第二章(之二)--晶体缺陷检测ppt课件

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1937年诺贝尔物理学奖:电子衍射
戴维森 贝尔电话实验室
G .P .汤姆孙 英国伦敦大学
背景:20世纪20年代中期物理学发展的关键时期。波动力学已经由薛定谔在德布罗 意的物质波假设的基础上建立起来,和海森伯从不同的途径创立的矩阵力学,共同 形成微观体系的基本理论。这一巨大变革的实验基础自然成了人们关切的课题,这 就激励了许多物理学家致力于证实粒子的波动性。直到1927年,才由美国的戴维森 和英国的G .P .汤姆孙分别作出电子衍射实验。虽然这时量子力学已得到广泛的运用, 但电子衍射实验成功引起了世人的注意。
l 电子衍射作用远比X射线与物质的交互作用强烈,因而 在金属和合金的微观分析中特别适用于对含少量原子的 样品,如薄膜、微粒、表面等进行结构分析。
为了研究表面结构,电子加速电压 也可低达数千甚至数十伏,这种装置 称低能电子衍射装置,称反射电子衍 射(RHEED)。
最简单的电子衍射装置。从阴极 K发出的电子被加速后经过阳极A 的光阑孔和透镜L到达试样S上, 被试样衍射后在荧光屏或照相底板 P上形成电子衍射图样。由于物质 (包括空气)对电子的吸收很强, 故上述各部分均置于真空中。电子 的加速电压一般为数万伏至十万伏 左右,称高能电子衍射——透射。
影响载流子浓度和少子寿命,导致器件失效。
(2)线缺陷——位错
G 位错是半导体中最主要的缺陷。位错产生的根本原因是 晶体内部应力的存在,例如在晶体制备、后热处理等过程 中,由于不均匀的加热或冷却,晶体内部存在应力就可产 生位错。除此之外,杂质原子引起位错。刃型位错后发生 滑移。
滑移面
ห้องสมุดไป่ตู้
附加的原子或者 受热不均
控制电导率和导电类型
l 氧,碳,硼杂质
来源于气态生长、化学试剂、石英玻璃 成为硅体内自间隙原子,并诱生出位错 和层错等缺陷,影响晶体整体完整性、载流子浓度 以及少子寿命,并容易导致器件漏电。
l 重金属杂质(Fe,Cu,Ni,Au,Al,Co等)
来源于硅片生长、加工(不锈钢)、 清洗、金属电极制作过程
利用SIMS进行器件失效分析
吸收 最强
吸收 次强
C
杂质C(替位)的最强红外吸收峰波长:16.4μm 杂质O (间隙)的红外吸收峰波长:9.1μm
2、位错和层错的检测
u
腐蚀+金相显微镜观测(简单常用的方法)
u X射线衍射法 (精确的方法) u 电子显微镜
2.1 腐蚀金相观察法
(1)检测基本原理
挛晶
一个硅圆柱锭的晶界
(三)晶体缺陷检测方法
1、点缺陷的检测
u
电学性能测量——有意掺杂原子浓度的确定 如:电阻率测量,霍尔效应测量, 对应N型或P型掺杂浓度
u 少子寿命测试——金属杂质分析 u 二次离子质谱——金属杂质分析 u 原子吸收光谱——金属杂质分析
u
红外光谱吸收法——碳、氧杂质 红外光谱:测量C、O、N杂质含量
(100)硅片表面的位错
(111)硅片表面的位错
(111)面
蚀坑是一倒置正四 面体(三角锥体)
(100)面 (110)面 蚀坑是一倒置四棱 蚀坑为两个对顶 锥体,从表面看呈 三角锥体 实心正方形
(3)层错、位错密度的测量
• 位错密度 是垂直于位错线单位截面积中穿过的位错线数。
• 多点平均法。
图2.21 五点平均
图2.22 分区标图法
2.2 X射线衍射法(XRD)
在近完整晶体中,缺陷、畸变等体现在X射线谱中只有几十弧秒, 而半导体材料进行外延生长要求晶格失配要达到10-4或更小。这样精 细的要求使双晶X射线衍射技术成为近代光电子材料及器件研制的必 备测量仪器,以双晶衍射技术为基础而发展起来的四晶及五晶衍射技 术(亦称为双晶衍射),已成为近代X射线衍射技术取得突出成就的 标志。纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及晶 体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上 述影响因素的性质和尺度等方面的信息。
2.3 电子显微镜法
检测基本原理
当电子束照到晶体上,除了产生透射束(零级衍射)外,还会产生各 级衍射束,经物镜聚集后,在其后焦面形成电子衍射谱像。电子衍射原 理与X 射线衍射原理相同,遵循布拉格衍射定律,但电子能量高,波长 非常短(电子能量越大,电子波长越短。当加速电压为100 kV时,电子 的波长仅为0.0037nm ;当 E = 30KeV 时, λ≈ 0.007nm),衍射角小, 因此电子衍射是对晶体二维倒易点阵结构的放大显示,根据显示图形可 以鉴定所观察晶体的种类、结构、晶格常数等。
自从60年代以来,商品透射电子显微镜都具有电子衍射功能(见电子显 微镜),而且可以利用试样后面的透镜,选择小至1微米的区域进行衍射 观察,称为选区电子衍射。
(a)非晶 (b)单晶 (c)多晶 (d)会聚束 图6.16 典型电子衍射图
硅单晶
l 在位错存在的区域附近,晶格发生了畸变,因此衍射强 度亦将随之变化,于是位错附近区域所成的像便会与周 围区域形成衬度反差,这就是用TEM观察位错的基本原 理,因上述原因造成的衬度差称为衍射衬度。
在适宜的腐蚀剂中,晶体表面靠近位错附近的区域其腐 蚀速度要比其它区域大,腐蚀一定时间后就会形成凹下的坑, 即所谓腐蚀坑,利用这个特性可进行位错和层错的显示。
• 由于位错是一种线缺陷, 晶格畸变是沿着一条线延伸 下来的,贯穿于整个晶体, 终止在表面或形成闭环,因 此在表面的交点是一个点状 小区域.
(2)位错与层错的腐蚀坑观察
位错线 刃形位错形成示意图
刃型位错后发生滑移
位错形成的一系列 透射电子显微镜照片
(3)面缺陷
a. 堆垛层错:由位错的相关原子组成的多余原子面。 堆垛层错通常在外延生长层中观察到。一般要求外 延层中的层错密度小于102/cm2。
螺型位错后发生堆垛
b. 挛晶:从同一个界面生长出两种不同方向晶体 c. 晶界:具有很大取向差别的晶块结合时产生
第二章(之二)-晶体缺陷检测
二、晶体缺陷检测
(一)晶体缺陷检测的重要性
(二)晶体缺陷的种类 点缺陷——空位、间隙杂质原子 (主要)
线缺陷——位错 (主要) 面缺陷——堆垛层错、挛晶界、晶界等 体缺陷——孔洞、夹杂物等 半导体加工过程中的二次缺陷
(1)点缺陷
G 晶格中点缺陷常常是外来原子或杂质原子造成的。 单晶硅中点缺陷包括: l有意掺入电活性杂质(如P,B)
相关文档
最新文档