第三讲 多元线性回归模型检验及stata软件应用(1)

合集下载

回归分析及Stata软件应用

回归分析及Stata软件应用

阅读感受
在阅读这本书的过程中,我不仅学会了如何进行回归分析,还学会了如何更 有效地使用Stata软件。这些知识和技能将对我的未来学习和职业生涯产生积极 的影响。我相信这本书对于其他读者也会有很大的帮助,无论是初学者还是有一 定经验的统计学者。
目录分析
目录分析
在当今的统计分析领域,回归分析是一种广泛应用的方法,用于探索变量之 间的关系,以及预测和解释数据的变化。而Stata软件则是一款功能强大且易用 的统计软件,被广泛应用于各种数据分析和处理任务中。《回归分析及Stata软 件应用》这本书,以其独特的视角和实用的方法,为读者提供了回归分析和 Stata软件应用方面的深入指导。
目录分析
在这一章中,本书介绍了一些高级的回归分析方法,包括多重共线性处理、 交互效应模型、时间序列回归模型等。还介绍了如何在Stata中实现这些方法。
目录分析
在这一章中,本书详细介绍了Stata编程的基础知识和自定义函数的编写方法。 通过学习这一章,读者可以了解如何编写自己的Stata程序,以实现更复杂的分 析和数据处理任务。
阅读感受
《回归分析及Stata软件应用》是一本理论与实践相结合的好书。它不仅提供 了回归分析的基础知识,还通过Stata软件的应用展示了如何在实际问题中应用 这些知识。这本书的案例和实例非常丰富,使得我可以深入理解回归分析的应用 场景和技巧。书中的软件操作指南也为我提供了极大的帮助,让我可以轻松地使 用Stata软件进行各种统计分析任务。
精彩摘录
Stata软件是一款功能强大的统计分析软件,广泛应用于各种领域。它可以帮 助用户完成从数据管理到高级统计分析的各种任务。Stata软件支持多种回归分 析方法,包括线性回归、逻辑回归、有序回归等。
精彩摘录

第三章多元线性回归模型(stata)

第三章多元线性回归模型(stata)

一、邹式检验(突变点检验、稳定性检验)1.突变点检验1985—2002年中国家用汽车拥有量(t y ,万辆)与城镇居民家庭人均可支配收入(t x ,元),数据见表。

表 中国家用汽车拥有量(t y )与城镇居民家庭人均可支配收入(t x )数据年份 t y (万辆) t x (元)年份 t y (万辆) t x (元)1985 1994 1986 1995 4283 1987 1996 1988 1997 1989 1998 1990 1999 5854 1991 2000 6280 1992 2001 19932002下图是关于t y 和t x 的散点图:从上图可以看出,1996年是一个突变点,当城镇居民家庭人均可支配收入突破元之后,城镇居民家庭购买家用汽车的能力大大提高。

现在用邹突变点检验法检验1996年是不是一个突变点。

:两个字样本(1985—1995年,1996—2002年)相对应的模型回归参数相等HH:备择假设是两个子样本对应的回归参数不等。

1在1985—2002年样本范围内做回归。

在回归结果中作如下步骤(邹氏检验):1、 Chow 模型稳定性检验(lrtest)用似然比作chow检验,chow检验的零假设:无结构变化,小概率发生结果变化* 估计前阶段模型* 估计后阶段模型* 整个区间上的估计结果保存为All* 用似然比检验检验结构没有发生变化的约束得到结果如下;(如何解释)2.稳定性检验(邹氏稳定性检验)以表为例,在用1985—1999年数据建立的模型基础上,检验当把2000—2002年数据加入样本后,模型的回归参数时候出现显著性变化。

* 用F-test作chow间断点检验检验模型稳定性* chow检验的零假设:无结构变化,小概率发生结果变化* 估计前阶段模型* 估计后阶段模型* 整个区间上的估计结果保存为All* 用F 检验检验结构没有发生变化的约束*计算和显示 F 检验统计量公式,零假设:无结构变化然后 dis f_test 则 得到结果;* F 统计量的临界概率然后 得到结果* F 统计量的临界值然后 得到结果(如何解释)二、似然比(LR )检验有中国国债发行总量(t DEBT ,亿元)模型如下:0123t t t t t DEBT GDP DEF REPAY u ββββ=++++其中t GDP 表示国内生产总值(百亿元),t DEF 表示年财政赤字额(亿元),t REPAY 表示年还本付息额(亿元)。

多元线性回归模型检验

多元线性回归模型检验

多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。

在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。

本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。

一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。

多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。

二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。

常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。

我们可以通过假设检验来验证这些假设的成立情况。

•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。

•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。

•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。

•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。

2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。

计量经济学Stata软件应用

计量经济学Stata软件应用

40
30
20
10
0
0
5
10
15
20
years of education
Fitted values
hourly wage
整理ppt
13
三、简单回归分析的Stata软件操作实例
7、wage对edu的OLS回归,只使用年龄小于或等于30岁的样
本。命令如下:
reg wage edu if age<=30 得到以下运行结果,保存该运行结果;
入wage,在Independent Variables选项框中选择或键入edu→点击OK即可
整理ppt
11
三、简单回归分析的Stata软件操作实例
5、生成新变量 z 为上一个回归的拟合值,生成新变量 u 为 上一个回归的残差;然后根据 u 对数据进行从小到大的排 序,并列出 u 最小的5个观测。 命令如下: predict z (生成拟合值) predict u, residual ( 生成残差 ) sort u (根据 u 对数据从小到大排序) list wage z u in 1/5 (列出 u 最小的5个观测值以及对应的实
残差平方和(SSR)和总离差平方和(SST);第3列为自由度,分别为k=1,
n-k-1=1225-1-1=1223,n-1=1225-1=1224;第4列为均方和(MSS),由各项
平方和除以相应的自由度得到。
(3) 表右上方区域给出了样本数(Number of obs)、判定系数(R-squared)、
8.06 0.000 7.81 0.000
.2979069 2.684359
.4895815 4.485031
(1) 表下方区域为基本的回归结果。第1列依次为被解释变量wage,解释 变量edu,截距项constant;第2列回归系数的OLS估计值;第3列回归系 数的标准误;第4列回归系数的 t 统计量值;

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法多元线性回归模型是常用于数据分析和预测的方法,它可以用于研究多个自变量与因变量之间的关系。

然而,仅仅使用多元线性回归模型进行参数估计是不够的,我们还需要对模型进行各种检验以确保模型的可靠性和有效性。

下面将介绍一些常用的多元线性回归模型的检验方法。

首先是模型的整体显著性检验。

在多元线性回归模型中,我们希望知道所构建的模型是否能够显著解释因变量的变异。

常见的整体显著性检验方法有F检验和显著性检查表。

F检验是通过比较回归模型的回归平方和和残差平方和的比值来对模型的整体显著性进行检验。

若F值大于一定的临界值,则可以拒绝原假设,即模型具有整体显著性。

通常,临界值是根据置信水平和自由度来确定的。

显著性检查表是一种常用的汇总表格,它可以提供关于回归模型的显著性水平、标准误差、置信区间和显著性因素的信息。

通过查找显著性检查表,我们可以评估模型的显著性。

其次是模型的参数估计检验。

在多元线性回归模型中,我们希望知道每个自变量对因变量的影响是否显著。

通常使用t检验来对模型的参数估计进行检验。

t检验是通过对模型的回归系数进行检验来评估自变量的影响是否显著。

与F检验类似,t检验也是基于假设检验原理,通过比较t值和临界值来决定是否拒绝原假设。

通常,临界值可以通过t分布表或计算机软件来获取。

另外,我们还可以使用相关系数来评估模型的拟合程度。

相关系数可以用来衡量自变量与因变量之间的线性关系强度,常见的相关系数包括Pearson相关系数和Spearman相关系数。

Pearson相关系数适用于自变量和因变量都是连续变量的情况,它衡量的是两个变量之间的线性关系强度。

取值范围为-1到1,绝对值越接近1表示关系越强。

Spearman相关系数适用于自变量和因变量至少有一个是有序变量或者都是有序变量的情况,它衡量的是两个变量之间的单调关系强度。

取值范围也是-1到1,绝对值越接近1表示关系越强。

最后,我们还可以使用残差分析来评估模型的拟合程度和误差分布。

第三章(1) 多元线性回归模型课件

第三章(1) 多元线性回归模型课件

分离差的大小
解释的那部分离差的大小。也
称剩余平方和。
第三章 多元线性回归模型
§ 3-3 多元线性回归模型的统计检验 一、 拟合优度检验 检验模型对样本观测值的拟合程度。用在总离差分解 基础上确定的可决系数R2 (调整的可决系数 ) 度量。 1、总离差平方和的分解
总离差平方和TSS 回归平方和ESS
3、随机误差项在不同 样本点之间是独立的,
Cov( i,
不存在序列相关
因为 i与 j相互独立,有:
j)=0 i≠j
无自相关假定表明:产生 误差(干扰)的因素是完 全随机的,此次干扰与彼 次干扰互不相关,互相独 立。由此应变量Yi的序列 值之间也互不相关。
第三章 多元线性回归模型
§ 3-1 多元线性回归模型及其基本假定
3、有效性(最小方差性):
指在所有线性、无偏估计量中, OLS参数估计量的 方差最小。
4、 服从正态分布,即:
其中,
, G2是随机误差项的方差,
Cjj是矩阵(X’X)-1 中第j行第j列位置上的元素。
第三章 多元线性回归模型
§ 3-2 多元线性回归模型的参数估计
一、 参数的最小二乘估计
二、 OLS估计量的统计性质及其分布
三、随机误差项方差Q2的估 计
参数估计的另一项任务是: 求随机误差项 i 的分布参数
称作回归标准差 (standard error of regression), 常作为对所估计回归线的拟
合优度的简单度量。
i~N(0, Q2)
随机误差项 i 的 方差的估计量为:
可以
证明:
说明 是QS 的无偏估计量。
t-Statistic 6.411848 22.00035 4.187969

第三讲_多元线性回归模型检验及stata软件应用

第三讲_多元线性回归模型检验及stata软件应用

F检验的思想来自于总离差平方和的分解式: TSS=ESS+RSS
2 ˆ ESS y 由 于 回 归 平 方 和 解 释 变 量 X 的 联 合 体 对 被 解 i 是
释 变 量 Y 的 线 性 作 用 的 结 果 , 考 虑 比 值
2 ˆ ESS /RSS y i 2 e i
如果这个比值较大,则X的联合体对Y的解释程度 高,可认为总体存在线性关系,反之总体上可能不存 在线性关系。 因此,可通过该比值的大小对总体线性关系进行推 断。
**关于P值:以t统计量的观测值作为临界值,并计算该检 验的响应显著水平,这就是P值。
P值检验法(p-value test)
p 值的概念: 为了方便,将 t 统计量的值记为

பைடு நூலகம்t0


Se
j j
计算 称为p
p=P{|t|>t 0}
值(p-value )

通常的计量经济学软件都可自动计算出p 值
Excel格式数据的读取
直接拷贝,粘贴到stata中
使用Stat
transfer把其它格式的数据转成 stata格式的数据 读入ASCII格式数据文件:比较麻烦
常见数据格式
格式:dta 文本格式:txt Excel格式:xls 其它格式:sas、spss、gauss等
Stata
检验统计量2250nntn???????当用正态已知时当未知时也可用正态n用分布很小1t变量iiiibtbsb???其中1ixxsbs???12iiiixxbn????2t检验统计量给定显著性水平??可得到临界值t??2nk由样本求出统计量t的数值通过t??t??2nk或t??t??2nk来拒绝或不能拒绝原假设h0从而判定对应的解释变量是否应包括在模型中

多元线性回归分析模型应用

多元线性回归分析模型应用

多元线性回归分析模型应用多元线性回归分析模型是一种用于预测和解释多个自变量对因变量的影响的统计分析方法。

它是用于描述多个自变量与一个因变量之间的线性关系的模型。

多元线性回归分析模型在许多领域中都有广泛的应用,包括经济学、社会学、金融学、市场营销学等。

下面以经济学领域为例,介绍多元线性回归分析模型的应用。

经济学是多元线性回归分析模型的重要应用领域之一、在经济学中,多元线性回归分析模型被广泛用于预测和解释经济现象。

例如,经济学家可以使用多元线性回归模型来分析工资与教育程度、工作经验、性别等自变量之间的关系。

通过对这些自变量的影响进行量化和分析,可以得出结论并制定相应政策。

此外,多元线性回归模型还可以用于解释商品价格、消费者支出、国内生产总值等宏观经济现象。

在金融学领域,多元线性回归分析模型可以用于预测股票价格、货币汇率等金融市场现象。

金融学家可以通过收集和分析市场数据,构建多元线性回归模型来解释这些现象。

例如,可以建立一个多元线性回归模型来预测股票价格,并使用该模型来制定投资策略。

在社会学领域,多元线性回归分析模型可以用于研究社会问题和社会现象。

例如,社会学家可以使用多元线性回归模型来分析犯罪率与失业率、教育水平、贫困程度等自变量之间的关系。

通过对这些自变量的影响进行分析,可以得出对社会问题的解释和解决方案。

在市场营销学领域,多元线性回归分析模型可以用于预测和解释市场行为。

例如,市场营销人员可以使用多元线性回归模型来分析广告投入、产品价格、产品特性等自变量对销售量的影响。

通过对这些自变量的影响进行分析,可以制定相应的市场营销策略。

总之,多元线性回归分析模型在各个领域中都有广泛的应用。

无论是经济学、金融学、社会学还是市场营销学,多元线性回归分析模型都是解决实际问题和预测趋势的重要工具。

通过对自变量与因变量之间的关系进行建模和分析,可以得出结论并为决策提供依据。

不过,在应用多元线性回归分析模型时,还需要注意模型的假设和前提条件,以及对结果的解释和使用。

计量经济学Stata软件应用【Stata软件之回归分析】次课PPT课件

计量经济学Stata软件应用【Stata软件之回归分析】次课PPT课件

obs:
1,225
vars:
11
25 Aug 2009 08:38
size:
58,800 (99.4% of memory free)
storage display variable name type format
value label
variable label
age female married edulevel
y 1xu
即假定截距系数 0 0 时,该模型被称为过原点回归;过 原点回归在实际中有一定的应用,但除非有非常明确的理 论分析表明 0 0 ,否则不宜轻易使用过原点回归模型。
.
4
二、简单回归分析的Stata基本命令
➢ regress y x 以 y 为被解释变量,x 为解释变量进行普通最小二乘 (OLS)回归。regress命令可简写为横线上方的三个字 母reg。
结果显示“工资方程1.dta”数据文件包含1225个样本和11个 变
量;11个变量的定义及说明见第3列。
.
8Hale Waihona Puke 三、简单回归分析的Stata软件操作实例
3、变量的描述性统计分析。对于定量变量,使用summarize 命令:su age edu exp expsq wage lnwage,得到以下运行结 果,保存该运行结果;
2、给出数据的简要描述。使用describe命令,简写为: des 得到以下运行结果;
.
7
三、简单回归分析的Stata软件操作实例
Contains data fromD:\½²¿Î×ÊÁÏ\ÖÜÝíµÄÉÏ¿Î×ÊÁÏ\Êý¾Ý\¡¾ÖØÒª¡¿\¡¾¼ÆÁ¿¾­¼ÃѧÈí¼þÓ¦Ó
> ÿμþ¡¿\10649289\stata10\¹¤×Ê·½³Ì1.dta

(整理)多元线性回归模型的各种检验方法.

(整理)多元线性回归模型的各种检验方法.

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

多元线性回归模型

多元线性回归模型

多元线性回归模型多元线性回归模型是一种广泛应用于统计学和机器学习领域的预测模型。

它通过使用多个自变量来建立与因变量之间的线性关系,从而进行预测和分析。

在本文中,我们将介绍多元线性回归模型的基本概念、应用场景以及建模过程。

【第一部分:多元线性回归模型的基本概念】多元线性回归模型是基于自变量与因变量之间的线性关系进行建模和预测的模型。

它假设自变量之间相互独立,并且与因变量之间存在线性关系。

多元线性回归模型的数学表达式如下:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。

回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。

【第二部分:多元线性回归模型的应用场景】多元线性回归模型可以应用于各种预测和分析场景。

以下是一些常见的应用场景:1. 经济学:多元线性回归模型可以用于预测GDP增长率、失业率等经济指标,揭示不同自变量对经济变量的影响。

2. 医学研究:多元线性回归模型可以用于预测患者的生存时间、治疗效果等医学相关指标,帮助医生做出决策。

3. 市场研究:多元线性回归模型可以用于预测产品销量、市场份额等市场相关指标,帮助企业制定营销策略。

4. 社会科学:多元线性回归模型可以用于研究教育水平对收入的影响、家庭背景对孩子成绩的影响等社会科学问题。

【第三部分:多元线性回归模型的建模过程】建立多元线性回归模型的过程包括以下几个步骤:1. 数据收集:收集自变量和因变量的数据,确保数据的准确性和完整性。

2. 数据清洗:处理缺失值、异常值和离群点,保证数据的可靠性和一致性。

3. 特征选择:根据自变量与因变量之间的相关性,选择最相关的自变量作为模型的输入特征。

4. 模型训练:使用收集到的数据,利用最小二乘法等统计方法估计回归系数。

5. 模型评估:使用误差指标(如均方误差、决定系数等)评估模型的拟合程度和预测性能。

Stata软件之回归分析

Stata软件之回归分析
40 0
0
10
20
30
5
10 years of education Fitted values
15
20
hourly wage
三、简单回归分析的Stata软件操作实例
7、wage对edu的OLS回归,只使用年龄小于或等于30岁的样 本。命令如下: reg wage edu if age<=30 得到以下运行结果,保存该运行结果;
Variable age edu exp expsq wage lnwage Obs 1225 1225 1225 1225 1225 1225 Mean 36.79755 8.992653 21.8049 613.9776 7.1255 1.808352 Std. Dev. 10.67631 2.719068 11.77443 548.3072 4.766828 .5307399 Min 16 0 0 0 1.25 .2231435 Max 60 19 50 2500 37.5 3.624341
计量经济软件应用
——Stata软件实验之一元、 多元回归分析
内容概要
一、实验目的 二、简单回归分析的Stata基本命令 三、简单回归分析的Stata软件操作实例 四、多元回归分析的Stata基本命令 五、多元回归分析的Stata软件操作实例
一、实验目的:
掌握运用Stata软件进行简单回归分析以及 多元回归分析的操作方法和步骤,并能看懂 Stata软件运行结果。
三、简单回归分析的Stata软件操作实例
1、打开数据文件。直接双击“工资方程1.dta”文件;或者点 击Stata窗口工具栏最左侧的Open键,然后选择“工资方程 1.dta”即可;或者先复制Excel表S-2中的数据,再点击Stata 窗口工具栏右起第4个Data Editor键,将数据粘贴到打开的 数据编辑窗口中,然后关闭该数据编辑窗口,点击工具栏左 起第二个Save键保存数据,保存时需要给数据文件命名。 2、给出数据的简要描述。使用describe命令,简写为: des 得到以下运行结果;

Stata多元线性回归模型建立及检验

Stata多元线性回归模型建立及检验

Stata多元线性回归模型建立及检验——关于这篇笔记,有的人嘴上说着不想写,下笔实际上很快乐。

第一步导入excel文件clear #清除所有变量 cd D:\stata_data #数据保存的地址 import excel sample.xlsx, firstrow #导入数据,文件名为sample.xlsx,把第一行作为变量名 tsset t#建立时间序列若不存在时间变量可忽略此处以x1,x2,x3,x3作为自变量,y作为因变量,t为时间变量。

若需建立对数模型,则可利用generate生成新变量。

generate logy = log10(y)#生成变量名为logy的新变量第二步多变量线性回归regress y x1 x2 x3#对模型进行最小二乘法估计运行结果回归方程:第三步多重共线性检验estat vif#方差扩大因子法检验当VIF≥10,则认为自变量之间有严重的多重共线性。

运行结果若模型出现多重共线性,可以剔除一些不重要的解释变量,或增大样本量。

第四步异方差检验imtest,white#White检验如果输出的P-Value显著小于0.05,则拒绝原假设,认为存在异方差性。

运行结果若模型出现异方差性,则不能用普通的最小二乘法进行估计,需要对原模型进行变换,使之满足同方差性假设,然后进行模型参数估计。

通常可以采用加权最小二乘法(weighted least square,WLS)或BOX-COX变换法。

第五步序列相关性检验首先保证所用的数据必须为时间序列数据。

如果原数据不是时间序列数据,则需要自行定义一个:gen n=_n #生成一个时间序列的标志变量ntsset n #将这个数据集定义为依据时间序列标志变量n定义的时间序列数据接下来介绍三种检验方法(一)残差图检验predict e,r#生成残差值e scatter eLe#生成残差散点图运行结果(二)DW检验(一阶自相关问题的常用检验法)estat dwatson#DW检验经验上,DW值在1.8-2.2之间时接受原假设,说明模型不存在一阶自相关,若DW值接近0或4,则拒绝原假设,认为存在一阶自相关。

《多元线性回归模型》课件

《多元线性回归模型》课件

参数估计Biblioteka 最小二乘法使用最小二乘法估计模型中的 回归系数。
最大似然估计
通过最大似然估计法求解模型 参数。
岭回归
使用岭回归克服多重共线性问 题。
模型评估
R方值
通过R方值评估模型对数据的拟合程度。
调整R方值
调整R方值可纠正样本容量对R方的偏倚。
残差分析
通过残差分析评估模型的合理性和拟合优度。
解释变量
通过系数解释每个自变量对因变量的影响,了解它们在模型中的作用和重要性。
实例分析
1
数据收集
搜集相关数据,准备进行多元线性回归分析。
2
模型构建
使用收集到的数据建立多元线性回归模型。
3
结果解读
对模型结果进行解读和分析,并给出相关结论。
变量选择
相关性分析
通过相关性分析选择与因变量相关性强的自变量。
逐步回归
逐步回归法能帮助我们选择最佳的自变量组合。
变量筛选
借助统计指标和领域知识选择适当的自变量。
模型假设
1 线性关系
假设因变量与自变量之间存在线性关系。
2 多元正态分布
3 无多重共线性
假设因变量及自变量服从多元正态分布。
假设自变量之间不存在高度相关性。
《多元线性回归模型》 PPT课件
在这个PPT课件中,我们将讲解多元线性回归模型的重要概念和应用。通过 丰富的实例和清晰的解释,帮助你深入了解这一统计分析方法。
多元线性回归模型的概述
我们将介绍多元线性回归模型的基本概念、原理和用途。了解什么是多元线 性回归,以及如何利用它来分析和预测多个自变量对因变量的影响。

计量经济学课件:第三章 多元线性回归模型

计量经济学课件:第三章 多元线性回归模型

第三章 多元线性回归模型第一节 多元线性回归模型及基本假定问题:只有一个解释变量的线性回归模型能否满足分析经济问题的需要?简单线性回归模型的主要缺陷是:把被解释变量Y 看成是解释变量X 的函数是前提是,在其它条件不变的情况下,并且,所有其它影响Y 的因素都应与X 不相关,但这在实际情况中很难满足。

怎样在一元线性回归的基础上引入多元变量的回归? 看教科书第72—73页关于汽车销售量的影响因素的讨论。

一、多元线性回归模型的意义1、建立多元线性回归模型的意义,即一元线性回归模型的缺陷,多个主要影响因素的缺失对模型的不利影响。

在一元线性回归模型中,如果总体回归函数的设定是正确的,那么,根据样本数据得到的样本回归模型就应该有较好的拟合效果,这时,可决系数就应该较大。

相反,如果在模型设定时忽略了影响被解释变量的某些重要因素,拟合效果可能就会较差,此时可决系数会偏低,并且由于忽略了一些重要变量而对误差项的影响会加大,这时误差项会表现出一些违背假定的情况。

2、从一个解释变量到多个解释变量的演变。

一个生产函数的例子,一个商品需求函数的例子,(教材第74页)。

二、多元线性回归模型及其矩阵表示1、一般线性回归模型的数学表达式。

设 12233i ii k k ii Y XXXu ββββ=+++++i=1,2,3,…,n在模型表达式里,1β仍是截距项,它反映的是当所有解释变量取值为零时,被解释变量Y 的取值;j β(j=2,3,…,k )为斜率系数,它的经济含义:在其它变量不变的情况下,第j 个解释变量每变动一个单位,Y 平均增加(或减少)j β个单位,这就是所谓的运用边际分析法对多元变量意义下回归参数的解释。

因此,称j β为偏回归系数,它反映了第j 个解释变量对Y 的边际影响程度。

4、2、总体回归函数,即12233(|)i i i k ki E Y X X X X ββββ=++++3、样本回归函数,即12233ˆˆˆˆˆi i k k iY X X Xββββ=++++ 4、将n 个样本观测值代入上述表达式,可得到从形式上看,像似方程组的形式。

计量经济学Stata软件应用3---【【Stata软件回归分析应用之模型预测】】--1次课

计量经济学Stata软件应用3---【【Stata软件回归分析应用之模型预测】】--1次课
值;并且进行样本外预测,加入stdf、ci 等选项后可得到样
本外预测值的标准误和置信水平为95%的置信区间。
键入命令:adjust attend=90 homework=90 entry=90, stdf ci
. adjust attend=90 homework=90 entry=90,stdf ci
All
xb
57.6662
Key: xb = Linear Prediction
结果被解释变量学生英语期末成绩 (final) 的预测值为 57.6662。
Stata软件操作实例
2、预测。如果想得到attend=90、homework=90、entry=90
的学生的期末成绩,须在adjust命令中指定各解释变量的取
模型的预测问题
区间预测:区间预测方法就是预测 Y0 基本上是
(以 1 a 95%或99% 的可能性)在一个区间范围内取值,该
区间就称为Y0的置信区间(预测区间),置信区间是以Y0的 点预测值 Yˆ0 为中心的一个区间,表示为:
Yˆ0 ta S(e0 ) Y0 Yˆ0 ta S(e0 )
对于多元线性回归模型:
y 0 1x1 2x2 k xk u
regress y x1 x2…xk
y 对 x1, x2, …, xk 的回归。regress命令可简写为reg;
adjust [ x1 x1 x2 x2 xk xk] [, option] 根据最近的回归得到当解释变量取特定值(即 x1 x1,x2 x2, xk xk ) 时被解释变量的预测值。如果不指定解释变量的取值,表示 根据最近的回归得到在所有解释变量均等于其样本均值时被 解释变量的预测值。Option是选择项,可根据需要选择。常用 的选择项有:stdf 表示显示样本外预测的标准误;ci 表示显示 预测值的置信区间;level( ) 用于指定置信区间的置信水平,如 level(90) 表示90%置信水平,level(99) 表示99%置信水平,如果 仅输入ci 而未指定置信水平,则缺省表示指定95%置信水平。

多元线性回归模型简单线性回归模型的推广和应用

多元线性回归模型简单线性回归模型的推广和应用
* cY c( X u) c X cu
E( *) E(c X cu)
c X cE(u)
cX
显然,若要 为* 无偏估计量,即
E(*) ,只有
c X I, I 为(K+1)阶单位矩阵。 27
*的方差为:
Var( *) Var(c X cu)
X X 1 2
23
一如个前方所差述-协,方我差们矩得阵到,的为实了际反上映不这仅一是事β实的,方我差们,用而下且面是的
符号表示之:
Var


Cov(β)

(
X

X
) 1
2
展开就是:


Var(β0 )


Cov(β1


0
)


Cov(β0 ,β1) ... Cov(β0 ,β
理论推导需借助矩阵代数。 下面给出最小二乘法应用于多元
线性回归模型的假设条件、估计结果及所得到的估计量的性
质。
一.假设条件
(1)E(ut)=0, t=1,2,…,n (2)E(ui uj)=0, i≠j (3)E(ut2)=σ2, t=1,2,…,n (4)Xjt是非随机量, j=1,2, … k
t=1,2, … n
Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P

食品价格平减指数 总消费支出价格平减指数
100,(1972

3100)
多元线性回归模型中斜率系数的含义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 调整的可决系数
在样本容量一定的情况下,增加解释变量必 定使得自由度减少,所以调整的思路是:将残差平 方和与总离差平方和分别除以各自的自由度,以 剔除变量个数对拟合优度的影响:
R
2
RSS / (n k ) 1 TSS / (n 1)
其中:n-k为残差平方和的自由度,n-1为总体平 方和的自由度。
第四章 多元线性回归模型检验
拟合优度检验 方程的显著性检验(总参数的F检验) 变量的显著性检验(单参数的t检验) 构造置信区间
3.2 拟合优度检验

可决系数与调整的可决系数
1. 总离差平方和的分解
观测值对均值的 分散程度、偏离程度 拟合值对均值的 分散程度、偏离程度 观测值对拟合值的
TSS (Yi Y ) 2 分散程度、偏离程度 ˆ ) (Y ˆ Y )) 2 ((Yi Y i i ˆ ) 2 2 (Y Y ˆ )(Y ˆ Y ) (Y ˆ Y )2 (Yi Y i i i i i
来拒绝或不能拒绝原假设H0,以判定原方程总体上的 线性关系是否显著成立。
p 值检验法
为了方便起见,将F统计量的 值记为F0 计算 p=P{F> F0} 称为p 值(p-value ) 如果p> ,则p/2> /2, F0 落入不能拒绝域,不能拒绝H0, 如果p< ,落入拒绝域,应拒 绝 H 0。 准则: 当P 值小于显著性水平时, 方程在给定显著性水平下是 显著的 当P 值大于显著性水平时, 方程在给定显著性水平下是 不显著的。
i i i i i 2 2 2 i i i 2 2 i i i i
2
2. 可决系数
ESS RSS R 1 TSS TSS
2
该统计量越接近于1,模型的拟合优度越高。 问题:
在应用过程中发现,如果在模型中增加一个解 释变量, R2往往增大(?)
这就给人一个错觉:要使得模型拟合得好,只 要增加解释变量即可。 但是,现实情况往往是,由增加解释变量个 数引起的R2的增大与拟合好坏无关,R2需调整。
F值
Number of obs = 15 P值 F( 3, 11) = 40.26 R2 Prob > F = 0.0000 R-squared= 0.9165 调整的 Adj R-squared = 0.8938 R2 Root MSE= 1002.8 P>t 0.878 0.000 0.000 0.024 [95% Conf. -1.193764 3.328208 .5120539 -80383.72 Interval] 1.034911 5.611233 .8791796 -7096.921
Source Model Residual Total gr wk fe ar _cons
14 9465218.37 t -0.16 8.62 8.34 -2.63
Std. Err. .5062903 .5186371 .0834003 16648.64
置信区间
系数
标准差
T值
p值
Stata 操作 Stata 操作 命令行格式:最常用的方法
p/2 / 2
p/2 / 2
0

如果p<,则 p/2< /2, t0
落入拒绝域, 应拒绝H0
-t/2
拒绝H0
t0 t / 2
拒绝H0
不能拒绝H0
当P 值小于等于给定显著性水平时,所研究的解释变量对被 解释变量的影响在该显著性水平下是显著的; 当P 值大于给定显著性水平时,所研究的解释变量对被解释 变量的影响在该显著性水平下是显著的。
1. 问题的提出 (1)区间
b
k k k
k
rk
误差 注意:不是先有区间,让 k 掉进去,而是先有 k ,再找个 区间把它罩住。
b r
(2)置信
k
bk r k
置信度=把握程度
比如,置信度=95%的意思是在100个 区间里,有95个区间包括 k 。
2. 的置信区间
(i=1,2…k)
2. 检验统计量
当 已知时 用正态N 当 未知时 n 50 也可用正态N n很小 用t分布
2 2
(1) t 变量
b t (b ) ( ) S bi
i i i
其中 S (bi) S ( X X)
2 1 ii
1
X) b ~ N ( , ( X
•提高模型的拟合优度,因为样本参数估计量的标准差与残差平方和呈正比, 模型优度越高,残差平方和应越小。
( X X ) 的分母 •提高样本观测值的分散度,一般情况下,样本观测值越分散, 的
1
X X
的值越大,致使区间缩小。
回归平方和
残差平方和
总平方和
reg gr wk fe SS 121450643 11062414.3 132513057 Coef. -.0794269 4.469721 .6956167 -43740.32 ar df 3 11 MS 40483547.7 1005674.02
n 1 1 n k (k 1) F
)
二、变量的显著性检验(t检验) 方程的总体线性关系显著每个解释变量对被 解释变量的影响都是显著的 因此,必须对每个解释变量进行显著性检验, 以决定是否作为解释变量被保留在模型中。 这一检验是由对变量的 t 检验完成的。 1. 检验假设 H0:i=0 H1:i0
i i
)
(2) t检验统计量
若H0为真,则
t
(b i )
3. 判断
b S (bi)
i

t (n k )
给定显著性水平,可得到临界值t/2(n-k), 由样本求出统计量t的数值,通过 |t| t/2(n-k) 或 |t|t/2(n-k)
来拒绝或不能拒绝原假设H0,从而判定对应的解 释变量是否应包括在模型中。
F检验的思想来自于总离差平方和的分解式: TSS=ESS+RSS
ˆ i2 是解释变量 X 的联合体对被解 由于回归平方和 ESS y
释变量 Y 的线性作用的结果,考虑比值
ESS / RSS

ˆ i2 y
2 e i
如果这个比值较大,则X的联合体对Y的解释程度 高,可认为总体存在线性关系,反之总体上可能不存 在线性关系。 因此,可通过该比值的大小对总体线性关系进行推 断。
xi: reg c y i.t
常见数据格式
格式:dta 文本格式:txt Excel格式:xls 其它格式:sas、spss、gauss等
Stata
读取数据
用use命令调入数据:dta格式数据
use “d:\stata\data\auto.dta”, clear
Excel格式数据的读取

数据管理
作图功能
统计功能
数据管理
数据读取 编辑数据 产生或改变变量:gen, egen, 保存数据库 数据集的重新组织:reshape 合并和添加数据:merge, append

Log using e:\panel Log close

Tabulate t, gen (tdummy)

p

F0
F 拒绝域
不能拒绝域
3.关于拟合优度检验与方程显著性检验的关系

R
2
RSS / (n k ) 1 TSS / (n 1) 与
2
ESS / ( k 1) F RSS / ( n k )
/ (k 1) R 或 F (1 R 2) / (n k
2
可推出
R
给数据或变量加注释
Label
data “Investment : cfliu 2006” label variable v1 " county “ label define 与 label values 是一起使用的。 而label variable 是单独使用的。 另外,比如 有个变量 gender 的值 为 0和1,1表示male 0 表示female。 你如果用table gender x1 ,会发现是按照 0 1来显示分类的。 你如果用了 .label define gendervalue 0 female 1 male .label values gender gendervalue 在执行table gender x1 ,则是按照female 和 male来分类的。 但 gender 还是原来的变量类型,如原来是数值型,现在还是。 虽然list sex 显示为female male,但仍然可以按照 0或1来操作.
由于
(Y
i
ˆ )(Y ˆ Y ) e (Y ˆ Y ) Y i i i
条件:模型必须有截距项
=0 所以有:
2 2 ˆ ˆ TSS (Yi Yi ) (Yi Y ) RSS ESS
有意思的是:
Y Y Y Yˆ Yˆ Y Y Y Y Yˆ Yˆ Y Y Y Y Yˆ Yˆ Y
k
对称区间,中心是bk,半径是
b t (b ) ( ) S bk
k k k
r S (b ) t (n k )
k k
Hale Waihona Puke p t(bk )k

t

2
(n k ) 1

2
P b r
k k
bk r k 1

如何才能缩小置信区间?
•增大样本容量n,因为在同样的样本容量下,n越大,t分布表中的临界值越 小,同时,增大样本容量,还可使样本参数估计量的标准差减小;
相关文档
最新文档