、在该点可微;B 、 在该点连续;C 、在该点沿任意方向的方向导数存在;D 、 以上结论都不对、; 11、函数e cos()x u yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是( )(D,难度系数0.3)A 、13 B 、13- C 、23- D 、 2310.难度0、3答案 函数)ln(22z y x u++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是( )(C,难度系数0.3) A 、1 B 、0 C 、 12 D 、12- 12.难度0、2答案 设函数u x xy xyz =++在点()1,2,0的所有方向导数中,最大的方向导数是沿方向( )(B,难度系数0.2)A 、{3,1,2}---B 、 {3,1,2}C 、{1,3,2}D 、{3,2,1}13、函数z=在点()0,0处沿方向{}1,0的方向导数zl∂=∂( )(A,难度系数0.2) A 、 1 B 、1- C 、0 D 、不存在 14、设2)0,0(,1)0,0(='='y x f f ,则( )(D,难度系数0.3)A 、),(y x f 在点)0,0(处连续;B 、 dy dx y x df 2),()0,0(+=;C 、 βαcos 2cos )0,0(+=∂∂lf ,其中βαcos ,cos 为l 的方向余弦;D 、),(y x f 在点)0,0(处沿x 轴负方向的方向导数为1-。
多元函数微分学
多元函数微分学一:全微分函数在处可微的充分条件:(,)z f x y =00(,)x y ''22(,)(,)()()x y z f x y x f x y y x y ∆-∆-∆∆+∆22()()0x y ∆+∆→当时是无穷小量222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩例1:函数在[(0,0)(0,0)]()x y z f x f y o ρ∆-∆+∆=(0,0)处是否可微?0(0,0)(0,0)lim x y z f x f yρρ→∆-∆-∆22222201[()()]sin ()()lim ()()x y x y x y ρ→∆+∆∆+∆=∆+∆0=即函数f (x , y )在原点(0,0)可微.sin 2yz y x e μ=++例2:计算的全微分11,cos ,22yz yz u u y u ze ye x y z∂∂∂==+=∂∂∂解:1(cos )22yz yz y du dx ze dy ye dz =+++所求全微分:二:复合函数求偏导1、偏导数求法(1) 求关于x的偏导数,把z=f (x , y) 中的y看成常数,对x仍用一元函数求导法求偏导.(2) 求关于y的偏导数,把z=f (x , y) 中的x看成常数,对y仍用一元函数求导法求偏导.(3)求分界点、不连续点处的偏导数要用定义求.2:链式法则的几种情况:1:),(,),(,),(,)x y x y x y z f u f v f w x u x v x w xz f u f v f w y u y v y w yμυωμμυυωω===∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂中间变量多于两个的情况:设z=f(,,''2:),(,)(),()x y z f u u z f u u f u f u x u x x y u y yμμμ=∂∂∂∂∂∂∂∂====∂∂∂∂∂∂∂∂中间变量只有一个的情况:设z=f(3:,),(),(),v x v v x z x z f u f v x u x u xμμμ==∂∂∂∂∂=+∂∂∂∂∂自变量只有一个的情况:设z=f(则是的一元复合函数,它对x 的导数称为全导数,有(,,),(,),(,),,z f x y t x x s t y y s t z f x f y z f x f y f s x s y s t x t y t t===∂∂∂∂∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂4:设则例3:).1())),(,(,()(,)1,1(,)1,1(,1)1,1(,),(2ϕϕ'=='='=求,可微x x f x f x f x b f a f f y x f y x解⋅='))),(,(,(2)(x x f x f x f x ϕ⋅'+'))),(,(,())),(,(,({21x x f x f x f x x f x f x f ⋅'+')),(,()),(,([21x x f x f x x f x f ))]},(),((21x x f x x f '+')]}([{12)1(b a b a b a +++⋅⋅='ϕ)(232b ab ab a +++=解:3个方程, 4个变量的方程组,)(),(),(x z z x y y x u u ===确定3个1元函数:方程组两边对x 求导=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +x y g y d d ⋅+x z g z d d ⋅+0=xz h z d d ⋅+0=⎪⎩⎪⎨⎧===.0),(,0),,(),,()(z x h z y x g y x f u x u 由方程组设函数例4:,0,0,≠∂∂≠∂∂zh y g 且所确定.d d x u 求=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +)1(x y g y d d ⋅+x z g z d d ⋅+0=)2(x z h z d d ⋅+0=)3(代入可得:d d y x y z x x y y zf g f g h u f x g g h ⋅⋅⋅=-+⋅三:高阶偏导定理 如果函数),(y x f z =的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续,那末在该区域内这两个二阶混合偏导数必相等.215()(),y z z f xy xf f y x x y ∂=+∂∂例:有连续二阶偏导数,求'()'()'()z y y y f xy f f x x x x ∂=+-∂解:2()z z x y y x ∂∂∂=∂∂∂∂11''()''()'()''()y y y y xf xy f f f x x x x x x=+--22222222(0,0)(0,0)22(),06:(,),|,|0,0xy x y x y f f f x y x y x y y x x y ⎧-+>∂∂⎪=+⎨∂∂∂∂⎪+=⎩例求22232222222222()(3)2(),0()0,0x y x y y x y x y x y f x y x x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩解:2(0,)(0,0)(0,0)0|||lim 1y y f f f x x x y y →∂∂-∂∂∂==-∂∂22322222222222()(3)2(),0()0,0x y x xy xy x y x y f x y y x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩(,0)(0,0)2(0,0)0|||lim 1x y f f f y y y x x→∂∂-∂∂∂==∂∂注:对不连续的函数求导,用定义法四:隐函数求导1:一个方程的情况:1.1 显化法:(一元隐函数)把一元隐函数化为显函数后,再利用显函数求导的方法,来求该一元隐函数的导数,即(,)0F x y =()y y x ='()xdy dy x y dx dx==2'ln()0,(x y x xy y x+-=例7:设求一元隐函数)22ln()x y y x xy xy e x x -=--⇒-=21x e y x x -⇒=-利用显函数求导方法,有:22222'211(12)(12)11()()x x x e x y x x y x x x x -----==--1.2公式法: .x yF dy dx F =-1.3对数求导法:80,,x zz z z y x y ∂∂-=∂∂例:设求(多元隐函数)ln ln x zz y x z z y ==解:原方程可化为,方程两边同时取对数得:2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2:方程组的情况:2.1直接对方程两边求偏导,再解关于偏导数的方程sin ,,cos uu x e u v u u x y y e u v ⎧=+∂∂⎪⎨∂∂=-⎪⎩例9:设求1sin cos 0s cos (sin )u u x u u v e v u v x x xu u v e v u v x x x∂∂∂=++∂∂∂∂∂∂=---∂∂∂两个方程两边关于求偏导,得:(1)(2)(1)sin (2)cos v v v x ∂⨯-⨯∂,消去得22sin (sin cos )(sin cos )uu u v e v v v v x x ∂∂=-++∂∂sin 1sin cos u u u v x e v e v∂=∂+-同理可求:cos 1sin cos u u u v y e v e v∂-=∂+-Thanks for your listening!。
多元函数微分学
面,点P为切点.
定理3 曲面z f (x, y)在点P(x0, y0, f (x0, y0))存在 不平行于z轴的切平面的充要条件是函数 f 在点 P0(x0, y0)可微. 定理3说明若函数 f 在(x0, y0)可微, 则曲面z f (x, y) 在点P(x0, y0, z0)处的切平面方程为 z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ). 过切点P与切平面垂直的直线称为曲面在点P的 法线. 由切平面方程知道, 法线的方向数是
1
z f ( x, y )
S
S1
R2
P1
1
1
y y0 曲线P0 N z f ( x, y) x x0 曲线P0 R z f ( x, y)
P1 S1 P1 R2 R2 S1 z P1 R2 Q1 R1 dy y M 0
0
M ( x0 dx, y0 dy)
f x
x
tan
M0
偏导与连续的关系.
例 讨论函数
x 2 y 2 , xy 0 f ( x, y) , xy 0 1,
在(0,0)点的偏导数及连续性.
二、 可微性与全微分
定义 设函数 z = f (x, y)在点P0(x0, y0)的某邻域U (P0) 内有定义, 对于U (P0)中的点P(x, y) (x0 x, y0 y), 若函数 f 在P0处的全增量z可表示为: z f (x0 x, y0 y) f (x0, y0) Ax By o(), 其中A, B是仅与点P0有关的常数, (1)
d f |(x0, y0) fx(x0, y0)· fy(x0, y0)· dx dy.
微积分第七章-多元函数微分学习题
总结词
理解偏导数与全微分的关系,掌握二者之间 的转换方法。
详细描述
偏导数是全微分的线性近似,即当 自变量改变量Δx、Δy等趋于0时, 全微分等于偏导数乘以自变量改变 量。因此,在求函数在某一点的切 线斜率时,可以使用偏导数;而在 计算函数在某一点的微小改变量时, 则使用全微分。
03
习题三:方向导数与梯度
THANKS
感谢观看
Delta y]
计算多元函数的梯度
总结词
梯度是多元函数在某点处的方向导数的最大值,表示函数在该点处沿梯度方向变 化最快。
详细描述
梯度的计算公式为:[nabla f(x_0, y_0) = left( frac{partial f}{partial x}(x_0, y_0), frac{partial f}{partial y}(x_0, y_0) right)]梯度向量的长度即为函数在该点 的变化率。
讨论多元函数极值的性质
要点一
总结词
极值的性质包括局部最大值和最小值、鞍点的存在以及多 变量函数的极值与一元函数的极值之间的关系。
要点二
详细描述
在多元函数中,极值具有局部性,即在一个小的区域内, 一个函数可能达到其最大值或最小值。鞍点是函数值在某 方向上增加而在另一方向上减少的点。此外,多变量函数 的极值与一元函数的极值之间存在一些关系,例如,在一 元函数中,可微函数在区间上的最大值和最小值必然在驻 点处取得,但在多元函数中,这一性质不再成立。
利用二阶条件求多元函数的极值
总结词
二阶条件是进一步确定极值点的工具,通过判断二阶偏导数的符号,我们可以确定是否为极值点。
详细描述
在得到临界点后,我们需要进一步判断这些点是否为极值点。这需要检查二阶偏导数的符号。如果所 有二阶偏导数在临界点处都为正,则该点为极小值点;如果所有二阶偏导数在临界点处都为负,则该 点为极大值点;如果既有正又有负,则该点不是极值点。
多元函数微分学—全微分及其运用(高等数学课件)
典 型 例 题 讲 解
例2 求函数 z ( x y )e xy 在点(1,2)处的全微分.
z
解: e xy y ( x y )e xy (1 xy y 2 )e xy,
x
z
例2
e xy 求函数计算函数,在点(1,2)处的全微分。
x( x y )e xy (1 xy x 2 )e xy,
用公式(1):
z dz f x( x0 , y0 )x f y ( x0 , y0 )y
二、典型例题讲解
例1 有一金属制成的圆柱体,受热后发生形变,它的半径由20 cm 增大到
20.05 cm ,高由50 cm 增加到50.09cm,求此圆柱体体积变化的近似值.
解: 设圆柱体的半径、高和体积分别为 、ℎ 和, 它们的增量分别记为
多元函数的微分学
多元函数的全微分
知识点讲解
1.全微分的定义
2.可微、连续、可偏导之间的关系
3.全微分的求法
全微分的定义
1.全改变量
设函数 z f ( x, y ) 在点 P0 ( x0 , y0 ) 的某个邻域内有定义,自变量、在0 、0
的改变量分别为 x, y ,全增量:
z f ( x0 x, y0 y ) f ( x0 , y0 )
x
y
z
由公式知:求全微分的步骤如下:
1.求偏导数;
2.套公式得全微分.
f ( x, y )
典 型 例 题 讲 解
例1 求函数 z x 2 y xy 2 的全微分.
解:
z
z
2 xy y 2 , x 2 2 xy
x
y
dz (2 xy y 2 )dx ( x 2 2 xy)dy.
7多元函数微分学
(94,下,期末)
6. 设 z = tan y2 ,则 dz = sec2 y2 ( 2 y dy − ( y )2 dx) 。
x
xx
x
(93,下,期末)
7.
设u =
cos y
xe x ,则 du
(1, π ) 2
= (1+ π )dx − dy 。 2
(99,下,期中)
【解】 u 关于变量 x, y 求全微分,然后将 x = 1, y = π 代入其中。 2
(A)12
1
(B)
13
12
(C)
13
12
(D)
169
[ C ](94,下,期末)
【解】 曲线上任一点 (x, y, z) 处的切线的方向向量
G
a = {2x, 2y, 0}×{0, 2y, 2z} = {4yz, −4xz, 4xy}
G
G
于是 a (1,3,4) = 4{12, −4, 3} 。故法平面 S0 的法向量可取为 n = {12, −4,3} ,
(x0 , y0 ) 处可微
— 148 —
(C)若 f (x, y) 在点 (x0 , y0 ) 处可微,则 fx (x, y), f y (x, y) 在点 (x0 , y0 ) 处连续
(D)若 f (x, y) 在点 (x0 , y0 ) 处可微,则 fx (x0 , y0 ), f y (x0 , y0 ) 存在,并且 f (x, y) 在点
(A) lim f (x, y) 必不存在 x → x0 y→ y0
(B) f (x0 , y0 ) 必不存在
(C) f (x, y) 在点 (x0 , y0 ) 必不可微
(D) fx (x0 , y0 ), f y (x0 , y0 ) 必不存在
第七章 多元函数的微分学
第七章多元函数的微分学一、多元函数微分学网络图二、内容与要求1.理解多元函数的概念,理解二元函数的几何意义。
2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4.掌握多元复合函数一阶、二阶偏导数的求法。
5.会求多元隐函数的偏导数。
6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
重点多元函数偏导数和全微分的概念,多元复合函数一阶、二阶偏导数的求法。
用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。
难点多元复合函数二阶偏导数的求法。
用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。
三、概念、定理的理解与典型错误分析1.求多元函数极限的方法(1)利用初等多元函数的连续性,即若是初等函数,在的定义域中,则注:所谓的初等多元函数就是用一个数学表达式给出的解析式. (2)利用多元函数极限的四则运算。
(3)转化为一元函数的极限,利用一元函数的极限来计算.(4)对于证明或求时,感觉极限可能时零,而直接又不容易证明或计算,这时可用夹逼定理,即而由夹逼定理知从而2.判断多元函数极限不存在的方法(1)选取两条特殊的路径,而函数值的极限存在,但不相等,则不存在。
注意:与的区别,前面两个本质是两次求一元函数的极限,我们称为求累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。
例1而知不存在. 例2在原点的两个累次极限都不存在,但是由于,因此.由例1知两个累次极限存在,但二重极限不存在,由例2知两个累次极限不存在,但二重极限存在,但我们有下面的结论。
定理7。
多元函数微分学
2 2
问在(0,0)处,f(x, y)的偏导数是否存在?偏 Biblioteka 数是否连续?f(x, y)是否可微?
5.方向导数 , 定义5 设 z f ( x , y )在 点M 0 ( x0, y0 )的 某 邻 域 内 有 定 义
xy si n x y ) ( 证 明l i m 0. 2 2 x 0 x y y 0
si n ( ) xy 求lim x 0 y y 0
例2
例3
xy 2 lim 2 是否存在? 4 x 0 x y y0
xy l n (x 2 y 2 ) x 2 y 2 0, 研 究 函 数 ( x, y) f 0 x2 y2 0 在( 0,0)处 的 连 续 性 。
(2) z x 4 y 3 2 x
在1, 2处
( 34dx 12dy)
xy x2 y2 0 2 例9 设f ( x , y ) x y 2 x2 y2 0 0 求f x (0,0), f y (0,0), 并 讨 论 f ( x , y ) 在 (0,0) 处 的 可 微 性 .
在 点M 0沿 任 一 方 向的 方 向 导 数 都 存 在 , 且 l
M0 M0
当 l 与grad f ( M 0 )同方向时,z在M 0的方向 导数取最大值,且最大 grad f ( M 0 ), 值 当 l 与grad f ( M 0 )反方向时,z在M 0的方向 导数取最小值,且最小 grad f ( M 0 ) 值
多元函数微分法
1. 多元函数的极限:
多元函数微分学(共184张PPT)
z
sin
x2
1 y2
1
• 在 点圆 都周 是x2间 断y2 点1,是上一没条有曲定线义,. 所以该圆周上各
• 性质1(最大值和最小值定理) 在有界闭区域 D上的多元连续函数,在D上一定有最大值和最小
值.
• 在D上至少有一点 及一点 ,使得 为最大 值而 为最小值,P 即1 对于一切P 2 P∈D,有f ( P1 )
•
P
于E的点,也有不属于E的点,
•
E
则称P为E的边界点(图8-2).
•
设D是开集.如果对于D内的
• 图 8-1 任何两点,都可用折线连结起
上一页 下一页 返 回
•
来,而且该折线上的点都属于D,
•
P 则称开集D是连通的.
•
连通的开集称为区域或开区域.
•
E
开区域连同它的边界一起,称
•
为闭区域.
• 图 8-2
f( x x ,y ) f( x ,y ) A x ( x )
• 上式两边各除以 x ,再令 x 0而极限,就得
limf(xx,y)f(x,y)A • 从而 ,x 偏0导数 z 存 在x,而且等于A.同样可证
• =B.所以三式 x 成立.证毕.
z y
上一页 下一页 返 回
• 定理2(充分条件) 如果z=f(x,y)的偏导数
• 3.n维空间
• 设n为取定的一个自然数,我们称有序n元数组
•
的全体为n维空间,而每个有序n元数
(x1组,x2, ,xn) 称为n维空间中的一个点,数 称
(x1,x2, ,xn)
xi
上一页 下一页 返 回
• 为该点的第i个坐标,n维空间记为 .n
第七章 多元函数微积分
高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号 第一节 空间解析几何基础知识 第二节 多元函数的概念一.选择题1.方程22480x y z +-+=表示 (D ) (A )平面 (B )柱面 (C )球 (D )抛物面 2.函数)ln(1y x z +=的定义域 ( C )(A )0>+y x (B )0)ln(≠+y x (C )1>+y x (D )1≠+y x 3.设)1(-+=x f y z ,且当1=y x z =时,则)(y f = ( D )(A )1-y (B )y (C )2+y (D ))2(+y y4.若)0()l n(),(22>>--=y x y x x y x f ,则),(y x y x f -+= ( B )(A ))ln(y x - (B ))ln(2y x -(C ))ln (ln 21y x - (D ))ln(2y x - 二.填空题1.点(4,3,5)M -到x 轴的距离d2.若一球面以点(1,3,2)-为球心且过原点,则其方程为3.与Z 轴和点)1,3,1(-A 等距离的点的轨迹方程是_____ _ ___4. 球面:07442222=--+-++z y x z y x 的球心是点__________,半径=R __; 5. ln()z y x =-+的定义域6.设函数32(,)23f x y x xy y =-+,则(x f y =7.已知22),(y x xy y x f -=+,则=),(y x f 8.已知vu ww u w v u f ++=),,(,则),,(xy y x y x f -+=222(1)(3)(2)14x y z -+-++=2262110z x y z --++=(1,2,2)-422{(,)|1,0}x y x y y x +<>≥3()3x xy y -+2222(1)1(1)x xy x y y y --=++2()()xy xx y xy ++三.计算题1.y xy y x )sin(lim)0,2(),(→解:sin()xy xy ≤∴ 当(,)(2,0)x y →时,sin()2xy y→ 则原式=2 2.24lim)0,0(),(-+→xy xy y x解:2==∴原式=(,)(0,0)lim 2)4x y →=3.2222222)0,0(),()(cos 1limy x y x ey x y x +→++-解:2211()2x y -+∴原式=2222222(,)(0,0)1()2lim ()x y x y x y x y e+→++ =222(,)(0,0)1lim2x y x y e+→=12高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号第三节 偏导数 第四节 全微分一.选择题1.设),(y x f z =,则),(00y x xz ∂∂= ( B )(A )x y x f y y x x f x ∆-∆+∆+→∆),(),(lim00000(B )xy x f y x x f x ∆-∆+→∆),(),(lim 00000(C )x y x f y x x f x ∆-∆+→∆),(),(lim0000(D )xy x f y y x f x ∆-∆+→∆),(),(lim 000002.若xy z ln =,则dz 等于 ( B )(A )y x y x y y x x ln ln ln ln + (B )dy yxy dx x y y x x ln ln ln ln +(C )ln ln ln ln x xy x y ydx dy x + (D )xyy x ln ln 3.设22()z yf x y =-,则 11z zx y y∂∂+=∂∂ ( A ) (A )221()f x y y -; (B )4f yf y '+; (C )0; (D )1y二.填空题1.设)cos(2y x z =,则yz∂∂= 2.设22),(y x y x y x f +-+=,则=')4,3(x f3.设)sin(),(223y x ey x y x f xy--+=,则=)1,1(x f4.设432),,(z y x z y x f =,则),,(z y x f z =5.设函数2sin()(1y z y xy y e -=+-,则(1,0)|z x∂=∂6.设2232),(y xy x y x f -+=,则),(y x f xy''= 7.设y x e u xsin -=,则yx u∂∂∂2在点)1,2(π处的值为22sin()x x y -251e +2234x y z 14322e π-8.函数y x xy z ++=22arctan 的全微分=dz三.计算题 1.设xzyau )(1=, 求z y x u u u ''',,解: 1()'ln ln xz xzyx u zayy a -=-⋅ 1()1'ln xz xz yy u xzyaa --=- 1()'ln ln xz xzyz u xy aa y -=-⋅2.设)ln(2y x z +=,求在点(1,0)处的全微分 解:22dx ydydz x y+=+ (1,0)|d z d x = 3.设)11(yx ez +-=,求证z yz y x z x222=∂∂+∂∂ 证:11()21x y z e x x -+∂=∂ 11()21x y z ey y-+∂=∂ 1111()()22222211x yx yz z x y x e y ex y x y-+-+∂∂+=+∂∂=11()22x yez -+=4.验证 nx ey tkn sin 2-=满足22xyk t y ∂∂=∂∂证:22sin kn t y kn e nx t -∂=-∂ 2c o s k n t y n e n x x -∂=∂ 2222s i n k n ty n e n x x-∂=-∂ ∴22xy k t y ∂∂=∂∂22(4)(1)1()1()y x x dx dy xy xy +++++高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号第五节 多元复合函数与隐函数微分法(一)一.选择题1.设)(),,(,ln 2y v y x u v u z ψϕ===均为可微函数,则=∂∂yz( C ) (A )vu v u 2ln 2+(B )v u v y 2ln 2+ϕ (C )ψϕ'+v u v u y 2ln 2 (D )vu y ψϕ'22.设(,)2323z f x y x y =+,f 具有二阶连续偏导数,则2zx y∂=∂∂ (B )(A )226621112222615276f x y f x y f x yf '''''''+++ (B )()235211122226666f xy x y f x y f xy f '''''''++++ (C )()235111222666f xy x y f x y f ''''''+++ (D )226611122261527f x y f x y f ''''''++ 二.填空题1.设22v u z +=,而y x v y x u -=+=,,则yzx z ∂∂+∂∂= 2.设yx ez 2-=,而t x sin =,3t y =,则dtdz = 3.设z =)()(1y x y xy f x ++ϕ,f 和ϕ具有二阶连续导数,则yx z ∂∂∂2= '''()''(y f x y y x yϕϕ++++ 4.设f 具有一阶连续偏导数,),(22xye y xf u -=,则u x∂=∂ ;uy∂=∂ . 三.计算题1.设y x z arctan =,而v u x +=,v u y -=,求vz u z ∂∂+∂∂ 解:2211[]1()xz u x y yy∂=-∂+2211[]1()z x v y y y ∂=+∂+ 4()x y +22(cos 6)x y t t e--122''xy xf ye f +122''xy yf xe f -+222z z y u v x y ∂∂+=∂∂+2.设1)(2--=a z y e u ax ,而x a y sin =,xz cos =,求dx du 解:222cos sin ()111ax ax ax du a ae x e xe y z dx a a a =-++--- 2()1ax e yay az az a a=-++- 2222(1)sin (1)(1)1ax axa e x a e y a a a ++==-- 3.设sin()(,)x z xy x y =+ϕ,求2zx y∂∂∂,其中(,)u v ϕ有二阶偏导数。
高等数学课后习题答案--第七章
11、证明:函数 u ( x, t ) =
1 2a πt
e
−
( x −b ) 2 4 a 2t
满足热传导方程
∂u ∂ 2u = a2 2 。 ∂t ∂x
【解】
− ∂u ( x, t ) 1 =− e ∂t 8a 3 πt 5
( x −b ) 2 4 a 2t
(− x 2 + 2bx + 2a 2 t − b 2 )
x ⎧ ⎪u = e cos y, (1) ⎨ x ⎪ ⎩v = e sin y;
⎛ e x cos y − e x sin y ⎞ ⎟ 【答案】 (1) J = ⎜ ⎜ e x sin y e x cos y ⎟ ; ⎝ ⎠
⎧u = ln x 2 + y 2 , ⎪ (2) ⎨ y ⎪v = arctan . x ⎩ x y ⎞ ⎛ ⎜ 2 ⎟ 2 2 x +y x + y2 ⎟ ⎜ . (2) J = y x ⎟ ⎜ − ⎜ x2 + y2 x2 + y 2 ⎟ ⎝ ⎠
(1) u = sin(ax − by ); (2) u = e ax cos bx; (3) u = ye xy ; (4) u = x ln y . 【答案】 (1) a 2 sin( −ax + by ) , − ab sin(− ax + by ) , b 2 sin(− ax + by ) ; (2) a 2e ax cos(by ) , − abe ax sin(by ) , − b 2e ax cos(by ) ; (3) y 3e xy , ( xy 2 + 2 y )e xy , ( x 2 y + 2 x)e xy ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.1 空间解析几何基本知识教学内容提要1. 空间直角坐标系;2. 空间两点间的距离公式与两点连线的中点坐标公式;3. 简单的曲面方程。
教学目的与要求1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式;2. 了解常用二次曲面的方程及其图形。
教学重点与难点常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程:一、空间直角坐标系1.空间直角坐标系的建立过空间定点0,作三条互相垂直的数轴,他们都以0为原点且一般具有相同的长度单位。
这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。
通常把x 轴和y 轴配置在水平面上,z 轴z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-=特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++=。
例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。
二、曲面及其方程的概念1.曲面方程在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。
例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。
三、几种常见的曲面及其方程1、平面的一般方程任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面.例3 求通过x 轴和点(4, -3, -1)的平面的方程.解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有 -3B -C =0, 或 C =-3B .将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为 y -3z =0.例4 设一平面与x 、y 、z 轴的交点依次为P (a , 0, 0)、Q (0, b , 0)、R (0, 0, c )三点, 求这平面的方程(其中a ≠0, b ≠0, c ≠0). 解 设所求平面的方程为 Ax +By +Cz +D =0.因为点P (a , 0, 0)、Q (0, b , 0)、R (0, 0, c )都在这平面上, 所以点P 、Q 、R 的坐标都满足所设方程, 即有⎪⎩⎪⎨⎧=+=+=+,0,0,0D cC D bB D aA由此得 a D A -=, b D B -=, c D C -=.将其代入所设方程, 得0=+---D z cD y b D x a D ,即 1=++cz b ya x .上述方程叫做平面的截距式方程,而a 、b 、c 依次叫做平面在x 、y 、z 轴上的截距. 2、柱面例5 方程x 2+y 2=R 2表示怎样的曲面?解 方程x 2+y 2=R 2在xOy 面上表示圆心在原点O 、半径为R 的圆. 在空间直角坐标系中, 这方程不含竖坐标z , 即不论空间点的竖坐标z 怎样, 只要它的横坐标x 和纵坐标y 能满足这方程, 那么这些点就在这曲面上. 也就是说, 过xOy 面上的圆x 2+y 2=R 2, 且平行于z 轴的直线一定在x 2+y 2=R 2表示的曲面上. 所以这个曲面可以看成是由平行于z 轴的直线l 沿xOy 面上的圆x 2+y 2=R 2移动而形成的. 这曲面叫做圆柱面, xOy 面上的圆x 2+y 2=R 2叫做它的准线, 这平行于z 轴的直线l 叫做它的母线.柱面: 平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面, 定曲线C 叫做柱面的准线, 动直线L 叫做柱面的母线.上面我们看到, 不含z 的方程x 2+y 2=R 2在空间直角坐标系中表示圆柱面, 它的母线平行于z 轴, 它的准线是xOy 面上的圆x 2+y 2=R 2. 一般地, 只含x 、y 而缺z 的方程F (x , y )=0, 在空间直角坐标系中表示母线平行于z 轴的柱面, 其准线是xOy 面上的曲线C : F (x , y )=0.例如, 方程y 2=2x 表示母线平行于z 轴的柱面, 它的准线是xOy 面上的抛物线y 2 =2x , 该柱面叫做抛物柱面.又如, 方程 x -y =0表示母线平行于z 轴的柱面, 其准线是xOy 面的直线 x -y =0, 所以它是过z 轴的平面.类似地, 只含x 、z 而缺y 的方程G (x , z )=0和只含y 、z 而缺x 的方程H (y , z )=0分别表示母线平行于y 轴和x 轴的柱面.例如, 方程 x -z =0表示母线平行于y 轴的柱面, 其准线是zOx 面上的直线 x -z =0. 所以它是过y 轴的平面.3、二次曲面与平面解析几何中规定的二次曲线相类似, 我们把三元二次方程所表示的曲面叫做二次曲面. 把平面叫做一次曲面.怎样了解三元方程F (x , y , z )=0所表示的曲面的形状呢? 方法之一是用坐标面和平行于坐标面的平面与曲面相截, 考察其交线的形状, 然后加以综合, 从而了解曲面的立体形状. 这种方法叫做截痕法.研究曲面的另一种方程是伸缩变形法:设S 是一个曲面, 其方程为F (x , y , z )=0, S '是将曲面S 沿x 轴方向伸缩λ倍所得的曲面. 显然, 若(x , y , z )∈S , 则(λx , y , z )∈S '; 若(x , y , z )∈S ', 则S z y x ∈) , ,1(λ.因此, 对于任意的(x , y , z )∈S ', 有0) , ,1(=z y x F λ, 即0) , ,1(=z y x F λ是曲面S '的方程.例如,把圆锥面2222z a y x =+沿y 轴方向伸缩ab 倍, 所得曲面的方程为2222)(z a y b a x =+, 即22222z by a x =+.(1)椭圆锥面由方程22222z by a x =+所表示的曲面称为椭圆锥面.圆锥曲面在y 轴方向伸缩而得的曲面.把圆锥面2222z a y x =+沿y 轴方向伸缩a b 倍, 所得曲面称为椭圆锥面22222z by a x =+.以垂直于z 轴的平面z =t 截此曲面, 当t =0时得一点(0, 0, 0); 当t ≠0时, 得平面z =t 上的椭圆1)()(22=+bt y at x .当t 变化时, 上式表示一族长短轴比例不变的椭圆, 当|t |从大到小并变为0时, 这族椭圆从大到小并缩为一点. 综合上述讨论, 可得椭圆锥面的形状如图. (2)椭球面由方程1222222=++cz b y a x 所表示的曲面称为椭球面. 球面在x 轴、y 轴或z 轴方向伸缩而得的曲面.把x 2+y 2+z 2=a 2沿z 轴方向伸缩a c 倍, 得旋转椭球面122222=++cz a y x ; 再沿y 轴方向伸缩a b倍, 即得椭球面1222222=++cz b y a x . (3)单叶双曲面由方程1222222=-+cz b y a x 所表示的曲面称为单叶双曲面.把zOx 面上的双曲线12222=-c z a x 绕z 轴旋转, 得旋转单叶双曲面122222=-+cz a y x ; 再沿y 轴方向伸缩a b 倍, 即得单叶双曲面1222222=-+cz b y a x .(4)双叶双曲面由方程1222222=--cz b y a x 所表示的曲面称为双叶双曲面.把zOx 面上的双曲线12222=-c z a x 绕x 轴旋转, 得旋转双叶双曲面122222=+-cy z a x ; 再沿y 轴方向伸缩c b 倍, 即得双叶双曲面1222222=--cz b y a x .(5)椭圆抛物面由方程z by a x =+2222所表示的曲面称为椭圆抛物面.把zOx 面上的抛物线z a x =22绕z 轴旋转, 所得曲面叫做旋转抛物面z a y x =+222, 再沿y 轴方向伸缩a b 倍, 所得曲面叫做椭圆抛物面z by a x =+2222(6)双曲抛物面.由方程z by a x =-2222所表示的曲面称为双曲抛物面. 双曲抛物面又称马鞍面.用平面x =t 截此曲面, 所得截痕l 为平面x =t 上的抛物线22a t z b y -=-, 此抛物线开口朝下, 其项点坐标为) ,0 ,(2a t t . 当t 变化时, l 的形状不变, 位置只作平移, 而l的项点的轨迹L 为平面y =0上的抛物线 22ax z =.因此, 以l 为母线, L 为准线, 母线l 的项点在准线L 上滑动, 且母线作平行移动, 这样得到的曲面便是双曲抛物面例6 分析方程22y x z +=,22y x z +=及222R y x =+,并作出它们的图形。
作业:练习册第33次§7.2 多元函数的概念、极限与连续教学内容提要1.二元函数的定义与二元函数的定义域;二元函数的几何表示。
2. 二元函数的极限;3. 二元函数的连续性与间断点。
教学目的与要求1.理解多元函数的概念;了解二元函数的几何表示。
2.了解二元函数的极限概念;3. 了解二元函数的连续性与间断点。
教学重点与难点二元函数的几何表示. 二元函数极限;二元函数的连续性与间断点。
教学时数 4 教学过程:一、平面区域 1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。
邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为 U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U,即}||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集. 闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域. 例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..二、二元函数的定义1.引例例1 圆柱体的体积V 和它的底面半径r 、高h 之间具有关系h r V 2π=。