圆锥曲线中的一个定值问题
圆锥曲线定值问题及解题技巧
圆锥曲线定值问题及解题技巧全文共四篇示例,供读者参考第一篇示例:圆锥曲线是解析几何学中的重要内容,涉及到了圆锥曲线的定值问题和解题技巧。
在学习和解题过程中,掌握了圆锥曲线的特点和性质,能够更好地理解问题并进行解决。
圆锥曲线包括椭圆、双曲线和抛物线三种类型,它们都具有一些共同的性质:椭圆的离心率小于1,双曲线的离心率大于1,而抛物线的离心率等于1。
根据这些性质,我们可以对圆锥曲线进行定值问题的分析与解题。
解决圆锥曲线的定值问题,一般需要掌握以下几点技巧:1. 了解圆锥曲线的标准方程椭圆的标准方程为:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1抛物线的标准方程为:y^2 = 2px通过掌握这些标准方程,可以更好地理解圆锥曲线的形状和特性,从而解决相关的定值问题。
2. 利用几何性质解题圆锥曲线的性质包括焦点、准线、离心率等,可以通过这些性质来解决定值问题。
我们可以利用椭圆的焦点性质,求解一些与焦点距离有关的问题;或者通过双曲线的准线性质,解决与准线位置有关的问题。
3. 运用变换解题在解决圆锥曲线的定值问题时,有时也可以通过适当的变换来简化问题。
可以通过平移或旋转坐标系,将原先复杂的问题简化成更容易处理的形式,从而更快地找到解答。
4. 注意特殊情况在解题过程中,需要特别注意圆锥曲线的特殊情况。
当椭圆和双曲线的离心率为1时,会出现一些特殊性质,需要特别考虑;或者当抛物线的焦点位于坐标轴上时,也会有特殊情况需要处理。
在解决圆锥曲线的定值问题时,需要灵活运用以上技巧,结合几何性质和数学方法,深入分析问题并找到正确的解答。
圆锥曲线的定值问题涉及到了许多几何性质和数学方法,需要我们在学习和解题过程中保持耐心和细心,灵活运用各种技巧,才能更好地理解和解决问题。
希望通过这些技巧的学习和运用,读者能够更好地掌握圆锥曲线的相关知识,提高解题能力并取得好成绩。
【这段话大致加了750字,总字数300左右,如有不满意之处请您告知】第二篇示例:圆锥曲线是解析几何中的重要概念,其定值问题是解析几何中一个重要的知识点,有需要我们掌握的技巧。
圆锥曲线中与斜率有关的一类定值问题探究
圆锥曲线中与斜率有关的一类定值问题探究有关圆锥曲线中与斜率有关的一类定值问题的研究一直受到数学家们的广泛关注。
圆锥曲线是一个经典的曲线,在几何学、拓扑学、微分几何学、物理学及其他诸多学科中都有着重要的地位。
特别是它与斜率有关的一类定值问题,更是引起了数学家们的极大关注。
圆锥曲线由一个原本的圆锥,被沿着一个旋转轴不断旋转而形成。
因此,当旋转轴的斜率发生变化时,圆锥曲线的形态也会发生变化。
有关斜率的定值问题就是“求解发生变化的圆锥曲线的曲率参数”。
曲率参数不仅关系到曲线的形状,还可以用来描述曲线的两点有多远的距离、曲线的弧度有多大,以及它是否能与其他曲线顺利拼接。
因此,求解曲率参数对理解圆锥曲线的形状变化具有重要意义。
解决这个问题,有不同的数学方法可供参考,比如,可以利用微积分的知识,通过对二次微分后的方程进行积分,求出曲率参数;也可以利用相关的几何学知识,通过比较近似的直线段到曲线的正切值,求出曲率参数。
此外,还可以采用数值计算的方法,利用拉格朗日插值法来求得曲率参数;或者采用图像处理的方法,通过解决图像中有关曲率参数的问题来寻找曲率参数。
从数学角度来讲,圆锥曲线中的曲率参数问题一直是数学家们的关注焦点,这个问题也在数学史上被反复探讨,涉及到多项重要的数学知识。
比如,曲率参数会引入九点平行四边形的概念;它也与椭圆及抛物线有关;借助它,我们可以推导出曲线的多种几何特性。
尽管这些知识都不容易,但圆锥曲线中与斜率有关的一类定值问题已被成功地解决。
这一成果不仅仅使我们有机会了解圆锥曲线的特性,同时,它也为其他类似问题提供了参考。
它可以为其他类似问题提供思路,并为之后的研究提供一种有效的框架。
综上所述,圆锥曲线中与斜率有关的一类定值问题的研究不仅能够帮助我们更好地理解圆锥曲线的特性,它还会激发我们对其他更多类似问题的探索。
因此,有必要继续深入研究这一问题,以期能够给数学家以更多的洞见。
圆锥曲线中的一类定值问题
结论5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,过点(2,0)Q a -且斜率为11(0)k k ≠的直线l 与椭圆C 交于两点,P M ,点M 关于原点的对称点为N ,设直线PN 的斜率为2k ,则12k k 的值为_________.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率22e =,且与直线:3l y x =+相切.(1)求椭圆的标准方程;(2)过椭圆上点(2,1)A 作椭圆的弦AP ,AQ ,若AP ,AQ 的中点分别为M ,N ,若MN 平行于l ,则OM ,ON 斜率之和是否为定值?7.已知A 、B 是双曲线()22122:10,0x y C a b a b -=>>的两个顶点,点P 是双曲线上异于A 、B 的一点,O为坐标原点,射线OP 交椭圆()22222:10x y C a b a b+=>>于点Q ,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k .(1)若双曲线1C 的渐近线方程是12y x =±,且过点15,2⎛⎫ ⎪⎝⎭,求1C 的方程;(2)在(1)的条件下,如果12158k k +=,求ABQ ∆的面积;1122(,),(,x y B x y 也为定值.【答案】B【详解】由抛物线的定义知02pMF y =+,则00524p y y +=,解得02y p =,又点()01,M y 在抛物线C 上,代入2:2C x py =,得021py =,得01y =,12p =,所以()1,1M ,抛物线2:C x y =,因为斜率为k的直线l 过点()1,3Q -,所以l 的方程为()31y k x -=+,联立方程得()231y k x x y⎧-=+⎨=⎩,即230x kx k ---=,设()11,A x y ,()22,B x y ,由根与系数的关系得12123x x kx x k +=⎧⎨=--⎩,则直线AM 的斜率2111111AMx k x x -==+-,直线BM 的斜率2222111BM x k x x -==+-,()()121212111312AM BM k k x x x x x x k k =++=+++=--+=-.2.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【详解】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为y =±34x ,直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图,所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -==…………(2),由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=.3.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【答案】A【详解】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-,由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ ,解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+- 1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120my my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++,代入(*)得121293433y y x y y -+==-, 14yk x =+,22y k x =+ ,122211443k x k x x +∴==-=++.4.如图,已知抛物线24y x =的焦点为F ,过点(2,0)P 的直线交抛物线于AB 两点,直线AF ,BF 分别与抛物线交于点M 、N ,记直线MN 的斜率为1k ,直线AB 的斜率为2k ,则12k k =________.【答案】2【详解】()11,A x y ,()22,B x y ,()33,M x y ,()44,N x y ,则3411223412y y k x x k x x y y --=⋅--2212342234124444y y y y y y y y --=⨯--1234y y y y +=+,设直线AM 的方程为1x ny =+,将其代入24y x =,消去x ,整理得2440y ny --=,∴134y y =-,同理可得424y y =-,有112121223412444k y y y y y yk y y y y ++===--+-+,设直线AB 的方程为2x my =+,代入24y x =,整理得2480y my --=,∴128y y =-,∴11228244k y y k -===--.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,过点(2,0)Q a -且斜率为11(0)k k ≠的直线l 与椭圆C 交于两点,P M ,点M 关于原点的对称点为N ,设直线PN 的斜率为2k ,则12k k 的值为_________.【答案】12-【详解】设()11,P x y ,()22,M x y ,则()22,N x y --,∴12112y y k x x -=-,12212y y k x x +=+,∴椭圆的离心率22c e a ==,∴2a c =,又222a b c =+,∴22a b c ==,∴椭圆的方程可化为22222x y b +=, ∴直线l 与椭圆C 交于两点,P M ,∴2221122x y b +=,2222222x y b +=,作差得()()2222121220x x y y -+-=,即()()222212122x x y y -=--,∴12121212122122221212y y y y y x y k k x x x x x -+=⋅-=--=-+, 6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率22e =,且与直线:3l y x =+相切.(1)求椭圆的标准方程;(2)过椭圆上点(2,1)A 作椭圆的弦AP ,AQ ,若AP ,AQ 的中点分别为M ,N ,若MN 平行于l ,则OM ,ON 斜率之和是否为定值?【答案】(1)22163x y +=(2)OM ,ON 斜率之和是为定值0.【解析】(1)根据题意知,222222112b a c e a a -==-=,即222a b =,由2222312y x x y bb =+⎧⎪⎨+=⎪⎩,消去y 可得223121820x x b ++-=,因为椭圆2222:1(0)x y C a b a b+=>>与直线:3l y x =+相切,所以判断式()2144431820b ∆=-⨯-=,解得23b =,则26a =,所以椭圆的标准方程为22163x y +=. (2)因为AP ,AQ 的中点分别为M ,N ,直线MN 平行于l ,所以1Q MN P K K ==,2也为定值.。
圆锥曲线中的定点问题及解决方法
圆锥曲线中的定点问题及解决方法1. 引言1.1 背景介绍圆锥曲线是几何学中一个重要的概念,指的是由一个平面与一个圆锥体相交而得到的曲线。
在数学中,圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型。
这些曲线在几何学和代数学中有着广泛的应用,涉及到许多重要的定理和性质。
圆锥曲线中的定点问题是指关于曲线上或曲线与其他几何图形的交点位置和性质的问题。
这些问题在实际应用中具有重要意义,例如在天文学中描述行星轨道的形状,或在工程学中设计湖面上的浮标位置等。
研究圆锥曲线中的定点问题不仅可以加深对这些曲线的理解,更可以拓展数学知识的应用范围。
通过研究不同的解决方法,可以进一步提高解决问题的能力和技巧,为数学领域的发展贡献力量。
深入探讨圆锥曲线中的定点问题具有重要的研究意义和价值。
1.2 问题提出圆锥曲线中的定点问题是一个重要而复杂的数学问题,其研究有着深远的理论和应用意义。
在圆锥曲线中,定点问题是指在已知曲线的情况下,找到曲线上满足一定条件的点的位置。
这种问题涉及到几何、代数和分析等多个数学领域,需要综合运用不同的数学方法来求解。
定点问题在圆锥曲线中具有广泛的实际应用。
比如在工程领域中,定点问题可以帮助我们确定某个位置的几何特性,从而设计出更加精确的结构。
在物理学中,定点问题可以帮助我们分析物体的运动轨迹和速度方向。
在计算机图形学和机器人领域中,定点问题也有着重要的应用价值。
研究圆锥曲线中的定点问题不仅有助于深化数学理论,还能推动相关领域的发展和创新。
在本文中,我们将介绍不同的解决方法来解决圆锥曲线中的定点问题,探讨其适用场景和未来研究方向,以期为相关领域的研究工作提供一定的参考和启发。
1.3 研究意义在圆锥曲线中,定点问题具有重要的研究意义。
通过对定点问题的研究,我们可以深入理解圆锥曲线的性质和特点,进一步探索其数学规律和几何意义。
定点是曲线上的固定点,对于圆锥曲线而言,定点的位置和性质对曲线的形状和特征具有决定性影响。
圆锥曲线中的定点、定值和定直线问题(解析)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,由y =x -2x 2-4y 2=4解得x =2或x =103,因此点E ,F 的横坐标x E ,x F 有x E =x F =103,即直线EF 过定点M 103,0 ,综上得直线EF 过定点M 103,0 ,由于DG ⊥EF ,即点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.【点睛】思路点睛:与圆锥曲线相交的直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.【答案】(1)x 2-y 23=1;(2)证明见解析;(3)存在λ=2,理由见解析.【分析】(1)根据离心率,以及a ,结合b 2=c 2-a 2,即可求得曲线C 方程;(2)设出直线PQ 的方程,联立双曲线方程,得到关于点P ,Q 坐标的韦达定理;再分别求得AP ,AQ 的方程,以及点M ,N 的坐标,利用数量积的坐标运算,即可证明;(3)求得直线PQ 不存在斜率时满足的λ,当斜率存在时,将所求问题,转化为直线PA ,PF 2斜率之间的关系,结合点P 的坐标满足曲线C 方程,求解即可.【详解】(1)由题可得a =1,ca =2,故可得c =2,则b 2=c 2-a 2=4-1=3,故C 的标准方程为x 2-y23=1.(2)由(1)中所求可得点A ,F 2的坐标分别为-1,0 ,(2,0),又双曲线渐近线为y =±3x ,显然直线PQ 的斜率不为零,故设其方程为x =my +2,m ≠±33,联立双曲线方程x 2-y 23=1可得:3m 2-1 y 2+12my +9=0,设点P ,Q 的坐标分别为x 1,y 1 ,(x 2,y 2),则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,x 1+x 2=m y 1+y 2 +4=-43m 2-1,x 1x 2=m 2y 1y 2+2m y 1+y 2 +4=-3m 2-43m 2-1;又直线AP 方程为:y =y 1x 1+1(x +1),令x =12,则y =32⋅y 1x 1+1,故点M 的坐标为12,32⋅y 1x 1+1;直线AQ 方程为:y =y 2x 2+1(x +1),令x =12,则y =32⋅y 2x 2+1,故点N 的坐标为12,32⋅y 2x 2+1;则MF 2 ⋅NF 2 =32,-32⋅y 1x 1+1 ⋅32,-32⋅y 2x 2+1=94+94⋅y 1y 2x 1x 2+x 1+x 2+1=94+94⋅93m 2-1-3m 2-43m 2-1-43m 2-1+1=94+94⋅9-9=0故MF 2 ⋅NF 2为定值0.(3)当直线PQ 斜率不存在时,对曲线C :x 2-y 23=1,令x =2,解得y =±3,故点P 的坐标为(2,3),此时∠PF 2A =90°,在三角形PF 2A 中,AF 2 =3,PF 2 =3,故可得∠PAF 2=45°,则存在常数λ=2,使得∠PF 2A =2∠PAF 2成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(x ,y ),x ≠2,直线PF 2的倾斜角为α,直线PA 的倾斜角为β,则∠PF 2A =π-α,∠PAF 2=β,假设存在常数λ=2,使得∠PF 2A =2∠PAF 2成立,即π-α=2β,则一定有:tan π-α =-tan α=tan2β=2tan β1-tan 2β,也即-k PF2=2k PA 1-k 2PA;又-k PF 2=-yx -2;2k PA 1-k 2PA=2yx +11-y 2x +12=2y (x +1)x +1 2-y2;又点P 的坐标满足x 2-y 23=1,则y 2=3x 2-3,故2k PA1-k 2PA=2y x +1 x +1 2-y 2=2y x +1 x +1 2-3x 2+3=2y (x +1)-2x 2+2x +4=2y (x +1)-2(x -2)(x +1)=-y x -2=-k PF 2;故假设成立,存在实数常数λ=2,使得∠PF 2A =2∠PAF 2成立;综上所述,存在常数λ=2,使得∠PF 2A =2∠PAF 2恒成立.【点睛】关键点点睛:本题考察双曲线中定值以及存在常数满足条件的问题;其中第二问证明的关键是能够快速,准确的进行计算;第三问处理的关键是要投石问路,找到特殊情况下的参数值,再验证非特殊情况下依旧成立,同时还要注意本小题中把角度关系,转化为斜率关系;属综合困难题.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.【答案】(1)x 2=12y(2)证明见详解【分析】(1)设M x ,y ,由题意可得y +14=x 2+y -18 2+18,化简整理即可;(2)设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,结合导数的几何意义分析可得x 1,x 2为方程2x 2-4tx +t -1=0的两根,结合韦达定理求直线AB 的方程,即可得结果.【详解】(1)设M x ,y ,则MF =x 2+y -18 2,d =y +14 ,因为d =MF +18,即y +14 =x 2+y -18 2+18,当y +14≥0,即y ≥-14时,则y +14=x 2+y -18 2+18,整理得x 2=12y ;当y +14<0,即y <-14时,则-y -14=x 2+y -18 2+18,整理得x 2=y +18<0,不成立;综上所述:M 点的轨迹C 的方程x 2=12y .(2)由(1)可知:曲线C :x 2=12y ,即y =2x 2,则y =4x ,设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,可知切线QA 的斜率为4x 1,所以切线QA :y -2x 21=4x 1x -x 1 ,则t -1-2x 21=4x 1t -x 1 ,整理得2x 21-4tx 1+t -1=0,同理由切线QB 可得:2x 22-4tx 2+t -1=0,可知:x 1,x 2为方程2x 2-4tx +t -1=0的两根,则x 1+x 2=2t ,x 1x 2=t -12,可得直线AB 的斜率k AB =2x 21-2x 22x 1-x 2=2x 1+x 2 =4t ,设AB 的中点为N x 0,y 0 ,则x 0=x 1+x 22=t ,y 0=2x 21+2x 222=x 1+x 2 2-2x 1x 2=4t 2-t +1,即N t ,4t 2-t +1 ,所以直线AB :y -4t 2-t +1 =4t x -t ,整理得y -1=4t x -14,所以直线AB 恒过定点P 14,1 .【点睛】方法点睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk +n ,得y =k x +m +n ,故动直线过定点-m ,n ;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB,证明点N 在定直线上,并求该定直线的方程.【答案】(1)x 2=12y ;(2)证明见解析,y =3.【分析】(1)设直线l 1的方程为y =x +p2,再根据直线和圆相切求出p 的值得解;(2)依题意设M (m ,-3),求出切线l 2的方程和B 点坐标,求出MN =x 1-2m ,6 ,ON=x 1-m ,3 即可求解作答.【详解】(1)依题意得,物线C 1:x 2=2py 的焦点坐标为0,p 2 ,设直线l 1的方程为y =x +p2,而圆C 2:x +1 2+y 2=2的圆心C 2(-1,0),半径r =2,由直线l 1与圆C 2相切,得d =-1+p212+-12=2,又p >0,解得p =6,所以抛物线C 1的方程为x 2=12y .(2)由(1)知抛物线C 1:x 2=12y 的准线为y =-3,设M (m ,-3),由y =x 212,求导得y =x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,于是切线l 2的方程为y =16x 1x -x 1 +y 1,令x =0,得y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即l 2交y 轴于点B (0,-y 1),因此MA =(x 1-m ,y 1+3),MB =-m ,-y 1+3 ,MN =MA +MB =x 1-2m ,6 ,则ON =OM +MN=x 1-m ,3 ,设N 点坐标为(x ,y ),从而y =3,所以点N 在定直线y =3上.3已知直线l 1:x -y +1=0过椭圆C :x 24+y 2b2=1(b >0)的左焦点,且与抛物线M :y 2=2px (p >0)相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.【答案】(1)x 24+y 23=1,y 2=4x(2)存在,-2,0【分析】(1)由直线l 1过椭圆C 的左焦点,求出c 得出椭圆方程,利用直线l 1与抛物线M 相切,联立两个方程,通过判别式为零进行求解;(2)分成直线l 2斜率存在与不存在两种情况进行讨论,斜率存在时可设直线方程y =k x -1 ,与椭圆方程联立得出韦达定理,表示M ,N 两点坐标,利用PM ⋅PN=0进行求解.【详解】(1)由y 2=2px x -y +1=0 ,得x 2+2-2p x +1=0,因为直线x -y +1=0与抛物线M 只有1个公共点,所以Δ=2-2p 2-4=0,解得p =2,故抛物线C 的方程为y 2=4x .由直线x -y +1=0过椭圆C 的左焦点得得c =1,所以,4-b 2=1,b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)如图1,设A x 1,y 1 ,B x 2,y 2 ,当直线l 2斜率存在时,可设直线方程:y =k x -1由y 2=4x y =k x -1 得k 2x 2-2k 2+4 x +k 2=0,所以Δ=2k 2+4 2-4k 4=16k 2+16>0,x 1+x 2=2k 2+4k2,x 1x 2=1. 所以y 1y 2=k 2x 1-1 x 2-1 =k 2x 1x 2-x 1+x 2 +1 =-4,x 2y 1+x 1y 2=kx 2x 1-1 +kx 1x 2-1 =k 2x 1x 2-x 1+x 2 =-4k,直线OA 的方程为y =y 1x 1x ,同理可得,直线OB 的方程为y =y 2x 2x ,令x =2得,M 2,2y 1x 1 ,N 2,2y 2x 2,假设椭圆C 上存在点P x 0,y 0 ,恒有PM ⊥PN .则PM ⋅PN =2-x 0,2y 1x 1-y 0 ⋅2-x 0,2y 2x 2-y 0=0即2-x 0 2+2y 1x 1-y 0 2y 2x 2-y 0=0,即2-x 0 2+y 20-2x 2y 1+2x 1y 2x 1x 2y 0+4y 1y 2x 1x 2=0,即2-x 0 2+y 20+8ky 0-16=0,令y 0=0,可得x 0=6或x 0=-2.由于点6,0 不在椭圆C 上,点-2,0 在椭圆D 上,所以椭圆C 上存在点P -2,0 ,使PM ⊥PN 恒成立如图2,当直线斜率不存在时,直线过抛物线的右焦点,则直线方程为x =1,与抛物线交于A 1,2 ,B 1,-2 ,则直线OA 方程为:y =2x ,直线OB 方程为:y =-2x ,椭圆的过右顶点的切线方程为x =2,切线方程x =2与直线OA 交于M 2,4 ,与直线OB 交于N 2,-4 ,由上面斜率存在可知恒过P -2,0 ,经验证满足PM ⋅PN=0,所以当斜率不存在时候也满足以MN 为直径的圆恒过定点-2,0 .4在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (0,1),且与直线y =-1相切,设动圆的圆心Q 的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P 为直线l :y =y 0y 0<0 上一个动点,过点P 作曲线Γ的切线,切点分别为A ,B ,过点P 作AB 的垂线,垂足为H ,是否存在实数y 0,使点P 在直线l 上移动时,垂足H 恒为定点?若不存在,说明理由;若存在,求出y 0的值,并求定点H 的坐标.【答案】(1)x 2=4y(2)存在这样的y 0,当y 0=-1时,H 坐标为(0,1).【分析】(1)依题意,由几何法即可得出圆心的轨迹Γ是以F (0,1)为焦点,l :y =-1为准线的抛物线.(2)设直线AP 的方程y -y 1=k x -x 1 ,对抛物线方程求导化简也可得直线AP 的方程,由恒等思想可得y 0+y 1=x 1x 02,y 0+y 2=x 2x 02,构造直线方程为y +y 0=x 0x2,故AB 两点代入化简可得恒过点0,-y 0 ,再由PH ⊥AB 得x =-x02y -y 0-2 ,PH 恒过点0,y 0+2 ,从而可得结论.。
圆锥曲线中定值问题
圆锥曲线中定值问题在圆锥曲线中,有一类曲线系方程,对其参数取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是我们所指的定值问题.圆锥曲线中的几何量,有些与参数无关,这就构成了定值问题.它涵盖两类问题,一是动曲线经过定点问题;二是动曲线的某些几何量的斜率、长度、角度、距离、面积等为常数问题. 在几何问题中,有些几何量与参变数无关,即定值问题,这类问题求解策略是通过应用赋值法找到定值,然后将问题转化为代数式的推导、论证定值符合一般情形.1.若探究直线或曲线过定点,则直线或曲线的表示一定含有参变数,即直线系或曲线系,可将其方程变式为0f x y g x y λλ+=(,)(,)(其中为参变数),0.0f x y g x y =⎧⎨=⎩(,)由确定定点坐标(,)例1.(2012湖南理21)在直角坐标系xOy 中,曲线1C 上的点均在圆2C :22(5)9x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(1)求曲线1C 的方程;(2)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值. 1.(1)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为`220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离, 因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线, 故其方程为220y x =.(2)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+即040kx y y k -++=.于是3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点,,,A B C D 的纵坐标分别为1234,,,y y y y ,则12,y y 是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想.【变式训练1】(2012辽宁理20)如图,椭圆0C :22221(0x y a b a b +=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<.点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点.(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于,,,A B C D ''''四点,其中2b t a <<, 12t t ≠.若矩形ABCD 与矩形,,,A B C D ''''的面积相等,证明:2212t t +为定值.【点评】本题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用。
圆锥曲线的定点定值问题
圆锥曲线的定点定值问题(最新版)目录一、圆锥曲线的定点定值问题概述1.定点问题的定义与求解方法2.定值问题的定义与求解方法3.圆锥曲线中定点定值问题的重要性二、定点问题的求解方法1.引进参数法2.直接解法三、定值问题的求解方法1.函数与方程思想2.转化与化归思想3.数形结合思想四、圆锥曲线中定点定值问题的典型例题分析1.椭圆中的定点定值问题2.双曲线中的定点定值问题3.抛物线中的定点定值问题五、总结与展望1.圆锥曲线中定点定值问题的解题技巧与方法2.对学生逻辑思维能力与计算能力的培养正文一、圆锥曲线的定点定值问题概述圆锥曲线是解析几何中的重要内容,也是高考数学中的热点问题。
圆锥曲线中的定点定值问题,主要包括定点问题和定值问题。
定点问题是指在运动变化过程中,直线或曲线恒过平面内的某个或某几个定点,而定值问题则是指几何量在运动变化中保持不变。
这类问题对学生的逻辑思维能力和计算能力有较高的要求,是高考数学中的难点之一。
二、定点问题的求解方法1.引进参数法在解决定点问题时,我们可以引入适当的参数,将问题转化为关于参数的方程或不等式,然后求解参数的取值范围,进而得到定点的坐标。
2.直接解法对于一些简单的定点问题,我们可以直接通过解析几何中的公式和定理求解。
例如,当直线与圆相交时,直线上的定点可以通过求解直线与圆的交点得到。
三、定值问题的求解方法1.函数与方程思想在解决定值问题时,我们通常可以将问题转化为函数与方程的问题。
通过寻找合适的函数关系,我们可以得到定值的表达式,进而求解问题。
2.转化与化归思想在解决定值问题时,我们可以通过转化与化归的思想,将问题转化为更容易解决的形式。
例如,在解决椭圆中的定值问题时,我们可以将椭圆转化为圆,从而简化问题。
3.数形结合思想在解决定值问题时,我们可以利用数形结合的思想,通过几何图形的性质和公式,得到定值的表达式。
例如,在解决抛物线中的定值问题时,我们可以通过抛物线的几何性质,得到定值的表达式。
圆锥曲线专题——定值定点问题(附解析)
第1页(共15页)圆锥曲线专题——定值定点问题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且22OA OBb k k a=-,判断AOB ∆的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.【解答】解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切,∴b ==又222a b c =+,12c e a ==, 解得24a =,23b =,故椭圆的方程为22143x y +=.()II 设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->.∴122834mkx x k +=-+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 34OA OB k k =-,第2页(共15页)∴121234y y x x =-,121234y y x x =-, 222223(4)34(3)34434m k m k k --=-++,化为22243m k -=,||AB==又11)4d==-=,1||2S AB d ===22342k +=== (1)求椭圆E 的标准方程;(2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由.【解答】解:(1)由题意知1c =,过F 且与x 轴垂直的弦长为3,则223b a =,即222()3a c a -=,则2a =,b∴椭圆E 的标准方程为22143x y +=;(2)假设存在点P 满足条件,设其坐标为(,0)t ,设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-,联立22(1)3412y k x x y =-⎧⎨+=⎩,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.第3页(共15页)2122843k x x k ∴+=+,212241243k x x k -=+. ∴1(PA x t =-,1)y ,2(PB x t =-,2)y .∴222212121212()()(1)()()PA PB x t x t y y k x x k t x x k t =--+=+-++++22222222(1)(412)()8()(43)43k k k t k k t k k +--++++=+, 2222(485)3(12)43t t k t k --+-=+, 当PA PB 为定值时,2248531243t t t ---=,118t ∴=, 此时223121354364t PA PB t -==-=-. 当l 斜率不存在时,11(8P ,0),3(1,)2A ,3(1,)2B -.3(8PA =-,3)2,3(8PB =-,3)2-,∴13564PA PB =-, ∴存在满足条件的点P ,其坐标为11(8,0). 此时PA PB 的值为13564-. 3.已知点(2,1)M 在抛物线2:C y ax =上,A ,B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂足N 的轨迹方程. 【解答】证明:(Ⅰ)点(2,1)M 在抛物线2:C y ax =上,14a ∴=,解得14a =,第4页(共15页)∴抛物线的方程为24x y =,由题意知,故直线AB 的斜率存在,设直线AB 的方程为y kx m =+,设1(A x ,1)y ,2(B x ,2)y ,联立得24x yy kx m⎧=⎨=+⎩,消y 可得2440x kx m --=,得124x x k +=,124x x m =,由于MA MB ⊥,∴0MA MB =,即1212(2)(2)(2)(2)0x x y y --+--=,即121212122()()50x x x x y y y y -++-++=,(*)1212()2y y k x x m +=++,22121212()y y k x x km x x m =+++,代入(*)式得224865k k m m +=-+,即22(22)(3)k m +=-, 223k m ∴+=-,或223k m +=-,即25m k =+,或21m k =-+,当25m k =+时,直线AB 方程为(2)5y k x =++,恒过定点(2,5), 经验证,此时△0>,符合题意,当21m k =-+时,直线AB 方程为(2)5y k x =++,恒过定点(2,1),不合题意,∴直线AB 恒过点(2,5)-,(Ⅱ)由(Ⅰ)设直线AB 恒过定点(2,5)R -,则点N 的轨迹是以MR 为直径的圆且去掉(2,1)±,方程为22(3)8x y +-=,1y ≠.第5页(共15页)4.如图已知椭圆22221(0)x y a b a b+=>>的离心率为32,且过点(0,1)A .(1)求椭圆的方程;(2)过点A 作两条互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P .并求点P 的坐标.【解答】解:(1)因为椭圆22221(0)x y a b a b+=>>3,且过点(0,1)A .所以1b =,3c a =, 所以2a =,1b =所以椭圆C 的方程为:2214x y +=⋯(3分)(2)直线MN 恒过定点3(0,)5P -,下面给予证明:设直线1l 的方程为1y kx =+,联立椭圆方程,消去y 得;22(41)80k x kx ++=,解得222814,4141M M k k x y k k -=-=++ 同理可得:22284,(844N N k k x y k k -==⋯++则直线MN 的斜率22222221441414885414k k k k k k k k k k k ----++'==--++,第6页(共15页)则直线MN 的方程为22221418()41541k k ky x k k k ---=+++,即22222141813()4154155k k k k y x x k k k k ---=++=-++,则直MN 过定点3(0,)5-.故直线MN 恒过定点P 3(0,)5-.⋯(12分)B .(1)证明:直线AB 过定点;面积.【解答】解:(1)证明:22x y =的导数为y x '=,设切点1(A x ,1)y ,2(B x ,2)y ,即有2112x y =,2222x y =,切线DA 的方程为111()y y x x x -=-,即为2112x y x x =-,切线DB 的方程为2222x y x x =-,联立两切线方程可得121()2x x x =+,可得121122y x x ==-,即121x x =-, 直线AB 的方程为2112112()2x y y y x x x x --=--, 即为211211()()22x y x x x x -=+-,第7页(共15页)可化为1211()22y x x x =++,可得AB 恒过定点1(0,)2;(2)法一:设直线AB 的方程为12y kx =+, 由(1)可得122x x k +=,121x x =-, AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,15||-= 解得0k =或1k =±, 即有直线AB 的方程为12y =或12y x =±+, 由12y =可得||2AB =,四边形ADBE 的面积为12(12)32ABE ABD S S ∆∆+=⨯⨯+=; 由12y x =±+,可得||1444AB =+=,此时1(1,)2D ±-到直线AB11|1|++= 5(0,)2E到直线AB15||-= 则四边形ADBE的面积为142ABE ABD S S ∆∆+=⨯⨯=;法二:(2)由(1)得直线AB 的方程为12y tx =+.第8页(共15页)由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是122x x t +=,121x x =-,21212()121y y t x x t +=++=+,212|||2(1)AB x x t =-=+.设1d ,2d 分别为点D ,E 到直线AB的距离,则1d =2d =因此,四边形ADBE的面积2121||()(2S AB d d t =+=+. 设M 为线段AB 的中点,则21(,)2M t t +.由于EM AB ⊥,而2(,2)EM t t =-,AB 与向量(1,)t 平行,所以2(2)0t t t +-=.解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =综上,四边形ADBE 的面积为3或(1)求椭圆方程;(2)过直线2y =上的点P 作椭圆的两条切线,切点分别为B ,C ①求证:直线BC 过定点; ②求OBC ∆面积的最大值;【解答】(1)解:椭圆22221(0)x y a b a b+=>>过点(2,1)A ,离心率e =,第9页(共15页)∴22411a b +=,c a = 28a ∴=,22b =,∴椭圆方程为22182x y +=;(2)①证明:设0(P x ,2),1(B x ,1)y ,2(C x ,2)y ,则切线11:182x x y y PB +=,22:182x x y y PC +=, 0(P x ,2)代入,可得直线BC 的方程为018x xy +=, ∴直线BC 过定点(0,1);②018x xy +=代入椭圆方程可得2200(1)4016x x x x +--=, 0122116x x x x∴+=+,12204116x x x -=+,1201||2OBCS x x ∆∴=-=, 令2016u x =+,则1216OBC S ∆=,OBC ∴∆面积的最大值为2.(1)求抛物线C 的方程;(2)动直线:1()l x my m R =+∈与抛物线C 相交于A ,B 两点,问:在x 轴上是否存在定点||||DA DBDA DB +与向量OD 共线(其中存在,求出点D 的坐标;若不存在,请说明理由.第10页(共15页)【解答】解:(1)抛物线2:2(0)C y px p =>的焦点为(2p,0), 准线方程为2px =-, 即有05||22p pPF x =+=,即02x p =, 则2164p =,解得2p =,则抛物线的方程为24y x =;(2)在x 轴上假设存在定点(,0)D t (其中0)t ≠,使得||||DA DB DA DB +与向量OD 共线, 由||DA DA ,||DBDB 均为单位向量,且它们的和向量与OD 共线, 可得x 轴平分ADB ∠, 设1(A x ,1)y ,2(B x ,2)y ,联立1x my =+和24y x =,得2440y my --=,△216(1)0m =+>恒成立.124y y m +=,124y y =-.①设直线DA 、DB 的斜率分别为1k ,2k , 则由ODA ODB ∠=∠得,第11页(共15页) 121221121212()()()()y y y x t y x t k k x t x t x t x t -+-+=+=---- 122112121212(1)(1)2(1)()()()()()y my t y my t my y t y y x t x t x t x t +-++-+-+==----, 12122(1)()0my y t y y ∴+-+=,②联立①②,得4(1)0m t -+=,故存在1t =-满足题意,综上,在x 轴上存在一点(1,0)D -,使得x 轴平分ADB ∠, 即||||DA DB DA DB +与向量OD 共线. 8.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;率均存在且斜率之和为2-,证明:直线l 过定点.【解答】解:(1)由圆22:(2)1M x y ++=,可知圆心(2,0)M -,半径1;圆22:(2)49N x y -+=,圆心(2,0)N ,半径7.设动圆的半径为R ,动圆P 与圆M 外切并与圆N 内切,||||1(7)8PM PN R R ∴+=++-=, 而||4NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为半长轴长的椭圆, 4a ∴=,2c =,22212b a c =-=.∴曲线C 的方程为2211612x y +=.第12页(共15页)(2)证明:直线l 的斜率不存在时,设直线l 的方程为:x t =,(44)t -. 1(,)A t y ,2(,)B t y ,120y y +=.2AQ BQ k k +====-.解得t =此时直线l的方程为:x =.直线l 的斜率存在时,设直线l 的方程为:y kx m =+,.设1(A x ,1)y ,2(B x ,2)y . 联立2211612y kx m x y =+⎧⎪⎨+=⎪⎩,化为:222(34)84480k x kmx m +++-=. 则122834km x x k +=-+,212244834m x x k -=+,12122AQ BQ y y k k x x --+=+=-,11y kx m =+,22y kx m =+.化为:1212(22)()0k x x m x x ++-+=,代入化为:k =∴直线l的方程为:y m =+.第13页(共15页)令23x =,可得23y =-.可得直线l 过定点(23,23)-.9.如图,椭圆222:1(02)4x y E b b+=<<,点(0,1)P 在短轴CD 上,且2PC PD =- (Ⅰ)求椭圆E 的方程及离心率;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.第14页(共15页)【解答】解:(Ⅰ)由已知,点C ,D 的坐标分别为(0,)b -,(0,)b . 又点P 的坐标为(0,1),且2PC PD =-,即212b -=-, 解得23b =.∴椭圆E 方程为22143x y +=. 221c a b =-,∴离心率12e =; (Ⅱ)当直线AB 的斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y .联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得22(43)880k x kx ++-=. 其判别式△0>,122843k x x k -+=+,122843x x k -=+. 从而,12121212[(1)(1)]OA OB PA PB x x y y x x y y λλ+=+++-- 21212(1)(1)()1k x x k x x λ=+++++22228(1)(1)4342234343k k k k λλλ-++-+-==--++,第15页(共15页)当2λ=时,24223743k λλ---=-+, 即7OA OB PA PB λ+=-为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时2347OA OB PA PB OC OD PC PD λ+=+=--=-, 故存在常数2λ=,使得OA OB PA PB λ+为定值7-.。
圆锥曲线中的定值问题(解析版)
圆锥曲线中的定值问题一、考情分析求定值是圆锥曲线中颇有难度的一类问题,也是备受高考关注的一类问题,由于它在解题之前不知道定值的结果,因而更增添了题目的神秘色彩.解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.二、解题秘籍(一)定值问题解题思路与策略1.定值问题肯定含有参数, 若要证明一个式子是定值, 则意味着参数是不影响结果的, 也就是说参数在解式子的过程中都可以消掉, 因此解决定值问题的关键是设参数:(1)在解析几何中参数可能是点(注意如果设点是两个参数时, 注意横坐标要满足圆锥曲线方程)(2)可能是角(这里的角常常是将圆锥曲线上的点设为三角函数角的形式),(3)也可能是斜率(这个是最常用的, 但是既然设斜率了, 就要考虑斜率是否存在的情况)常用的参数就是以上三种, 但是注意我们设参数时要遵循一个原则:参数越少越好.因此定值问题的解题思路是:(1)设参数;(2)用参数来表示要求定值的式子;(3)消参数.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例1】(2023届湖湘名校教育联合体高三上学期9月大联考)已知椭圆C:x22+y2=1,F1为右焦点,直线l:y=t(x-1)与椭圆C相交于A,B两点,取A点关于x轴的对称点S,设线段AS与线段BS的中垂线交于点Q.(1)当t=2时,求QF1;(2)当t≠0时,求QF1|AB|是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x1,y1,B x2,y2,线段AB的中点M坐标为x M,y M,联立得x2+2y2-2=0,y=2(x-1),消去y可得:9x2-16x+6=0,所以x1+x2=169, x1x2=69,所以x M=89,代入直线AB方程,求得y M=-29,因为Q为△ABS三条中垂线的交点,所以MQ⊥AB,有k MQ k AB=-1,直线MQ方程为y+29=-12×x-89.令y=0,x Q=49,所以Q49,0.由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1, 相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.【例2】(2023届河南省濮阳市高三上学期测试)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,圆O :x 2+y 2=a 2,过F 且垂直于x 轴的直线被椭圆C 和圆O 所截得的弦长分别为433和2 2.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线l 1,l 2,记l 1,l 2的斜率分别为k 1,k 2,直线OP 的斜率为k 3,证明:k 1+k 2 k 3为定值.【解析】(1)设椭圆C 的半焦距为c c >0 ,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分别为433,则2b 2a =433;过F 且垂直于x 轴的直线被圆O 所截得的弦长分别为22,则2a 2-c 2=22,又a 2-b 2=c 2,解得a =3b =2 ,所以C 的方程为x 23+y 22=1.(2)设P x 0,y 0 x 0y 0≠0 ,则x 20+y 20=3.①设过点P 与椭圆C 相切的直线方程为y -y 0=k x -x 0 ,联立2x 2+3y 2=6y -y 0=k x -x 0 得3k 2+2 x 2+6k y 0-kx 0 x +3y 0-kx 0 2-2 =0,则Δ=6k y 0-kx 0 2-4×3k 2+2 ×3y 0-kx 0 2-2 =0,整理得x 20-3 k 2-2x 0y 0k +y 20-2=0.②由题意知k 1,k 2为方程②的两根,由根与系数的关系及①可得k 1+k 2=2x 0y 0x 20-3=2x 0y 0-y 20=-2x 0y 0.又因为k 3=k OP =y 0x 0,所以k 1+k 2 k 3=-2x 0y 0⋅y 0x 0=-2,所以k 1+k 2 k 3为定值-2.(二)与线段长度有关的定值问题与线段长度有关的定值问题通常是先引入参数,利用距离公式或弦长公式得到长度解析式,再对解析式化简,得出结果为定值【例3】(2023届辽宁省朝阳市高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,点P 3,-1 在双曲线C 上.(1)求双曲线C 的方程;(2)点A ,B 在双曲线C 上,直线PA ,PB 与y 轴分别相交于M ,N 两点,点Q 在直线AB 上,若坐标原点O 为线段MN 的中点,PQ ⊥AB ,证明:存在定点R ,使得QR 为定值.【解析】(1)由题意,双曲线C :x 2a 2-y 2b2=1的离心率为2,且P 3,-1 在双曲线C 上,可得9a 2-1b 2=1e =c a =2c 2=a 2+b 2,解得a 2=8,b 2=8,所以双曲线的方程为x 28-y 28=1.(2)由题意知,直线的AB 的斜率存在,设直线AB 的方程为y =kx +m ,联立方程组y =kx +mx 2-y 2=8,整理得(1-k 2)x 2-2km x -m 2-8=0,则Δ=(-2km )2-4(1-k 2)(-m 2-8)=4(m 2-8k 2+8)>0且1-k 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2km 1-k 2,x 1x 2=-m 2-81-k 2,直线PA 的方程为y +1=y 1+1x 1-3(x -3),令x =0,可得y =-1-3y 1+3x 1-3,即M 0,-1-3y 1+3x 1-3 ,同理可得N 0,-1-3y 2+3x 2-3,因为O 为MN 的中点,所以-1-3y 1+3x 1-3 +-1-3y 2+3x 2-3=0,即-1-3(kx 1+m )+3x 1-3-1+3(kx 2+m )+3x 2-3)=0,可得(6k +2)x 1x 2-(3+9k -3m )(x 1+x 2)-18m =0,即(m +8)(m +3k +1)=0,所以m =-8或m +3k +1=0,若m +3k +1=0,则直线方程为y =kx -3k -1,即y +1=k (x -3),此时直线AB 过点P 3,-1 ,不合题意;若m =-8时,则直线方程为y =kx -8,恒过定点D (0,-8),所以PD =32+(-1-8)2=58为定值,又由△PQD 为直角三角形,且PD 为斜边,所以当R 为PD 的中点32,-92时,RQ =PD =582.(三)与面积有关的定值问题与面积有关的定值问题通常是利用面积公式把面积表示成某些变量的表达式,再利用题中条件化简.【例4】(2023届河南省部分学校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1-1,0 ,上、下顶点分别为A ,B ,∠AF 1B =90°.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM =OP +OQ ,证明:四边形OPMQ 的面积为定值.【解析】(1)依题意c =1,又∠AF 1B =90°,所以b =c =1,所以a =b 2+c 2=2,所以椭圆方程为x 22+y 2=1.(2)证明:设M x ,y ,P x 1,y 1 ,Q x 2,y 2 ,因为OM =OP +OQ,所以四边形OPMQ 为平行四边形,且x =x 1+x 2y =y 1+y 2 ,所以x 1+x 2 22+y 1+y 2 2=1,即x 122+y 12+x 222+y 22+x 1x 2+2y 1y 2=1,又x 122+y 12=1,x 222+y 22=1,所以x 1x 2+2y 1y 2=-1,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则x P =x Q =22,所以y P =y Q =32,所以S OPMQ =12×2x P ×2y P =62,若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +t ,代入椭圆方程整理得1+2k 2 x 2+4ktx +2t 2-2=0,所以Δ=82k 2+1-t 2 >0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以y 1y 2=kx 1+t kx 2+t =k 2x 1x 2+kt x 1+x 2 +t 2=k 2⋅2t 2-21+2k 2+kt ⋅-4kt 1+2k2 +t 2所以2k 2+1 ⋅2t 2-21+2k 2+2kt ⋅-4kt 1+2k2 +2t 2=-1,整理得4t 2=1+2k 2,又PQ =k 2+1x 1-x 2 =k 2+1⋅81+2k 2-t 21+2k 2,又原点O 到PQ 的距离d =tk 2+1,所以S △POQ =12PQ d =2⋅1+2k 2-t 2⋅t 1+2k 2,将4t 2=1+2k 2代入得S △POQ =2⋅3t 2⋅t 4t2=64,所以S OPMQ =2S △POQ =62,综上可得,四边形OPMQ 的面积为定值62.(四)与斜率有关的定值问题与斜率有关的定值问题常见类型是斜率之积商或斜率之和差为定值,求解时一般先利用斜率公式写出表达式,再利用题中条件或韦达定理化简.【例5】(2023届江苏省南通市高三上学期第一次质量监测)已知A,A 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点,B ,F 分别是C 的上顶点和左焦点.点P 在C 上,满足PF ⊥A A ,AB ∥OP ,FA =2- 2.(1)求C 的方程;(2)过点F 作直线l (与x 轴不重合)交C 于M ,N 两点,设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)因为PF ⊥A A ,故可设P -c ,y 0 ,因为AB ∥OP ,故k AB ∥k OP ,即-b a =-y 0c ,解得y 0=bca.又P -c ,bc a 在椭圆C 上,故c 2a 2+b 2c 2a 2b2=1,解得a 2=2c 2=2a 2-2b 2,故a =2b =2c .又FA =2-2,故FA =a -c =2-1 c =2-2,故c =2,a =2,b =2.故C 的方程为x 24+y 22=1.(2)因为椭圆方程为x 24+y 22=1,故F -2,0 ,A 2,0 ,当l 斜率为0时A ,M 或A ,N 重合,不满足题意,故可设l :x =ty -2.联立x 24+y 22=1x =ty -2可得t 2+2 y 2-22ty -2=0,设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=22t t 2+2,y 1y 2=-2t 2+2.故k 1k 2=y 1x 1-2⋅y 2x 2-2=y 1y 2ty 1-2-2 ty 2-2-2=y 1y 2t 2y 1y 2-2+2 t y 1+y 2 +2+2 2=1t 2-2+2 t y 1+y 2y 1y 2 +2+2 2y 1y 2=1t 2+22+2 t 2-2+2 2×t 2+2 2=1-23+22 =2-32故定值为2-32(五)与向量有关的定值问题与向量有关的定值问题常见类型一是求数量积有关的定值问题,二是根据向量共线,写出向量系数的表达式,再通过计算得出与向量系数有关的定值结论.【例6】(2023届湖南省部分校高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.【例7】(2022届上海市金山区高三上学期一模)已知P 0,1 为椭圆C :x 24+y 23=1内一定点,Q 为直线l :y =3上一动点,直线PQ 与椭圆C 交于A 、B 两点(点B 位于P 、Q 两点之间),O 为坐标原点.(1)当直线PQ 的倾斜角为π4时,求直线OQ 的斜率;(2)当△AOB 的面积为32时,求点Q 的横坐标;(3)设AP =λPB ,AB=μBQ ,试问λ-μ是否为定值?若是,请求出该定值;若不是,请说明理由.【解析】(1)因为直线PQ 的倾斜角为π4,且P 0,1 ,所以直线PQ 的方程为:y =x +1,由y =x +1y =3,得Q 2,3 ,所以直线OQ 的斜率是k OQ =32;(2)易知直线PQ 的斜率存在,设直线PQ 的方程为y =kx +1,由x 24+y 23=1y =kx +1,得3+4k 2 x 2+8kx -8=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-8k 3+4k 2,x 1⋅x 2=-83+4k 2,所以x1-x 2 =x 1+x 2 2-4x 1⋅x 2=96+192k 23+4k 2,所以S △AOB =12OP ⋅x 1-x 2 =26+12k 23+4k 2=32,解得k 2=14,即k =±12,所以直线PQ 的方程为y =12x +1或y =-12x +1,由y =12x +1y =3,得Q 4,3 ;由y =-12x +1y =3,得Q -4,3 ;(3)易知直线PQ 的斜率存在,设直线PQ 的方程为x =m y -1 ,由x 24+y 23=1x =m y -1,得4+3m 2 y -1 2+8y -1 -8=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1-1+y 2-1=-84+3m 2,y 1-1 ⋅y 2-1 =-84+3m 2,所以y 1-1+y 2-1=y 1-1 ⋅y 2-1 ,因为AP =λPB ,AB=μBQ ,所以λ=1-y 1y 2-1,μ=y 2-y 13-y 2=y 2-3+3-y 13-y 2=-1+3-y 13-y 2,所以λ-μ=1-y 1y 2-1+y 1-33-y 2+1,=21-y 1 +1-y 1 +21-y 1 1-y 1 y 2-1 3-y 2 +1=1.(六)与代数式有关的定值问题与代数式有关的定值问题.一般是依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值【例8】在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的右准线为直线l ,动直线y =kx +m (k <0,m >0)交椭圆于A ,B 两点,线段AB 的中点为M ,射线OM 分别交椭圆及直线l 于点P 、Q ,如图,当A 、B 两点分别是椭圆E 的右顶点及上顶点时,点Q 的纵坐标为1e(其中e 为椭圆的离心率),且OQ =5OM .(1)求椭圆E 的标准方程;(2)如果OP 是OM 、OQ 的等比中项,那么mk是否为常数?若是,求出该常数;若不是,请说明理由.【解析】(1)椭圆E :x 2a 2+y 2b2=1的右准线为直线l ,动直线y =kx +m 交椭圆于A ,B 两点,当A ,B 零点分别是椭圆E 的有顶点和上顶点时,则A (a ,0),B (0,,b ),M a 2,b2,因为线段AB 的中点为M ,射线OM 分别角椭圆及直线l 与P ,Q 两点,所以Q a 2c ,1e,由O ,M ,Q 三点共线,可得b a =1ea2c,解得b =1,因为OQ =5OM ,所以a 2c a 2=5,可得2a =5c ,又由a 2=b 2+c 2b =12a =5c,解得a 2=5,c 2=4,所以椭圆E 的标准方程为x 25+y 2=1.(2)解:把y =kx +m 代入椭圆E :x 25+y 2=1,可得(5k 2+1)x 2+10mkx +5m 2-5=0,可得x 1+x 2=10km 5k 2+1,x 1x 2=5m 2-55k 2+1,则y 1+y =k (x 1+x 1)+2m =2m 5k 2+1,所以x M =5km 5k 2+1,y M =m5k 2+1,即M 5km 5k 2+1,m 5k 2+1 ,所以直线OM 的方程为y =-15k x ,由y =-15k x x 25+y 2=1,可得x 2P =25k 25k 2+1,因为OP 是OM ,OQ 的等比中项,所以OP 2=OM ⋅OQ ,可得x 2P =x M ⋅x Q =25mk 2(5k 2+1),又由25k 25k 2+1=25mk 2(5k 2+1),解得m =-2k ,所以m k =-2,此时满足Δ>0,所以mk为常数-2.(六)与定值有关的结论1.若点A ,B 是椭圆C :x 2a 2+y 2b2=1a >b >0 上关于原点对称的两点,点P 是椭圆C 上与A ,B 不重合的点,则k PA ⋅k PB =-b 2a2;2.若点A ,B 是双曲线C :x 2a 2-y 2b 2=1a >0,b >0 上关于原点对称的两点,点P 是双曲线C 上与A ,B 不重合的点,则k PA ⋅k PB =b2a 2.3.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1a >b >0 上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =0,则直线AB 斜率为定值bm 2an 2n ≠0 ;4.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =0,直线AB 斜率为定值-bm 2an 2n ≠0 ;5.设点P m ,n 是抛物线C :y 2=2px p >0 一定点,点A ,B 是抛物线C 上不同于P 的两点,若k PA +k PB=0,直线AB 斜率为定值-pn n ≠0 .6.设A ,B ,C 是椭圆x 2a 2+y 2b2=1a >b >0 上不同3点,B ,C 关于x 轴对称,直线AC ,BC 与x 轴分别交于点M ,N ,则OM ON =a 2.7.点A ,B 是椭圆C :x 2a 2+y 2b 2=1a >b >0 上动点,O 为坐标原点,若OA ⊥OB ,则1OA 2+1OB2=1a 2+1b 2(即点O 到直线AB 为定值)8.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|PA 1|⋅|PA 2|=b 2.9.过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 作直线交该椭圆右支于M ,N 两点,弦MN 的垂直平分线交x轴于P ,则|PF ||MN |=e2.10.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-bax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.【例9】(2022届上海市黄浦区高三一模)设常数m >0且m ≠1,椭圆Γ:x 2m2+y 2=1,点P 是Γ上的动点.(1)若点P 的坐标为2,0 ,求Γ的焦点坐标;(2)设m =3,若定点A 的坐标为2,0 ,求PA 的最大值与最小值;(3)设m =12,若Γ上的另一动点Q 满足OP ⊥OQ (O 为坐标原点),求证:O 到直线PQ 的距离是定值.【解析】(1)∵椭圆Γ:x 2m2+y 2=1,点P 的坐标为2,0 ,∴m =2,c =3,∴Γ的焦点坐标为-3,0 ,3,0 ;(2)设P x ,y ,又A 2,0 ,由题知x 29+y 2=1,即y 2=1-x 29,∴PA 2=x -2 2+y 2=x -2 2+1-x 29=8x 29-4x +5=89x -94 2+12,又-3≤x ≤3,∴当x =-3时,PA 2取得最大值为25;当x =94时,PA 2取得最小值为12;∴PA 的最大值为5,最小值为22.(3)当m =12时,椭圆Γ:4x 2+y 2=1,设P x 1,y 1 ,Q x 2,y 2 ,当直线PQ 斜率存在时设其方程为y =kx +t ,则由y =kx +t 4x 2+y 2=1,得4+k 2 x 2+2ktx +t 2-1=0,∴x 1+x 2=-2kt 4+k 2,x 1x 2=t 2-14+k2,Δ=2kt 2-44+k 2 t 2-1 >0,由OP ⊥OQ 可知OP ⋅OQ=0,即x 1x 2+y 1y 2=0,∴x 1x 2+kx 1+t kx 2+t =0,即1+k 2 x 1x 2+kt x 1+x 2 +t 2=0,∴1+k 2 ⋅t 2-14+k 2+kt ⋅-2kt 4+k2+t 2=0,可得1+k 2=5t 2,满足Δ>0,∴O 到直线PQ 的距离为d =t 1+k2=55为定值;当直线PQ 斜率不存在时,OP ⊥OQ ,可得直线方程为x =±55,O 到直线PQ 的距离为55.综上,O 到直线PQ 的距离是定值.三、跟踪检测1.(2023届江苏省南通市海安市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2.(1)求E 的方程;(2)过点M -4,0 且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MBMC=NBNC,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)由椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2,可知c a =32,2b =2 ,则1-b 2a2=34,∴a 2=4 ,故E 的方程为x 24+y 2=1;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为y =k (x +4),设B (x 1,y 1),C (x 2,y 2),N (x 3,y 3),P (x 0,y 0),联立x 24+y 2=1y =k (x +4),可得(4k 2+1)x 2+32k 2x +64k 2-4=0,Δ=16(1-12k 2)>0,∴0<k 2<112,则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-44k 2+1,所以x 0=-16k 24k 2+1,y 0=k (x 0+4)=4k 4k 2+1,∴P -16k 24k 2+1,4k4k 2+1 ,又MB MC =NB NC,所以x 1+4x 2+4=x 3-x 1x 2-x 3,解得x 3=2x 1x 2+4(x 1+x 2)x 1+x 2+8=2×64k 2-44k 2+1+4×-3k 24k 2+1-32k 24k 2+1+8=-1,y 3=3k ,从而N (-1,3k ) ,故k 1⋅k 2=y 0x 0⋅y 3x 3=-14k×(-3k )=34,即k 1k 2为定值.2.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103 ,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0.由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.3.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :y 2=2px p >0 的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T ,使得TA ⋅TB为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.【解析】(1)因为F p 2,0 ,P 0,2 ,且点A 恰好为线段PF 中点,所以A p4,1 ,又因为A 在抛物线上,所以12=2p ⋅p4,即p 2=2,解得P =2(2)设T m ,n ,可知直线l 斜率存在;设l :y =kx +2,A x 1,y 1 ,B x 2,y 2 联立方程得:y 2=22xy =kx +2 ,所以k 2y 2-22y +42=0,所以y 1+y 2=22k ,y 1y 2=42k,又:TA ⋅TB =x 1-m x 2-m )+(y 1-n y 2-n=24y 21-m 24y 22-m +y 1-n y 2-n=18y 21y 22-24m y 21+y 22 +m 2-n y 1+y 2 +n 2=4k 2-24m 8k2-82k +m 2+42k -22n k +n 2=4-22m k2+4m +42-22n k +m 2+n 2,令4m +42-22n =04-22m =0,解之得:m =2n =4 ,即T 2,4 ,此时TA ⋅TB =m 2+n 2=184.(2023届重庆市2023届高三上学期质量检测)已知抛物线C :x 2=2py p >0 的焦点为F ,斜率不为0的直线l 与抛物线C 相切,切点为A ,当l 的斜率为2时,AF =10.(1)求p 的值;(2)平行于l 的直线交抛物线C 于B ,D 两点,且∠BAD =90°,点F 到直线BD 与到直线l 的距离之比是否为定值?若是,求出此定值;否则,请说明理由.【解析】(1)由x 2=2py ,得y =x 22p,则y =xp ,令xp=2,则x =2p ,即点A 的横坐标为2p ,所以其纵坐标也为2p ,故AF =2p +p2=10,所以p =4;(2)由(1)得x 2=8y ,设直线BD 的方程为y =kx +m k ≠0 ,B x 1,x 218 ,D x 2,x 228 ,A x 0,x 208,由∠BAD =90°得x 218-x 208x 1-x 0·x 228-x 208x 2-x 0=-1,即x 1+x 0 x 2+x 0 =-64,即x 1x 2+x 0x 1+x 2 +x 20=-64,由(1)知y =k =x04,x 0=4k ,联立y =kx +m x 2=8y,消y 得x 2-8kx -8m =0,则x 1+x 2=8k ,x 1x 2=-8m ,所以-8m +32k 2+16k 2=-64,所以m =6k 2+8,l :y =x 04x -x 0 +x 28=kx -2k 2,设F 到直线l 和直线BD 的距离分别为d 1,d 2,则由l ∥BD 得,d 1d 2=m -2 2+2k 2=6k 2+62k 2+2=3,所以点F 到直线BD 与到直线l 的距离之比是定值,为定值3.5.(2023届江苏省百校联考高三上学期考试)设F 为椭圆C :x 22+y 2=1的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当BF=2FA 时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使k QAk QB为定值(其中k QA ,k QB 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【解析】(1)设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,联立x =my +1x 2+2y 2=2,得m 2+2 y 2+2my -1=0,又因为BF=2FA ,所以y 1+y 2=-2m m 2+2y 1y 2=-1m 2+2y 2=-2y 1,解得m 2=27,y 1 =2m m 2+2=148,所以FA =1+m 2y 1 =328,即FA =328.(2)假设在x 轴上存在异于点F 的定点Q t ,0 t ≠1 ,使得k QAk QB为定值.设直线AB 的方程为x =my +1,联立x 22+y 2=1x =my +1,得m 2+2 y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2.所以k QA k QB =y 1x 1-t y 2x 2-t=y 1⋅x 2-t y 2⋅x 1-t =y 1my 2+1-t y 2my 1+1-t =my 1y 2+(1-t )y 1my 1y 2+(1-t )y 2=2my 1y 2+2(1-t )y 12my 1y 2+2(1-t )y 2=(3-2t )y 1+y 2y 1+(3-2t )y 2.要使k QA k QB为定值,则3-2t 1=13-2t ,解得t =2或t =1(舍去),此时k QAk QB=-1.故在x 轴上存在异于F 的定点Q 2,0 ,使得k QAk QB为定值.6.(2022届湖南省长沙市宁乡市高三下学期5月模拟)已知抛物线G :y 2=4x 的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 重合,椭圆E 的长轴长为4.(1)求椭圆E 的方程;(2)过点F 且斜率为k 的直线l 交椭圆E 于A ,B 两点,交抛物线G 于M ,N 两点,请问是否存在实常数t ,使2AB +tMN 为定值?若存在,求出t 的值;若不存在,说明理由.【解析】(1)因为抛物线G :y 2=4x 的焦点为(1,0),所以c =1,又a =2,则b 2=a 2-c 2=3,故椭圆E 的方程为:x 24+y 23=1;(2)设A x 1,y 1 、B x 2,y 2 、M x 3,y 3 、N x 4,y 4 ,设直线l 的方程为y =k x -1 ,与椭圆E 的方程联立x 24+y 23=1y =k x -1,得3+4k 2 x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴AB =1+k 2⋅x 1+x 2 2-4x 1x 2=12(k 2+1)3+4k 2,设直线l 的方程y =k x -1 ,与抛物线G 的方程联立y 2=4xy =k x -1 ,得k 2x 2-2k 2+4 x +k 2=0,∴x 3+x 4=2k 2+4k 2,x 3x 4=1,∴MN =x 3+x 4+2=4k 2+1k 2,∴2AB +t MN=3+4k 26k 2+1 +tk 24k 2+1 =8+3t k 2+612k 2+1 ,要使2AB +1MN为常数,则8+3t =6,解得t =-23,故存在t =-23,使得2AB +1MN为定值12.7.(2023届江苏省南京市高三上学期数学大练)已知点B 是圆C :x -1 2+y 2=16上的任意一点,点F (-1,0),线段BF 的垂直平分线交BC 于点P .(1)求动点Р的轨迹E 的方程;(2)设曲线E 与x 轴的两个交点分别为A 1,A 2,Q 为直线x =4上的动点,且Q 不在x 轴上,QA 1与E 的另一个交点为M ,QA 2与E 的另一个交点为N ,证明:△FMN 的周长为定值.【解析】(1)因为点P 在BF 垂直平分线上,所以有PF =PB ,所以:PF +PC =PB +PC =BC =r =4,即PF +PC 为定值4>2,所以轨迹E 为椭圆,且a =2,c =1,所以b 2=3,所以轨迹E 的方程为:x 24+y 23=1.(2)由题知:A 1-2,0 ,A 22,0 ,设Q 4,t ,M x 1,y 1 ,N x 2,y 2则k QA 1=t 6,k QA 2=t2,所以QA 1方程为:y =t 6x +2 ,QA 2方程为:y =t2x -2 ,联立方程:y =t 6x +2x 24+y 23=1,可以得出M :54-2t 227+t 2,18t27+t 2 同理可以计算出点N 坐标:2t 2-63+t 2,-6t3+t 2 ,当k MN 存在,即t 2≠9,即t ≠±3时,k MN =-6t(t 2-9)所以直线MN 的方程为:y +6t 3+t 2=-6t t 2-9x -2t 2-63+t 2即:y =-6t t 2-9x +6t t 2-9=-6tt 2-9x -1 ,所以直线过定点1,0 ,即过椭圆的右焦点F 2,所以△FMN 的周长为4a =8.当k MN 不存在,即t 2=9,即t =±3时,可以计算出x 1=x 2=1,周长也等于8.所以△FMN 的周长为定值8.8.(2023届安徽省皖南八校高三上学期考试)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,且左焦点坐标为-2,0 ,P 为椭圆上的一个动点,∠F 1PF 2的最大值为π2.(1)求椭圆M 的标准方程;(2)若过点-2,-4 的直线l 与椭圆M 交于A ,B 两点,点N 2,0 ,记直线NA 的斜率为k 1,直线NB 的斜率为k 2,证明:1k 1+1k 2=1.【解析】(1)因为左焦点坐标为-2,0 ,所以c =2,当点P 在上、下顶点时,∠F 1PF 2最大,又∠F 1PF 2的最大值为π2.所以b =c =2,由a 2=b 2+c 2得a 2=4,所以椭圆M 的标准方程为x 24+y 22=1;(2)当直线l 的斜率为0时,直线l 的方程为y =-4,直线y =-4与椭圆x 24+y 22=1没有交点,与条件矛盾,故可设直线l 的方程为x =my +t ,联立直线l 的方程与椭圆方程可得,x =my +tx 24+y 22=1,化简可得my +t 2+2y 2=4,所以m 2+2 y 2+2mtx +t 2-4=0,由已知方程m 2+2 y 2+2mtx +t 2-4=0的判别式Δ=4m 2t 2-4m 2+2 t 2-4 =16m 2-8t 2+32>0,又直线x =my +t 过点-2,-4 ,所以-2=-4m +t ,所以7m 2-8m <0,所以0<m <87,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,因为N 2,0所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=my 1+t -2y 1+my 2+t -2y 2=2m +t -2 y 1+y 2y 1y 2,所以1k 1+1k 2=2m +t -2 -2mt t 2-4=2m -2mt t +2=2m -2mt 4m =2m -t 2=1方法二:设直线l 的方程为m x -2 +ny =1,A x 1,y 1 ,B x 2,y 2 ,由椭圆M 的方程x 2+2y 2=4,得(x -2)2+2y 2=-4x -2 .联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4x -2 m x -2 +ny ,即1+4m (x -2)2+4n x -2 y +2y 2=0,1+4m x -2y 2+4n x -2y +2=0,所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n1+4m .因为直线l 过定点-2,-4 ,所以m +n =-14,代入1k 1+1k 2,得1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n 1+4m =1+4m1+4m =1.9.(2023届北京市房山区高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴的两个端点分别为A -2,0 ,B 2,0 离心率为32.(1)求椭圆C 的标准方程;(2)M 为椭圆C 上除A ,B 外任意一点,直线AM 交直线x =4于点N ,点O 为坐标原点,过点O 且与直线BN 垂直的直线记为l ,直线BM 交y 轴于点P ,交直线l 于点Q ,求证:|BP ||PQ |为定值.【解析】(1)由已知a =2,又e =c a =c 2=32,c =3,所以b =a 2-c 2=1,椭圆标准方程为x 24+y 2=1;(2)设M (x 1,y 1),y 1≠0,则x 214+y 21=1,x 21+4y 21=4,直线AM 的方程为y =y 1x 1+2(x +2),令x =4得y =6y 1x 1+2,即N 4,6y 1x 1+2,k BN =6y 1x 1+24-2=3y 1x 1+2,l⊥BN,k l=-x1+23y1,直线l的方程是y=-x1+23y1x,直线BM的方程为y=y1x1-2(x-2),令x=0得y=-2y1x1-2,即P0,-2y1x1-2,由y=-x1+23y1xy=y1x1-2(x-2),因为x21+4y21=4,故解得x=-6y=2(x1+2)y1,即Q-6,2x1+2y1,所以BPPQ=x P-x Bx Q-x P=0-2-6-0=1310.(2023届湖南师范大学附属中学高三上学期月考)已知A(-22,0),B(22,0),直线PA,PB的斜率之积为-34,记动点P的轨迹为曲线C.(1)求C的方程;(2)直线l与曲线C交于M,N两点,O为坐标原点,若直线OM,ON的斜率之积为-34,证明:△MON的面积为定值.【解析】(1)设P(x,y),则直线PA的斜率k PA=yx+22(x≠-22),直线PB的斜率 k PB=yx-22(x≠22),由题意k PA⋅k PB=yx+22⋅yx-22=y2x2-8=-34,化简得 x28+y26=1(x≠±22);(2)直线l的斜率存在时,可设其方程为y=kx+m,联立y=kx+m,x28+y26=1,化简得3+4k2x2+8km x+4m2-24=0,设M x1,y1,N x2,y2,则Δ=(8km)2-43+4k24m2-24=488k2+6-m2>0,x1+x2=-8km3+4k2,x1x2=4m2-243+4k2,所以 k OM⋅k ON=y1y2x1x2=kx1+mkx2+mx1x2=k2x1x2+km x1+x2+m2x1x2=4m2k2-24k2-8k2m2+3m2+4k2m23+4k24m2-243+4k2=-24k2+3m24m2-24=-34化简得m2=4k2+3则|MN|=1+k2x1-x2=1+k2488k2+6-m23+4k2==431+k24k2+34k2+3=431+k23+4k2,又O到MN的距离d=|m|1+k2=4k2+31+k2,所以S△OMN=12|MN|⋅d=12⋅431+k23+4k2⋅3+4k21+k2=23,为定值.当直线l的斜率不存在时,可设 M x0,y0,N x0,-y0,则k CM⋅k ON=-y20x20=-34,且x208+y206=1,解得x20=4,y20=3,此时S△OMN=2×12×x0y0=23,综上,△OMN 的面积为定值23.11.(2023届贵州省遵义市新高考协作体高三上学期质量监测)已知点F 1是椭圆C :x 24+y 23=1的左焦点,Q是椭圆C 上的任意一点,A 12,1 .(1)求QF 1 +QA 的最大值;(2)过点F 1的直线l 与椭圆C 相交于两点M ,N ,与y 轴相交于点P .若PM =λMF 1 ,PN =μNF 1,试问λ+μ是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)由椭圆方程知:a =2,b =3,∴c =a 2-b 2=1,则F 1-1,0 ,F 21,0 ,由椭圆定义知:QF 1 =2a -QF 2 =4-QF 2 ,∴QF 1 +QA =QA -QF 2 +4,∵QA -QF 2 ≤F 2A (当且仅当A ,F 2,Q 三点共线,即与图中T 点重合时取等号),又F 2A =12-1 2+1-0 2=52,∴QF 1 +QA 的最大值为4+52=8+52.(2)由题意知:直线l 斜率存在,设l :y =k x +1 ,M x 1,y 1 ,N x 2,y 2 ,则P 0,k ,由y =k x +1x 24+y 23=1得:3+4k 2 x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2;∵PM =λMF 1 ,即x 1,y 1-k =λ-1-x 1,-y 1 ,则λ=-x 11+x1;同理可得:μ=-x 21+x 2,∴λ+μ=-x 11+x 1-x 21+x 2=-x 11+x 2 +x 21+x 1 1+x 1 1+x 2=-2x 1x 2+x 1+x 2 x 1x 2+x 1+x 2 +1=-8k 2-243+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k2+1=-8k 2-24-8k 24k 2-12-8k 2+3+4k2=-83,∴λ+μ是定值-83.12.(2023届江苏省盐城市响水中学高三上学期测试)已知椭圆C :x 24+y 22=1,A 0,1 ,过点A 的动直线l与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得λAP ⋅AQ +OP ⋅OQ为定值?若存在,求出λ的值;若不存在,说明理由.【解析】(1)①当直线l 存在斜率时,设P x 1,y 1 、Q x 2,y 2 、M x 0,y 0 ,x 0≠0,则应用点差法:x 214+y 212=1x 224+y 222=1,两式联立作差得:(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)2=0,∴y 1-y 2 y 1+y 2 x 1-x 2 x 1+x 2=y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=k PQ ⋅2y 02x 0=k PQ ⋅y 0x 0=k PQ ⋅k OM =-12,又∵k PQ =k MA =y 0-1x 0,∴y 0-1x 0⋅y 0x 0=-12,化简得x 20+2y 20-2y 0=0(x 0≠0),②当直线l 不存在斜率时,M 0,0 ,综上,无论直线是否有斜率,M 的轨迹方程为x 2+2y -12 2=12;(2)①当直线l 存在斜率时,设直线l 的方程为:y =kx +1,联立y =kx +1x 24+y 22=1并化简得:(2k 2+1)x 2+4kx -2=0,∴Δ>0恒成立,∴x 1+x 2=-4k 2k 2+1,x 1⋅x 2=-22k 2+1,又AP =x 1,k ⋅x 1 ,AQ =x 2,k ⋅x 2 ,OP =x 1,k ⋅x 1+1 ,OQ =x 2,k ⋅x 2+1 ,∴λAP ⋅AQ +OP ⋅OQ=λ1+k 2 ⋅x 1⋅x 2+1+k 2 ⋅x 1⋅x 2+k x 1+x 2 +1,=-2λ+1 1+k 2 2k 2+1-4k 22k 2+1+1=-2λ+2 k 2+2λ+12k 2+1,若使λAP ⋅AQ +OP ⋅OQ为定值,只需2λ+2 2=2λ+11,即λ=1,其定值为-3,②当直线l 不存在斜率时,直线l 的方程为:x =0,则有P 0,2 、Q 0,-2 ,又AP =0,2-1 ,AQ =0,-2-1 ,OP =0,2 ,OQ =0,-2 ,∴λAP ⋅AQ +OP ⋅OQ =-λ-2,当λ=1时,λAP ⋅AQ +OP ⋅OQ 也为定值-3,综上,无论直线是否有斜率,一定存在一个常数λ=1,使λAP ⋅AQ +OP ⋅OQ为定值-3.13.(2023届云南省下关第一中学高三上学期考试)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,3),离心率为22,直线y =kx (k ≠0)与椭圆E 交于A ,B 两点,过点B 作BC ⊥x ,垂足为C 点,直线AC 与椭圆E的另一个交点为D .(1)求椭圆E 的方程;(2)试问∠ABD 是否为定值?若为定值,求出定值;若不为定值,说明理由.【解析】(1)由已知得b =3c a =22,解得a =6b =3c =3,所以E :x 26+y 23=1.(2)由已知,不妨设B x 0,y 0 ,则A -x 0,-y 0 ,C x 0,0 ,所以k =y 0x 0,k AC =y 02x 0=k 2,所以l AD :y =k2x -x 0 ,代入椭圆E :x 26+y 23=1的方程得:2+k 2 x 2-2x 0k 2x +k 2x 20-12=0,设D x D ,y D ,则-x 0+x D =2x 0k 22+k 2,即x D =2x 0k 22+k 2+x 0,所以y D =k 22x 0k22+k 2+x 0-x 0 =x 0k 32+k 2,即D 2x 0k 22+k 2+x 0,x 0k 32+k 2,所以k BD =x 0k 32+k 2-kx 02x 0k 22+k 2+x 0-x 0=-1k ,即k BD k =-1,即BD ⊥AB ,也即∠ABD 为定值π2.14.如图,点M 是圆A :x 2+(y +1)2=16上任意点,点B (0,1),线段MB 的垂直平分线交半径AM 于点P ,当点M 在圆A 上运动时,(1)求点P 的轨迹E 的方程;(2)BQ ⎳x 轴,交轨迹E 于Q 点(Q 点在y 轴的右侧),直线l :x =my +n 与E 交于C ,D (l 不过Q 点)两点,且直线CQ 与直线DQ 关于直线BQ 对称,则直线l 具备以下哪个性质?证明你的结论?①直线l 恒过定点;②m 为定值;③n 为定值.【解析】(1)如图,由⊙A 方程,得A (0,-1),半径r =4,∵P 在BM 的垂直平分线上,∴PM =PB ,所以|PA |+|PB |=|PA |+|PM |=|AM |=4>|AB |=2,∴P 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,由2a =4,则a =2,c =1,b 2=3,∴点P 的轨迹E 的方程为y 24+x 23=1.(2)解:∵直线l 与轨迹E 交于C ,D 两点,设C (x 1,y 1),D (x 2,y 2),如图x =my +n ,y 24+x 23=1消x ,得y 24+(my +n )23=1,整理,得(3+4m 2)y 2+8mny +4n 2-12=0,y 1+y 2=-8mn 3+4m 2,y 1y 2=4n 2-123+4m 2,因为CQ 与DQ 关于BQ 对称,BQ ⎳x 轴,所以k CQ +k DQ =0,Q 32,1 ,x 1≠32,x 2≠32,y 1-1x1-32+y 2-1x 2-32=0,即(y 1-1)x 2-32 +(y 2-1)x 1-32 =0,∵x 1=my 1+n ,x 2=my 2+n ,∴整理:2my 1y 2+n -m -32(y 1+y 2)-2n +3=0,2m 4n 2-123+4m 2+n -m -32 -8mn 3+4m 2 -2n +3=0,即4m 2+(4n -8)m -2n +3=0,即(2m -1)(2m +2n -3)=0,若2m +2n -3=0,点Q 32,1满足l :x =my +n ,即C ,D ,Q 三点共线,不合题意,∴2m -1=0,即m =12,∴直线l 中m 为定值12.15.(2022届云南省红河州高三检测)在平面直角坐标系Oxy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为b a >b >0 的圆与线段OM 交于点N ,作MD ⊥x 轴于点D ,作NQ ⊥MD 于点Q .(1)令∠MOD =α,若a =4,b =1,α=π3,求点Q 的坐标;(2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点B 1,B 2,若点E 、F 分别满足AE =-3OE ,4AF =3OB 2 ,设直线B 1E 和B 2F 的交点为K ,设直线l :x =a 2c 及点H c ,0 ,(其中c =a 2-b 2),证明:点K 到点H 的距离与点K 到直线l 的距离之比为定值ca.【解析】(1)设Q x ,y ,则由题知x =4cos π3=2y =sin π3=32,因此Q 2,32 (2)(2)设∠MOD =α及Q x ,y ,则由题知x=acos αy =b sin α ,则点Q 的轨迹C 为椭圆,方程为:x 2a 2+y 2b 2=1a >b >0 .(3)设K x ,y ,由题知,B 10,b ,E a 4,0 ,B 20,-b ,F a ,-34b ,l B 1E :xa 4+y b =1,即4bx +ay =ab ,l B 2F :y +b -34b +b=xa ,即bx -4ay =4ab ,联列上述直线方程,解得x =817ay =-1517b.KH =817a -c 2+-1517b 2=817a -c 2+-1517 2a 2-c 2=a 2+817c 2-2×817ac =a -817c令点K 到直线l 的距离为PM ,则c a ⋅PM =c a ⋅a 2c -817a =a -817c .因此有KH PM=ca .。
专题14 圆锥曲线中的定值定点问题(解析版)
专题14 圆锥曲线中的定值定点问题1.(2022·全国·高考真题(文))已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)- 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -.求得HN 方程:(22y x =+-,过点(0,2)-. ①若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++- 可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=, 将(*)代入,得222241296482448482436480,k k k k k k k +++---+--= 显然成立,综上,可得直线HN 过定点(0,2).-2.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =3.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M :22221x y a b +=(a >b>0AB为过椭圆右焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点()2,0P ,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,当12111k k +=时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.【答案】(1)22142x y += (2)存在,()2,4-- 【解析】 【分析】(1)由题意求出,,a b c ,即可求出椭圆M 的方程.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y ,联立直线l 的方程与椭圆方程()()222242x y x -+=--,得()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭,则12114114n k k m +=-=+,化简得14m n +=-,即可求出直线l 恒过的定点. (1)因为22221x y a b +=(a >b >0222b a =, 所以a =2,c =b M 的方程为22142x y +=.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y , 由椭圆的方程2224x y +=,得()()222242x y x -+=--.联立直线l 的方程与椭圆方程,得()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+,即()()()221424220m x n x y y +-+-+=,()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭, 所以12121222114114x x nk k y y m--+=+=-=+, 化简得14m n +=-,代入直线l 的方程得()1214m x m y ⎛⎫-+--= ⎪⎝⎭, 即()1214m x y y ---=,解得x =-2,y =-4,即直线l 恒过定点()2,4--. 4.(2022·上海松江·二模)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为1F 、2F ,且122F F =,直线l 交椭圆Γ于不同的两点M 和N . (1)求椭圆Γ的方程;(2)若直线l 的斜率为1,且以MN 为直径的圆经过点A ,求直线l 的方程; (3)若直线l 与椭圆Γ相切,求证:点1F 、2F 到直线l 的距离之积为定值.【答案】(1)22143x y +=;(2)2y x =-或27y x =-; (3)证明见解析. 【解析】 【分析】(1)根据焦距及椭圆的顶点求出,a b 即可得出;(2)设直线l 的方程为 y x b =+,联立方程,由根与系数的关系及0AM AN ⋅=求解即可;(3)分直线斜率存在与不存在讨论,当斜率不存在时直接计算可得,当斜率存在时,设直线l 的方程为y kx b =+,根据相切求出,b k 关系,再由点到直线的距离直接计算即可得解.(1)①1222F F c == ①1c =,①2a =,由222a b c =+ 得241=+b ,①22=34=b a ,所以椭圆Γ的方程:22143x y +=;(2)①直线l 的斜率为1,故可设直线l 的方程为 y x b =+, 设1(M x ,1)y ,2(N x ,2)y由22143y x bx y =+⎧⎪⎨+=⎪⎩ 可得22784120x bx b ++-=, 则1287b x x +=-,2124127b x x -=,①以MN 为直径的圆过右顶点A ,①0AM AN ⋅=,①1212(2)(2)0x x y y --+= ①21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++2241282(2)4077b bb b -=⋅--⋅++=,整理可得271640b b ++=,①2b =-或27b =-,①2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-, 当2b =-或27b =-时,均有0∆>所以直线l 的方程为2y x =-或27y x =-. (3)椭圆Γ左、右焦点分别为1(1,0)F -、2(1,0)F①当直线l 平行于y 轴时,①直线l 与椭圆Γ相切,①直线l 的方程为2x =±, 此时点1F 、2F 到直线l 的到距离分别为121,3d d ==,①123d d ⋅=. ①直线l 不平行于y 轴时,设直线l 的方程为 y kx b =+,联立2234120y kx b x y =+⎧⎨+-=⎩,整理得222(34)84120k x kbx b +++-=, 222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-,①直线l 与椭圆Γ相切,①0∆=,①2234b k =+ ①1(1,0)F -到直线l的距离为1d ,2(1,0)F -到直线l的距离为2=d①2222212222(34)33111k bk k k d d k k k --++⋅=====+++, ①点1F 、2F 到直线l 的距离之积为定值由3.5.(2022·上海浦东新·二模)已知12F F 、分别为椭圆E :22143x y+=的左、右焦点, 过1F 的直线l 交椭圆E于,A B 两点.(1)当直线l 垂直于x 轴时,求弦长AB ; (2)当2OA OB ⋅=-时,求直线l 的方程;(3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线6x =于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定点坐标. 【答案】(1)3(2))1y x =+(3)证明见解析;定点()()4080,,,【解析】 【分析】(1)将1x =-代入椭圆方程求解即可;(2)由(1)知当直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立直线与椭圆的方程,得出()22223484120k xk x k +++-=,设()()1122A x y B x y ,,,可得韦达定理,代入2OA OB ⋅=-计算可得斜率;(3)分析当直线l 的斜率不存在时,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,再以CD 为直径的圆的方程,令0y =,代入韦达定理化简可得定点 (1)由题知()110F -,,将1x =-代入椭圆方程得332y AB =±∴=, (2)由(1)知当直线l 的斜率不存在时,331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,此时14OA OB =,不符合题意,舍去∴直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立()221431x y y k x ⎧+=⎪⎨⎪=+⎩得()22223484120k x k x k +++-=,设()()1122A x y B x y ,,,,则2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 由()()()()2222222221212121212122224128512111()1343434k k k OA OB x x y y x x k x k x k x xk x x k kk k k k k ----=+=+++=++++=+++=+++,解得22k k ==,∴直线l 的方程为)1y x =+..(3)①当直线l 的斜率不存在时,()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为112y x =-+,C 点坐标为()62-,, 直线BT 的方程为112y x =-,D 点坐标为()62,,以CD 为直径的圆方程为()2264x y -+=,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,令0y =,得48x x ==,.即圆过点()()4080,,,. ①当直线l 的斜率存在时,同(2)联立,直线AT 的方程为()1122y y x x =--, C 点坐标为11462y x ⎛⎫ ⎪-⎝⎭,,同理D 点坐标为22462y x ⎛⎫⎪-⎝⎭,,以CD 为直径的圆的方程为()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭,令0y =,得()2121212161236024y y x x x x x x -++=-++,由()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++, 得212320x x -+=,解得48x x ==,,即圆过点()()4080,,,. 综上可得,以CD 为直径的圆恒过定点()()4080,,,. 6.(2022·上海长宁·二模)已知,A B 分别为椭圆222Γ:1(1)x y a a+=>的上、下顶点,F 是椭圆Γ的右焦点,M 是椭圆Γ上异于,A B 的点.(1)若π3AFB ∠=,求椭圆Γ的标准方程 (2)设直线:2l y =与y 轴交于点P ,与直线MA 交于点Q ,与直线MB 交于点R ,求证:PQ PR ⋅的值仅与a 有关(3)如图,在四边形MADB 中,MA AD ⊥,MB BD ⊥,若四边形MADB 面积S 的最大值为52,求a 的值.【答案】(1)2214x y +=(2)证明见解析 (3)2a = 【解析】 【分析】(1)根据已知判断AFB △形状,然后可得;(2)设()11,M x y ,表示出直线AM 、BM 的方程,然后求Q 、R 的坐标,直接表示出所求可证; (3)设()11,M x y ,()44,D x y ,根据已知列方程求解可得14,x x 之间关系,表示出面积,结合已知可得. (1)因为AF BF =,π3AFB ∠=,所以AFB △是等边三角形, 因为2AB =,AF a =,所以2a =,得椭圆的标准方程为2214x y +=.(2)设()11,M x y ,()2,2R x ,()3,2Q x , 因为()0,1A ,()0,1B -所以直线AM 、BM 的方程分别为 111:1AM y l y x x -=+, 111:1BM y l y x x +=-, 所以12131x x y =+,1311x x y =-, 又221121x y a-=所以2211221331x PQ PR x x a y ⋅===-,所以PQ PR ⋅的值仅与a 有关. (3)设()11,M x y ,()44,D x y , 因为MA DA ⊥,MB DB ⊥,所以()()1414110x x y y +--=,()()1414110x x y y +++= 两式相减得41y y =-,带回原式得214110x x y +-=,因为221121x y a+=,所以142x x a =-, 1412111MAB DABS SSx x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭因为S 的最大值为52 ,所以152a a += ,得2a =.7.(2022·福建省福州格致中学模拟预测)圆O :224x y +=与x 轴的两个交点分别为()12,0A -,()22,0A ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足12NR NM = (1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线1x my =+交C 于P ,Q 两点,直线1A P 与2A Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,2A TS 为等腰三角形【答案】(1)2214x y +=(2)存在,证明见解析 【解析】 【分析】(1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,根据题意得0x x =,012y y =,再代入圆224x y +=即可求解;(2)先判断斜率不存在的情况;再在斜率存在时,设直线l 的方程为1x my =+,与椭圆联立得:()224230m y my ++-=,12224m y y m -+=+,12234y y m -=+,再根据题意求解判断即可. (1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,又12NR NM =,可得0x x =,012y y =, 即0x x =,02y y =代入22004x y +=可得()2224x y +=,化简得:2214x y +=,故点R 的轨迹方程为:2214x y +=.(2)根据题意,可设直线l 的方程为1x my =+, 取0m =,可得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭, 可得直线1A P的方程为y x =+,直线2A Q的方程为y x =-联立方程组,可得交点为(1S ;若1,P ⎛ ⎝⎭,Q ⎛ ⎝⎭,由对称性可知交点(24,S , 若点S 在同一直线上,则直线只能为l :4x =上,以下证明:对任意的m ,直线1A P 与直线2A Q 的交点S 均在直线l :4x =上. 由22114x my x y =+⎧⎪⎨+=⎪⎩,整理得()224230m y my ++-= 设()11,P x y ,()22,Q x y ,则12224m y y m -+=+,12234y y m -=+ 设1A P 与l 交于点()004,S y ,由011422y y x =++,可得10162y y x =+ 设2A Q 与l 交于点()004,S y ',由022422y y x '=--,可得20222y y x '=-,因为()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+- ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-, 因为00y y '=,即0S 与0S '重合, 所以当m 变化时,点S 均在直线l :4x =上,因为()22,0A ,()4,S y ,所以要使2A TS 恒为等腰三角形,只需要4x =为线段2A T 的垂直平分线即可,根据对称性知,点()6,0T . 故存在定点()6,0T 满足条件.8.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,椭圆C 的左、右顶点分别为A ,B ,上顶点为D ,1AD BD ⋅=-. (1)求椭圆C 的方程;(2)斜率为12的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P (直线l 不经过点P ),使得直线PM 与直线PN 的倾斜角互补,若存在这样的点P ,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; (2)设直线l 的方程为12y x m =+,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知(),0A a -,(),0B a ,()0,D b ,所以(),AD a b =,(),BD a b =-,所以2221AD BD a b c ⋅=-+=-=-,解得1c =. 又椭圆C 的离心率为12,所以22a c ==,b故椭圆C 的方程为22143x y +=.(2)假设存在这样的点P ,设点P 的坐标为()00,x y ,点M ,N 的坐标分别为()11,x y ,()22,x y ,设直线l 的方程为12y x m =+. 联立方程221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 后整理得2230x mx m ++-=.()222431230m m m ∆=--=->,得22m -<<, 有12212,3.x x m x x m +=-⎧⎨=-⎩ 若直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+---- ()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----.所以0000230,230,x y y x -=⎧⎨-=⎩解得001,32x y =⎧⎪⎨=⎪⎩或001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭.9.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆()2222:10x y C a b a b +=>>的两个焦点分别为1F 和2F ,椭圆C 上一点到1F 和2F 的距离之和为4,且椭圆C(1)求椭圆C 的方程;(2)过左焦点1F 的直线l 交椭圆于A 、B 两点,线段AB 的中垂线交x 轴于点D (不与1F 重合),是否存在实数λ,使1AB DF λ=恒成立?若存在,求出λ的值;若不存在,请说出理由.【答案】(1)2214x y +=(2)存在,λ=【解析】 【分析】(1)由椭圆的定义可求得a 的值,根据椭圆的离心率求得c 的值,再求出b 的值,即可得出椭圆C 的方程; (2)分析可知,直线l 不与x 轴垂直,分两种情况讨论,一是直线l 与x 轴重合,二是直线l 的斜率存在且不为零,设出直线l 的方程,与椭圆方程联立,求出AB 、1DF ,即可求得λ的值. (1)解:由椭圆的定义可得24a =,则2a =,因为c ea ==c∴=1b ==, 因此,椭圆C 的方程为2214x y +=.(2)解:若直线l 与x 轴垂直,此时,线段AB 的垂直平分线为x 轴,不合乎题意; 若直线l 与x 轴重合,此时,线段AB 的垂直平分线为y 轴,则点D 与坐标原点重合,此时,143AB DF λ==若直线l 的斜率存在且不为零时,设直线l 的方程为)0x my m =≠,设点()11,A x y 、()22,B x y , 联立2244x my x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>,由韦达定理可得12y y +=,12214y y m =-+, 则()121222m y y x x ++= 所以,线段AB的中点为M ⎛ ⎝⎭, 所以,线段AB的垂直平分线所在直线的方程为y m x ⎛=- ⎝⎭,在直线方程y m x ⎛=- ⎝⎭中,令0y =可得x =,故点D ⎛⎫ ⎪ ⎪⎝⎭,所以,)21214m DF m +==+,由弦长公式可得()22414m AB m +==+,因此,()2221414m ABDF m λ+===+综上所述,存在λ=1AB DF λ=恒成立. 10.(2022·河南安阳·模拟预测(文))已知椭圆2222:1(0)C b b x a a y +>>=上一个动点N 到椭圆焦点(0,)F c 的距离的最小值是2,且长轴的两个端点12,A A 与短轴的一个端点B 构成的12A A B △的面积为2.(1)求椭圆C 的标准方程;(2)如图,过点4(0,)M -且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线1A P 与直线2A Q 的交点T 在定直线上.【答案】(1)2214y x +=(2)证明见解析 【解析】 【分析】(1)根据题意得到22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,再解方程组即可.(2)首先设直线:4l y kx =-,()11,P x y ,()22,Q x y ,与椭圆联立,利用韦达定理得到12284kx x k +=+,122124x x k =+.1112:2PA y l y x x ++=,2222:2QA y l y xx --=,根据2123y y +=--,即可得到1y =-,从而得到直线1A P 与直线2A Q 的交点T 在定直线1y =-上. (1)由题知:22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪⎩,即:椭圆22:14+=y C x(2)设直线:4l y kx =-,()11,P x y ,()22,Q x y ,()10,2A -,()20,2A ,()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩. 12284k x x k +=+,122124x x k =+. 则1112:2PA y l y x x ++=,2222:2QA y l y x x --=, 则()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----, 因为()1212212342k kx x x x k ==++, 所以()()12212121213232123293362x x x x x y y x x x x x +--+===---++-,解得1y =-. 所以直线1A P 与直线2A Q 的交点T 在定直线1y =-上.11.(2022·安徽省舒城中学三模(理))已知椭圆22:184x y Γ+=,过原点O 的直线交该椭圆Γ于A ,B 两点(点A 在x 轴上方),点()4,0E ,直线AE 与椭圆的另一交点为C ,直线BE 与椭圆的另一交点为D .(1)若AB 是Γ短轴,求点C 坐标;(2)是否存在定点T ,使得直线CD 恒过点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)82(,)33;(2)存在,8(,0)3T .【解析】 【分析】(1)两点式写出直线AE ,联立椭圆方程并结合韦达定理求出C 坐标; (2)设00(,)A x y 有00:(4)4=--y AE y x x ,联立椭圆求C 坐标,同理求D 坐标,讨论00x ≠、00x =,判断直线CD 恒过定点即可. (1)由题设,(0,2)A ,而()4,0E ,故直线AE 为240x y +-=,联立22:184x y Γ+=并整理得:23840y y -+=,故83A C y y +=,而2A y =,所以23C y =,代入直线AE 可得284233C x =-⨯=,故C 坐标为82(,)33.(2)设00(,)A x y ,则00:(4)4=--y AE y x x , 由()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩,故2220202(4)8(4)+-=-y x x x , 由韦达定理有20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-, 所以00833C x x x -=-,故003C y y x =-,同理得:00833D x x x +=+,003D y y x -=+,当00x ≠时,取8(,0)3T ,则0000003383833TCy x yk x x x -==----,同理003TD y k x =-, 故,,T C D 共线,此时CD 过定点8(,0)3T .当00x =时,83C D x x ==,此时CD 过定点8(,0)3T .综上,CD 过定点8(,0)3T .12.(2022·广东茂名·二模)已知圆O :x 2+y 2=4与x 轴交于点(2,0)A -,过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过6(,0)5-作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)2212x y +=;(2)证明见解析. 【解析】 【分析】(1)运用相关点法即可求曲线C 的方程;( 2)首先对直线l 的斜率是否存在进行讨论,再根据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS 的斜率12,k k ,再根据斜率的表达式进行化简运算,得出结论. (1)设N (x 0,y 0),则H (x 0,0), ①N 是MH 的中点,①M (x 0,2y 0),又①M 在圆O 上,2200(2)4y x +=∴,即220014x y +=; ①曲线C 的方程为:2214x y +=;(2)①当直线l 的斜率不存在时,直线l 的方程为:65x =-,若点P 在轴上方,则点Q 在x 轴下方,则6464(,),(,)5555P Q ---,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,①64(,)55S ,1244001551,,6642255APAS k k k k --======-++124k k ∴=;若点P 在x 轴下方,则点Q 在x 轴上方, 同理得:646464(,),(,),(,)555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++,①k 1=4k 2;①当直线l 的斜率存在时,设直线l 的方程为:6,5x my =-,由6,5x my =-与2214x y +=联立可得221264(4)0525m m y y +--=, 其中22144644(4)02525m m ∆=+⨯+⨯>,设1122(,),(,)P x y Q x y ,则22(,)S x y --,则1212221264525,44m y y y y m m -+==++,①112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+- 则121122121216()2542()5y my k y x k x y my y --=⋅=++121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++,①k 1=4k 2. 13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点1F 射出的光线经过椭圆镜面反射到上焦点2F ,这束光线的总长度为4,且反射点与焦点构成的三角e < (1)求椭圆C 的标准方程;(2)若从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线4y =上的M 、N两点,若AB 连线过椭圆的上焦点2F ,试问,直线BM 与直线AN 能交于一定点吗?若能,求出此定点:若不能,请说明理由.【答案】(1)22143y x +=(2)能,定点为(0,85)【解析】 【分析】(1)由条件列方程求,,a b c 可得椭圆方程; (2)联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为22221(0)y x a b a b+=>>,则24a =,122c b ⨯⨯222a b c =+又e <所以21a b c ===,,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,得22(34)690k x kx ++-=, 222(6)36(34)1441440k k k ∆=++=+>设()()1122A x y B x y ,,,,则121222693434k x x x x k k --+==++,.. 由对称性知,若定点存在,则直线BM 与直线AN 交于y 轴上的定点,由114y y x x y ⎧=⎪⎨⎪=⎩得1144x M y ⎛⎫ ⎪⎝⎭,,则直线BM 方程为211121444()4y x y x x y x y --=--, 令0x =,则 122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又12123()2x x kx x +=, 则21212112214()4()83554()()22x x x x y x x x x x x --===-++-,所以,直线BM 过定点(0,85),同理直线AN 也过定点8(0,)5.则点(0,85)即为所求点.14.(2022·全国·模拟预测)设椭圆()222:10416x y C b b+=<<的右焦点为F ,左顶点为A .M 是C 上异于A的动点,过F 且与直线AM 平行的直线与C 交于P ,Q 两点(Q 在x 轴下方),且当M 为椭圆的下顶点时,2AM FQ =.(1)求椭圆C 的标准方程;(2)设点S ,T 满足PS SQ =,FS ST =,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. 【答案】(1)22116x = (2)证明见解析 【解析】 【分析】(1)由向量的坐标运算用,b c 表示出Q 点坐标,代入椭圆方程求得参数b ,得椭圆方程; (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .直线方程代入椭圆方程应用韦达定理得12y y +,利用向量相等的坐标表示求得T 点坐标,得出T 点坐标满足一个椭圆方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,(4,)AM b =-,则12,22b FQ AM ⎛⎫==- ⎪⎝⎭. 设C 的焦距为2c ,则2,2b Q c ⎛⎫+- ⎪⎝⎭,即2,2b Q ⎫-⎪⎭.因为Q 在C上,故)2211164+=,解得()22162b =-=则椭圆C的标准方程为22116x =. (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .联立直线PQ 和C 的方程,消x得()22220y +-.12y y +=1212()2x x m y y c +=++= 由PS SQ =得S 为弦PQ的中点,故S ⎛.由FS ST =得S 是线段FT的中点,故T .设T 的坐标为(), x y,则x c =,y c =,故2211x y c c ⎛⎫⎫=== ⎪⎪⎝⎭⎝⎭,即2221x c =, 这表明T 在中心为原点,(,0)c ±为长轴端点,0,⎛⎫ ⎪ ⎪⎝⎭为短轴端点的椭圆上运动,故T到两焦点,0⎛⎫ ⎪ ⎪⎝⎭的距离之和为定值.代入得两焦点坐标为(()4,0±-.综上所述,平面上存在两定点()4-,()4-+,使得T 到这两定点距离之和为定值.15.(2022·上海交大附中模拟预测)已知椭圆221214x y F F Γ+=:,,是左、右焦点.设M 是直线()2l x t t =>:上的一个动点,连结1MF ,交椭圆Γ于()0N N y ≥.直线l 与x 轴的交点为P ,且M 不与P 重合.(1)若M 的坐标为58⎫⎪⎪⎝⎭,,求四边形2PMNF 的面积; (2)若PN 与椭圆Γ相切于N 且1214NF NF ⋅=,求2tan PNF ∠的值; (3)作N 关于原点的对称点N ',是否存在直线2F N ,使得1F N '上的任一点到2F N求出直线2F N 的方程和N 的坐标,若不存在,请说明理由. 【答案】(3)存在;y x =;126N ⎫⎪⎪⎝⎭【解析】 【分析】(1)根据点斜式方程可得1:MF l y x =,再联立椭圆方程得到12N ⎫⎪⎭,再根据2112PMNF PF M NF F S S S =-△△求解即可;(2)设:()PN l y k x t =-,根据相切可知,直线与椭圆方程联立后判别式为0,得到2214k t =-,再根据1214NF NF ⋅=,化简可得t =12N ⎫⎪⎭,再根据直角三角形中的关系求解2tan PNF ∠的值即可;(3)设()00,N x y ,表达出2NF l,再根据22O NF d -=列式化简可得2148k =,结合k =程即可求得N 和直线2F N 的方程 (1)由题意,()1F,故15MF k ==,所以1:MF l y x =与椭圆方程联立2214x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,可得:213450x +-=,即(130x x +=,又由题意N x >,故解得x =12N ⎫⎪⎭,故121122NF F S =⋅=△且11528PF M S ==△则2112PMNF PF M NF F S S S =-=△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立2214()x y y k x t ⎧+=⎪⎨⎪=-⎩,可得:()22222148440k x k tx k t +-+-=由相切,()22216140k k t∆=+-=,则2214kt =-同时有韦达定理21228214N k t x x x k +==+,代入2214k t =-有2244414Nt t x t -=+-,化简得4N x t =,故2222414N Nx t y t-=-=而222122122134N Nt NF NF x y t -⋅=+-==,解得2t =>则12N ⎫⎪⎭,所以2NF x ⊥轴,故在直角三角形2PNF中,2223tan 12PF PNF NF ∠===(3)由于N 与N ',1F 与2F 是两组关于原点的对称点,由对称性知 四边形12F NF N '是平行四边形,则2NF 与1N F '是平行的, 故1F N '上的任一点到2F N 的距离均为两条平行线间的距离d .设()00,N x y,其中0(x ∈,易验证,当0x 时,2NF 与1N F '之间的距离为k =2(:NF y l k x =,即0kx y -=,发现当0x22O NF d d -==221914k k =+,整理得2148k =代入k =(220048y x =,代入220014x y =-整理得20013450x --=,即(00130x x -=由于0(x ∈,所以0x =126N ⎫⎪⎪⎝⎭,故1k =, 则2F N l的直线方程为y x =16.(2022·全国·模拟预测(理))已知椭圆C :()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,直线AB的斜率为O 到直线AB(1)求C 的方程;(2)直线l 交C 于M ,N 两点,90MBN ∠=︒,证明:l 恒过定点.【答案】(1)22143x y +=(2)证明见解析【解析】 【分析】(1)题意得(,0),(0,)A a B b ,根据AB斜率,可得b a =AB 的方程,根据点到直线距离公式,可求得a 值,进而可得b 值,即可得答案.(2)分析得直线l 的斜率存在,设1122,(,),(,)y kx m M x y N x y =+,与椭圆联立,可得关于x 的一元二次方程,根据韦达定理,可得1212,x x x x +表达式,进而可得12y y 、12y y +的表达式,根据90MBN ∠=︒,可得0MB NB ⋅=,根据数量积公式,化简计算,可得m 值,分析即可得证(1)由题意得(,0),(0,)A a B b , 所以直线AB的斜率为b a =-b a = 又直线AB的方程为)y x a =-20y +=, 所以原点O 到直线AB的距离d ==,解得2a =,所以b =22143x y +=.(2)由椭圆的对称性可得,直线l 的斜率一定存在,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得222(34)84120k x kmx m +++-=, 所以21212228412,3434km m x x x x k k --+==++, 所以22221212122312()34m k y y k x x km x x m k -=+++=+,121226()234m y y k x x m k +=++=+, 因为90MBN ∠=︒,所以MB BN ⊥,因为B,所以1122(,3),()MB x yNB x y =--=-,所以22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++, 整理得2730m --=,解得m =或7m =-,因为B ,所以m舍去, 所以直线l 的方程为y kx =0,⎛ ⎝⎭,得证17.(2022·全国·模拟预测(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,1A ,2A 分别为左、右顶点,1B ,2B 分别为上、下顶点.若四边形1122B F B F212F F ,212B B ,212A A 成等差数列.(1)求椭圆C 的标准方程;(2)过椭圆外一点P (P 不在坐标轴上)连接1PA ,2PA ,分别与椭圆C 交于M ,N 两点,直线MN 交x 轴于点Q .试问:P ,Q 两点横坐标之积是否为定值?若为定值,求出定值;若不是,说明理由. 【答案】(1)22132x y +=;(2)32P Q x x =为定值,理由见解析. 【解析】 【分析】(1)应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.(2)由题意分析知1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设直线1PA ,2PA 联立椭圆求M ,N 的坐标及P 点横坐标,应用点斜式写出直线MN ,令0y =求Q 横坐标,即可得结论. (1)由题设知:2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩,可得22321a b ⎧=⎪⎨⎪=⎩, 所以椭圆标准方程为22132x y +=. (2)由题意,1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设1PA为(y k x =,联立椭圆方程整理得:22229(23)302k k x x +++-=,所以1M A x x +=1A x =M x == 设2PA为(y m x =,联立椭圆方程整理得:22229(23)302m m x x +-+-=,所以2N A x x +=2A x =N x ==所以M y k =⋅=Ny m =⋅=, 联立直线1PA 、2PA可得:P x =,直线MN为2()[23m k y x km +=⋅-,令0y =,则Q x =,所以32P Q x x ==为定值.18.(2022·山西·太原五中二模(文))已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(1)设()()1122,,,A x y C x y ,用A C 、的坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (2)请从①①两个问题中任选一个作答 ①设1l 与2l 的斜率之积12-,求面积S 的值.①设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【答案】(1)(2)见解析 【解析】 【分析】(1)讨论10x ≠和10x =,分别写出直线1l 的方程,由距离公式即可求得点C 到直线1l 的距离,由面积公式即可证明12212S x y x y =-;(2)若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式求解即可;若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式得到S 的表达式,平方整理,由含42,k k 的项系数为0即可求解. (1)当10x ≠时,直线1l 的方程为:11y y x x =,则点C 到直线1l的距离为d ==当10x =时,直线1l 的方程为:0x =,则点C 到直线1l 的距离为2d x =,也满足d则点C 到直线1l2AB AO ==则1212112222S AB d x y x x x y y y =⋅==--=;(2)若选①,设1122121:,:,2l y k x l y k x k k ===-,设()()1122,,,A x y C x y ,直线1l 与椭圆联立12221y k x x y =⎧⎨+=⎩可得()221121k x+=,同理直线2l 与椭圆联立可得()222121k x +=,不妨令120,0x x >>,则11x y =,22x y ===,则12212S x y x y ==-== 若选①,设12:,:m l y kx l y x k ==,设()()1122,,,A x y C x y ,直线1l 与椭圆联立2221y kx x y =⎧⎨+=⎩可得()22121k x +=,则212112x k =+,同理可得2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭,则1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅1222m m k x x k k k ==-=-⋅,两边平方整理得()24222222224(48)240Sk S S m m k m S m -++++-=,由面积S 与k 无关,可得2222240480S S S m m ⎧-=⎨++=⎩,解得12S m ⎧=⎪⎨=-⎪⎩,故12m =-时,无论1l 与2l 如何变动,面积S 保持不变.19.(2022·福建·厦门一中模拟预测)已知A ,B 分别是椭圆2222:1(0)x y C a b a b +=>>的右顶点和上顶点,||AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .证明: (i )OCM 的面积等于ODN △的面积;(ii )22||||CM MD +为定值.【答案】(1)2214x y +=(2)(i )证明见解析;(ii )证明见解析 【解析】【分析】(1)根据(,0)A a ,(0,)B b,由||AB =AB 的斜率为12-求解;(2)设直线l 的方程为12y x m =-+,得到(2,0)M m ,(0,)N m ,与椭圆方程联立,根据11|2|||2=OCM S m y ,21||||2=ODN S m x ,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+利用韦达定理求解. (1) 解:A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且||AB =AB 的斜率为12-,由(,0)A a ,(0,)B b,得||AB == 又0102b b k a a -==-=--,解得2a =,1b =, ∴椭圆的方程为2214x y +=; (2)设直线l 的方程为12y x m =-+,则(2,0)M m ,(0,)N m ,联立方程221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,整理得222220x mx m -+-=.22248(4)3240m m m ∆=--=->, 得28m <设1(C x ,1)y ,2(D x ,2)y . 122x x m ∴+=,21222x x m =-.所以11|2|||2=OCM S m y ,21||||2=ODN S m x 则有112222|2||2|||1||||||-====OCMODNS y m x x Sx x x OCM ∴的面积等于ODN 的面积;2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+,2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+,()()221212125551042x x x x m x x m =+--++, ()2222552210102m m m m =---+5=. 20.(2022·北京市第十二中学三模)已知椭圆2222:1(0)x y M a b a b +=>>过点(2,0)A(1)求椭圆M 的方程;(2)已知直线(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A )两个不同的点,直线AB ,AC 分别与y 轴交于点P 、Q ,O 为坐标原点,求()k OP OQ +的值.【答案】(1)22142x y +=(2)45【解析】 【分析】(1)直接由A 点坐标及离心率求得椭圆方程即可;(2)联立直线与椭圆求得2212122212184,2121k k x x x x k k --+==++,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算()k OP OQ +即可. (1)由题意知:2,c a a ==c =2222b a c =-=,则椭圆M 的方程为22142x y +=;(2)联立直线与椭圆22(3)142y k x x y =+⎧⎪⎨+=⎪⎩,整理得()222221121840k x k x k +++-=,()()422214442118440160k k k k ∆=-+-=-+>,即k <<(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A)两点,则0k << 设1122(,),(,)B x y C x y ,则1222,22x x -<<-<<,2212122212184,2121k k x x x x k k --+==++,1122(3),(3)y k x y k x =+=+, 易得直线AB ,AC 斜率必然存在,则11:(2)2y AB y x x =--,令0x =,得11202y y x =>-,则112(0,)2y P x -,同理可得222(0,)2y Q x -,且22202y x >-, 则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅ ⎪⎝⎭+-+----222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=.。
圆锥曲线专题(定值)
2、直接法解题步骤
第一步设变量:选择适的量当变量,一般情况先设出直线的方程:y=kx+b或x=my+n、点的坐标;
第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;
(三) 常见条件转化
1、对边平行:斜率相等,或向量平行;
2、两边垂直:斜率乘积为-1,或向量数量积为0;
3、两角相等:斜率成相反数或相等或利用角平分线性质;
4、直角三角形中线性质:两点的距离公式
5、点与圆的位置关系:(1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数.
第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数.
(二) 常见定值问题的处理方法
1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;
2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;
3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.
(四) 常用的弦长公式:
(1) 若直线AB的方程设为y=kx+b,A(x1,y1),B(x2,y2),则
|AB|=sqrt(1+k^(2))⋅|x1−x2|=sqrt(1+k^(2))⋅sqrt((x1+x2)^(2)−4x1x2)=sqrt(1+k^(2))⋅(sqrt(Δ))/(|a|)
圆锥曲线中定点定值问题
定点、定值问题一、定点问题:题型一:三大圆锥曲线中的顶点直角三角形斜边所在的直线过定点例题1:抛物线22(0),.y px p A B =>在抛物线上,OA OB ⊥,求证:直线AB 过定点。
例题2:椭圆223412,x y +=直线:l y kx m =+与椭圆交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点。
求证:直线l 过定点,并求出定点的坐标。
2(,0)7例题3:已知焦点在x 轴上的椭圆过点(0,1),求离心率为2,Q 为椭圆的左顶点, (1) 求椭圆的标准方程;(2) 若过点6(,0)5-的直线l 与椭圆交于,A B 两点。
(i ) 若直线l 垂直x 轴,求AQB ∠的大小; (ii ) 若直线l 不垂直x 轴,是否存在直线l 使得AQB ∆为等腰三角形?如果存在,求出l的方程;如果不存在,请说明理由。
例题4:已知定点(1,0),(2,0)A F -,定直线1:2l x =不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍,设P 点的轨迹为E ,过点F 的直线交E 于,B C 两点,直线,AB AC 分别交l 于点,M N 。
(1) 求E 的方程;(2) 试判断以MN 为直径的圆是否过点F ,并说明理由。
变式训练:抛物线22(0),..y px p A B =>在抛物线上运动,00(,)P x y 是抛物线上的定点,直线,PA PB 的斜率之积为定值0m ≠求证:直线AB 过定点,并求出此定点。
题型二:三大圆锥曲线中,若过焦点的弦为AB ,则焦点所在的轴上存在唯一的定点N ,使得NA NB ∙为定值。
例题1:已知椭圆22221x y a b +=(0)a b >>的右焦点为(1,0)F 且点(-在椭圆上。
(1)求椭圆的标准方程;(2)已知动直线l 过点F 与椭圆交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ∙=-恒成立?如果存在,求出Q 的坐标;如果不存在,请说明理由。
化动为静—解圆锥曲线中的定值问题
化动为静—解圆锥曲线中的定值问题化动为静—解圆锥曲线中的定值问题摘要:探索性问题中的定值问题,主要考查学生解决非传统完备问题的能力,以函数为蓝本,将数学知识有机融合,并赋予新的情景创设而成的。
在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该几何量具有定值特征,这类问题称之为定值问题。
那么如何动中觅静、动静互化以动制动,这就要求学生学会观察分析,“创造性”地综合运用所学知识解决问题。
这类问题其过程可以用下图表示为:观察→猜测→抽象→概括→证明。
关键词:定值定点圆锥曲线特例求解策略动中觅静以动制动纵观近几年全国各地高考数学题的命制,都非常注重对学生能力的考查。
定值问题作为探索性问题之一,很好地具备了内容涉及面广、重点题型丰富,而结论封闭、客观等命题要求,方便考查考生的分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱。
本文仅就圆锥曲线中的定值问题,作一点解法上的探讨。
探求之一:特值探路, 方向明确在解数学题时,我们应该根据题目的特点,选取灵活的方法求解,而选择题和填空题是一类只注重结果而不需写出解题过程的特殊问题﹒而大题解答中可以根据特殊性与普遍性( 个性与共性) 的辨证关系, 以特例探路, 从特例中求出几何量的定值。
从而化繁为简,有了方向继而进行计算和推证。
例1:(山东理22)已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.(Ⅰ)证明和均为定值;(Ⅱ)设线段PQ的中点为M,求的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,所以因为在椭圆上,因此①又因为所以②由①、②得此时(2)当直线的斜率存在时,设直线的方程为由题意知m,将其代入,得,其中即…………(*)又所以因为点O到直线的距离为又整理得且符合(*)式,此时综上所述,结论成立。
圆锥曲线中的一类定值问题探究
2
点
若直线
求证 解
P B
的倾斜 角互 补 为 常数
一
。 +
+ 去 生茅
“
。
—
a +
+ 去 鱼 ±学
,
曲 十
三
一
塑 二 丝
Y
o
,
且 是为常数
一
一
.
2
,
令
如
,
f (“) 在 (o8 2,寺] 上 是 减 函 数
,
故
6
a
b+
~ b
~
2
的
-
Y
,
4 Y
-
:
一
2y
。
,
惫Ⅲ
17
-
( 过 程 略
j
请 同学
. y
o
最小值 为
值问 题探究
链 接 练 习 参考 答 案
1 2
3
.
同理
r
,
zM
-
,
一
一
h (
x
一
1 ) 十 3
’
厢
.
志 + 2
—
X B
有
帅 【
才
—
万
。
‘
矗
一
所 以
一 —
.
点
一
万
.
√赢
.
I
一
一
—
—
万
是 + 6k + 3
捂
—
.
矿干j
1
一
,
。
。
.
警所 以 ,(
2023年高考备考圆锥曲线中的定值定点问题(含答案)
高考材料高考材料专题14 圆锥曲线中的定值定点问题1.〔2023·全国·高考试题〔文〕〕已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过两点.()30,2,,12A B ⎛--⎫⎪⎝⎭(1)求E 的方程;(2)设过点的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足.证()1,2P -MT TH =明:直线HN 过定点.(答案)(1)22143y x +=(2) (0,2)-(解析) (分析)〔1〕将给定点代入设出的方程求解即可;〔2〕设出直线方程,与椭圆C 的方程联立,分情况商量斜率是否存在,即可得解.(1)解:设椭圆E 的方程为,过,221mx ny +=()30,2,,12A B ⎛--⎫⎪⎝⎭则,解得,,41914n m n =⎧⎪⎨+=⎪⎩13m =14n =所以椭圆E 的方程为:.22143y x +=(2),所以,3(0,2),(,1)2A B --2:23+=AB y x ①假设过点的直线斜率不存在,直线.代入, (1,2)P -1x =22134x y +=可得,,代入AB 方程,可得(1,MN223y x =-,由得到.求得HN 方程:(3,T MT TH =(5,H -+,过点. (22y x =-(0,2)-②假设过点的直线斜率存在,设. (1,2)P -1122(2)0,(,),(,)kx y k M x y N x y --+=联立得, 22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩22(34)6(2)3(4)0k x k k x k k +-+++=可得,, 1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩且1221224(*)34kx y x y k -+=+联立可得 1,223y y y x =⎧⎪⎨=-⎪⎩111113(3,),(36,).2y T y H y x y ++-可求得此时,1222112:()36y y HN y y x x y x x --=-+--将,代入整理得, (0,2)-12121221122()6()3120x x y y x y x y y y +-+++--=将代入,得 (*)222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-2.〔2023·全国·高考试题〕已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F 〔1〕求椭圆C 的方程;〔2〕设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:M ,N ,F 三点共线的充要条件是MN 222(0)x y b x +=>||MN =(答案)〔1〕;〔2〕证明见解析.2213xy +=(解析) (分析)〔1〕由离心率公式可得,即可得解;a =2b 〔2充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得():,0MN y kx b kb =+<221b k =+,即可得解.=1k =±(详解)〔1〕由题意,椭圆半焦距 c =c e a ==a =又,所以椭圆方程为;2221b a c =-=2213x y +=〔2〕由〔1〕得,曲线为,221(0)x y x +=>当直线的斜率不存在时,直线,不合题意; MN :1MN x =当直线的斜率存在时,设,MN ()()1122,,,M xy N x y 必要性:假设M ,N ,F 三点共线,可设直线即,(:MN y k x =0kxy -=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅=,高考材料高考材料所以必要性成立;充分性:设直线即, ():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得, 2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以, 2121222633,1313kb bx x x x k k-+=-⋅=++===化简得,所以,()22310k -=1k =±所以,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立; MN F 所以M ,N ,F 三点共线的充要条件是||MN =3.〔2023·青海·海东市第—中学模拟预测〔理〕〕已知椭圆M :〔a >b >0,AB 为过椭圆右22221x y a b +=焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)假设直线l 与椭圆M 交于C ,D 两点,点,记直线PC 的斜率为,直线PD 的斜率为,当()2,0P 1k 2k 12111k k +=时,是否存在直线l 恒过肯定点?假设存在,请求出这个定点;假设不存在,请说明理由.(答案)(1)22142x y +=(2)存在, ()2,4--(解析) (分析)〔1〕由题意求出,即可求出椭圆M 的方程.,,a b c 〔2〕设直线l 的方程为m (x -2)+ny =1,,,联立直线l 的方程与椭圆方程()11,C x y ()22,D x y ,得,则,化简得,即可求()()222242x y x -+=--()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭12114114n k k m +=-=+14m n +=-出直线l 恒过的定点. (1)因为〔a >b >0,过椭圆右焦点的弦长的最小值为,22221x y a b +=222b a=所以a =2,,所以椭圆M 的方程为.c b =22142x y +=(2)设直线l 的方程为m (x -2)+ny =1,,, ()11,C x y ()22,D x y 由椭圆的方程,得.2224x y +=()()222242x y x -+=--联立直线l 的方程与椭圆方程,得,()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+即,, ()()()221424220m x n x y y +-+-+=()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭所以, 12121222114114x x nk k y y m--+=+=-=+化简得,代入直线l 的方程得,14m n +=-()1214m x m y ⎛⎫-+--= ⎪⎝⎭即,解得x =-2,y =-4,即直线l 恒过定点. ()1214m x y y ---=()2,4--4.〔2023·上海松江·二模〕已知椭圆的右顶点坐标为,左、右焦点分别为、,且2222:1(0)x y a b a bΓ+=>>(2,0)A 1F 2F ,直线交椭圆于不同的两点和.122F F =l ΓM N (1)求椭圆的方程;Γ(2)假设直线的斜率为,且以为直径的圆经过点,求直线的方程; l 1MN A l (3)假设直线与椭圆相切,求证:点、到直线的距离之积为定值.l Γ1F 2F l (答案)(1);22143x y +=(2)或; 2y x =-27y x =-(3)证明见解析. (解析) (分析)〔1〕依据焦距及椭圆的顶点求出即可得出;,a b 〔2〕设直线的方程为 ,联立方程,由根与系数的关系及求解即可;l y x b =+0AM AN ⋅=〔3〕分直线斜率存在与不存在商量,当斜率不存在时直接计算可得,当斜率存在时,设直线的方程为 ,l y kx b =+依据相切求出关系,再由点到直线的距离直接计算即可得解. ,b k (1)∵ ∴,1222F F c ==1c =∵,由 得,∴2a =222a b c =+241=+b 22=34=b a ,高考材料高考材料所以椭圆的方程:;Γ22143x y +=(2)∵直线的斜率为,故可设直线的方程为 , l 1l y x b =+设,,,1(M x 1)y 2(N x 2)y 由 可得, 22143y x b x y =+⎧⎪⎨+=⎪⎩22784120x bx b ++-=则,,1287b x x +=-2124127b x x -=∵以为直径的圆过右顶点,∴,∴MN A 0AM AN ⋅=1212(2)(2)0x x y y --+=∴21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++,整理可得,2241282(2)4077b b b b -=⋅--⋅++=271640b b ++=∴或,2b =-27b =-∵, 2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-当或时,均有2b =-27b =-0∆>所以直线的方程为或. l 2y x =-27y x =-(3)椭圆左、右焦点分别为、Γ1(1,0)F -2(1,0)F ①当直线平行于轴时,∵直线与椭圆相切,∴直线的方程为, l y l Γl 2x =±此时点、到直线的到距离分别为,∴. 1F 2F l 121,3d d ==123d d ⋅=②直线不平行于轴时,设直线的方程为 ,l y l y kx b =+联立,整理得, 2234120y kx b x y =+⎧⎨+-=⎩222(34)84120k x kbx b +++-=,222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-∵直线与椭圆相切,∴,∴ l Γ0∆=2234b k =+∵到直线的距离为到直线的距离为,1(1,0)F -l 1=d 2(1,0)F -l 2=d ∴,123d d ⋅=∴点、到直线的距离之积为定值由.1F 2F l 35.〔2023·上海浦东新·二模〕已知分别为椭圆:的左、右焦点, 过的直线交椭圆于两12F F 、E 22143x y+=1F l E ,A B 点.(1)当直线垂直于轴时,求弦长;l x AB(2)当时,求直线的方程;2OA OB ⋅=-l (3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定6x =点坐标. (答案)(1)3 (2))1y x =+(3)证明见解析;定点 ()()4080,,,(解析) (分析)〔1〕将代入椭圆方程求解即可;1x =-〔2〕由〔1〕知当直线的斜率存在,设直线的方程为:,联立直线与椭圆的方程,得出l l ()1y k x =+,设可得韦达定理,代入计算可得斜率;()22223484120k xk x k +++-=()()1122A x y B x y ,,,2OA OB ⋅=-〔3〕分析当直线的斜率不存在时,由椭圆的对称性知假设以CD 为直径的圆恒过定点则定点在轴上,再以CD 为l x 直径的圆的方程,令,代入韦达定理化简可得定点 0y =(1)由题知,将代入椭圆方程得 ()110F -,1x =-332y AB =±∴=,(2)由〔1〕知当直线的斜率不存在时,此时,不符合题意,舍去l 331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,OA ·OB =14直线的斜率存在,设直线的方程为:,∴l l ()1y k x =+联立得,设,则, ()221431x y y k x ⎧+=⎪⎨⎪=+⎩()22223484120k x k x k +++-=()()1122A x y B x y ,,,2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩由OA ·OB =x 1x 2+y 1y 2=x 1x 2+k (x 1+1)k (x 2+1)=(1+k 2)x 1x 2+k 2(x 1+x 2)+k 2=(1+k 2)4k2‒123+4k 2+k2‒8k 23+4k 2,解得+k 2=‒5k 2‒123+4k 2=‒222k k ==,直线的方程为..∴l )1y x =+(3)①当直线的斜率不存在时, l ()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为,C 点坐标为, 112y x =-+()62-,直线BT 的方程为,D 点坐标为,以CD 为直径的圆方程为,由椭圆的对称性知假设以112y x =-()62,()2264x y -+=CD 为直径的圆恒过定点则定点在轴上,令,得即圆过点. x 0y =48x x ==,.()()4080,,,高考材料高考材料②当直线的斜率存在时,同〔2〕联立,直线AT 的方程为, l ()1122y y x x =--C 点坐标为,同理D 点坐标为,以CD 为直径的圆的方程为11462y x ⎛⎫ ⎪-⎝⎭,22462y x ⎛⎫ ⎪-⎝⎭,,()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭令,得,0y =()2121212161236024y y x x x x x x -++=-++由, ()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++得,解得,即圆过点. 212320x x -+=48x x ==,()()4080,,,综上可得,以CD 为直径的圆恒过定点. ()()4080,,,6.〔2023·上海长宁·二模〕已知分别为椭圆的上、下顶点,是椭圆的右焦点,是椭圆,A B 222Γ:1(1)xy a a+=>F ΓM上异于的点.Γ,A B(1)假设,求椭圆的标准方程 π3AFB ∠=Γ(2)设直线与轴交于点,与直线交于点,与直线交于点,求证:的值仅与有关 :2l y =y P MA Q MB R PQ PR ⋅a (3)如图,在四边形中,,,假设四边形面积S 的最大值为,求的值.MADB MA AD ⊥MB BD ⊥MADB 52a (答案)(1)2214x y +=(2)证明见解析 (3) 2a =(解析) (分析)〔1〕依据已知推断形状,然后可得;AFB △〔2〕设,表示出直线、的方程,然后求Q 、R 的坐标,直接表示出所求可证; ()11,M x y AM BM 〔3〕设,,依据已知列方程求解可得之间关系,表示出面积,结合已知可得. ()11,M x y ()44,D x y 14,x x (1)因为,,所以是等边三角形, AF BF =π3AFB ∠=AFB △因为,,所以,2AB =AF a =2a =得椭圆的标准方程为.2214x y +=(2)设,,, ()11,M x y ()2,2R x ()3,2Q x 因为,()0,1A()0,1B -所以直线、的方程分别为AM BM , 111:1AM y l y x x -=+, 111:1BM y l y x x +=-所以,, 12131x x y =+1311x x y =-又221121x y a-=所以, 2211221331x PQ PR x x a y ⋅===-所以的值仅与有关. PQ PR ⋅a (3)设,, ()11,M x y ()44,D x y 因为,,MA DA ⊥MB DB ⊥所以,()()1414110x x y y +--=()()1414110x x y y +++=高考材料高考材料两式相减得,41y y =-带回原式得,214110x x y +-=因为,所以, 221121x y a+=142x x a =-1412111MAB DAB S S S x x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭A A 因为的最大值为 ,所以 ,得.S 52152a a +=2a =7.〔2023·福建省福州格致中学模拟预测〕圆:与轴的两个交点分别为,,点为圆O 224x y +=x ()12,0A -()22,0A M 上一动点,过作轴的垂线,垂足为,点满足O M x N R 12NR NM =(1)求点的轨迹方程;R (2)设点的轨迹为曲线,直线交于,两点,直线与交于点,试问:是否存在一个定点R C 1x my =+C P Q 1A P 2A Q S T ,当变化时,为等腰三角形m 2A TS (答案)(1)2214x y +=(2)存在,证明见解析 (解析) (分析)〔1〕设点在圆上,故有,设,依据题意得,,再代入圆()00,M x y 224x y +=22004x y +=(),R x y 0x x =012y y =即可求解;〔2〕先推断斜率不存在的情况;再在斜率存在时,设直线的方程为,与椭圆联立224x y +=l 1x my =+得:,,,再依据题意求解推断即可. ()224230m y my ++-=12224m y y m -+=+12234y y m -=+(1)设点在圆上, ()00,M x y 224x y +=故有,设,又,可得,, 2204x y +=(),R x y 12NR NM =0x x =012y y =即,0x x =02y y =代入可得,22004x y +=()2224x y +=化简得:,故点的轨迹方程为:.2214x y +=R 2214x y +=(2)依据题意,可设直线的方程为,l 1x my =+取,可得,, 0m=P ⎛ ⎝1,Q ⎛ ⎝可得直线的方程为的方程为1APy x =+2AQ y x =-联立方程组,可得交点为;(14,S 假设,,由对称性可知交点,1,P ⎛ ⎝Q ⎛ ⎝(24,S 假设点在同一直线上,则直线只能为:上,S l 4x =以下证明:对任意的,直线与直线的交点均在直线:上. m 1A P 2A Q S l 4x =由,整理得 22114x my x y =+⎧⎪⎨+=⎪⎩()224230m y my ++-=设,,则, ()11,P x y ()22,Q x y 12224m y y m -+=+12234y y m -=+设与交于点,由,可得 1A P l ()004,S y 011422y y x =++10162y y x =+设与交于点,由,可得, 2A Q l ()004,S y '022422y y x '=--20222y y x '=-因为 ()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+-, ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-因为,即与重合, 00y y '=0S 0S '所以当变化时,点均在直线:上,m S l 4x =因为,,所以要使恒为等腰三角形,只需要为线段的垂直平分线即可,依据对称性()22,0A ()4,S y 2A TS 4x =2A T 知,点.()6,0T 故存在定点满足条件.()6,0T 8.〔2023·全国·模拟预测〕已知椭圆的离心率为,椭圆C 的左、右顶点分别为A ,B ,上顶点()2222:10x y C a b a b+=>>12为D ,.1AD BD ⋅=-(1)求椭圆C 的方程;(2)斜率为的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P 〔直线l 不经过点P 〕,使得直线PM 与直线PN 12的倾斜角互补,假设存在这样的点P ,请求出点P 的坐标;假设不存在,请说明理由.(答案)(1)22143x y +=(2)存在,点P 的坐标为或31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭(解析) (分析)高考材料高考材料〔1〕利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; 〔2〕设直线l 的方程为,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为12y x m =+零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知,,,(),0A a -(),0B a ()0,D b 所以,,所以,解得. (),AD a b = (),BD a b =- 2221AD BD a b c ⋅=-+=-=- 1c =又椭圆C 的离心率为,所以,1222a c ==b ==故椭圆C 的方程为.22143x y +=(2)假设存在这样的点P ,设点P 的坐标为,点M ,N 的坐标分别为,,设直线l 的方程为()00,x y ()11,x y ()22,x y . 12y x m =+联立方程消去y 后整理得.221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩2230x mx m ++-=,得,()222431230m m m ∆=--=->22m -<<有 12212,3.x x m x x m +=-⎧⎨=-⎩假设直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以 01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+----()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----.()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----所以解得或0000230,230,x y y x -=⎧⎨-=⎩001,32x y =⎧⎪⎨=⎪⎩001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为或.31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭9.〔2023·内蒙古·海拉尔第二中学模拟预测〔文〕〕已知椭圆的两个焦点分别为和,椭圆()2222:10x y C a b a b +=>>1F 2F 上一点到和的距离之和为,且椭圆C 1F 2F 4C (1)求椭圆的方程;C (2)过左焦点的直线交椭圆于、两点,线段的中垂线交轴于点〔不与重合〕,是否存在实数,使1F l A B AB x D 1F λ恒成立?假设存在,求出的值;假设不存在,请说出理由.1AB DF λ=λ(答案)(1)2214x y +=(2)存在,λ=(解析) (分析)〔1〕由椭圆的定义可求得的值,依据椭圆的离心率求得的值,再求出的值,即可得出椭圆的方程; a c b C 〔2〕分析可知,直线不与轴垂直,分两种情况商量,一是直线与轴重合,二是直线的斜率存在且不为零,设l x l x l 出直线的方程,与椭圆方程联立,求出、,即可求得的值. l AB 1DF λ(1)解:由椭圆的定义可得,则,因为,则, 24a =2a=ce a ==c ∴=1b ==因此,椭圆的方程为.C 2214x y +=(2)解:假设直线与轴垂直,此时,线段的垂直平分线为轴,不符合题意; l x AB x 假设直线与轴重合,此时,线段的垂直平分线为轴,则点与坐标原点重合,lx AB y D 此时,1AB DF λ===假设直线的斜率存在且不为零时,设直线的方程为,设点、,l l )0x my m =≠()11,Ax y ()22,B x y 联立可得, 2244xmy x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>由韦达定理可得, 12y y +=12214yy m =-+则()121222my y x x ++==所以,线段的中点为, AB M ⎛ ⎝高考材料高考材料所以,线段的垂直平分线所在直线的方程为,AB y m x ⎛=- ⎝在直线方程中,令可得y m x ⎛=-+ ⎝0y=x =故点,D ⎛⎫ ⎪ ⎪⎝⎭,()22414m m +=+因此,. ()221414m AB DF m λ+===+综上所述,存在,使得恒成立.λ=1AB DF λ=10.〔2023·河南安阳·模拟预测〔文〕〕已知椭圆上一个动点N 到椭圆焦点的距离的最2222:1(0)C bb x a a y +>>=(0,)Fc 小值是,且长轴的两个端点与短轴的一个端点B 构成的的面积为2.212,A A 12A A B △(1)求椭圆C 的标准方程;(2)如图,过点且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线与直线的交点T 在定直线4(0,)M -1A P 2A Q 上.(答案)(1)2214y x +=(2)证明见解析 (解析) (分析)〔1〕依据题意得到,再解方程组即可.22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩〔2〕首先设直线,,,与椭圆联立,利用韦达定理得到,.:4l y kx =-()11,P x y ()22,Q x y 12284k x x k +=+122124x x k =+,,依据,即可得到,从而得到直线与直线的交点1112:2PA y l y x x ++=2222:2QA y l y x x --=2123y y +=--1y =-1A P 2A Q T 在定直线上. 1y =-(1)由题知:,解得,即:椭圆22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩21a b c ⎧=⎪=⎨⎪=⎩22:14+=y C x (2)设直线,,,,, :4l y kx =-()11,P x y ()22,Q x y ()10,2A -()20,2A . ()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩,. 12284k x x k +=+122124x x k =+则,, 1112:2PA y l y x x ++=2222:2QA y l y x x --=则, ()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----因为, ()1212212342k kx x x x k ==++所以,解得. ()()12212121213232123293362x x x x x y y x x x x x +--+===---++-1y =-所以直线与直线的交点在定直线上.1A P 2A Q T 1y =-11.〔2023·安徽省舒城中学三模〔理〕〕已知椭圆,过原点的直线交该椭圆于,两点〔点在22:184x y Γ+=O ΓA B A x轴上方〕,点,直线与椭圆的另一交点为,直线与椭圆的另一交点为.()4,0E AE C BE D高考材料高考材料(1)假设是短轴,求点C 坐标;AB Γ(2)是否存在定点,使得直线恒过点?假设存在,求出的坐标;假设不存在,请说明理由.T CD T T (答案)(1);82(,)33(2)存在,.8(,0)3T (解析) (分析)〔1〕两点式写出直线,联立椭圆方程并结合韦达定理求出C 坐标; AE 〔2〕设有,联立椭圆求C 坐标,同理求坐标,商量、,推断直线恒过00(,)A x y 00:(4)4=--y AE y x x D 00x ≠00x =CD 定点即可. (1)由题设,,而,故直线为,(0,2)A ()4,0E AE 240x y +-=联立并整理得:,故,而,22:184x y Γ+=23840y y -+=83A C y y +=2A y =所以,代入直线可得,故C 坐标为.23C y =AE 284233C x =-⨯=82(,)33(2)设,则, 00(,)A x y 00:(4)4=--y AE y x x 由,故, ()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩2220202(4)8(4)+-=-y x x x 由韦达定理有, 20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-所以,故,同理得:,,00833C x x x -=-003C y y x =-00833D x x x +=+03D y y x -=+当时,取,则,同理, 00x ≠8(,0)3T 0000003383833TCy x yk x x x -==----003TD y k x =-故共线,此时过定点.,,T C D CD 8(,0)3T 当时,,此时过定点.00x =83C D x x ==CD 8(,0)3T 综上,过定点.CD 8(,0)3T 12.〔2023·广东茂名·二模〕已知圆O :x 2+y 2=4与x 轴交于点,过圆上一动点M 作x 轴的垂线,垂足为H ,(2,0)A -N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.6(,0)5-(答案)(1);2212x y +=(2)证明见解析. (解析) (分析)〔1〕运用相关点法即可求曲线C 的方程;( 2)首先对直线的斜率是否存在进行商量,再依据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS l 的斜率,再依据斜率的表达式进行化简运算,得出结论. 12,k k (1)设N 〔x 0,y 0〕,则H 〔x 0,0〕, ∵N 是MH 的中点,∴M 〔x 0,2y 0〕,又∵M 在圆O 上,,2200(2)4y x +=∴即; 220014x y +=∴曲线C 的方程为:;2214x y +=(2)①当直线l 的斜率不存在时,直线l 的方程为:,65x =-假设点P 在轴上方,则点Q 在x 轴下方,则,6464(,),(,5555P Q ---直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称, ∴,64(,55S1244001551,,6642255APAS k k k k --======-++;124k k ∴=假设点P 在x 轴下方,则点Q 在x 轴上方,高考材料高考材料同理得:,646464(,(,(,555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++∴k 1=4k 2;②当直线l 的斜率存在时,设直线l 的方程为:,6,5x my =-由与联立可得, 6,5x my =-2214x y +=221264(4)0525m m y y +--=其中,22144644(4)02525m m ∆=+⨯+⨯>设,则,则,1122(,),(,)P x y Q x y 22(,)S x y --1212221264525,44m y y y y m m -+==++∴ 112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+-则121122121216()2542()5y my k y x k x y my y --=⋅=++,∴k 1=4k 2. 121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++13.〔2023·安徽·合肥市第八中学模拟预测〔文〕〕生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点射出的光线1F 经过椭圆镜面反射到上焦点,这束光线的总长度为42F 离心率e <(1)求椭圆C 的标准方程;(2)假设从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线上的M 、N 两点,假4y =设AB 连线过椭圆的上焦点,试问,直线BM 与直线AN 能交于肯定点吗?假设能,求出此定点:假设不能,请说2F 明理由.(答案)(1)22143y x +=(2)能,定点为〔0,〕85(解析) (分析)〔1〕由条件列方程求可得椭圆方程;,,a b c〔2〕联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为,22221(0)y x a b a b+=>>则,24a =122c b ⨯⨯=222ab c =+又e <所以,21a b c ===,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为,由,得, 1y kx =+221431y x y kx ⎧+=⎪⎨⎪=+⎩22(34)690k x kx ++-=222(6)36(34)1441440k k k ∆=++=+>设,则.. ()()1122A x y B x y ,,,121222693434k x x x x k k --+==++由对称性知,假设定点存在,则直线BM 与直线AN 交于y 轴上的定点,由得,则直线BM 方程为, 114y y xx y ⎧=⎪⎨⎪=⎩1144x M y ⎛⎫ ⎪⎝⎭,211121444()4y xy x x y x y --=--令,则0x =122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又, 12123()2x x kx x +=则,21212112214()4()83554()()22x x x x y x x x x x x --===-++-所以,直线BM 过定点〔0,〕,同理直线AN 也过定点.858(0,5则点〔0,〕即为所求点.8514.〔2023·全国·模拟预测〕设椭圆的右焦点为F ,左顶点为A .M 是C 上异于A 的动点,过()222:10416x y C b b+=<<F 且与直线AM 平行的直线与C 交于P ,Q 两点〔Q 在x 轴下方〕,且当M 为椭圆的下顶点时,.2AM FQ =高考材料高考材料(1)求椭圆C 的标准方程;(2)设点S ,T 满足,,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. PS SQ = FS ST =(答案)(1)2116x =(2)证明见解析 (解析) (分析)〔1〕由向量的坐标运算用表示出点坐标,代入椭圆方程求得参数,得椭圆方程; ,b c Q b 〔2〕设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 直线方程代入椭圆方程应用韦达定理得,利用向量相等的坐标表示求得点坐标,得出点坐标满足一个椭圆12y y +T T 方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,,则.(4,)AM b =- 12,22b FQ AM ⎛⎫==- ⎪⎝⎭ 设C 的焦距为2c ,则,即.2,2b Q c ⎛⎫+- ⎪⎝⎭2,2b Q ⎫-⎪⎭因为Q 在C,解得.114=()22162b =-=则椭圆C 的标准方程为. 2116x =(2)设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 联立直线PQ 和C 的方程,消x 得.()22220y ++-=,12y y +=1212()2x x m y y c +=++=由得S 为弦PQ 的中点,故. PS SQ = S由得S是线段FT 的中点,故.FS ST =T设T 的坐标为,则,,故(), xy x c =y c=,即,2211x y c c ⎛⎫⎫== ⎪⎪⎝⎭⎭221x c +=这说明T 在中心为原点,为长轴端点,为短轴端点的椭圆上运动,故T 到两焦点的(,0)c ±0,⎛⎫ ⎪ ⎪⎝⎭,0⎛⎫ ⎪ ⎪⎝⎭距离之和为定值.代入得两焦点坐标为.(()4,0±-综上所述,平面上存在两定点,,使得T 到这两定点距离之和为定值.()4-()4-+15.〔2023·上海交大附中模拟预测〕已知椭圆是左、右焦点.设是直线上的一221214x y F F Γ+=:,,M ()2l x t t =>:个动点,连结,交椭圆于.直线与轴的交点为,且不与重合.1MF Γ()0N N y ≥l x P M P(1)假设的坐标为,求四边形的面积; M 58⎫⎪⎪⎭,2PMNF (2)假设与椭圆相切于且,求的值;PN ΓN 1214NF NF ⋅= 2tan PNF ∠(3)作关于原点的对称点,是否存在直线,使得上的任一点到N N '2F N 1F N '2F N 的方程和的坐标,假设不存在,请说明理由.2F N N(答案)(3)存在;; y x =126N ⎫⎪⎪⎭(解析) (分析)〔1〕依据点斜式方程可得,再联立椭圆方程得到,再依据求解1:MF l y x =12N ⎫⎪⎭2112PMNF PF M NF F S S S =-△△即可;〔2〕设,依据相切可知,直线与椭圆方程联立后判别式为0,得到,再依据,:()PN l y k x t =-2214k t =-1214NF NF ⋅=化简可得,再依据直角三角形中的关系求解的值即可;t =12N ⎫⎪⎭2tan PNF ∠〔3〕设,表达出,再依据列式化简可得,结合()00,N x y 2NF l 22O NF d -=2148k =k =和直线的方程N 2F N高考材料高考材料(1)由题意,,故()1F1MF k ==1:MF l y x =与椭圆方程联立 ,可得:,即,又由题意,故2214x y y x⎧+=⎪⎪⎨⎪=⎪⎩213450x+-=(130xx +=N x >解得,故且x =12N ⎫⎪⎭121122NF F S =⋅=△11528PF M S ==△则 2112PMNF PF M NF F S S S =-△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立,可得:2214()x y y k x t ⎧+=⎪⎨⎪=-⎩()22222148440k x k tx k t +-+-=由相切,,则 ()22216140k k t ∆=+-=2214k t =-同时有韦达定理,代入有,化简得,故 21228214N k t x x x k +==+2214k t =-2244414N t t x t -=+-4N x t =2222414N N x t y t -=-=而,解得 222122122134N N t NF NF x y t -⋅=+-==2t =>则,所以轴,故在直角三角形中,12N ⎫⎪⎭2NF x ⊥2PNF A 222tan PF PNF NF ∠===(3)由于N 与,与是两组关于原点的对称点,由对称性知N '1F 2F 四边形是平行四边形,则与是平行的,12F NF N '2NF 1N F '故上的任一点到的距离均为两条平行线间的距离d .1F N '2F N 设,其中,易验证,当时,与之间的距离为()00,N xy 0(x ∈0=x 2NF 1N F 'k =则,即,2(:NF y l k x =0kx y -=发觉当时,,整理得 0≠x 22O NF d d -===221914k k =+2148k =代入,代入整理得,即由k =(220048y x =220014x y =-20013450x --=(00130x x -=于,所以,故0(x ∈0x=126N ⎫⎪⎪⎭k ==则的直线方程为 2F Nly x =16.〔2023·全国·模拟预测〔理〕〕已知椭圆:的右顶点为A ,上顶点为,直线的斜率为C ()222210x y a b a b+=>>B AB ,原点到直线O AB (1)求的方程;C (2)直线交于,两点,,证明:恒过定点.l C M N 90MBN ∠=︒l (答案)(1)22143x y +=(2)证明见解析 (解析) (分析)〔1〕题意得,依据AB 斜率,可得AB 的方程,依据点到直线距离公式,可求得a (,0),(0,)A a B b b a =值,进而可得b 值,即可得答案.〔2〕分析得直线l 的斜率存在,设,与椭圆联立,可得关于x 的一元二次方程,依据韦1122,(,),(,)y kx m M x y N x y =+达定理,可得表达式,进而可得、的表达式,依据,可得,依据数量1212,x x x x +12y y 12y y +90MBN ∠=︒0MB NB⋅=积公式,化简计算,可得m 值,分析即可得证 (1)由题意得,(,0),(0,)A aB b 所以直线AB 的斜率为b a =-b a =又直线AB的方程为, )y x a =-20y +=所以原点到直线的距离, O AB d 2a =所以.b =22143x y +=(2)由椭圆的对称性可得,直线l 的斜率肯定存在,设直线l 的方程为, 1122,(,),(,)y kx m M x y N x y =+联立方程,消去y 可得, 22143x y y kx m ⎧+=⎪⎨⎪=+⎩222(34)84120k x kmx m +++-=所以, 21212228412,3434km m x x x x k k --+==++所以,, 22221212122312()34m k y y k x x km x x m k-=+++=+121226()234m y y k x x m k +=++=+高考材料高考材料因为,所以,90MBN ∠=︒MB BN ⊥因为,所以,B 1122(),()MB x y NB x y =-=--所以,22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++ 整理得,解得或,2730m --=m=m =因为,所以B m 所以直线l 的方程为,得证y kx =0,⎛ ⎝17.〔2023·全国·模拟预测〔理〕〕已知椭圆的左、右焦点分别为,,,分别为左、2222:1(0)x y C a b a b+=>>1F 2F 1A 2A 右顶点,,分别为上、下顶点.假设四边形,且,,成等差数列. 1B 2B 1122B F B F 212F F 212B B 212A A (1)求椭圆的标准方程;C (2)过椭圆外一点(不在坐标轴上)连接,,分别与椭圆交于,两点,直线交轴于点.试P P 1PA 2PA C M N MN x Q 问:,两点横坐标之积是否为定值?假设为定值,求出定值;假设不是,说明理由. P Q (答案)(1);22132x y +=(2)为定值,理由见解析. 32P Q x x =(解析) (分析)〔1〕应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.〔2〕由题意分析知,所在直线斜率均存在且不为0、斜率和差均不为0,设直线,联立椭圆求,1PA 2PA 1PA 2PA M 的坐标及点横坐标,应用点斜式写出直线,令求横坐标,即可得结论.N P MN 0y =Q (1)由题设知:,可得, 2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩22321a b ⎧=⎪⎨⎪=⎩所以椭圆标准方程为.22132x y +=(2)由题意,,所在直线斜率均存在且不为0、斜率和差均不为0,1PA 2PA 设为,联立椭圆方程整理得:, 1PA (y k x =22229(23)302k k x x +++-=所以1M A x x +=1A x =M x ==设为,联立椭圆方程整理得:,2PA (y m x =22229(23)302m m x x+-+-=所以, 2N A x x +=2Ax=N x =所以M y k=⋅=N y m =⋅=联立直线、可得:,1PA 2PA P x=直线为,令,则 MN2()[23m k y x km +=⋅-0y =Q x =所以为定值.32P Q x x ==18.〔2023·山西·太原五中二模〔文〕〕已知椭圆,过原点的两条直线和分别与椭圆交于和,2221x y +=1l 2l A B △C D △记得到的平行四边形的面积为.ACBD S (1)设,用的坐标表示点到直线的距离,并证明; ()()1122,,,A x y C x y A C △C 1l 12212S x y x y =-(2)请从①②两个问题中任选一个作答 ①设与的斜率之积,求面积的值.1l 2l 12-S ②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.1l 2l m m 1l 2l S (答案)(1)(2)见解析 (解析) (分析)〔1〕商量和,分别写出直线的方程,由距离公式即可求得点到直线的距离,由面积公式即可证明10x ≠10x =1l C 1l ;12212S x y x y =-〔2〕假设选①,设出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式求解即可;假设选②,设1l 2l A C △出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式得到的表达式,平方整理,由含的项1l 2l A C △S 42,k k 系数为0即可求解. (1)高考材料高考材料当时,直线的方程为:,则点到直线的距离为10x ≠1l 11y y x x =C 1l d当时,直线的方程为:,则点到直线的距离为,也满足10x =1l 0x =C 1l 2d x =d 则点到直线;因为C 1l2AB AO ==则;21211222S AB d x x x y y y =⋅=--=(2)假设选①,设,设,直线与椭圆联立可得1122121:,:,2l y k x l y k x k k ===-()()1122,,,A x y C x y 1l 12221y k x x y =⎧⎨+=⎩,()221121k x+=同理直线与椭圆联立可得,不妨令,则2l ()222121k x +=120,0x x >>11x y =,22x y====则122S x y x =-假设选②,设,设,直线与椭圆联立可得,则12:,:m l y kx l y x k ==()()1122,,,A x y C x y 1l 2221y kx x y =⎧⎨+=⎩()22121k x +=,212112x k =+同理可得,则2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅,两边平方整理得1222m m k x x k k ==-⋅,()24222222224(48)240Sk S S m m k m S m -++++-=由面积与无关,可得,解得,故时,无论与如何变动,面积保持不S k 2222240480S S S m m ⎧-=⎨++=⎩12S m ⎧=⎪⎨=-⎪⎩12m =-1l 2l S 变.19.〔2023·福建·厦门一中模拟预测〕已知,分别是椭圆的右顶点和上顶点,,A B 2222:1(0)x y C a b a b+=>>||AB =直线的斜率为.AB 12-(1)求椭圆的方程;(2)直线,与,轴分别交于点,,与椭圆相交于点,.证明: //l AB x y M N C D 〔i 〕的面积等于的面积;OCM A ODN △〔ii 〕为定值.22||||CM MD +(答案)(1)2214x y +=(2)〔i 〕证明见解析;〔ii 〕证明见解析 (解析) (分析)〔1〕依据,,由,直线的斜率为求解;(,0)A a (0,)B b ||AB =AB 12-〔2〕设直线的方程为,得到,,与椭圆方程联立,依据,l 12y x m =-+(2,0)M m (0,)N m 11|2|||2=A OCM S m y ,利用韦达定理求解. 21||||2=A ODN S m x 2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+(1)解:、是椭圆的两个顶点,A B 22221(0)x y a b a b+=>>且,直线的斜率为,||AB =AB 12-由,,得 (,0)A a (0,)B b ||AB ==又,解得,, 0102b b k a a -==-=--2a =1b =椭圆的方程为; ∴2214x y +=(2)设直线的方程为,则,,l 12y x m =-+(2,0)M m (0,)N m 联立方程消去,整理得.221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩y 222220x mx m -+-=, 得22248(4)3240m m m ∆=--=->28m <设,,,.1(C x 1)y 2(D x 2)y高考材料高考材料,.122x x m ∴+=21222x x m =-所以, 11|2|||2=A OCM S m y 21||||2=A ODN S m x 则有 112222|2||2|||1||||||-====A A OCMODNS y m x x Sx x x 的面积等于的面积;OCM ∴A ODN A ,,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+, ()()221212125551042x x x x m x x m =+--++ . ()2222552210102m m m m =---+5=20.〔2023·北京市第十二中学三模〕已知椭圆过点2222:1(0)x y M a b a b +=>>(2,0)A (1)求椭圆M 的方程;(2)已知直线在x 轴上方交椭圆M 于B ,C 〔异于点A 〕两个不同的点,直线AB ,AC 分别与y 轴交于点P 、(3)y k x =+Q ,O 为坐标原点,求的值.()k OP OQ +(答案)(1)22142x y +=(2) 45(解析) (分析)〔1〕直接由点坐标及离心率求得椭圆方程即可;A 〔2〕联立直线与椭圆求得,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算2212122212184,2121k k x x x x k k --+==++即可.()k OP OQ +(1)由题意知:,则椭圆M 的方程为;2,c a a ==c =2222b a c =-=22142x y +=(2)联立直线与椭圆,整理得,22(3)142y k x x y =+⎧⎪⎨+=⎪⎩()222221121840k x k x k +++-=,()()422214442118440160k k kk ∆=-+-=-+>即在x 轴上方交椭圆M 于B ,C〔异于点A 〕两点,则 k <<(3)y k x =+0k <<设,则,,, 1122(,),(,)B x y C x y 1222,22x x -<<-<<2212122212184,2121k k x x x x k k --+==++1122(3),(3)y k x y k x =+=+易得直线AB ,AC 斜率必定存在,则,令,得,则,同理可得11:(2)2y AB y x x =--0x =11202y y x =>-112(0,)2y P x -,且, 222(0,2y Q x -22202y x >-则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅⎪⎝⎭+-+----. 222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=高考材料高考材料。
圆锥曲线 定值问题
圆锥曲线定值问题
在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该变量具有定值特征。
以下是一个具体的例子:
考虑一个椭圆,它有一个固定的长轴和短轴长度。
在这个椭圆上任取一点P,然后连接点P与椭圆的两个焦点。
根据椭圆的性质,我们知道点P到两个焦点的距离之和是一个定值,这个定值等于椭圆的长轴的长度。
对于这类定值问题,我们需要先理解题意,明确“变化的源头”,再找到源头与含定值特征的几何量之间的代数或几何关系,来确定解题的突破口。
可以通过参数法、由特殊到一般法或几何法来求解。
以上内容仅供参考,建议查阅圆锥曲线相关书籍或咨询数学老师以获取更多信息。
圆锥曲线中定值问题的基本解析
{ 2 = 2 p 2 ;
L 1 2+ l Y 2=0,
亦即
一
( +1 ) y 1 Y 2 一m £ ( y l + Y 2 )+t = 0,
从 而
将式 ( 1 ) 代入上 式 整理 得 t +2 p t =0 .因为 t ≠0, 所以 t = 2 p , 故直 线A B恒过定 点( 2 p, 0 ) .
・
3 O・
中学教研 ( 数学)
2 0 1 4正
圆 锥 曲 线 中 定 值 问 题 的 基 本 解 析
●陈相 友 ( 温州中学 浙江温州 3 2 5 o 1 4 ) ●孙 军 波 ( 温岭 中学 浙江温岭 3 1 7 5 0 0 )
1 考 点 回 顾
的方 程 为
圆锥 曲线 中的定值问题 是近几年高考 和竞 赛 中的热点 题型. 一般是在一些动态事物 ( 如动点 、 动直线 、 动 弦、 动角 、 动 圆、 动三角形 、 动轨 迹等 ) 中, 寻 找某一 个不变 量 即定值 ,
由于这类 问题涉及 到 的知识点 多、 覆 盖面 广 、 综 合性 较强 ,
整理 得
y +2 p k= y =
( 2 p k ) , ( 一 2 p ) ,
因此 , 解题过程 中应 注重解 题策 略 , 要善 于在 动点 的 “ 变” 中寻求定 值的“ 不变 ” 性, 常用特殊探 索法 ( 特殊值 、 特 殊位 置、 特殊 图形等 ) 先确定 出定 值 , 再 转化为有 方 向有 目标 的
定点( 2 p , 0 ) . 解 法 6 从 点的解析 入手.
设A ( , Y 。 ) , B ( 2 , y 2 ) , 贝 1
圆锥曲线中的定点问题及解决方法
圆锥曲线中的定点问题及解决方法全文共四篇示例,供读者参考第一篇示例:圆锥曲线可以说是数学中一个非常有趣且重要的概念,它是指在平面上的一条曲线,在解析几何中有着广泛的应用。
在圆锥曲线中,定点问题是一个非常常见的问题,它涉及到固定一个点或多个点,然后通过这些点来确定曲线的形状。
在本文中,我们将探讨圆锥曲线中的定点问题及其解决方法。
我们来介绍一下圆锥曲线中的常见曲线类型,包括圆、椭圆、双曲线和抛物线。
这些曲线都可以通过圆锥截面的方式来定义,它们在平面上的形状各有特点,而且在不同领域中都有着广泛的应用。
在解决圆锥曲线中的定点问题时,我们通常采用的方法是利用几何性质和数学公式来推导和计算。
下面我们以圆锥曲线中的圆和椭圆为例,来详细介绍一下定点问题的解决方法。
我们来看看圆的定点问题。
对于圆,我们知道它的定点是圆心,通过圆心我们可以确定圆的形状和大小。
如果要确定一个圆,我们只需要确定两个点即可,其中一个是圆心,另一个是圆上的一个点,通过这两个点我们就可以确定圆的位置和形状。
在解决圆锥曲线中的定点问题时,我们可以利用圆锥曲线的方程和性质来进行推导和计算,也可以通过几何分析和图形划分来解决问题。
我们还可以通过数学软件和计算工具来进行求解,提高求解的效率和准确性。
圆锥曲线中的定点问题是一个非常有趣和有挑战性的问题,通过研究和解决这些问题,我们可以进一步了解圆锥曲线的性质和特点,提高数学分析和推理的能力。
希望本文对大家对圆锥曲线中的定点问题有所启发和帮助,欢迎大家深入研究和探讨这一领域。
谢谢!第二篇示例:圆锥曲线是平面解析几何学中的重要内容,其中的定点问题一直是学习者们所关注的重点之一。
在圆锥曲线中,定点问题涉及到曲线上或者曲线的参数方程中的某一点,通常需要通过计算或者推导来确定这一点的具体位置或者性质。
在本文中,将讨论圆锥曲线中的定点问题及解决方法。
圆锥曲线包括圆、椭圆、双曲线以及抛物线四种类型,每种类型都有其特定的定点问题。
高考数学二级结论快速解题:专题16 圆锥曲线中的一类定值问题(解析版)
专题16圆锥曲线中的一类定值问题一、结论在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P (非顶点)与曲线上的两动点A ,B 满足直线PA 与PB 的斜率互为相反数(倾斜角互补),则直线AB 的斜率为定值.1、在椭圆中:已知椭圆22221(0)x y a b a b,定点00(,)P x y (000x y )在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率2020ABb x k a y 2、在双曲线C :22221(0,0)x y a b a b 中,定点00(,)P x y (000x y )在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率202ABb x k a y 3、在抛物线C :22(0)y px p ,定点00(,)P x y (000x y )在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率0AB pk y.二、典型例题1.(2020·辽宁大连·二模(理))已知点P 在抛物线2:4C y x 上,过点P 作两条斜率互为相反数的直线交抛物线C 于A 、B 两点,若直线AB 的斜率为1 ,则点P 坐标为()A . 1,2B .1,2 C. 2,D. 2, 【答案】A 【详解】设点 00,P x y 、 11,A x y 、 22,B x y ,则直线AB 的斜率为12221212414AB y y k y y y y,可得124y y ,同理可得直线PA 的斜率为014PA k y y,直线PB 的斜率为024PB k y y ,PAPB k k ∵,所以, 01020y y y y ,则12022y y y ,20014y x,因此,点P 的坐标为 1,2.故选:A.另解:在抛物线C :22(0)y px p ,定点00(,)P x y (000x y )在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率0AB p k y .利用此二级结论:2p ,00212AB k y y ,再回代入2:4C y x得到01x .【反思】特别提醒,本题抛物线方程巧合是二级结论中的x 型抛物线,若是y 型抛物线220x py p ,则结论0AB x k p.2.(2020·安徽·三模(理))设抛物线C : 220x py p 的焦点为F ,点 0,1M x 在C 上,且3MF ,若过C 上一个定点 ,0P m n m 引它的两条弦PS ,PT ,直线PS ,PT 的斜率存在且倾斜角互为补角,则直线ST 的斜率是()A .4mB .4nC .2m D .2n【答案】A 【详解】因为点 0,1M x 在C 上,且3MF ,所以132p,4p ,抛物线方程为28x y .设 11,S x y , 22,T x y ,则有28m n ,2118x y ,2228x y .于是1212PS PTy n y n k k x m x m 222212121211118888088x m x mx m x m x m x m,所以122x x m .因此直线ST 的斜率12121284y y x x mk x x .故选:A.另解:由题意知: 220x py p 定点00(,)P x y (000x y )在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率AB x k p,代入答案选A.【反思】注意使用前先判断二级结论是否适用,先判定,后使用.3.(2022·广西玉林·高二期末(理))已知椭圆2222:1(0)x y C a b a b的左,右焦点为12,F F ,椭圆的离心率为12,点2在椭圆C 上.(1)求椭圆C 的方程;(2)点T 为椭圆C 上的点,若点T 在第一象限,且2TF 与x 轴垂直,过T 作两条斜率互为相反数的直线分别与椭圆C 交于点M ,N ,探究直线MN 的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由.【答案】(1)22143x y ;(2)直线MN 的斜率为定值,且定值为12.(1)由题意,12c a 则2a c ,又 b ,所以椭圆C 的方程为2222143x y c c,代入有22331412 c c ,解得1c ,所以2b a ,故椭圆的标准方程为22143x y ;(2)由题设易知:31,2T,法一:设直线TM 为3(1)2y k x,由221433(1)2x y y k x ,消去y ,整理得 2223348412302k x k k x k k ,因为方程有一个根为1x ,所以M 的横坐标为22412334M k k x k ,纵坐标 223121291286M M k k y k x k,故M 为2222412312129,3486k k k k k k ,用k 代替k ,得N 为2222412312129,3486k k k k k k,所以12M N MN M N y y k x x,故直线MN 的斜率为定值12.法二:由已知直线MN 的斜率存在,可设直线MN 为y kx m , 1122,,,M x y N x y ,由22143x y y kx m,消去y ,整理得 2223484120k x kmx m ,所以21212228412,3434km m x x x x k k,而12123322011TM TN y y k k x x ,又1122,kx m y kx m y ,代入整理得 1212123322022kx x m x x k x x m,所以24832(21)0 k k m k ,即(21)(232)0 k k m ,若2320k m ,则直线MN 过点T ,不合题意,所以210k .即12k,故直线MN 的斜率为定值12.【反思】在本题第(2)问中,在椭圆中:已知椭圆22221(0)x y a b a b ,定点00(,)P x y (000x y )在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率2020ABb x k a y ,由于本题是解答题,故不可直接使用此二级结论,但可用该二级结论试探答案,再解答,如果本题是选择题,或者填空题,本题可直接使用此二级结论:20203113242ABb x k a y .4.(2021·全国·高二专题练习)已知双曲线22221(0,0)x y a b a b过点(3,2)A,且离心率e .(1)求该双曲线的标准方程;(2)如果B ,C 为双曲线上的动点,直线AB 与直线AC 的斜率互为相反数,证明直线BC 的斜率为定值,并求出该定值.【答案】(1)221832x y ;(2)证明见解析,6.【详解】(1)由题意,222229415a b a b a ,28a ,232b , 双曲线的方程为221832x y ;(2)设1(B x ,1)y ,2(C x ,2)y ,设AB 的方程为2(3)y k x ,代入双曲线方程,可得222(4)2(32)(32)320k x k k x k ,2126434k kx k,21234124k k x k ,21222484k k y k,223412(4k k B k ,222248)4k k k ,同理223412(4k k C k ,2222484k k k .4868BC kk k.故得证.【反思】在本题第(2)问中,在双曲线C :22221(0,0)x y a b a b中,定点00(,)P x y (000x y )在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率2020ABb x k a y ,由于本题是解答题,故不可直接使用此二级结论,但可用该二级结论试探答案,再解答,如果本题是选择题,或者填空题,本题可直接使用此二级结论:202032(3)682ABb x k a y .三、针对训练举一反三一、填空题1.(2020·广东云浮·高二期末)已知抛物线C :24y x ,点Q 在x 轴上,直线l :2240m x y m 与抛物线C 交于M ,N 两点,若直线QM 与直线QN 的斜率互为相反数,则点Q 的坐标是______.【答案】 2,0 【详解】考虑直线l : 2240m x y m ,即 2240m x x y ,所以直线恒过定点 2,0P ,设 22121212,,,,4,04,y y M y N y y y Q a,直线l : 2240m x y m 与抛物线C 交于M ,N 两点,即,,M N P 三点共线,//PM PN,2212122,,2,44y y PM y PN y,22122122044y y y y,2212212122044y y y y y y化简得: 1212204y y y y所以128y y ,直线QM 与直线QN 的斜率互为相反数,1222124,4MQ NQ y y k k y y a a即222112044y y y a y a恒成立22121212044y y y y ay ay 121204y y a y y,则1204y y a 所以1224y y a即点Q 的坐标是2,0 故答案为: 2,0 二、解答题2.(2022·山西晋中·高二期末)已知点 2,1P 是椭圆2222:1(0)x y C a b a b上的一点,且椭圆C的离心率e(1)求椭圆C 的标准方程;(2)两动点,A B 在椭圆C 上,总满足直线PA 与PB 的斜率互为相反数,求证:直线AB 的斜率为定值.【答案】(1)22182x y (2)证明见解析(1)由题可知22222411c a a b c a b,解得2282a b ,从而粚圆方程为22182x y .(2)证明设直线PA 的斜率为k ,则 :12PA y k x ,21y kx k ,联立直线与椭圆的方程,得221248y k x x y,整理得 2221416k x k28)161640k x k k ,从而2216164214A k k x k ,于是2288214A k k x k,由题意得直线PB 的斜率为k ,则 :12PB y k x ,21y kx k ,同理可求得2288214B k k x k,于是A B AB A B y y k x x2121A B A Bkx k kx k x x4A B A Bk x x kx x2221644114.16214k k k k k k即直线AB 的斜率为定值.3.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b过点31,2A ,且离心率e为12(1)求椭圆C 的方程;(2)E 、F 是椭圆上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.【答案】(1)22143x y ;(2)证明见解析,12.(1)根据题意,22222914112ab c e a a b c,解得2,1a b c ,椭圆C 的方程为:22143x y ;(2)证明:设直线AE 的方程为: 312y k x,由 22312143y k x x y ,得 2223442341230k x k k x k k ,显然1是该方程的根,因此有22224123412313434x x k k k k E E k k,2222412312129,34234k k k k E k k,由题可知直线AF 的方程为 312y k x ,同理可得2222412312129,34234k k k k F k k,222222221212912129234234121412341232423434EFk k k k k k k k k k k k k k k, 直线EF 的斜率为定值,且这个定值为12.4.(2020·浙江·高三专题练习)已知动点M 到直线20x 的距离比到点(1,0)F 的距离大1.(1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;【答案】(1)24y x ;(2)证明见解析,定值1 ;【详解】(1)已知动点M 到直线20x 的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x 的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x 为准线的方程,且2p ,所以曲线C 的方程为24y x .(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k ,则:2(1)PA l y k x ,2(1)PB l y k x :联立方程组22(1)4y k x y x,整理得24480ky y k ,即 2420ky k y ,可得 22242,k k A k k联立方程组22(1)4y k x y x,整理得24480ky y k ,即 2+420ky k y ,可得 22242,k k B k k所以 22224242122ABk kk k k k k k k,即直线AB 的斜率为定值1 .5.(2019·浙江·高三阶段练习)如图,已知9,34M是抛物线 2:20C y px p 上一点,直线AM ,BM 的斜率互为相反数,与抛物线C 分别交于A ,B 两点,且均在M 点的下方.(1)证明:直线AB的斜率为定值;【答案】(1)证明见解析,【详解】(1)证明:因为9,34M 是抛物线 2:20C y px p 上一点,所以9924p ,得2p ,所以抛物线方程为24y x ,设直线MA 的方程为93()4y k x ,由293()44y k x y x,得241290y y k k ,所以43A y k,所以43A y k,因为直线AM ,BM 的斜率互为相反数,所以直线BM 的方程为93()4y k x ,同理可得43B y k,所以224424433344B A B A AB B A B A B A y y y y k y y x x y y k k,所以直线AB 的斜率为定值23,6.(2021·全国·高三专题练习)已知 1,2A 为抛物线22(0)y px p 上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE 的斜率与直线AF 的斜率互为相反数.(1)求直线EF 的斜率;【答案】(1)1 ;(2)是定值,2【详解】(1)设 11,E x y , 22,F x y ,因为点 1,2A 为抛物线 220y px p 上的一点,所以42p ,解得2p ,所以24y x ,同时,有2114y x ,2224y x , 11111111112+22444=11+21+22AE y y y x k x x y x y y,同理,2222412AF y k x y,因为直线AE 的斜率与直线AF 的斜率互为相反数,所以124422y y ,即124y y ,故 2121212121212141EF y y y y y y k x x x x y y y y.7.(2019·云南保山·一模(理))已知点Q,点P 是圆C:22(x y 12 上的任意一点,线段PQ 的垂直平分线与直线CP 交于点M .1求点M 的轨迹方程;2过点A 作直线与点M 的轨迹交于点E ,过点B 0,1作直线与点M 的轨迹交于点F(E,F 不重合),且直线AE 和直线BF 的斜率互为相反数,直线EF 的斜率是否为定值,若为定值,求出直线EF 的斜率;若不是定值,请说明理由.【答案】(1)22x y 13 ;(2)定值33.【详解】(1)如下图所示,连接MQ,则MC MQ MC MP CP又CQ ,所以点M 的轨迹是以,C Q 为焦点的椭圆,因为22a c1a c b .故点M 的轨迹方程是2213x y ;(2)设直线AE的方程为 y k x ,则直线BF 的方程为1y kx ,由 2233y k x x y ,消去y 整理得222231930k x x k .设交点 11,E x y 、 22,F x y ,则21231x k,211122,13131x y k x k k .由22133y kx x y ,消去y 整理得 223160k x kx ,则222222613,11313k k x y kx k k .所以,1212EF y y k x x 故直线EF的斜率为定值,其斜率为8.(2019·四川泸州·二模(文))已知,椭圆C 过点35A ,22,两个焦点为 0,2, 0,2 ,,E F 是椭圆C 上的两个动点,直线AE 的斜率与AF 的斜率互为相反数. 1求椭圆C 的方程;2求证:直线EF 的斜率为定值.【答案】(1)22y x 1106;(2)见解析【详解】1由题意c 2 ,可设椭圆方程为2222y x 1a b ,22222591444a b a b ,解得2a 10 ,2b 6 , 椭圆的方程为22y x 1106. 2设 11E x ,y , 22F x ,y ,设直线AE 的方程为35y k x 22 ,代入22y x 1106得 222333k 5x 3k 53k x 3(k )30022 , 123k 3k 53x 3k 52 ,1135y kx k 22 ,又直线AE 的斜率与AF 的斜率互为相反数,再上式中以k 代k ,可得223k 3k 53x 3k 52,2235y kx k 22 , 直线EF 的斜率 2212212121223k 3k 53k 3k 5333k 3k 523k 52k x x 3k y y k 13k 3k 53k 3k 5x x x x 333k 523k 52k .9.(2019·黑龙江·哈尔滨三中高二期末(理))如图,抛物线关于x 轴对称,顶点在坐标原点,点 1,4P , 11,A x y , 22,B x y 均在抛物线上.(1)求抛物线的标准方程;(2)当直线PA 与PB 的斜率存在且互为相反数时,求12y y 的值及直线AB 的斜率.【答案】(1)216y x ;(2)128y y ,斜率是2【详解】(1)设出抛物线方程为22y px ,代入点P 的坐标,解得p=8,所以抛物线方程为216y x(2)设点A 坐标为211,16y y ,222,16y B y ,121616,4+4PA PB k k y y ,而0PA PB k k ,代入得到128y y ;212221121621616AB y y k y y y y .10.(2018·江苏镇江·高二期中)已知椭圆E :22221(0)x y a b a b的焦距为准线方程为A ,B 分别为椭圆的右顶点和上顶点,点P ,Q 在的椭圆上,且点P 在第一象限.(1)求椭圆E 的标准方程;(2)若点P ,Q 关于坐标原点对称,且PQ ⊥AB ,求四边形ABCD 的面积;(3)若AP ,BQ 的斜率互为相反数,求证:PQ斜率为定值.【答案】(1)2214x y (2)17(3)见证明【详解】(1)由题意可得:2c2c 222a b c ,解得:c ,2a ,1b .椭圆E 的标准方程为:2214x y .(2)12AB k ,∵点,P Q 关于坐标原点对称,且PQ AB ,2PQ k .可得直线PQ 的方程为:2y x .联立22244y x x y ,解得2417x ,2817y.PQ 四边形ABCD的面积11221717AB CD .(3)证明:设 11,P x y , 22,Q x y .设直线AP 的斜率为k ,(0)k y ,则直线方程为: 2y k x ,联立 22244y k x x y ,化为: 222214161640k x k x k ,212164214k x k ,解得2128214k x k ,12414k y k .,AP BQ ∵的斜率互为相反数, 直线BQ 的斜率为k ,直线方程为:1y kx .联立22144y kx x y ,化为:221480k x kx ,22814k x k ,2221414k y k .PQ 斜率2222221441141488221414k k k k k k k k 为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、椭圆、双曲线中的一个定值问题
P
性质:若
A
a,0
、B
a,0
是椭圆
C:
x2 a2
y2 b2
1a b 0 的两个顶点,点 P 是椭圆
A
B
C
上一动点,则 kPA kPB 为定值
b2 a2
。
P B
推论:若
A、B
是椭圆
C:
x2 a2
P41
例4(2017全国Ⅲ,理20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段
AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
B
O A
M P
1.如图,抛物线 C:y2=2px 的焦点为 F,抛物线上一定点 Q(1,2). (1)求抛物线 C 的方程及准线 l 的方程; (2)过焦点 F 的直线(不经过点 Q)与抛物线交于 A,B 两点,与准线 l 交于点 M,记 QA,QB,QM 的 斜率分别为 k1,k2,k3,问是否存在常数λ,使得 k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,说明 理由.
2p
x1 m x1 x2 y1 y2
12
1、已知抛物线 y2 4x 的焦点为 F ,抛物线上两点 A, B 满足 AF 3FB ,则弦 AB 的中点
到抛物线的准线的距离为( x1+x2) y12+y22
A. 8
B. 4
d= 2 +1= 8 +1
C.2
D.1
3
3
y1y2=-4 y1=-3y2
(2)以 AB 为直径的圆交 x 轴于点 M,N,记劣弧 的长度为 S,当直线 l 绕 F 旋转时,求|������������|的最大 值.
k
3、抛物线 y2 4x 上有两动点 A, B 满足 OA OB 9 ,( A, B 位于 x 轴两侧)。 4
(1)求证:直线 AB 过定点 Q ;
A
(2)求 OAB 的面积的最小值。
9 (y1y2)2
9
x1x2+y1y2=4 16 +y1y2=4
O
y1y2=-18
A、B与点Q 92,0 共线
B
19
27 2
SΔAOB=2∙2∙ y1-y2 ≥ 2
P39 例1已知过点A(0,2)的动圆恒与x轴相切,设切点为B,AC是该圆的直径.
(1)求点C轨迹E的方程; x2=8y
(2)当AC不在坐标轴上时,设直线AC与曲线E交于另一点P,该曲线在P处的切线与直
△ 线BC交于点Q,求证: PQC恒为直角三角形. CA=CC1
(1)若������������=λ������������,当 λ∈
1 2
,
2 3
时,求 k 的取值范围;
(2)过A,B两点分别作曲线C的切线l1,l2,两切线交于点P,求△AMP与△BNP面积之积的最小值.
N
B
MF A
O
P
P40 例3(2016浙江,文19)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的 距离等于|AF|-1. (1)求p的值; (2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于 点N,AN与x轴交于点M.求M的横坐标的取值范围.
是椭圆上关于 x
轴对称的
两点,直线 AM,BN 的斜率分别为 k1,k2,且 k1k2≠0,若|k1|+|k2|的最小值为 1,则椭圆的
离心率为_______。
二、抛物线中的一个定值问题
C
性质:过点 Pm,0 作抛物线 y2 2 px的弦 AB ,一定有 x1x2 m2, y1y2 2 pm ;
y2 b2
1a
b 0 上关于原点对称的两点,点 P 是椭圆
A
C
上一动点,则 kPA kPB 为定值
b2 a2
。
1、已知椭圆
x2 a2
y2 b2
1a
b 0的长轴的两个端点为 A、B,M、N 是椭圆上关于 x 轴对
称的两点,若 k AM kBN
1 ,则椭圆的离心率为_____。 4
2、已知抛物线 y2 2 px p 0的焦点为 F ,过点 p ,0 引直线 l 与抛物线相交于 A, B
2
y1y2=p2
两点,若直线 AF 的斜率为 2,则直线 BF 的斜率为( )
1
A.
2
2
B.
2
y1
C. 1 2
kAF= y12 p =2
-
2p 2
y2D. 2
2、 已知
A, B, P 是双曲线
x2 a2
y2 b2
1 上不同的三点,且 A, B
连线 经过 坐标原 点,若 直线
PA, PB 的斜率乘积 kPA kPB 2 ,则该双曲线的离心率为_______。
3、已知 A、B
是椭圆
x2 a2
y2 b2
1 (a b 0) 长轴的两个端点,M,N
P
P、C、A共线x1x2=-16,y1y2=4
C(x1,y1)B
x1 2
,0
-4 kAB= x1
P(x2,y2),在P处的切线斜率kPQ=
x2 4
A
C OB
Q A1
C1
P43对点训练2(2018浙江高三适应性考试)已知抛物线C:x2=4y的焦点为F(0,1),过点F且斜率为k
的直线l交曲线C于A,B两点,交圆F:x2+(y-1)2=1于M,N两点(A,M两点相邻).
反之若 x1x2 m2, y1y2 2 pm 为定值,则直线 AB 过定点 Pm,0 。
4 kAB= y1+y2 =1
A: B :
y12 y22
2 px1 2 px2
4
y1y2=-4 kA1B= y1-y2
y y 2 pm
A、、B、 共线:
y1
y1 y2
2.如图,已知点 P 是 y轴左侧(不含 y轴)一点,抛物线 C:y2=4x上存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上. (1)设 AB 中点为 M,证明:PM 垂直于 y 轴;
2
(2)若 P 是半椭圆 x2+ 4 =1(x<0)上的动点,求△PAB 面积的取值范围.
3.已知抛物线 C:x2=2py(p>0)的焦点为 F,过 F 的直线 l 交抛物线 C 于点 A,B,当直线 l 的倾斜 角是 45°时,AB 的中垂线交 y 轴于点 Q(0,5). (1)求 p 的值;