《有理数的除法》第一课时参考教案
《有理数的除法》教案 (公开课)2022年
2.9 有理数的除法教案教学目标(一)教学知识点(1)理解有理数除法的法那么,会进行有理数的除法运算.(2)会求有理数的倒数.(二)能力训练要求1.理解有理数除法的法那么,会进行有理数的除法运算.2.会求有理数的倒数.(三)情感与价值观要求通过师生相互交流、探讨,激发学生的求知欲望,进一步提高学生灵活解题的能力.教学重点有理数除法法那么的运用,求一个负数的倒数.教学难点除法法那么有两个,在运用时要合理选用法那么1和法那么2,当能整除时用法那么1,在确定符号后,往往采用直接相除;在不能整除的情况下,特别是除数是分数时,用法那么2,把除法转变为乘法比较简便.教学方法师生共同讨论法.与学生展开讨论,从而使学生自己发现规律、总结规律,然后运用规律.教具准备投影片六张第一张:练习(记作§2.8 A)第二张:想一想(记作§2.8 B)第三张:法那么(记作§2.8 C)第四张:例1(记作§2.8 D)第五张:练习(记作§2.8 E)第六张:做一做(记作§2.8 F)教学过程Ⅰ.复习回忆,引入课题[师]上节课我们学习了有理数的乘法,能运用乘法法那么进行计算,谁能表达有理数的乘法法那么呢?[生]两数相乘,同号得正,异号得负,绝对值相乘,任何数与0相乘,积仍为0. [师]好,根据法那么能口答以下各题吗?(出示投影片§2.8 A)(1)(-3)×4; (2)3×(-31); (3)(-9)×(-3);(4)8×(-9); (5)0×(-2); (6)(-8)×(-6);[生](1)-12;(2)-1;(3)27;(4)-72;(5)0;(6)48[师]从答复以下问题中,知道大家已经掌握了有理数乘法法那么,我为此很快乐. 假设:两个因数的积和其中一个因数,要求另一个因数.那么我们用什么运算来计算呢? [生]用除法.[师]对,那我们今天就来研究有理数的除法.Ⅱ.讲授新课[师]除法是两个因数的积及其中一个因数,求另一个因数的运算,那10÷5是什么意思,商为几?0÷5呢?[生]10÷5表示一个数与5的积是10,商为2;0÷5表示一个数与5的积是0,商为0. [师]很好.那(-12)÷(-3)是什么意思呢?商为多少?[生](-12)÷(-3)表示一个数与-3的乘积是-12,商为4,对吧?[师]对,你是怎样考虑的?[生甲](-12)÷(-3)表示一个数与-3的乘积是-12,那什么数与-3的乘积是-12呢?+4.即:4×(-3)=-12.由除法的意义知道,乘法与除法是互为逆运算,所以:(-12)÷(-3)=4.[生乙]老师,我们在小学学过:除以一个数等于乘以这个数的倒数,那么计算(-12)÷(-3)时,就可以转化为(-12)×(-31)即:(-12)÷(-3)=(-12)×(-31)=4.这样可以吗?[师]可以,两位同学的思路都很正确,分析得也很好.那大家现在想一想:(出示投影片§2.8 B)(学生分析、计算、讨论)[生](1)-3;(2)8;(3)0;(4)-8;(5)-3;(6)-25;(7)3;(8)9;(9)-2;(10)3.[师]很好,大家来观察一下算式,看看商的符号及其绝对值与被除数和除数有没有关系?有,总结出规律.[生甲]两个有理数相除.同号得正,异号得负,并把绝对值相除,0除以不为0的数得0.[生乙]两个有理数相除总结出的规律与有理数的乘法法那么类似.都是先确定结果的符号,然后再确定结果的绝对值.老师,是吧?[师]对,大家总结得很好.在两个有理数相除时,首先确定商的符号,假设两个数是同号两数,那么商的符号为“+〞,假设这两个数是异号两数,那么商的符号为“-〞;其次确定商的绝对值,即被除数的绝对值除以除数的绝对值;还有0除以任何非0的数都得0.为什么要除以非0的数呢?[生]因为0不能作除数.[师]很好,这时,我们就总结出有理数的除法法那么:(出示投影片§2.8 C)(学生念一次,背一次)注意:(1)法那么中的“同号得正、异号得负〞是专指“两数相除〞的.(2)0不能作除数.[师]好,接下来我们通过例题来熟悉有理数除法法那么.(出示投影片§2.8 D)下面我们来做一练习.(出示投影片§2.8 E)[师]到现在为止,我们就学了有理数的乘法、除法法那么,在运用这两个法那么进行运算时,首先要确定结果的符号,然后再求结果的绝对值.下面我们做一做(出示投影片§2.8 F)[师]得出计算结果后,比较每一小题两式的结果,有规律吗?[生]结果一样,说明两式相等.即:1÷(-52)=1×(-125) 0.8÷(-103)=0.8×(-310) (-41)÷(-601)=(-41)×(-60) 由此得出:除以一个数等于乘以这个数的倒数.[师]对.通过计算总结,又得到有理数的除法的另一法那么,我们可把这个法那么称为法那么二,把前面的那个法那么称为法那么一.这两个运算法那么在本质上是一致的.在计算时,可根据具体的情况选用这两个法那么.一般来说,两数能整除时,应用法那么一较简单;两数不能整除或除数为分数时,应用法那么二.法那么二是除以一个数等于乘以这个数的倒数,那什么叫互为倒数呢? [生]乘积为1的两个有理数是互为倒数.[师]那我们现在回头看刚刚“做一做〞的(1)小题:1÷(-52);它的意思是-52与什么数相乘,积为1呢? [生]-25 [师]那-25与-52是什么数呢? [生]互为倒数. [师]对.因为互为倒数的乘积为1,所以1÷(-52)的商就是-52的倒数.大家再看: 1÷(-78)=1×(-87)=-87 可知:-78与-87是互为倒数,那谁能总结一下怎样求一个负数的倒数呢? [生]1除以这个负数,就等于这个负数的倒数.[师]很好,要求一个负数的倒数,只需要1除以这个负数得到的商就是这个负数的倒数.如果这个负数是分数,那么只需要把这个分数的分子、分母颠倒即可.想一想:正数的倒数是什么数,负数的倒数是什么数?0呢?[生]正数的倒数是正数,负数的倒数是负数,0没有倒数.[师]很好.大家要求一个数的倒数时,一定要注意:(1)0没有倒数.(2)互为倒数的两数为同号.Ⅲ.课堂练习课本P 51随堂练习1.计算: (1)215÷(-71); (2)(-1)÷(-1.5);(3)(-3)÷(-52)÷(-41); (4)(-3)÷[(-52)÷(-41)]. 解:(1)215÷(-71)=-(215×7)=-35 (2)(-1)÷(-1.5)=+(1÷1.5)=+(1×32)=32 (3)(-3)÷(-52)÷(-41)=+(3×25)÷(-41)=215÷(-41)=215×(-4)=-30 (4)(-3)÷[(-52)÷(-41)]=(-3)÷[(-52)×(-4)]=(-3)÷[+(52×4)] =(-3)÷58=(-3)×85=-815. 2.阅读课本P 50~52,然后小结.Ⅳ.课时小结本节课主要学习了有理数的除法运算.有理数除法运算的步骤与有理数加、减、乘一样,都是先确定符号,再确定绝对值,在进行有理数除法运算时,要根据题目的特点,恰当地选择有理数除法法那么进行计算,有理数除法转化为乘法后,可以利用乘法的运算律性质简化运算.Ⅴ.课后作业(一)课本P 52习题2.8 1、2、3、4、5.(二)1.预习内容:P 52~542.预习提纲(1)乘方的概念.(2)如何进行乘方运算.Ⅵ.活动与探究1.假设1059、1417、2312分别被自然数x除时,所得的余数都是y,那么x-y的值等于( )A.15B.1C.164D.179(1999年竞赛)过程:对于除法运算中的整除性与非整除性,小学已初步探讨过.有以下公式:被除数=除数×商被除数=除数×商+余数可以让学生利用此公式进行变化、培养学生灵活解题的能力.设三数被自然数x除时,商分别为自然数a、b、c.那么:ax+y=1059 ①bx+y=1417 ②cx+y=2312 ③②-①得 (b-a)x=358③-①得 (c-a)x=1253③-②得 (c-b)x=895由于:a≠b b≠c c≠a所以,x是358、1253、895的公约数即x=179,由此可得y=164x-y=15结果:选A2.求除以8和9都是余1的所有三位数的和.过程:可以让学生借鉴(1)题来变化、运算.可设三位数为n,它是除以8、9的商分别为x、y余1的数.那么:n=8x+1;n=9y+1由此可知:三位数n减去1,就是8和9的公倍数,即为:144、216、288、360、432、504、576、648、720、792、864、936.所以满足条件的所有三位数的和为:144+216+288+360+432+504+576+648+720+792+864+936+1×12=72×(2+3+4+5+6+7+8+9+10+11+12+13)+1×12=72×(2+13)×6+12=6492答案:6492板书设计1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a 米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;(4)(x+y)2-(x-y)2;(5)(2x-3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y-x)2=4y 2-4xy+x 2;方法二:(-x+2y)2=[-(x -2y)]2=(x -2y)2=x 2-4xy+4y 2.(2)(-x -y)2=[-(x+y)]2=(x+y)2=x 2+2xy+y 2.(3)(x+y -z)2=[(x+y)-z ]2=(x+y)2-2(x+y)·z+z 2=x 2+y 2+z 2+2xy -2zx -2yz.(4)方法一:(x+y)2-(x -y)2=(x 2+2xy+y 2)-(x 2-2xy+y 2)=4xy.方法二:(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2 (2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n头,每头卖n元,故共卖得n2元.令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+20ab+b2=10×2a(5a+b)+b2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab+b2②(a+b)2比照得:(a+b)2=a2+2ab+b2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
【人教版】七年级数学上册 1.4.2 有理数的除法(第一课时)教案 及练习(含答案)
1.4.2 有理数的除法(1)1.4.2有理数的除法(第一课时)学习目标:理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算.学习重点:正确运用有理数除法法则进行有理数除法运算. 学习难点:寻找有理数除法转化为有理数乘法的方法和条件. 教学方法:引导、探究、归纳与练习相结合 教学过程活动一 探讨有理数除法法则:独立完成——合作交流——展示成果 阅读课本P35例5以上的内容,谈谈有理数除法法则是如何得出的?换其他数的除法进行类似讨论,是否任有除以a )0(≠a 可以转化为乘a1?(请举一例) (组内交流)归纳:①有理数除法法则:除以________________的数,等于___________________ . 这个法则也可以表示成:_________=÷b a ( ) .②从有理数除法法则,可得出:两数相除,同号得_____ ,异号得____ ,并把_________相____ ,0除以_______________________的数,都得_____ .(你能说说为什么吗?) 1. 有理数除法的运算步骤:第一步,先确定______________;第二步,后求出______________.完成课本P36练习2.完成P36练习活动二 运用有理数除法法则进行计算!小结:怎么样,这节课有什么收获,还有那些问题没有解决?六、当堂清一、填空题:1.下列各数中互为倒数的是()A.-512和211B.-0.75和-43C.-1和1 D.-512和2112.若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab>1 D.ab<1二、填空题3.直接写出运算结果:(-9)×23= ,-112÷0.5= ,(12+13)÷(-6)=4.若一个数的相反数是,这个数的倒数是.三、计算题5.(-423)÷(-213)÷(-117)=6.(-5)÷(-127)×45×(-214)÷7=7.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.【答案】 1.B 2.C 3. -6,-3,- 5364. -15,-55.-746.-17.1或-3六、学习反思。
七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计
2.学生在运算过程中对符号的处理能力,包括正负号的判断和运算顺序的掌握。
3.学生的合作能力和交流能力,如何在小组讨论中发挥各自的优势,共同解决问题。
针对学生的个体差异,教师应采取以下策略:
1.对于基础较好、理解能力较强的学生,可以适当提高要求,引导他们进行更深入的思考和实践。
(二)讲授新知
在导入新课的基础上,我会向学生讲解有理数除法的定义和法则。首先,通过具体例题,让学生理解除以一个不等于0的数等于乘这个数的倒数。接着,讲解有理数除法的运算步骤,特别是符号的处理方法。在此过程中,注重引导学生从具体实例中发现规律,逐步提炼出有理数除法的运算规则。
(三)学生小组讨论
讲授新知后,我会组织学生进行小组讨论。将学生分成若干小组,每组4-6人,让她们针对以下问题进行讨论:
1.引导学生通过观察、分析、归纳等方法,发现并理解有理数除法的运算规律。
2.培养学生运用数学语言进行表达、交流,提高学生的合作能力。
3.引导学生从不同角度思考问题,培养学生的逻辑思维和发散思维能力。
(三)情感态度与价值观
1.使学生感受到数学学习的乐趣,激发学生学习数学的热情。
2.培养学生勇于探索、积极思考的学习态度,提高学生的自主学习能力。
2.对于基础较弱、理解能力稍差的学生,教师要耐心指导,通过具体例题和实际操作,帮助他们理解和掌握有理数除法的运算规律。
3.创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,提高他们的自信心。
四、教学内容与过程
(一)导入新课
在课程开始时,我将通过一个与学生生活密切相关的实际问题导入新课。例如,提出以下问题:“如果你有一块巧克力,要平均分给4个好朋友,每个人能得到多少巧克力?”通过这个问题,引导学生回顾之前学过的整数除法,并自然过渡到本节课的有理数除法。接着,我会追问:“如果这块巧克力不是完整的,而是3/4块,你们还能平均分给4个好朋友吗?该如何计算?”从而引出有理数除法的概念。
有理数的除法(第一课时)
1.4.2 有理数的除法<第一课时)教案目标1.知识与技能①了解有理数除法的定义.②经历有理数除法法则的过程,会进行有理数的除法运算.③会化简分数.2.过程与方法①通过有理数除法法则的导出及运用,让学生体会转化思想.②培养学生运用数学思想指导数学思维活动的能力.3.情感、态度与价值观在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.教案重点难点重点:正确应用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计<一)创设情境,导入新课我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.b5E2RGbCAP <二)合作交流,解读探究试一试 <-10)÷2=?交流因为除法是乘法的逆运算,也就是求一个数“?”,使<?)×2=-10显然有<-5)×2=-10,所以<-10)÷2=-5我们还知道:<-10)×=-5由上式表明除法可转为乘法.即:<-10)÷2=<-10)×再试一试:<-12)÷<-3)=?总结除以一个数,等于乘以这个数的倒数<除数不能为0).•用字母表示成a÷b=a×,<b≠0).<三)应用迁移,巩固提高例1:计算:<1)<-36)÷9 <2)<-63)÷<-9) <3)<-)÷<4)0÷3 <5)1÷<-7) <6)<-6.5)÷0.13<7)<-)÷<-) <8)0÷<-5)提出问题:在大家的计算过程中,应用除法法则的同时,有没有新的发现?学生活动:分组讨论.总结两数相除,同号得正,异号得负,并把绝对值相除.0•除以任何一个不等于0的数,都得0.点拨这个运算方法的得出为计算有理数除法又添了一种方法.我们要根据具体情况灵活选用方法.大家试来比较一下,以上各题分别用哪种运算法则更简便.p1EanqFDPw讨论 <1)、<2)、<5)、<6)用确定符号,并把绝对值相除.<3)、<7)用除以一个数,等于乘以这个数的倒数.引导小学里我们都知道,除号与分数线可相互转换.如=-12÷3.•利用这个关系,我们可以将分数进行化简.DXDiTa9E3d例2 化简下列分数<1) <2) <3) <4)学生活动:口答.备选例题<2006·福州)+<ab≠0)的所有可能的值有<C)A.1个 B.2个 C.3个 D.4个RTCrpUDGiT点拨本题含有绝对值符号,故要考虑a、b的正负情况.当a>0时,=1;当a<0时,=-1.答案 C例3 试着用计算器计算<1)-0.056÷1.4=-0.04 。
人教版七年级数学上册 142有理数的除法第一课时课程教学设计
人教版七年级数学上册 1.4.2《有理数的除法(第一课时)》课程教学设计有理数除法——教学设计一、教学目标1.经历探索有理数的除法法则的推导过程,了解有理数除法的意义。
2.理解并掌握有理数的除法法则,会进行有理数的除法运算。
3.能说出有理数的除法法则的另一种说话,能用例子说明法则的合理性。
二、学情分析七年级学生在小学的学习中已经熟练掌握了两个正数之间的除法运算,又通过对有理数的加、减、乘的运算学习,学生对负数参与运算有了一定的认识,已经明确有理数的运算时要先明确结果的符号,再确定结果的绝对值的基本方法。
三、重点难点重点:正确运用有理数的除法法则进行有理数的除法运算。
难点:商的符号的确定及其绝对值与被除数和除数的关系。
四、教学过程一创设情境引入新课:活动1:我想思问题1:(1)小红从家到学校,每分钟走50米,共走了20分钟,问小红家离学校有____米,列出的算式为______________。
(2)小红家离学校1000米,放学时小红以每分钟50米的速度回家,应该走___分钟到家,列出算式为______________。
从这个具体事例中,我们发现:除法与乘法之间的关系是__________。
[师生活动]通过多媒体展示,老师引导学生回答。
[设计意图]简单实际的生活问题,回顾一种互逆关系。
为学习有理数的除法法则做下铺垫。
问题2:怎样计算8÷(-4)呢?[师生活动师引导:在小学时我们学习乘法后,接着学习了除法,那么到了初中我们学习了有理数的乘法后,接下来该学习什么运算了呢?生回答:有理数的除法。
从而引出课题。
[设计意图]按小学的学习套路提出课题的方法,激发了学生的求知欲。
4/ 1人教版七年级数学上册 1.4.2《有理数的除法(第一课时)》课程教学设计活动3:我归纳问题4:由活动2大量的数的列举,发现都具有同一个规律,那么我们可以归纳概括出这一规律吗?[师生活动]先让学生观察、猜想、归纳、补充,教师再总结:除以一个不等于0的数, 等于_________________追问1:有理数的除法法则能否用字母表示?[师生活动]先让学生先回答,教师再总结:用字母表示为:a÷b=______________________追问2:法则中为什么要强调“除以一个不等于0的数”?追问3:此法则是把除法转化为____________运算。
初中数学七年级上册《有理数的除法1》教学设计
初中数学七年级上册《有理数的除法1》教学设计
一、教学目标:
1. 了解有理数的含义和性质;
2. 学会有理数的除法运算法则,以及解决与有理数的除法有关的实际问题。
二、教学重点:
1. 有理数的除法运算法则;
2. 解决与有理数的除法有关的实际问题。
三、教学内容:
1. 有理数的含义和性质;
2. 有理数的除法运算法则;
3. 解决与有理数的除法有关的实际问题。
四、教学方法:
1. 演示法:通过示范学生可以更好的理解有理数的除法运算法则;
2. 探究法:让学生在实际问题中自主发现解决方法;
3. 讨论法:通过学生的讨论帮助学生梳理理论知识。
五、教学步骤:
1. 引入
通过举例说明有理数的含义和性质,比如温度的正负、海拔的高低等。
2. 操作演示
(1)将简单的有理数除法划分成正除正、负除正、正除负、负除负四种情况,并且回顾乘法规律,类比验证除法。
(2)运用除法运算法则和具象化计算提高学生的运算能力。
(3)利用例题来复习有理数的乘法和有理数的加减法。
3. 练习
让学生在实际问题中自主发现解决方法。
4. 总结
让学生讨论有理数的除法运算,梳理理论知识。
六、教学评价:
通过答题情况、学生的理解情况以及课堂互动等方式进行评价。
并及时反馈,帮助学生做好巩固。
新人教版七年级数学上册 1.4.2 有理数的除法(第一课时)教案设计
本课作业
(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);
(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号,第二步,求出商的绝对值.
培养学生从特殊到一般的归纳思想.培养学生的概括能力和语言表达能力,学生的概括只要合理都加以鼓励.
1.4.2有理数的除法(1)
教学目标
知识与技能
1.理解有理数的除法及倒数的意义
2.掌握有理数的除法法则
3 .会进行有理数的乘除法混合运算.
过程与方法
通过系数的逆运算,培养学生的逆向思维能力,使学生计算能力的到提高.
情感态度价值观
让学生体验到转化思维的魅力,对称感和美感,通过自主观察,分析,激发学生的求知欲望
教学重点
正确运用有理数除法法则,进行有理数除法运算
教学难点
寻找有理数除法转化为有理数乘法的方法
教学过程(师生活动)
设计理念
设置情境
引入课题
1.有理数乘法法则;
2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;
3.倒数的意义.
引起学生的学习兴趣.为下面的学习作铺垫.
交流对话
探究新知
问题:怎样计算8÷(-4)呢?
例3计算:
(1)(-125 )÷(-5);
(2)-2.5÷ ;
学生在教学活动中获得成功的体验,建立自信心。除法运算中遇到小数,分数问题,处理办法和小学一样
化分式运算为除法运算,即化生为熟,有利于准确求解,且避免符号错误
课堂练习
2.2.2 有理数的除法(第1课时)人教版数学七年级上册教案
第一章有理数2.2有理数的乘除法2.2.2 有理数的除法第1课时有理数的除法一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃.某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃.请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?例如8÷(-4).师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以 8÷(-4)=-2 ①另外,我们知道,8×(-)=-2 ②由①、②得 8÷(-4)=8×(-)③③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4, 等于乘以-4的倒数-.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,4,-8;右边组由上到下5答案依次为:-2,-6,4,-8;5教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨:从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·(b≠0),其中a、b表示任意有理数(b≠0)例如:教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9);(2)(–27) ÷3;(3)0 ÷ (–7);(4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) ―123 ;(2)―45―12 .师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2)师生共同解答如下:解:(1)原式=====点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式== 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A.3B.–3 C.13D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a,b互为相反数,且a ≠ b,则ab=________;(2)当a < 0时,|a|a=_______;(3)若a>b,ab<0,则a,b的符号分别是__________.(4)若–3x=12,则x =_____.4.若|2x+6|+|3―y|=0,则xy=_________.5. (1)计算;(2). 计算;(3)计算参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x+6|+|3―y|=0,解得x=-3,y=3,所以xy =―33=-1.5.解:(1)原式==(2)原式==(3)原式==(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
人教版初一数学上册有理数的除法 第一课时 教案
有理数的除法法则微课教案授课者:七年级数学教研组教师——祖拉希. 托力干2017 年06月12日1.4.2 有理数的除法第1课时 有理数的除法教学目标1.知识与技能掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.2.过程与方法通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.3.情感态度与价值观培养学生勇于探索积极思考的良好学习习惯.重、难点与关键1.重点:正确应用法则进行有理数的除法运算.2.难点:灵活运用有理数除法的两种法则.3.关键:会将有理数的除法转化为乘法.教学过程一、回顾有理数乘法法则,引入课题:.计算1:(1)(-3)×(-5)(2)(+3)×(+5)(3)(-3)×(+5)(4)(+3)×(-5)。
填空题:在课件上。
二、探究新知,解决问题⇒(等量代换 )师:同学们由上面的运算你们发现了什么规律?生:我们发现了有理数除法和乘法是互为逆运算, 除以一个不等于0的数,等于乘以这()()()111.22=12=122=222112.-28=-16-168=-2-16=-2-168=-1688÷⨯⇒÷⨯⨯∴÷⨯⇒÷⨯,等量代换又个数的倒数。
师:好!同学们总结的非常科学的,这就是有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0),其中a、b表示任意有理数(b≠0)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.这是有理数除法法则的另一种说法,具体采用哪一种方法,灵活选用.例1:计算:(1)(-36)÷9;(2)(-1225)÷(-35).分析:(1)题,36能被9整除,可以用方法二,直接除;(2)题是分数除法,•可转化为乘法.解:(1)(-36)÷9=-(36÷9)=-4(先确定符号,再求绝对值);(2)(-1225)÷(-35)=(-1225)×(-53)=45.例2:化简下列分数:(1)123-;(2)4512--.分析:分数可以理解为除法,所以要按除法法则进行,可以直接除,也可以转化为乘法,利用乘法的运算性质简化分数.解:(1)123-=(-12)÷3=-4;(2)4512--=(-45)÷(-12)=(-45)×(-112)=154..三、课堂小结本节课学习了有理数的除法法则,有理数的除法有两种方法.一是根据“除以一个数,等于乘以这个数的倒数”,转化为乘法,按乘法法则进行.二是根据“两数相除,同号得正,异号得负,并把绝对值相除.一般能整除时用第二种方法.乘除混合运算,先统一为乘法,再按几个不等于0的数相乘的法则计算.四、作业布置1.课本第38页习题1.4第4、6、7(4)~(8).2.练习册。
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1一. 教材分析《有理数的除法(1)》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律,培养学生解决实际问题的能力。
教材通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义,进而引导学生探究有理数除法的运算方法。
二. 学情分析学生在七年级上册已经学习了有理数的加法、减法、乘法,对有理数的基本运算有了初步了解。
但学生在解决实际问题时,往往不能灵活运用有理数运算规律。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将实际问题转化为有理数除法运算问题,并通过实例让学生感受有理数除法的运算规律。
三. 教学目标1.知识与技能:使学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律。
2.过程与方法:培养学生解决实际问题的能力,提高学生运用有理数除法解决生活中的问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的精神。
四. 教学重难点1.教学重点:有理数除法的基本运算方法。
2.教学难点:理解有理数除法的运算规律,解决实际问题。
五. 教学方法1.情境教学法:通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义。
2.引导发现法:教师引导学生观察、分析实例,发现有理数除法的运算规律。
3.合作学习法:学生分组讨论,共同解决问题,提高学生合作能力。
六. 教学准备1.教学课件:制作课件,展示实例和教学内容。
2.教学素材:准备一些实际问题,用于引导学生解决。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示日常生活中的一些实例,如购物时找零、制作食品时配料等,引导学生感受有理数除法的实际意义。
2.呈现(10分钟)教师通过讲解,向学生介绍有理数除法的基本运算方法,如“同号两数相除,异号两数相除”等。
同时,引导学生观察实例,发现有理数除法的运算规律。
1.4.2有理数的除法(第一课时)(教学设计)七年级数学上册(人教版)
有理数的除法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.2 有理数的除法(第一课时),内容包括:有理数的除法法则、运用法则进行有理数的除法及乘除混合运算.2.内容解析有理数的运算是本章的重点,是学好后续内容的重要前提.本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运算形成了一个完整的知识体系.有理数的除法是乘法的逆运算,与有理数的减法法则的得出过程类似,也与小学讨论除法运算的过程一致.通过把除法运算转化为有理数的乘法(已有知识)来进行解释,进而得出有理数的除法的运算法则,体现了数学知识之间的密切联系,和方法的同一性,进一步说明乘法与除法的关系,除法法则本质上是把除法转化为乘法来运算.与有理数乘法运算类似,除法也是“先定符号,再求绝对值”.在学习了有理数的乘法、除法运算法则的基础上,进行有理数的乘除混合运算,最主要的是解决运算顺序的问题.这一顺序与小学所学的乘除混合运算顺序是一致的.基于以上分析,确定本节课的教学重点为:理解除法法则,体验除法与乘法的转化关系.二、目标和目标解析1.目标(1)认识有理数的除法,经历除法的运算过程.(运算能力)(2)理解除法法则,体验除法与乘法的转化关系.(转化思想)(3)掌握有理数的除法及乘除混合运算.(运算能力)2.目标解析本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,与有理数的其他运算形成了一个完整的知识体系.因此本节课以学生熟悉的生活情境入手,得出除法运算,然后结合有理数乘法的知识来解释有理数的除法结果的准确性,整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法.通过本节课的学习,让学生感受数学学习的乐趣,体验数学思维的力量,发展学生自主创新的意识.三、教学问题诊断分析对有理数除法法则的探索,要经历从具体的例子进行观察比较,归纳出规律的过程,具体的例子是根据除法是乘法的逆运算,以及已经掌握的乘法运算写出来的,但不是教师给出式子,由学生去计算,再观察特点,而是由学生根据以上想法自己写出算式,因而对学生来说有一定的困难.有理数运算与以前学过的运算的一个重要区别就是多了一个符号问题,虽然学习有理数的除法之前,学生在有理数的加法、减法、乘法中已经多次遇到符号问题,有了处理符号问题的基础,但进行有理数除法时需对除法法则的两种不同形式进行选择,特别是进行有理数乘除混合运算时还要注意运算顺序及运算律的使用,有可能分散注意力,而忽视符号问题.符号问题是一个易错点,对有些学生来说也是一个难点.基于以上分析,确定本节课的教学难点为:有理数除法法则的探索,进行有理数除法及乘除混合运算时的符号问题.四、教学过程设计(一)复习回顾1.倒数的定义你还记得吗?乘积是1的两个数互为倒数.2.你能很快地说出下列各数的倒数吗?(二)自学导航情境一:小明从家里到学校,每分钟走70米,共走了20分钟,问小明家离学校有多远?70×20=1400(米)放学后,小明仍然以每分钟70米的速度回家,应该走多少分钟才会到家?1400÷70=20(分)情境二:经统计,某商场一年共亏损3.6万元,那么该商场平均每月亏损多少万元?规定盈利为正,亏损为负. 则列式为:(3.6)÷12=?这个式子应该怎样计算呢?思考:怎样计算8÷(4)呢?因为 ___×(4)=8所以 8÷(4)=___ …………①另一方面,我们有 8×( )=2 …………② 于是有 8÷(4)=8×( ) ………③③式表明,一个数除以4可以转化为乘______来进行,即一个数除以4,等于_________________. 换其他数的除法进行类似讨论,是否仍有除以a(a ≠0)可以转化为乘1a ?6÷2=____,6×12=____; 12÷(3)=____,12×(13)=____; 10÷(5)=____,10×(15)=____;72÷9=_____,72×19=_____.思考:上面各组数计算结果你能得到有理数的除法法则吗? 【归纳】有理数除法法则(一)除以一个不等于0的数,等于乘这个数的倒数. a ÷b =a ·b1(b ≠0)利用上面的除法法则计算下列各题:(1)54÷(9);(2)27÷3;(3)0÷(7); (4)24÷(6). 解:(1)54÷(9)=54×( 19)=6;(2)27÷3=27×13=9; (3)0÷(7)=0×( 17)=0; (4)24÷(6)=24×( 16)=4. 思考:从上面我们能发现商的符号有什么规律? 【归纳】有理数除法法则(二)两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. (三)考点解析 例1.计算:(1)(144)÷(6); (2)(0.75)÷0.75; (3)(12)÷35; (4)0÷(212).分析:在进行有理数除法运算时,能够整除的就选择法则二,不能够整除的就选择用法则一. 解:(1)原式=144÷6=24; (2)原式=(0.75÷0.75)=1; (3)原式=(12)×53=20; (4)原式=0.【迁移应用】1.若ab >0,则一定有( )A.a >0且b >0B.a <0且b <0C.a,b 同正或同负D.a,b 正一负 2.两个数的积是29,其中一个是-16,则,一个是_______.3.计算:(1)(1.2)÷0.4; (2)6÷(13); (3)1÷(5); (4)(229)÷(113); (5)(213)÷(116).解:(1)原式=(1.2÷0.4)=3; (2)原式=6×(3)=18; (3)原式=1×(15)=15; (4)原式=229×311=23; (5)原式=73×67=2.例2.化简下列分数: (1)−16−4; (2)39−15; (3)−25; (4)−120.8; (5)−9−51.解:(1) −16−4=(16)÷(4)=4; (2)39−15=39÷(15)=39×(115)=135;(3) 0−25=0÷(25)=0; (4) −120.8=(12)÷0.8=(12)×54=15; (5) −9−51 =[(9)÷(51)]=(9÷51)=317. 【迁移应用】1.下列分数化简结果为13的是( )A.−618 B.6−18 C.−6−18 D.−1862.化简下列分数: (1)−217; (2) 4−12; (3) −6−14; (4) −82.4.解:(1)−217=(21)÷7=3; (2)4−12=13;(3) −6−14=6÷(14)=6×(4)=24; (4) −82.4 =82.4 =8024 =103.例3.计算:(1)(2)÷5×15; (2)178÷(10)×313÷(334); (3)(23)×(178)÷0.25; (4)(7)÷[(73)÷7].解:(1)原式=2×15×15 =225; (2)原式=158×210×103×415=16;(3)原式=23×158÷14=23×158×4=5;(4)原式=(7)÷[(73)×17]=(7)÷(13)=(7)×(3)=21.【迁移应用】 计算:(1)(65)×(14)÷(12); (2)27÷(145)×59÷(36); (3)(6)÷[(0.25)÷56]; (4)(81)×49÷(214)÷(8). 解:(1)原式=65×14×112=140; (2)原式=27×59×59×136=25108;(3)原式=(6)÷(14×65) =(6)÷(310)=6×103=20;(4)原式=81×49×49×18=2.例4.计算: (2)÷(15+ 431635)解:原式的倒数=(12+431635)÷(130) =(12+431635)×(30)=12×(30)+43×(30)16×(30)35×(30) =1540+5+18 =32. 则(130)÷(12+ 431635)=132【迁移应用】1.用简便方法计算:99989÷(119).解: 99989÷(119)=(100019)×910=900110=899910. 2.计算:(142)÷(16 314 + 23 27).解:原式的倒数=(16314+2327)÷(142)=(16314+2327)×(42)=16×(42)314×(42)+23×(42)27×(42)=7+928+12 =14. 则(142)÷(16314+ 2327)=114例5.【分类讨论思想】已知a ,b ,c 为三个不等于0的数,且满足abc >0,a+b+c <0,求|a |a+|b |b+|c |c的值.解:因为abc >0,所以a ,b ,c 中负因数的个数为偶数,即为0或2. 又a+b+c <0,所以a ,b ,c 中必有负数. 所以a ,b ,c 中有两个负数,一个正数.假设a 为正数,b ,c 为负数,则|a|=a ,|b|=b ,|c|=c. 所以|a |a+|b |b+|c |c=a a+−b b+−cc=1+(1)+(1)=1.【迁移应用】1.若|x |x =1,则x____0;若|x |x =1,则x____0. 2.若有理数a ,b 满足ab <0,则|a |a +b|b |的值为_____. 3.已知有理数a ,b ,c 满足|a |a +|b |b +|c |c =1,则abc|abc |=_____. 4.已知有理数a ,b 满足ab ≠0,则|a |a +|b |b 的值为( ) A.±2 B.±1 C.±2或0 D.±1或0 【解析】因为ab ≠0,所以分四种情况: ①a >0,b <0,此时原式=11=0; ②a >0,b >0,此时原式=1+1=2; ③a <0,b <0,此时原式=11=2; ④a <0,b >0,此时原式=1+1=0. 故选C.(六)小结梳理五、教学反思。
有理数的除法-最新经典教案,通用
1.4.2有理数的除法(1)教学设计活动1探究有理数的除法 问题1正数除以负数因为2×(-4)=-8 所以=-2负数除以负数 (-8)÷(-4)因为(2)×(-4)=-8 所以(-8)÷(-4) =2 零除以负数 0÷(-4)因为0×(-4)=0 0÷(-4)=0除以一个负数等于乘以这个负数的倒数。
活动2再次验证结论两者的关系-38÷0=?通过以上式子大小比较,你有什么发现吗?2:讲解新知用自己的语言概括规律并用字母表示注:使用的条件。
给学生给足时间自己探究自己发现,自己验证,此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能不易发现更不会加以修改推广,得到结论,而忽略了使用的条件,此时教师应引导学生注意观察对比,用自己的语言描述发现的规律.直到准确为止。
学生分组讨论,教师深入小组倾听学生的讨论,并注意规范学生的数学语言,并注意学生学生语言的严谨性 此次活动中,教师应重点关注:1.学生在小组活动中的参与意识.2.学生在探究,考虑问题是否全面.3.学生在描述通过探索规律得到的结论,语言是否严密、规范.4.学生在小组讨论交流的过程中,是否敢于发表自己的见解,注意倾听他人的见解,并能重新审视完善自己的想法.(学生活动)让学生对比得出两者相等的关系 老师点评:(1)既然相等我们就可以把除法转换成乘法来进行 运算。
(2)注意转化的方法(3)再次验证加深理解并得出结论(4)-38÷0的结果如何? 学生要说出理由这很重要!教师要关注:1、教师要规范学生的数学语言,并注意学生学生语言的严谨性)41()8(-⨯-)41(0-⨯)41(8-⨯)21()411____()2()411(;31)15____(3)15();41(8_____)4(8-⨯--÷-⨯-÷--⨯-÷教学反思《孤独之旅》教学设计知识目标:理解小说内容,体会孤独的含义。
人教版初一数学上册有理数的除法(第一课时)
七年级上册人教版1.4.2 有理数的除法(第一课时)教学目标1.知识与技能①了解有理数除法的定义.②经历有理数除法法则的过程,会进行有理数的除法运算.③会化简分数.2.过程与方法①通过有理数除法法则的导出及运用,让学生体会转化思想.②培养学生运用数学思想指导数学思维活动的能力.3.情感、态度与价值观在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.教学重点难点重点:正确应用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计(一)创设情境,导入新课我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.(二)合作交流,解读探究试一试(-10)÷2=?交流因为除法是乘法的逆运算,也就是求一个数“?”,使(?)×2=-10显然有(-5)×2=-10,所以(-10)÷2=-5我们还知道:(-10)×12=-5由上式表明除法可转为乘法.即:(-10)÷2=(-10)×12再试一试:(-12)÷(-3)=?总结除以一个数,等于乘以这个数的倒数(除数不能为0).•用字母表示成a÷b=a×1b,(b≠0).(三)应用迁移,巩固提高例1:计算:(1)(-36)÷9 (2)(-63)÷(-9)(3)(-1225)÷35(4)0÷3 (5)1÷(-7)(6)(-6.5)÷0.13(7)(-45)÷(-25)(8)0÷(-5)提出问题:在大家的计算过程中,应用除法法则的同时,有没有新的发现?学生活动:分组讨论.总结:两数相除,同号得正,异号得负,并把绝对值相除.0•除以任何一个不等于0的数,都得0.点拨:这个运算方法的得出为计算有理数除法又添了一种方法.我们要根据具体情况灵活选用方法.大家试来比较一下,以上各题分别用哪种运算法则更简便.讨论(1)、(2)、(6)用确定符号,并把绝对值相除.(3)、(5)、(7)用除以一个数,等于乘以这个数的倒数.引导:小学里我们都知道,除号与分数线可相互转换.如-123=-12÷3.•利用这个关系,我们可以将分数进行化简.例2 化简下列分数(1)-45-15(2)12-36(3)-7-14(4)0-8学生活动:口答.(四)课堂跟踪反馈1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是(D)A.1 B.2 C.-1 D.±1(2)若两个有理数的商是负数,那么这两个数一定是(D)A.都是正数 B.都是负数 C.符号相同 D.符号不同(3)|a|a=-1,则a为(B)A.正数 B.负数 C.非正数 D.非负数(4)若a+b<0,ba>0,则下列成立的是(B)A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>02.计算题(1)(-217)÷(-514)(2)3.5÷78÷(-117)(3)-32÷(-7)÷(-514)(4)(+35)÷(-37)3.填空题(1)若a、b是互为倒数,则3ab= 3 .(2)相反数是它本身的数有0 ,绝对值等于它本身的数是非负数,倒数等于它本身的数是1,-1 .(3)若y<0,且yz<0,那么z > 0.(填“〈”“〉”)(4)±1 的倒数等于本身,0 的相反数等于本身,非负数的绝对值等于本身,•一个数除以 1 等于本身,一个数除以–1 等于这个数的相反数.4.一家公司为了开发某种产品,需要每年向银行存款或取款,到今年,•存取款结果正好为零.如果把向银行的存款数(万元)记为正数,那么向银行的取款数(万元)就应当记为负数;如果把现在起向后的时间(年)记为正数,那么把现在起向前的时间(年)记为负数,在这个问题中,(1)(-100)÷4的实际意义是___________;(2)(-100)÷(-4)的实际意义是_____________.仿照上题,请你举一个实例,使问题的数量为:(1)16÷(-2)(2)(-10)÷(-2)答案略(五)布置作业习题1.4 第3题,第4题(六)教学反思这节内容是有理数乘法的进一步的运用,所设及的内容为有理数倒数的定义,有理数两条除法法则并会进行运算,是整个初中代数知识计算的基础内容,学生必须掌握,本节内容设计用具体的题目提出问题,并用所学知识解决它,从而激发学生的学习兴趣和参与数学活动的积极性,然后根据七年级学生已有的认知水平,既注重安排他们的自主探究活动,又适时加以引导`讲解,突出了学生归纳思维方法和创新意识的培养.。
初中数学初一数学上册《有理数的除法》教案、教学设计
1.通过小组合作、讨论交流等形式,引导学生探索有理数除法的运算规律,培养学生主动探究、合作学习的能力。
2.设计多样化的练习题,让学生在实际操作中掌握有理数除法的运算方法,提高解决问题的能力。
3.引导学生总结有理数除法的运算技巧,培养学生的归纳总结能力。
4.结合生活实际,设计具有情境性的问题,让学生在实际情境中感受数学的魅力,提高学生运用数学知识解决实际问题的能力。
3.演示讲解,突破难点
针对学生在探究过程中遇到的难点,如负数的处理方法、运算定律的应用等,教师进行针对性讲解,帮助学生理解和掌握。
4.巩固练习,分层提高
设计不同难度的练习题,让学生在课堂练习中巩固所学知识。针对学生的个体差异,实施分层教学,使每位学生都能在原有基础具有情境性的问题,让学生在实际情境中运用有理数除法知识解决问题,提高学生的问题解决能力和数学思维。
二、学情分析
初一学生在学习有理数除法之前,已经掌握了有理数的加、减、乘法运算,具备了一定的运算基础。但在实际操作中,学生可能会对有理数除法的运算规律和运算方法产生困惑,对除法与乘法、加减法之间的关系理解不够深入。此外,学生在解决实际问题时,可能难以将数学知识灵活运用到具体情境中。因此,在教学过程中,教师应关注以下方面:
5.注重培养学生的合作意识和团队精神,鼓励学生在小组讨论中积极参与,相互学习,共同提高。
三、教学重难点和教学设想
(一)教学重点
1.有理数除法的运算规律和运算方法。
2.有理数除法与乘法、加减法之间的关系。
3.应用有理数除法解决实际问题。
(二)教学难点
1.理解除法运算中负数的处理方法。
2.灵活运用运算定律简化有理数除法计算过程。
接着,我会让学生尝试用他们已知的数学知识来解决这个新问题。在学生尝试解答的过程中,我会引导他们发现,除法实际上是一种乘法的逆运算。通过这个导入过程,学生不仅能够感受到数学与生活的紧密联系,还能够激发他们对新知识的探索欲望。
最新冀教版七年级数学上册《有理数的除法》1教学设计(精品教案)
1.9有理数的除法目标定位:知识与技能:理解倒数的意义,会求有理数的倒数。
了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.过程与方法:通过有理数除法的法则的导出及运用,学生能体会转化的思想。
感知数学知识具有普遍联系性、相互转化性。
情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。
体会在解决问题的过程中与他人合作的重要性。
通过对解决问题的过程的反思,获得解决问题的经验。
教学重点:有理数的除法法则及其运用教学难点:(1)商的符号的确定。
(2)0不能作除数的理解。
教材分析: 乘法与除法互为逆运算,小学已经学过。
通过实例引入,说明它在有理数的范围内也成立。
本节内容在学生已有有理数乘法知识的基础上,通过学生经历从具体情景中抽象出法则的过程,使他们发现其中的规律,掌握必要的运算技能,使学生在有理数运算的学习中继续发展数感,在符号法则的学习中增强符号感。
教具: 多媒体课件教学方法:引导发现法类比归纳法课时安排:一课时环节教师活动学生活动设计意图温故知新创设情境问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录如下:+5、-20。
-19。
-14。
求:这四名同学的平均成绩是超过80分或不足80分?学生在教师的激情互动中,思考列式(+5-20-19-14)÷4化简:(-48)÷4=?(但不知如何计算)揭示课题从实际生活引入,体现数学知识源于生活及数学的现实意义复习回顾前置补偿求下列各数的倒数:(1)-32;(2)432;(3)0.2(4)-0.25;(5)-1学生对老师的提问进行抢答为学习今天的有理数除法先复习小学倒数概念探学生自课件出示练习题填空:①8÷(-2)=8×();②6÷(-3)=6×();学生填空后试着得出互为倒数的概念培养学生发现问题总结问题学③-6÷()=-6×31;④-6÷()=-6×32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.2有理数的除法(一)
[教学目标]
1.使学生理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;
2.运用转化思想,理解有理数除法的意义,培养学生新旧知识之间联系的思维能力,通过乘除法之间的逆运算,培养学生逆向思维的能力,提高学生的计算能力,培养转化和全面分析问题的能力.
[教学重点、难点]
1.教学重点:正确运用有理数除法法则进行有理数除法运算;
2.教学难点:理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数乘法的方法和条件;
3.疑点:乘除法运算顺序.
[教学过程]
一、课前复习提问
1.有理数乘法法则;
2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;
3.倒数的意义.
二、讲授新课
(一)有理数除法法则的推导
[问题]怎样计算8÷(-4)呢?
[提问]小学学过的除法的意义是什么?
得出 ①8÷(-4)=-2;又②8×(4
1-
)=-2;于是有 ③8÷(-4)=8×(41-). 由此得出有理数除法法则:
除以一个不等于0的数,等于乘以这个数的倒数.
可以表示为:
a÷b=a·b
1(b≠0) . 类似于乘法法则可得:
两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于0的数,都得0.
对有理数除法法则的理解:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号,第二步,求出商的绝对值.
(二)有理数除法法则的运用
例1 计算:(1)(-36)÷9;
(2)(2512-)÷(5
3-). 强调:两数相除,先确定商的符号,再确定商的绝对值.
例2 化简下列分数:
(1)3
12-; (2)1245--. 强调:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.
例3 计算:
(1)(-125
7
5)÷(-5); (2)-2.5÷)(4185-⨯;
(三)课堂练习
1.教材P35练习
2.补充练习
(1)-1÷(411-)= ,0÷1411
3= , ÷(-3)=9. (2)倒数等于本身的数是 .
(3)若a 、b 互为倒数,则-13ab= .
(4)被除数是-3
43,除数比被除数大12
1,则商是 . (5)若ab=1,且a=-132,则b .
(6)计算:
1.(-32)+(-2);-(-261)÷(-12
5); 2.125÷(-281); (-0.009)÷0.03; 3
13724-÷-. (7)若有理数a≠0,b≠0,则b
b b a
+的值为 . (8)若a 、b 、c 为有理数,且
c c b b a a ++=-1,求abc
abc 的值. (四)小结 1.通过小学除法意义的理解和类比,得出有理数除法法则,法则一:除以一个数等于乘以这个数的倒数,零不能做除数.法则二:两数相除,同号得正,异好号得负,并把绝对值相除;零除以任何一个不等于零的数都得零.
2.有理数的除法有两种方法,一般能整除时用第二种方法.强调要先确定结果的符号.
(五)作业
教材P38中4。