光伏电站设计方案
5mw光伏电站设计方案
5mw光伏电站设计方案5MW光伏电站设计方案光伏电站是一种利用光能进行发电的设施,具有环保、可再生、持久高效等特点。
光伏电站的规模及设计对于发电效益和运营成本具有重要影响。
本文将介绍一种5MW光伏电站的设计方案,并说明其主要设备、投资状况及运营方案。
一、选址与土地开发光伏电站需要选择阳光充足的地点。
在选址方面,应优先选择平整土地且没有大面积阴影遮挡的区域,以保证光伏板能够全天候正常发电。
此外,选址还需考虑到电网连接方便性和地方政府政策支持等因素。
二、光伏组件安装5MW光伏电站需要安装大量的光伏组件,以捕获太阳能并转化为电能。
在安装方面,可以选择地面安装或屋顶安装。
地面安装一般需要进行基础工程建设,包括建设支架和混凝土基础等。
屋顶安装则需要考虑屋顶的承重能力和防水等问题。
根据现有技术,建议采用透光玻璃太阳能电池组件,以提高发电效率和美观度。
三、逆变器及电力系统逆变器是将直流电转化为交流电的设备,适用于将太阳能转化为电力注入电网。
对于5MW光伏电站,可选择集中式逆变器或分布式逆变器。
集中式逆变器适用于规模较大、电力输出需求较高的场合;分布式逆变器适用于规模较小、便于维护和监控的场合。
逆变器的选择需根据具体情况进行权衡。
四、投资状况光伏电站的投资主要包括设备采购、土地租赁、工程建设等方面。
设备采购主要包括光伏组件、逆变器、配电箱、电缆等。
土地租赁费用需要根据具体规模和地区进行预估。
工程建设费用则涉及到基础工程建设和安装调试等方面。
五、运营方案光伏电站的运营方案主要涉及到以下几个方面:1. 运行管理:建立定期检查和维护的计划,确保光伏组件的正常运行和发电效率;2. 接入电网:与当地电力公司进行接入电网的协商和签署购电协议,将发电收入最大化;3. 数据监测:建立监测系统,对发电量、发电效率、设备故障等进行实时监测和记录,以便及时进行维修和调整;4. 安全管理:制定安全管理方案,确保工作人员的安全,并防止光伏组件被盗、损坏等事故发生。
光伏电站设计方案和对策
光伏电站设计方案和对策光伏电站是一种利用太阳能将光能直接转化为电能的设施。
在设计光伏电站的方案时,需要考虑多个因素,包括技术可行性、经济性、环境可持续性等。
同时,也需要制定一系列对策,以应对设计和运营过程中可能遇到的问题。
以下是一个关于光伏电站设计方案和对策的示例,供参考。
一、光伏电站设计方案1.地点选择:选择光照充足、阴影较少、地形平整、土壤稳定等地点进行光伏电站的建设。
同时,考虑到电网接入的便利性,选择靠近电力输送线路的位置。
2.光伏组件布局:根据光照强度、太阳高度角等因素,合理确定光伏组件的布局。
可以采用固定架式或跟踪架式,以最大程度地提高光伏组件的能量利用效率。
3.逆变器和电网接入:选择高效的逆变器,并合理设计电网接入方案,确保光伏电站可以稳定地将发电功率输送到电网中,同时确保安全可靠。
4.安全防护:考虑光伏电站的使用寿命长,要做好安全防护,包括防风、防火、防盗等措施。
同时,要定期检查设备,及时发现和修复可能存在的安全隐患。
二、光伏电站设计对策1.降低成本:光伏电站的建设和运营成本通常较高。
可以采取多种对策来降低成本,例如:采购大规模的光伏组件以获得折扣、采用最新的高效技术、提高设备利用率、优化电网接入方案等。
2.提高效率:提高光伏电站的能量利用效率是一个重要目标。
可以通过定期清洁光伏组件、优化组件布局、添加反光镜、使用高效逆变器等方法来提高效率。
3.做好运维管理:光伏电站的长期稳定运行离不开有效的运维管理。
需要建立完善的运维体系,包括定期检查设备、及时处理故障、监测发电量和质量等。
同时,建立合理的预算和采购计划,确保设备的及时维修和更换。
4.环境保护:在光伏电站的设计和运营过程中,要充分考虑环境保护。
可以采用低碳材料、节能设备,减少对土壤、水源和生态环境的影响。
同时,合理安置电站,避免对野生动植物栖息地的破坏。
5.应对天气变化:光伏电站的发电量会受到天气变化的影响。
可以采取多种措施来应对不同天气条件下的发电量波动,例如:安装备用发电设备、添加储能系统、建立智能控制系统等。
300kw光伏电站设计方案
300kw光伏电站设计方案一、引言随着能源需求的增长和可再生能源的重要性日益凸显,光伏电站已经成为目前最为广泛应用的可再生能源发电方式之一。
本文将介绍一种300kw光伏电站的设计方案,通过合理布局和科学选择设备以提高发电量并确保电站的稳定运行。
二、电站规划与布局1. 选址:选择光照条件良好的地理位置,避免阴影遮挡和地质条件差的区域。
确保光伏电站可以全天候地接收到阳光。
2. 建筑结构:根据300kw光伏电站的规模,选择适当的地面或屋顶空间进行光伏组件的布局。
合理规划支架结构,确保光伏组件的倾角和朝向最大程度吸收太阳光。
3. 储能系统:根据电站的实际需求,选择合适的储能系统,如锂离子电池等。
实现对电能的有效储存和利用,保证电站在夜间或能量不足时的正常运行。
三、设备选择与布置1. 光伏组件:选择高效、高质量的光伏组件,如单晶硅、多晶硅等。
考虑组件的负载能力、耐候性和抗腐蚀性,并确保其具备长期稳定发电能力。
2. 逆变器:选用适当的逆变器,将光伏组件产生的直流电转换为交流电,并确保逆变器具备较高的转换效率和稳定性。
3. 支架系统:采用稳固的支架系统,确保光伏组件能够安全固定在地面或屋顶上,并具有一定的防风能力。
4. 配电系统:设计合理的配电系统,确保电站发电过程中的电能传输和分配过程的安全和稳定。
四、运维与维护1. 检测与监测:安装适当的监测系统,实时监测光伏组件的发电状况和效率,及时发现并解决可能存在的问题。
2. 清洁与维护:定期对光伏组件进行清洁,确保其表面没有灰尘或其他物质影响光伏发电效率。
另外,及时修复或更换可能存在的损坏部件,保证光伏电站的正常运行。
3. 安全管理:建立安全管理制度,确保工作人员与设备的安全。
做好设备的保护措施,并进行定期检查,确保设备的正常运行和使用寿命。
五、经济性与环保性评估1. 经济性评估:对光伏电站建设投资与收益进行综合考虑,确保设计方案在经济上可行。
考虑与传统发电方式的对比,包括燃料成本、运营成本等。
10MW光伏电站设计方案
10MW光伏电站设计方案光伏电站是一种利用太阳能光伏技术发电的设施,它具有可再生、清洁、无噪音、无污染等优点,被广泛应用于不同地区的发电领域。
本文将介绍一个10MW的光伏电站设计方案,包括选址、组件选择、系统设计和运营管理等内容。
选址首先,选址是光伏电站建设的关键步骤。
在选址时需要考虑以下因素:日照条件、地形地貌、土地所有权、周围环境等。
为了确保光伏电站的发电效率和稳定性,选址地应具备充足的日照资源,地形地貌平坦,土地所有权清晰,并且周围环境不会对发电效率产生影响。
通过综合考虑这些因素,我们可以选择适合建设10MW光伏电站的区域。
组件选择在光伏电站建设中,组件的选择直接影响电站的发电效率和寿命。
一般来说,光伏组件主要分为单晶硅、多晶硅和薄膜三种类型。
在这里我们选择多晶硅组件,因为它具有成本低、发电效率高、寿命长等优点。
同时,可以选择具有较高转换效率和较长寿命的组件,以确保电站的长期稳定发电。
系统设计光伏电站系统设计包括光伏组件布局、支架设计、电池串并联及逆变器选择等方面。
在光伏组件布局时,要充分考虑组件的朝向、倾角和阴影等因素,以最大程度地提高光伏组件的发电效率。
支架设计是确保光伏组件安全稳定运行的关键,选择合适的支架材料和结构设计可以有效延长光伏电站的使用寿命。
电池串并联设计是保障系统电压和电流稳定输出的关键,根据组件的输出电压和电流选择合适的串并联方式进行布线。
逆变器是将直流电转换为交流电的设备,选择具有高效率、稳定性和可靠性的逆变器是电站系统设计的关键。
运营管理光伏电站的运营管理是确保电站长期稳定运行的重要环节,包括设备监控、故障检修、维护保养等。
通过建立完善的监测系统,对电站的发电情况、设备运行状态、能耗情况等进行实时监控,及时发现故障并进行维修。
定期进行设备维护保养,保持设备的良好状态,延长设备的使用寿命,确保电站的稳定发电。
总结通过以上的光伏电站设计方案,我们可以建设一座10MW的光伏电站,利用太阳能资源进行清洁、可再生的发电。
分布式光伏电站设计方案参考
分布式光伏电站设计方案参考一、引言随着人类对清洁能源需求的不断增长,光伏发电作为一种环保、可再生的能源形式受到了越来越多的关注和使用。
与传统的大型集中式光伏电站相比,分布式光伏电站具有灵活性和可扩展性强的优点。
本文将提出一种分布式光伏电站设计方案,旨在实现最大的电能利用效率和经济效益。
二、设计方案1.布局优化:根据地形、气象条件和用电需求,选择合适的场地布局。
尽可能选择大面积、高太阳辐射、无遮挡的区域,以提高光伏电池板的发电效率。
2.光伏电池板选择:采用高效的光伏电池板,如单晶硅、多晶硅或PERC电池板等。
同时,考虑到成本和维护的因素,选择耐候性好、温度抗性强的材料。
3.逆变器选择:选用高效率、可靠性高的逆变器。
逆变器的选择要符合国家相关标准,并考虑到电网连接、防雷接地等安全问题。
4.储能系统:为了解决光伏发电的间歇性和波动性,必须配置适当的储能系统。
可选用锂离子电池、钠硫电池或超级电容器等。
储能系统应能够实现储存和释放电能的功能,并具备高效率、长寿命和良好的安全性能。
5.电网连接:将分布式光伏电站与电网相连接,实现自用和上网发电的功能。
确保连接的安全可靠,符合国家相关标准和要求。
6.监控系统:引入远程监控系统,实时了解分布式光伏电站的运行情况。
通过监控系统,可以监测发电量、电池状态、逆变器工作状态等重要参数,并及时发现故障和异常情况。
7.电站维护:定期对光伏电池板、逆变器、储能系统等进行检修和维护,确保设备的正常运行。
合理安排维护计划,做好备件管理,确保设备可靠性和寿命。
8.电站升级:根据未来的需求和技术发展,对分布式光伏电站进行升级改造。
可以考虑引入智能控制系统、增加电站规模、提高发电效率等手段,以适应不断变化的能源需求。
三、经济效益1.节约能源成本:利用太阳能进行发电,避免了对传统能源的依赖,降低了电力采购成本。
2.减少电网损耗:分布式光伏电站可以就近供电,减少输电过程中的电能损耗,提高输电效率。
屋顶分布式光伏电站设计及施工方案设计
屋顶分布式光伏电站设计及施工方案设计一、设计方案1.选址分析:在选择屋顶作为光伏电站的位置时,需要考虑以下几个方面:-组件安装的方向:确保组件能够面向太阳以获取最大的太阳辐射。
-屋顶结构的稳定性:确定屋顶能够承受光伏组件的重量,并避免对屋顶结构造成损害。
-遮挡物:确保屋顶上没有大型的遮挡物,如树木或其他建筑物。
2.光伏组件布局:在屋顶上安装光伏组件时,需要考虑以下几个因素:-组件的倾角和朝向:根据所在地的纬度确定组件的倾角,并使其朝向太阳,以获得最佳的光照条件。
-组件之间的间距:确保组件之间有足够的间隔,以避免相互之间的阴影,并提高整个电站的发电效率。
3.逆变器和电池储能系统的选择:逆变器是将直流电转换为交流电的关键设备,而电池储能系统能够存储白天产生的多余能量以供夜间使用。
在选择逆变器和电池储能系统时,需要考虑以下几个因素:-太阳能电池板的输出功率:适配逆变器和电池储能系统的额定功率。
-系统的可靠性和效率:选择可靠性高、效率较高的设备,以提高整个电站的性能。
4.控制和监测系统:为了实现对光伏电站的远程监控和控制,需要安装一套专门的控制和监测系统。
该系统可以监测电站的发电情况、能量产量和设备运行状态,并远程调整电站的工作模式,以提高整体的发电效率。
二、施工方案1.屋顶结构评估:在施工前需要对屋顶的结构进行评估,确保其能够承受光伏组件的重量。
如果屋顶不够稳定,可能需要进行加固或修复工作。
2.组件安装:将太阳能电池板安装在屋顶上,并确保每个组件的倾角和朝向符合设计要求。
安装过程中需要注意安全,使用合适的工具和设备,避免对组件造成损坏。
3.电气连接:将组件连接到逆变器和电池储能系统。
这包括安装电缆和连接器,并确保其安全可靠,避免电气故障和短路。
4.控制和监测系统安装:安装控制和监测系统,确保其正常工作。
这包括安装传感器、数据采集设备和远程控制设备,并配置相应的软件和网络连接。
5.系统调试和测试:在完成安装后,对整个光伏电站进行调试和测试。
5mw光伏电站设计方案
5MW光伏电站设计方案引言随着可再生能源的发展和环境意识的增强,光伏发电作为一种清洁能源形式,受到了广泛关注。
5MW光伏电站作为中等规模的光伏发电项目,具有较高的经济效益和环境效益。
本文将详细介绍5MW光伏电站的设计方案,包括选址、系统组成、设备选择等内容。
选址选择合适的光伏电站选址是确保光伏发电项目成功的重要一步。
以下是选址的一些建议:1.日照条件:选址区域应具备良好的日照条件,光照强度要求在1800-2200小时/年以上。
2.土地条件:选取平坦、无阻挡物遮挡、无大规模开采需求的土地。
3.供电网络:选址应考虑到供电网络的可靠性和容量,确保电站可以接入主电网并有稳定的电力供应。
4.交通条件:选址应考虑到电站运营期间的交通便利性,比如附近是否有高速公路或铁路。
系统组成5MW光伏电站的系统组成主要包括:光伏组件、逆变器、支架、汇流箱和配电系统。
1.光伏组件:选择高效、可靠的光伏组件对发电量和系统寿命有重要影响。
可以考虑使用多晶硅或单晶硅光伏组件。
2.逆变器:将光伏组件产生的直流电转换成交流电。
逆变器的质量和效率会直接影响系统的发电效率。
3.支架:用于安装和支撑光伏组件的支架,应具备良好的防腐性能和结构稳定性。
4.汇流箱:将多组光伏组件串联在一起并与逆变器相连接的箱体,用于集中处理电流和电压输出。
5.配电系统:实现光伏发电和电网之间的互联,并保证电站的安全运行。
设备选择在5MW光伏电站的设计中,设备的选择非常重要。
以下是几个需要考虑的关键点:1.光伏组件:选择具有较高转换效率和长期稳定性能的光伏组件。
优先考虑具备良好品牌声誉和保修期限的厂家。
2.逆变器:选择高效率、可靠性高的逆变器产品,以确保电站的发电效率和可靠性。
3.支架:选择防腐性能好、结构稳定的支架,能够适应不同地理环境和气候条件。
4.汇流箱:选择耐用、防水、有防雷保护措施的汇流箱产品,以确保安全和可靠的电流和电压输出。
5.配电系统:选择符合当地电网接入要求的配电系统,并确保其满足电站的安全运行需求。
光伏电站项目优化设计方案
光伏电站项目优化设计方案1. 项目背景随着全球能源结构的转型和可再生能源的快速发展,光伏电站作为一种清洁、可再生的能源形式,得到了越来越多的关注和投资。
然而,光伏电站的建设和运行过程中存在一些问题,如效率低下、维护困难、成本较高等。
为了提高光伏电站的性能和经济效益,本项目旨在对其进行优化设计。
2. 优化目标本项目的主要目标是提高光伏电站的发电效率、降低维护成本和提高整体的经济效益。
具体目标如下:- 提高光伏组件的转换效率,减少能量损失。
- 优化光伏电站的布局和设计,减少阴影和温差对发电效率的影响。
- 引入智能监控系统,实现对光伏电站运行状态的实时监测和分析。
- 采用高效逆变器和电缆,降低系统损耗。
- 提高光伏电站的抗风、抗冰、抗腐蚀等能力,减少维护成本。
3. 优化方案针对上述目标,本项目提出以下优化方案:3.1 光伏组件选型和布局优化- 选择高效率、高性能的光伏组件,如多晶硅、单晶硅等。
- 根据地形和日照条件,优化光伏组件的布局和朝向,减少阴影和温差的影响。
- 采用光伏组件的串联和并联技术,实现对不同光照条件的自适应调节。
3.2 智能监控系统- 引入光伏电站智能监控系统,实现对发电效率、电压、电流、温度等参数的实时监测。
- 利用大数据和人工智能技术,对监测数据进行分析,发现异常情况并及时处理。
- 通过远程监控和诊断,减少运维人员的现场工作量,降低维护成本。
3.3 系统损耗优化- 采用高效逆变器和电缆,降低系统损耗。
- 优化逆变器和光伏组件的匹配,减少无效功率的产生。
- 采用最大功率点跟踪(MPPT)技术,实现对光伏组件输出功率的最大化利用。
3.4 抗风、抗冰、抗腐蚀设计- 采用抗风、抗冰、抗腐蚀的光伏支架和组件,提高光伏电站的耐久性和可靠性。
- 针对不同地理和气候条件,进行特殊设计和选材,确保光伏电站的稳定运行。
- 增加光伏电站的绝缘和防雷措施,减少因天气原因导致的故障和损失。
4. 效益分析本项目通过对光伏电站的优化设计,有望实现以下效益:- 提高光伏电站的发电效率,增加发电量。
300kw光伏电站设计方案
300kw光伏电站设计方案一、引言随着全球能源危机的不断加剧,清洁能源的开发利用成为解决能源问题的关键。
光伏电站作为最常见的清洁能源发电方式之一,具有环保、可再生、分布广泛等优势,逐渐受到人们的关注。
本文将详细介绍一种300kw的光伏电站设计方案。
二、方案概述本方案的目标是建设一座300kw的光伏电站,以太阳能光伏电池板为发电装置,通过光电转换将太阳能转化为电能。
该电站的设计经济寿命为20年,建设周期为6个月。
电站预计年发电量为400,000 kWh,可满足周边地区居民的用电需求。
三、选址与布局1. 选址要求光伏电站选址应充分考虑日照条件、地形地貌、土地使用、电力输送、环境保护等要素。
选址应尽量选择日照充足、地形平坦的地区,避免遮挡物对光伏电池板的影响。
同时,选址应符合国家规定的土地使用政策,避免占用农田等受限用地。
2. 布局设计根据选址情况和电站规模,将太阳能光伏电池板合理布置在场地上。
电池板间距应适度,避免阴影遮挡。
同时,在布置光伏电池板时要考虑维护通道的设置,方便设备的安装和维护。
四、光伏电池板选型与布置1. 电池板选型根据300kw光伏电站的需求,选择高效、稳定性好的太阳能光伏电池板。
考虑到电站的经济性,可以选择多晶硅或单晶硅太阳能电池板,具体型号和参数需根据实际情况进行选择。
2. 电池板布置在选定的电站布局上,按照电池板的尺寸和方向进行布置。
为了最大程度利用光能,电池板的倾斜角度应与当地地理纬度相对应,可采用固定式或可调式支架进行安装。
五、逆变器与电网连接1. 逆变器选择逆变器是将太阳能光伏电池板输出的直流电转换为交流电的关键设备。
根据电站的需求,选择逆变器时要考虑其额定功率、效率、可靠性等因素。
逆变器的品牌和型号需根据实际情况进行选择。
2. 电网连接将逆变器输出的交流电通过电缆连接至电网系统。
需符合电力行业相关的安全管理规定和标准,确保电网连接的安全稳定。
六、电站运维与监测1. 运维管理建设光伏电站后,需建立相应的运维管理团队,负责设备定期检查、维护和故障排除。
300kw光伏电站设计方案
300kw光伏电站设计方案一、项目背景随着清洁能源的日益重视和可再生能源的发展,光伏电站作为一种绿色、环保的能源发电项目受到越来越多的关注。
本设计方案旨在为建设一座300KW的光伏电站提供详尽的设计指导。
二、总体设计思路1. 建设地点:本光伏电站计划选址于阳光较为充足的地区,具备较高的发电潜力。
2. 光伏组件:选用高效率太阳能光伏电池组件,确保光伏电站的发电效率和性能。
3. 收益计算:基于光伏发电的经济回报,通过光伏发电成本与发电收益之间的比较,计算出预期的投资回报周期。
4. 并网接入:将光伏电站与电网进行并网接入,实现电力的互补利用和销售,确保电站在不同气候条件下的稳定发电。
三、具体设计方案1. 光伏电站规模:本设计方案拟建设一座300KW的光伏电站,通过合理的布局和光伏组件的配置,使得光伏电站在充足的阳光条件下能够达到较高的发电效率。
2. 光伏组件选型:选择高效率的多晶硅太阳能电池组件,确保光伏系统具备较高的发电效率和稳定性。
同时,考虑光伏组件的寿命和维护成本,选择具有良好质量保证的厂家供应商。
3. 电站布局设计:根据场地条件和光伏组件的大小,合理规划电站的布局,确保光伏电站能够最大程度地利用可用的空间,提高发电效率。
4. 支架系统和阵列设计:选择适合本项目的支架系统,确保光伏组件能够稳定地固定在支架上,同时优化组件之间的布置和角度,以获得更好的太阳能吸收效果。
5. 逆变器选型:选择高效率的逆变器设备,将直流电能转换为交流电能,并保持电能输出的稳定性和可靠性。
6. 并网接入设计:根据地区的并网接入要求,进行并网装置的设计和选型,确保光伏电站与电网的安全连接和正常运行。
四、环境影响评价在光伏电站设计方案结束之后,需要进行环境影响评价,以评估光伏电站建设和运营对环境的影响程度。
主要评估内容包括但不限于对土壤、水资源和生态环境的影响等,以及相应的环境保护和修复措施。
五、经济效益分析在光伏电站的设计方案中,需要对投资回报率、年发电量、发电收益等进行详细计算和分析,以评估项目的经济效益。
光伏电站设计方案
光伏电站设计方案一、引言随着能源需求的不断增长和传统能源资源的日益枯竭,可再生能源逐渐成为人们关注的焦点。
光伏发电作为可再生能源的一种重要形式,以其无污染、无噪音、高效益等特点,受到了越来越多的重视。
光伏电站作为光伏发电的重要组成部分,其设计方案的合理与否,对光伏电站的运行效率与发电量具有重要影响。
本文将就光伏电站的设计方案进行探讨,旨在为光伏电站的设计与建设提供技术支持。
二、光伏电站的设计要求设计一个合理的光伏电站方案,需要考虑以下几个要求:1. 电站的位置选择:光伏电站应选址在辐射充沛、太阳日照时间长的地区。
同时,在选址时还需考虑地形地貌、环境保护以及土地利用等因素。
2. 光伏组件的选择:光伏组件是光伏电站的核心部件,其质量和性能直接影响电站的发电效率。
因此,在设计方案中需要综合考虑光伏组件的转换效率、耐候性和可靠性等因素。
3. 电站的布局设计:光伏电站的布局设计需要综合考虑地形地貌、光照条件以及设备的安装要求,以最大限度地利用太阳能资源,并确保光伏组件的安全运行。
4. 电站的并网方式:光伏电站的并网方式包括并网发电和离网发电两种方式。
在设计方案中需要根据实际情况选择适合的并网方式,并保证电站的安全运行。
5. 电站的逆变器选择:逆变器是将光伏组件产生的直流电转换为交流电的关键设备。
在设计方案中需要综合考虑逆变器的输出功率、效率和可靠性等因素。
三、光伏电站设计方案的具体内容根据以上的设计要求,一个合理的光伏电站设计方案应包括以下几个具体内容:1. 光伏电站选址报告:根据光照条件、地形地貌以及环境因素等进行综合评估,得出最优的选址方案。
2. 光伏组件选择与布局方案:根据电站的发电需求,选择转换效率高、稳定性好的光伏组件,并根据地形地貌和光照条件设计合理的布局方案。
3. 电站的并网设计方案:根据地区的电力供应情况和电站的发电需求,选择适合的并网方式,并设计电站与电力系统的连接方案。
4. 逆变器选择与配置方案:根据电站的发电量和电压需求,选择适合的逆变器,并设计逆变器的配置方案。
光伏电站设计方案实例
光伏电站设计方案实例光伏电站是利用太阳能发电的一种可再生能源电站,它通过将太阳能转换为电能,实现了清洁、环保的发电方式。
光伏电站的设计方案需要考虑多个因素,包括地理位置、光照条件、设备选择和布局等。
以下是一个光伏电站设计方案的实例,该电站位于中国南部的一个阳光资源较为丰富的地区。
1.地理位置:电站选址在一个开阔的平原地区,避免有大量阴影的地方,以确保光伏组件能够充分接收到阳光。
地理位置应具备便利的输电条件,以方便将发电的电能输送到市区。
2.光照条件:该地区的年均光照时间较长,阳光照射强度较高。
在选址时要选择较少被阴影覆盖、较平坦的地块,以确保光伏组件能够最大程度地吸收太阳能。
3.设备选择:光伏电站所需的主要设备包括光伏组件、逆变器、电池组和配电系统等。
在光伏组件的选择上,应优先考虑高效、耐久的产品,如单晶硅光伏组件。
逆变器应具备高转换效率和稳定性,能够将直流电转换为交流电并输出给电网。
电池组应能够存储多余的电能,以应对夜间或阴天等情况。
4.布局设计:光伏电站的布局设计应遵循最佳利用土地和光照条件的原则。
光伏组件可以采用固定倾斜安装或可调角度安装,以获取最佳的太阳能吸收效果。
每个光伏组件之间需要有一定的间距,以便维护和清洁。
5.电网连接:光伏电站应与电网连接,以便将发电的电能输送出去。
连接方式可以是并网式,即将发电的电能直接输入到电网中;也可以是离网式,即将发电的电能存储到电池组中,再根据需要使用或向电网供电。
6.安全措施:光伏电站的设计也需要考虑安全因素。
电站周边应设置安全栏杆和警示标志,以保护现场人员的安全。
电站内部应有防雷系统和地网接地系统,以防雷击和火灾风险。
7.运维管理:光伏电站的运维管理也是一个重要的方面。
应建立完善的运维管理体系,包括定期巡检、设备维护和故障处理等。
定期的清洁和设备检查可以保证光伏组件的正常运行和发电效率。
该光伏电站设计方案考虑了地理位置、光照条件、设备选择和布局等多个因素,以最大程度地提高电站的发电效率和利用率。
屋顶光伏电站设计建设方案设计
屋顶光伏电站设计建设方案设计一、项目选址1、屋顶结构和承载能力在选择屋顶作为光伏电站的安装地点时,首先要考虑屋顶的结构和承载能力。
屋顶应具有足够的强度和稳定性,能够承受光伏组件、支架、逆变器等设备的重量。
对于老旧建筑,需要进行结构评估和加固,以确保安全。
2、朝向和倾角屋顶的朝向和倾角对光伏电站的发电效率有很大影响。
理想情况下,屋顶应朝南,倾角应与当地的纬度相近,以获得最大的太阳辐射量。
但在实际情况中,屋顶的朝向和倾角可能受到建筑布局和限制,此时需要通过技术手段进行优化,如采用不同角度的支架或跟踪系统。
3、遮挡情况要确保屋顶周围没有高大的建筑物、树木或其他障碍物遮挡阳光,以免影响光伏组件的发电效率。
在选址时,需要进行详细的现场勘察,测量遮挡物的高度和距离,计算阴影对光伏组件的影响。
4、屋顶面积根据用户的用电需求和光伏系统的功率密度,确定所需的屋顶面积。
一般来说,每千瓦的光伏系统需要约 10 平方米的屋顶面积。
同时,要考虑屋顶的可利用面积,包括通风口、烟囱、水箱等设施所占的空间。
二、系统组成1、光伏组件光伏组件是屋顶光伏电站的核心部件,其性能和质量直接影响发电效率和系统寿命。
目前市场上常见的光伏组件有单晶硅、多晶硅和薄膜等类型。
单晶硅组件效率高,但价格相对较高;多晶硅组件性价比适中;薄膜组件适用于弱光环境和特殊形状的屋顶,但效率较低。
在选择光伏组件时,要综合考虑效率、价格、质量和可靠性等因素。
2、逆变器逆变器将光伏组件产生的直流电转换为交流电,供用户使用或并入电网。
逆变器的性能和稳定性对系统的运行效率和可靠性至关重要。
常见的逆变器类型有集中式逆变器、组串式逆变器和微型逆变器。
集中式逆变器适用于大型电站,组串式逆变器适用于中小规模电站,微型逆变器则适用于分布式电站和对效率要求较高的场合。
3、支架系统支架系统用于支撑和固定光伏组件,确保其在不同的气候条件下保持稳定。
支架的材质有铝合金、不锈钢和镀锌钢等,其形式有固定式、跟踪式和可调式等。
屋顶光伏电站设计建设方案
屋顶光伏电站设计建设方案一、项目背景和目标随着能源需求的不断增长和环境问题的日益凸显,可再生能源的利用变得越来越重要。
光伏能源是目前最常见和广泛应用的可再生能源之一,屋顶光伏电站的建设是推动可再生能源利用的重要方向之一本项目旨在利用屋顶空间,建设一个高效、可持续的光伏电站,为居民和企业提供清洁、可再生的能源。
项目的目标是建设出一个小型光伏电站,通过可再生能源的利用减少对传统能源的依赖,降低能源消耗的成本,同时减少对环境的污染。
二、设计方案1.屋顶选址:选择适合光伏电站建设的屋顶,包括屋面面积大且适合发电板安装的平坦屋面。
考虑到日照条件,在选址过程中将优先考虑朝南或朝西方向的屋顶。
2.光伏组件:选用高效率的光伏组件,如多晶硅和单晶硅组件,并且根据地区日照条件和电站需求进行合理的组件布局。
3.逆变器和电网连接:选用高效、可靠的逆变器,将光伏发电的直流电转换为交流电,并连接到电网中。
同时,配置适当的电网保护装置,确保电站的安全运行。
4.铺设系统:根据屋顶的具体情况进行光伏组件的铺设,采用合适的支架或固定装置,确保组件的稳定安装。
5.电网接入:与当地电力公司沟通,申请合法的电力接入,确保电站的发电量能够正常并入电网。
6.监控系统:安装适当的监控装置,实时监测光伏电站的发电情况,及时检测和解决可能出现的故障,提高系统的可靠性和稳定性。
7.运维管理:建立完善的运维管理体系,包括定期巡检、清洁和维修,以确保电站的长期稳定运行和最优化发电效果。
三、项目收益和可持续性1.节能减排:使用光伏电站发电,减少对传统能源的依赖,减少能源消耗的成本,降低温室气体的排放,达到环保效果。
2.经济效益:利用光伏电站发电,可以节约电费支出,降低能源成本。
在满足电站需求的同时,多余的电量可以卖给电力公司,获取额外收益。
3.社会效益:为当地居民和企业提供清洁、可再生的能源,促进可持续发展,提升社会形象和环境影响力。
四、项目实施计划1.前期准备和规划:确定项目目标和范围,选定屋顶地点,进行可行性分析和资源调查。
光伏电站设计施工方案模板(最全)
光伏电站设计施工方案模板(最全)一、前言光伏电站是利用光伏发电技术将太阳能转换为电能的装置,具有环保、可再生等优点,因此受到广泛关注。
本文将就光伏电站的设计和施工提供最全面的方案模板,希望能为相关从业者提供参考。
二、设计方案1. 地理位置选择•确定光伏电站的地理位置,应考虑日照时间、地形地势等因素,选择光照较好的地区进行建设。
2. 布局设计•根据选定的地理位置和土地条件,合理设计光伏电站的布局,包括光伏板的排列方式、组件间距等。
3. 光伏组件选型•选择适合项目需求的光伏组件,考虑功率、效率、耐候性等因素,确保光伏电站的性能和寿命。
4. 逆变器选择•根据光伏组件的特性和电网接入要求,选择合适的逆变器,保证光伏电站的稳定运行和电能输出质量。
5. 支架结构设计•设计光伏支架结构,确保光伏板的稳固安装和调整角度,提高光伏电站的光伏利用率。
三、施工方案1. 土地准备•对选定用地进行平整和清理,确保光伏电站建设的顺利进行。
2. 基础建设•进行光伏支架基础的打桩和浇筑,保证支架的牢固稳定。
3. 光伏板安装•根据设计方案,将光伏板按照规定的布局和间距安装在支架上,并进行电气连接。
4. 逆变器安装•安装逆变器并接入光伏组件,完成与电网的连接和调试工作,确保光伏电站的正常运行。
5. 系统调试•对光伏电站进行系统调试,检查各部分设备的运行情况,调整参数以确保光伏电站的性能达到最佳状态。
四、总结光伏电站的设计和施工是一个复杂的过程,需要充分考虑地理、技术、经济等方面的因素。
通过本文提供的设计施工方案模板,希望能够为光伏电站项目的相关人员提供指导和帮助,促进光伏产业的健康发展和推广。
光伏电站设计方案
光伏电站设计方案一、项目概述光伏电站是一种通过太阳光转化为电能的设施,是清洁能源的重要组成部分。
本项目旨在设计建设一座具有可持续发展、高效率、节能环保的光伏电站,以满足当地能源需求。
二、项目选址1.确定光照条件:选址应选有较长的日照时间、日照强度较高的地区,并进行光照测量以确保光伏电站的效益。
2.考虑土地利用:选址应尽量避免农业、生态环境等重要用地,并尽量利用现有的闲置土地。
3.考虑附近电网和输电能力:应选址靠近电网,以减少输电损耗,并确保电网的承受能力。
三、系统设计1.太阳能电池板选择:根据选定的地点光照条件,选择适合当地的太阳能电池板,考虑其转化效率、耐久性等因素。
2.支架系统设计:支架系统应确保太阳能电池板的最佳倾角和朝向,以获得最大的光能收集效益。
3.逆变器和电池储能系统:选择高效、稳定的逆变器和电池储能系统,以存储和利用光伏电站产生的电能,确保电能的稳定供应。
4.布线和接线系统:合理布置光伏电厂内部的布线和接线,降低电能损耗和故障发生率。
四、环境影响评价进行光伏电站建设前,需进行环境影响评价,评估光伏电站对周边环境、生态系统等的影响,并制定相应的环境保护措施,以确保电站的可持续发展。
五、电站运行和维护1.运行监测系统:建立电站的实时监测系统,能够实时监测光伏电站输出电功率、温度、电池状态等指标,并进行分析。
2.安全措施:对光伏电站进行全方位的安全防护设计,确保人员和设备的安全。
3.定期维护:建立定期维护计划,对光伏电站的设备进行例行检查、维护和维修,保障电站的长期运行。
4.废弃物处理:制定废弃物处理方案,将废弃物进行分类、处理和利用,确保环境污染最小化。
六、经济可行性分析进行光伏电站建设前,需进行经济可行性分析,包括项目投资、运营成本、电力售价、回收期等指标,确保光伏电站的经济效益,并制定相应的融资计划和合作模式。
七、社会影响评价进行光伏电站建设前,需进行社会影响评价,包括对当地社区、就业、经济发展等方面的影响。
光伏电站设计方案实例
光伏电站设计方案实例光伏电站是一种利用太阳能光伏效应直接转换为电能的设施。
它由光伏电池阵列、逆变器、连接设备和配电网络等组成。
光伏电站的设计方案需要考虑太阳能资源、电站规模、场地选择、模块布局、电网连接等多个因素。
下面是一个光伏电站设计方案实例。
该光伏电站位于地区,该地区具有充足的太阳能资源,适宜建设光伏电站。
电站规模为1万千瓦,占地面积约为60亩。
1.场地选择首先,选择电站建设的场地。
该场地需满足以下要求:与光伏电站属地区高压输电线路及变电站近距离,避免输电损耗;地势平坦,无遮挡物;土地性质符合国家政策法规;场地使用权明确且容易办理。
2.光伏电池阵列布局根据场地的形状和面积,将光伏电池阵列布置在最佳的方向上。
考虑到该地区的纬度和经度,确定光污染较小的南向朝向为主要布置方向。
在阵列布局中需考虑模块的间距、角度、并网方式和遮挡率等因素,以最大程度地利用太阳能资源。
3.逆变器和配电网络设计根据光伏电池阵列的输出特性和电站规模,选择合适的逆变器。
逆变器具有MPPT(最大功率点跟踪)功能,通过调整电压和电流的比例,使得电池阵列能够输出最大的功率。
同时,设计合理的配电网络,以保证电能的高效输送和分配。
4.电网连接光伏电站与电网的连接方式有并网式和离网式两种。
由于该电站规模较大且属于商业运营型电站,选择采用并网式连接方式。
与电网接入需符合国家电力部门的规范和要求,确保电站的运营安全和稳定。
5.监控系统设计针对光伏电站的实时监测和管理,设计合理的监控系统。
监控系统可以实时获取光伏电池阵列的工作状态、发电功率、温度等信息,并能进行故障检测和报警。
通过监控系统,可以实现对电站的远程控制和运维管理。
6.项目经济效益评估最后,对光伏电站的经济效益进行评估。
根据电站的发电量和并网价格,计算电站的年发电收入。
同时,考虑建设成本、运维成本、收益年限等因素,进行投资回报期和净现值分析,评估项目的经济可行性。
综合考虑以上因素,设计出的光伏电站方案可以提供清洁且可持续的能源供应,为当地提供更多的电力资源,并减少对传统能源的依赖。
光伏电站施工组织设计方案
光伏电站施工组织设计方案一、项目背景光伏电站是一种利用太阳能发电的装置,因其环保、可再生等优势受到越来越多的关注。
本项目旨在设计一个光伏电站的施工组织方案,以确保项目的顺利施工并最大程度地提高效率。
二、项目概述本项目选址于(具体位置),总装机容量为(具体容量),预计施工周期为(具体时间)。
本方案将针对施工前的准备工作、施工组织架构、施工流程、质量管理等方面展开具体设计。
三、施工前准备3.1 土地准备•对选址土地进行勘察和清理,确保土地平整,并进行必要的土地改造工作。
•确保选址处的地基符合光伏电站的安装要求。
3.2 材料准备•确保所需的光伏电池板、逆变器等材料充足,并对材料进行质量检查。
•制定材料供应计划,确保施工期间的材料供应充足。
四、施工组织架构4.1 项目经理部•负责项目的全面管理和协调工作。
•确保项目进度顺利,安全生产。
4.2 技术部•负责方案设计的实施和技术支持。
•对施工现场进行技术指导和质量把控。
4.3 安全监管部•负责项目的安全管理工作,制定安全生产措施并落实。
五、施工流程5.1 土地平整•对选址处进行土地平整工作,为后续光伏板的安装提供条件。
5.2 光伏板安装•安装固定支架,并在上面安装光伏板。
5.3 电气设备安装•安装逆变器等电气设备,并接通电力。
5.4 联调测试•对电站进行联合测试,确保系统运行正常。
六、质量管理6.1 质量控制•对施工过程中的关键节点进行质量把控,确保工程质量。
6.2 检验验收•对项目进行定期检查和验收,确保项目符合相关标准。
七、总结光伏电站施工组织设计是确保项目成功实施的关键环节,上述方案旨在为项目的顺利施工提供有力支持。
通过合理的组织架构、详细的施工流程和严格的质量管理,将确保项目的顺利进行,同时提高效率和质量。
500kw光伏电站方案
500kw光伏电站方案随着全球对可再生能源需求的不断增长,光伏能源作为一种清洁、可持续的能源形式,逐渐受到人们的关注与追捧。
500kw光伏电站作为一种中小型光伏发电方案,具有一定的经济性和适应性。
本文将详细介绍500kw光伏电站的设计和建设方案,以及其在未来的发展前景。
一、项目概述500kw光伏电站是采用光伏发电技术,将太阳能光能转化为电能的一种发电系统。
该电站规模适中,可以用来供应居民区、工厂、商铺等需求较小的场所使用。
同时,500kw光伏电站在现有电网中的接入相对较为简单,可以快速实现并网发电。
二、光伏电池板的选择光伏电池板是光伏电站的核心组成部分。
为了提高整个光伏电站的发电效率和稳定性,我们需要选择高品质的光伏电池板。
常见的光伏电池板有单晶硅、多晶硅和薄膜电池板。
根据实际情况和预算考虑,我们可以综合考虑转换效率、价格等因素,选择最适合的光伏电池板。
三、光伏电站布局设计在500kw光伏电站的布局设计中,要考虑电站场地的大小和形状,以及太阳光的辐射角度。
通常采用大面积平板布局或者倾斜支架布局,以最大限度地吸收太阳光的辐射。
另外,还需要合理安排光伏电池板之间的间距,避免光阴影对发电效率的影响。
四、逆变器和电网并联光伏电站发电的直流电需要通过逆变器转换成交流电,然后与电网并联供电。
选择逆变器时,需要考虑其转换效率和可靠性,同时还要根据实际情况进行功率匹配。
电网并联是指将光伏电站产生的电能与公共电网相连接,实现双向供电。
这样,当光伏电站发电超过需求时,可以将多余的电能送回电网,实现资源的最大化利用。
五、运维与监控系统为了确保光伏电站的正常运行,我们需要建立一个完善的运维与监控系统。
这包括定期巡检光伏电池板的状态、检查逆变器运行情况、监测发电量等。
同时,还可以借助先进的物联网技术,实现远程监控和故障报警功能。
这样可以提高光伏电站的管理效率,降低维护成本。
六、未来发展前景500kw光伏电站作为一种中小型光伏发电方案,在未来有着广阔的发展前景。
10MW光伏电站设计方案
10MW光伏电站设计方案10兆瓦的太阳能光伏并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个1兆瓦的光伏并网发电单元,分别经过0.4KV/35KV变压配电装置并入电网,最终实现将整个光伏并网系统接入35KV中压交流电网进行并网发电的方案.本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案.每个光伏并网发电单元的电池组件采用串并联的方式组成多个太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜,然后经光伏并网逆变器和交流防雷配电柜并入0.4KV/35KV变压配电装置.<一>太阳能电池阵列设计1、太阳能光伏组件选型<1>单晶硅光伏组件与多晶硅光伏组件的比较单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40元.多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36元.两种组件使用寿命均能达到25年,其功率衰减均小于15%.<2>根据性价比本方案推荐采用165WP太阳能光伏组件.2、并网光伏系统效率计算并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成.<1>光伏阵列效率η1:光伏阵列在1000W/㎡太阳辐射强度下,实际的直流输出功率与标称功率之比.光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、与直流线路损失等,取效率85%计算.<2>逆变器转换效率η2:逆变器输出的交流电功率与直流输入功率之比,取逆变器效率95%计算.<3>交流并网效率η3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算.<4>系统总效率为:η总=η1×η2×η3=85%×95%×95%=77%3、倾斜面光伏阵列表面的太阳能辐射量计算从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算.对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为:Rβ=S×[sin<α+β>/sinα]+D式中:Rβ--倾斜光伏阵列面上的太阳能总辐射量S--水平面上太阳直接辐射量D--散射辐射量α--中午时分的太阳高度角β--光伏阵列倾角根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表:不同倾斜面各月的太阳辐射量<KWH/m2>4、太阳能光伏组件串并联方案太阳能光伏组件串联的组件数量Ns=560/23.5±0.5=24<块>,这里考虑温度变化系数,取太阳能电池组件18块串联,单列串联功率P=18×165Wp=2970Wp;单台250KW逆变器需要配置太阳能电池组件串联的数量Np=250000÷2970≈85列,1兆瓦太阳能光伏电伏阵列单元设计为340列支路并联,共计6120块太阳能电池组件,实际功率达到1009.8KWp.整个10兆瓦系统所需165Wp电池组件的数量M1=10×6120=61200<块>,实际功率达到10.098兆瓦.该工程光伏并网发电系统需要165Wp的多晶硅太阳能电池组件61200块,18块串联,3400列支路并联的阵列.5、太阳能光伏阵列的布置<1>光伏电池组件阵列间距设计为了避免阵列之间遮阴,光伏电池组件阵列间距应不小于D:D=0.707H/tan〔arcsin<0.648cosΦ-0.399sinΦ>〕式中Φ为当地地理纬度<在北半球为正,南半球为负>,H为阵列前排最高点与后排组件最低位置的高度差>.根据上式计算,求得:D=5025㎜.取光伏电池组件前后排阵列间距5.5米.<2>太阳能光伏组件阵列单列排列面布置见下图:<三>直流配电柜设计每台直流配电柜按照250KWp的直流配电单元进行设计,1兆瓦光伏并网单元需要4台直流配电柜.每个直流配电单元可接入10路光伏方阵防雷汇流箱,10兆瓦光伏并网系统共需配置40台直流配电柜.每台直流配电柜分别接入1台250KW逆变器,如下图所示:直流配电柜每个1MW并网单元可另配备一套群控器<选配件>,其功能如下:<1>群控功能的解释:这种网络拓朴结构和控制方式适合大功率光伏阵列在多台逆变器公用可分断直流母线时使用,可以有效增加系统的总发电效率.<2>当太阳升起时,群控器控制所有的群控用直流接触器KM1~KM3闭合,并指定一台逆变器INV1首先工作,而其他逆变器处于待机状态.随着光伏阵列输出能量的不断增大,当INV1的功率达到80%以上时,控制直流接触器KM2断开,同时控制INV3进行工作.随着日照继续增大,将按上述顺序依次投入逆变器运行;太阳落山时,则按相反顺序依次断开逆变器.从而最大限度地减少每台逆变器在低负载、低效率状态下的运行时间,提高系统的整体发电效率.<3>群控器可以通过RS485总线获取各个逆变器的运行参数、故障状态和发电参数,以作出运行方式判断.<4>群控器同时提供友好的人机界面.用户可以直接通过LCD和按键实现运行参数察看、运行模式设定等功能.<5>用户可以通过手动方式解除群控运行模式.<6>群控器支持至少20台逆变器按照群控模式并联运行.<四>太阳能光伏并网逆变器的选择此太阳能光伏并网发电系统设计为10个1兆瓦的光伏并网发电单元,每个并网发电单元需要4台功率为250KW的逆变器,整个系统配置40台此种型号的光伏并网逆变器,组成10兆瓦并网发电系统.选用性能可靠、效率高、可进行多机并联的逆变设备,本方案选用额定容量为250KW的逆变器,主要技术参数列于下表:表:250KW并网逆变器性能参数表1、性能特点选用光伏并网逆变器采用32位专用DSP<LF2407A>控制芯片,主电路采用智能功率IPM模块组装,运用电流控制型PWM有源逆变技术和优质进口高效隔离变压器,可靠性高,保护功能齐全,且具有电网侧高功率因数正弦波电流、无谐波污染供电等特点.该并网逆变器的主要技术性能特点如下:<1>采用32位DSP芯片进行控制;<2>采用智能功率模块<IPM>;<3>太阳电池组件最大功率跟踪技术<MPPT>;<4>50Hz工频隔离变压器,实现光伏阵列和电网之间的相互隔离;<5>具有直流输入手动分断开关,交流电网手动分断开关,紧急停机操作开关.<6>有先进的孤岛效应检测方案;<7>有过载、短路、电网异常等故障保护与告警功能;<8>直流输入电压X围<450V~880V>,整机效率高达94%;<9>人性化的LCD液晶界面,通过按键操作,液晶显示屏<LCD>可清晰显示实时各项运行数据,实时故障数据,历史故障数据<大于50条>,总发电量数据,历史发电量<按月、按年查询>数据.<10>逆变器支持按照群控模式运行,并具有完善的监控功能;<11>可提供包括RS485或Ethernet<以太网>远程通讯接口.其中RS485遵循Modbus 通讯协议;Ethernet<以太网>接口支持TCP/IP协议,支持动态<DHCP>或静态获取IP地址;<12>逆变器具有CE认证资质部门出具的CE安全证书.2、电路结构250KW并网逆变器主电路的拓扑结构如上图所示,并网逆变电源通过三相半桥变换器,将光伏阵列的直流电压变换为高频的三相斩波电压,并通过滤波器滤波变成正弦波电压接着通过三相变压器隔离升压后并入电网发电.为了使光伏阵列以最大功率发电,在直流侧加入了先进的MPPT算法.<五>交流防雷配电柜设计按照2个250KWp的并网单元配置1台交流防雷配电柜进行设计,即每台交流配电柜可接入2台250KW逆变器的交流防雷配电与计量装置,系统共需配置20台交流防雷配电柜.每台逆变器的交流输出接入交流配电柜,经交流断路器接入升压变压器的0.4KV侧,并配有逆变器的发电计量表.每台交流配电柜装有交流电网电压表和输出电流表,可以直观地显示电网侧电压与发电电流.<六>交流升压变压器并网逆变器输出为三相0.4KV电压,考虑到当地电网情况,需要采用35KV电压并网.由于低压侧电流大,考虑线路的综合排部,选用5台S9系列<0.4>KV/<35-38.5>KV,额定容量2500KVA升压变压器分支路升压,变压器技术参数如下:表:变压器技术参数表<七>系统组成方案原理框图<八>系统接入电网设计本系统由10个1兆瓦的光伏单元组成,总装机10兆瓦,太阳能光伏并网发电系统接入35KV/50Hz的中压交流电网,按照2兆瓦并网单元配置1套35KV/0.4KV的变压与配电系统进行设计,即系统需要配置5套35KV/0.4KV的变压与配电系统.每套35KV中压交流电网接入方案描述如下:1、系统概述2、重要单元的选择<1>35KV/0.4KV配电变压器的保护35KV/0.4KV配电变压器的保护配置采用负荷开关加高遮断容量后备式限流熔断器组合的保护配置,既可提供额定负荷电流,又可断开短路电流,并具备开合空载变压器的性能,能有效保护配电变压器.系统中采用的负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关.变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护.这是一种简单、可靠而又经济的配电方式.<2>高遮断容量后备式限流熔断器的选择由于光伏并网发电系统的造价昂贵,在发生线路故障时,要求线路切断时间短,以保护设备.熔断器的特性要求具有精确的时间-电流特性<可提供精确的始熔曲线和熔断曲线>;有良好的抗老化能力;达到熔断值时能够快速熔断;要有良好的切断故障电流能力,可有效切断故障电流.根据以上特性,可以把该熔断器作为线路保护,和并网逆变器以与整个光伏并网系统的保护使用,并通过选择合适的熔丝曲线和配合,实现上级熔断器与下级熔断器与熔断器与变电站保护之间的配合.对于35kV线路保护,《3-110kV电网继电保护装置运行整定规程》要求:除极少数有稳定问题的线路外,线路保护动作时间以保护电力设备的安全和满足规程要求的选择性为主要依据,不必要求速动保护快速切除故障.通过选用性能优良的熔断器,能够大大提高线路在故障时的反应速度,降低事故跳闸率,更好地保护整个光伏并网发电系统.<3>中压防雷保护单元该中压防雷保护单元选用复合式过电压保护器,可有效限制大气过电压与各种真空断路器引起的操作过电压,对相间和相对地的过电压均能起到可靠的限制作用.该复合式过电压保护器不但能保护截流过电压、多次重燃过电压与三相同时开断过电压,而且能保护雷电过电压.过电压保护器采用硅橡胶复合外套整体模压一次成形,外形美观,引出线采用硅橡胶高压电缆,除四个线鼻子为裸导体外,其他部分被绝缘体封闭,故用户在安装时,无需考虑它的相间距离和对地距离.该产品可直接安装在高压开关柜的底盘或互感器室内.安装时,只需将标有接地符号单元的电缆接地外,其余分别接A、B、C三相即可.设置自控接入装置对消除谐振过电压也具有一定作用.当谐振过电压幅值高至危害电气设备时,该防雷模块接入电网,电容器增大主回路电容,有利于破坏谐振条件,电阻阻尼震荡,有利于降低谐振过电压幅值.所以可以在高次谐波含量较高的电网中工作,适应的电网运行环境更广.另外,该防雷单元可增设自动控制设备,如放电记录器,清晰掌控工作动作状况.可以配置自动脱离装置,当设备过压或处于故障时,脱离开电网,确保正常运行.<4>中压电能计量表中压电能计量表是真正反应整个光伏并网发电系统发电量的计量装置,其准确度和稳定性十分重要.采用性能优良的高精度电能计量表至关重要.为保证发电数据的安全,建议在高压计量回路同时装一块机械式计量表,作为IC式电能表的备用或参考.该电表不仅要有优越的测量技术,还要有非常高的抗干扰能力和可靠性.同时,该电表还可以提供灵活的功能:显示电表数据、显示费率、显示损耗<ZV>、状态信息、警报、参数等.此外,显示的内容、功能和参数可通过光电通讯口用维护软件来修改.通过光电通讯口,还可以处理报警信号,读取电表数据和参数.3、监控装置系统采用高性能工业控制PC机作为系统的监控主机,可以每天24小时不间断对所有的并网逆变器进行运行数据的监测.光伏并网系统的监测软件使用本公司开发的大型光伏并网系统专用网络版监测软件SPS-PVNET<Ver2.0>.该软件可连续记录运行数据和故障数据:<1>要求提供多机通讯软件,采用RS485或Ethernet<以太网>远程通讯方式,实时采集电站设备运行状态与工作参数并上传到监控主机.<2>要求监控主机至少可以显示下列信息:①可实时显示电站的当前发电总功率、日总发电量、累计总发电量、累计CO2总减排量以与每天发电功率曲线图.②可查看每台逆变器的运行参数,主要包括:A、直流电压B、直流电流C、直流功率D、交流电压E、交流电流F、逆变器机内温度G、时钟H、频率I、功率因数J、当前发电功率K、日发电量L、累计发电量M、累计CO2减排量N、每天发电功率曲线图③监控所有逆变器的运行状态,采用声光报警方式提示设备出现故障,可查看故障原因与故障时间,监控的故障信息至少因包括以下内容:A、电网电压过高;B、电网电压过低;C、电网频率过高;D、电网频率过低;E、直流电压过高;F、直流电压过低;G、逆变器过载;H、逆变器过热;I、逆变器短路;J、散热器过热;K、逆变器孤岛;L、DSP故障;M、通讯失败;<3>要求监控软件集成环境监测功能,主要包括日照强度、风速、风向、室外温度、室内温度和电池板温度等参量.<4>要求最短每隔5分钟存储一次电站所有运行数据,包括环境数据.故障数据需要实时存储.<5>要求至少可以连续存储20年以上的电站所有的运行数据和所有的故障纪录.<6>要求至少提供中文和英文两种语言版本.<7>要求可以长期24小时不间断运行在中文WINDOWS2000,XP操作系统<8>要求使用高可靠性工业PC作为监控主机<9>要求提供多种远端故障报警方式,至少包括:SMS<短信>方式,E_MAIL方式,FAX方式.<10>监控器在电网需要停电的时候应能接收电网的调度指令.4、环境监测装置在太阳能光伏发电场内配置1套环境监测仪,实时监测日照强度、风速、风向、温度等参数.该装置由风速传感器、风向传感器、日照辐射表、测温探头、控制盒与支架组成.可测量环境温度、风速、风向和辐射强度等参量,其通讯接口可接入并网监控装置的监测系统,实时记录环境数据.5、系统防雷接地装置为了保证本工程光伏并网发电系统安全可靠,防止因雷击、浪涌等外在因素导致系统器件的损坏等情况发生,系统的防雷接地装置必不可少.<1>地线是避雷、防雷的关键,在进行配电室基础建设和太阳电池方阵基础建设的同时,选择电厂附近土层较厚、潮湿的地点,挖1~2米深地线坑,采用40扁钢,添加降阻剂并引出地线,引出线采用35mm2铜芯电缆,接地电阻应小于4欧姆.<2>直流侧防雷措施:电池支架应保证良好的接地,太阳能电池阵列连接电缆接入光伏阵列防雷汇流箱,汇流箱内含高压防雷器保护装置,电池阵列汇流后再接入直流防雷配电柜,经过多级防雷装置可有效地避免雷击导致设备的损坏.<3>交流侧防雷措施:每台逆变器的交流输出经交流防雷柜<内含防雷保护装置>接入电网,可有效地避免雷击和电网浪涌导致设备的损坏,所有的机柜要有良好的接地.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。
随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。
它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。
太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。
另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。
1.项目概况1.1项目背景及意义本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。
本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。
1.2光伏发电系统的要求因本系统仅是一个参考项目,所以这里就只设计一个 2.88kWp的小型系统,平均每天发电 5.5kWh,可供一个1kW的负载工作 5.5小时。
2.系统方案2.1现场资源和环境条件江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。
气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。
年降水量1041.6毫米,年平均气温15.2℃。
具有气候温和、雨量充沛、四季分明等特点。
其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度 2.5℃;最热月7月份,平均温度27.6℃。
Nature Resources:MonthAirtemperatureRelativehumidityDailysolarradiation-horizontalAtmosphericpressureWindspeedEarthtemperature °C% kWh/m2/d kPa m/s °CJanuary 3.9 76.50% 2.69 102.3 4.2 3.6 February 5.4 75.30% 3.14 102.2 4.2 5.5 March 9.1 75.50% 3.33 101.8 3.9 9.6 April 14.7 76.20% 4.25 101.2 3.7 15.4 May 19.2 78.70% 4.78 100.8 3.3 19.9 June 22.9 83.40% 4.58 100.3 3.4 23.6 July 26.1 86.20% 5.05 100.1 3.5 26.9 August 25.6 86.50% 4.71 100.3 3.4 26.3 September 22.1 82.60% 3.99 100.9 3.5 22.4 October 17 77.90% 3.4 101.6 3.5 17.2 November 11.6 76.70% 2.81 102.1 3.8 11.5 December 6 76.50% 2.68 102.4 4 5.7Annual15.3 79.30% 3.78 101.3 3.7 15.62.2光伏系统方案的确定本项目采用独立型光伏系统方案。
系统由电池组件PV阵列,充电控制器、逆变器、蓄电池等部件组成。
(原理图如下:)独立系统原理图本系统由太阳电池组件,跟踪控制系统,控制器,逆变器,蓄电池等部分组成。
太阳电池组件在太阳光的照射下产生直流电流;而充电控制器则协调太阳能电池板、蓄电池和负载的工作,具有自动防止太阳能光伏系统的储能蓄电池过充电和过放电的功能。
蓄电池在系统中的作用就是存储能量,还能对系统起着调节电量、稳定输出的作用。
逆变器的作用是将蓄电池的直流电转变为适合负载使用的正弦波交流电,逆变器输出的交流电能进入配电柜;在配电柜内装有用于输出控制、过流保护、防雷保护等器件。
2.3计算机仿真2.3.1太阳能资源2.3.2能源模型2.4系统方框图系统方框图2.5配置方案太阳能组件功率160W(43.7 V,5.1A)数量18片连接方式2串9并控制器充电电压48V 最大电流50A 数量 1 说明无逆变器规格48V,3KW,输出电压:220V AC,50HZ 数量 1蓄电池规格400AH,2V 数量(节)24连接方式24串附年供应电量预计3642kWh注1. 本系统共使用了18块电池组件,组件每2块为一串,在接线盒里9串并联后输出。
占地面积约22m2。
2.充电控制器选用48V50A的直流控制器,它是是具有自动防止太阳能光伏系统的储能蓄电池过充电和过放电的设备,由它协调太阳能电池板、蓄电池和负载的工作。
在系统运行时,它能对蓄电池的荷电状况和环境温度自动、连续地进行监测,按照用户设置的参数对其充、放电过程进行控制,起到有效管理光伏系统能量、保护蓄电池及保证整个光伏系统正常工作的作用。
3.逆变器选用的规格为48V,3KVA,输出电压:220V AC,它的作用是将蓄电池的直流电压转变为适合负载使用的正弦波交流电压。
在本系统中采用的正弦波逆变器具有波形失真小、保护功能全、转换效率高、可靠性高的特点。
4.蓄电池在系统中的作用就是存储能量。
由于系统采用48V电压,蓄电池组由24节2V800Ah的蓄电池串联而成。
太阳能电池将太阳辐射能转换为直流电能,通过蓄电池将直流电能转换为化学能储存起来。
另外它还能对系统起着调节电量、稳定输出的作用。
全部蓄电池置于两排双层电池架上。
电池架上装有输出控制开关,可方便地进行投入和切除。
2.6系统主要设备2.6.1电池组件本系统拟采用江苏林洋新能源有限公司生产的SF-160单晶硅电池组件。
江苏林洋新能源有限公司是一家集晶体硅太阳能电池和组件的研发、生产、销售、服务为一体并在美国成功上市的国际性公司。
公司采用世界上最先进的电池片和组件生产设备加之完善的质量管理体系,从而保证了完美的产品品质。
产品通过了IEC61215、TUV、和UL国际认证,在国内享有盛誉。
该太阳能电池片转换效率高,表面玻璃为高透光低铁钢化玻璃,边框材料为轻质电镀铝合金。
最大输出功率160Wp开路电压43.7V短路电流 5.10A最大输出电压35.8V最大输出电流 4.61A重量15kg外型尺寸1580 mm x 808 mm x 45 mm最佳电流的温度系数+0.04%/℃最佳电压的温度系数-0.38%/℃SF-160单晶硅电池组件性能SF-160单晶硅太阳能电池的机械特性。
图2 SF-160单晶硅太阳能电池的I-V特性2.6.2充电控制器光伏控制器性能、参数额定电压(V) 48额定电流Ip (A) 50最大太阳能电池组件功率(kWp) 3 太阳能电池组数N ≤6每路太阳能电池电流Ib( A ) Ib=Ip/N环境温度-20℃~+50℃太阳能电池与蓄电池之间( V ) 0.7电压降落蓄电池与负载之间( V ) 0.1机械尺寸深×宽×高( mm ) 421*488*177防护等级IP20海拔高度≤5500性能特点:1)微电脑芯片控制充放电各参数点、温度补尝系数可编程任意设定,可适应不同场合的特殊要求;2)LCD液晶模块点阵显示,中英文操作菜单,用户可根据需要选择;3)LED指示灯显示各路光伏充电状态和负载通断状态;4)9个轻触按键操作;5)控制电路与主电路完全隔离,具有极高的抗干扰能力;6)1—18路太阳能电池输入控制;7)实时显示蓄电池电压、负载电流、总光伏电流、每路光伏电流、蓄电池温度、累计光伏发电安时数、累计负载用电安时数等十几个参数;8)历史数据统计显示:过充电次数、过放电次数、过载次数、短路次数;9)可编程设定发电机启停电压、次要负载通断电压、风机卸载和恢复电压、路灯光敏切换电压等参数;10)用户可分别设置蓄电池过充电保护和过放电保护时负载的通断状态;11)具有二次下电控制能力,即对主要负载和次要负载在不同蓄电池电压点的下电控制能力;12)各路充电电压检测具有“回差”控制功能,可防止开关进入振荡状态;13)保护功能:具有蓄电池过充电、过放电、输出过载、短路、浪涌、太阳能电池接反或短路、蓄电池接反、夜间防反充等一系列报警和保护功能;14)可配RS232/485 接口,便于远程遥信、遥控;PC监控软件可测实时数据、报警信息显示、修改控制参数,读取30天的每天蓄电池最高电压、蓄电池最低电压、每天光伏发电量累计和每天负载用电量累计等历史数据;15)参数设置具有密码保护功能且用户可修改密码;16)告警:过压、欠压、过载、短路等保护报警;17)多路无源输出报警或控制接点:蓄电池过充电、蓄电池过放电、柴油机启动控制、负载断开、控制器故障;其它备用报警接点用户可选择,如水淹报警等;18)工作模式有阶梯式逐级限流模式、PWM工作模式、一点式工作模式、光开光断模式、光开时断模式、时钟控制模式、光开时断凌晨亮模式,其中前三种模式是针对通用负载场合的,后四种模式是针对路灯负载场合的,所有的延时长度和定时时钟都可以设置;19)用户可设置参数还包括:均充电压、浮充电压、吸收电压、启动电压、动态稳压系数、静态稳压系数、均充状态时间和吸收状态时间等。
20)不掉电实时时钟功能,显示与设置时钟;21)防雷:根据系统要求,可安装不同等级的防雷装置;22)具有温度补偿功能;2.6.3逆变器·32位DSP控制·日本三菱第五代IPM功率模块单元·高效逆变效率达94%(DC220V系列)·多语种液晶显示功能·标准RS485/232通信接口·完美的保护功能·故障记录功能·低电压保护逆变器器性能、参数直流输入输入额定电压(VDC) 48 输入额定电流(A)73 输入直流电压允许范围(VDC) 42~64交流输出额定容量(kVA) 3输出额定功率(kW) 3输出额定电压及频率220VAC,50Hz输出额定电流(A)13.6输出电压精度(V)220±3% 输出频率精度(Hz) 50±0.05 波形失真率(THD)(线性负载)≤5%动态响应(负载0←→100%)5%功率因数(PF)0.8过载能力150%,10秒峰值系数(CF) 3:1逆变效率(80%阻性负载) 93%工作环境绝缘强度(输入和输出) 1500VAC,1分钟噪音(1米)≤50dB使用环境温度-20℃~+55℃湿度0~90%,不结露使用海拔(m) ≤6000机械尺寸立式深、宽、高(mm) 442×482×267 重量(kg)422.6.4蓄电池3.工程施工3.1工程费用概算:序号名称单价(元)数量单位合计1太阳电池组件302880Wp86,400 2充电控制器70001台7,000 3逆变器120001台12,000 4全密闭免维护蓄电池95024节22,800 5标准接头109套906专用电缆12100米1,200 7钢结构支架32880Wp8,640 8其它辅助材料12880Wp2,880 9材料费小计2880Wp141,010 10系统安装集成费5%7,051 11税金6%8,461 12利润5%7,051 13总价2880163,572 14均价288056.803.2工程周期本项目自签订合同并提交工程首付款后,我公司将着手进行工程所有材料和设备的准备工作,直至系统通过调试,备货期为30天,进场后大约需要10天完成施工。