养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施
氨氮等水质指标对水产养殖的影响及解决办法
第40卷 总第205期2021年10月 第5期黑龙江水产NorthernChineseFisheriesVol.40Tot.205October2021,No.5作者简介:吕妍(1981.3-),女,黑龙江省水产技术推广总站高级工程师。
研究方向:淡水增养殖。
氨氮等水质指标对水产养殖的影响及解决办法吕 妍(黑龙江省水产技术推广总站 黑龙江 哈尔滨 150018)摘 要:鱼类需要健康的养殖环境,可是在实际的水产养殖过程中,很容易出现水质恶化、氨氮等环境指标异常的情况,给水产养殖带来很大的危害。
文章主要介绍氨氮、亚硝酸盐、硫化氢等几个重要的环境指标的形成、毒害作用及处理办法,还对pH值过高或过低对养殖鱼类的影响以及调节pH方法进行了阐述,为保证水产健康养殖提供参考。
关键词:氨氮;环境指标;水产养殖;影响中图分类号:S912文献标志码:C 随着水产养殖规模的扩大,养殖密度不断提高,对池塘的投入也在不断增加。
这就容易导致养殖水体负载增大,甚至超过其饱和限度,进而使养殖水体理化指标遭到破坏,水质恶化,水体中的氨氮、亚硝酸盐、硫化氢等有害物质大量产生,致使养殖水生动物中毒死亡,给养殖户带来巨大损失。
本文就从氨氮、亚硝酸盐、硫化氢及pH值这几个重要的指标入手,谈谈它们对淡水鱼类养殖的影响,希望为养殖生产提供一些帮助。
1 氨氮1.1 氨氮的形成水中氨氮通常是在氧气不足时含氮有机物分解而产生的,或者是由于含氮化合物被硝化细菌还原而成的。
一般情况下,水体的氮循环处于一种稳定的状态,水体氨氮维持在正常水平。
但是,在高密度养殖及淡水综合养殖的水体中,特别是鱼类生产旺季期间,由于大量的投饵而留下的残饵、水体中水生动物的大量排泄物的累积,同时定期的使用消毒药剂杀灭了有益微生物,致使水生态失衡、水质恶化、水体缺氧,进而造成养殖水体中氨氮含量增高的情况。
1.2 氨氮的存在形式水中的氨氮有两种不同的形式,即分子形式存在的氨(NH3)和离子形式存在的铵(NH+4),我们常说的氨氮,实际是分子氨(即非离子氨)和离子氨的总称。
饲养鱼类的水质管理
饲养鱼类的水质管理水质是鱼类健康和生长的重要因素之一,良好的水质管理对于鱼类养殖的成功至关重要。
本文将从水质的重要性、水质检测方法以及水质调节的措施等方面展开论述。
一、水质对鱼类的影响1. 溶解氧:溶解氧是鱼类生存所必需的,它直接影响鱼类的呼吸和新陈代谢。
鱼类在富含溶解氧的水体中能够更好地养殖和生长,而水体中溶解氧过低会影响鱼类的健康。
2. 氨氮和亚硝酸盐:饲养过程中,鱼类的排泄物和剩余饲料会产生氨氮和亚硝酸盐等有害物质。
这些物质对鱼类有害,会导致鱼类患病甚至死亡。
3. pH值:水体的pH值对鱼类的生长和生理功能有一定的影响。
过低或过高的pH值会对鱼类产生应激反应,影响鱼体免疫力以及饵料的消化吸收能力。
二、水质检测方法为了准确评估养殖水体的水质情况,以下是一些常用的水质检测方法:1. pH测试:使用酸碱试剂盒或pH仪器,根据水样的酸碱度测量pH值。
2. 溶解氧检测:利用溶解氧测定仪测量水中溶解氧的含量。
3. 氨氮和亚硝酸盐检测:使用化学试剂或特定测试仪器来检测水中的氨氮和亚硝酸盐含量。
4. 温度检测:使用温度计来测量水体的温度。
5. 浑浊度检测:利用浊度计测量水体中悬浮物质的浓度,从而评估水质的清澈度。
三、水质调节措施1. 水体清洁:定期清理池塘、鱼缸等养殖设施,及时清除杂物和残饵,避免污染和积聚有害物质。
2. 确保良好的水流通:通过配置合适的水泵、过滤装置等设备,保持水体的流动循环,增加溶解氧含量,减少废物和有害物质的积聚。
3. 控制饲料量和投喂时间:合理控制鱼类的饲料量,避免过度投喂导致剩余饲料堆积,减少水体中的污染。
4. 使用生物过滤器:生物过滤器能够帮助将氨氮和亚硝酸盐转化为无害的亚硝酸盐和硝酸盐,减少对鱼类的伤害。
5. 定期检测水质:养殖者可以定期进行水质检测,根据检测结果及时采取相应的调整措施,保持水质的稳定。
四、结语在饲养鱼类过程中,水质管理是非常重要的一项任务。
良好的水质可以提供一个适宜的养殖环境,有助于鱼类的健康生长和繁殖。
养殖中pH、氨氮、亚硝酸盐等六大指标
养殖中pH、氨氮、亚硝酸盐等六大指标1、PH值养殖水体正常水质PH值为7.6~8.8。
PH值偏高机理及危害:藻类过度生长繁殖,大量消耗水中碳源(二氧化碳),致使水体PH值快速上升(光合细菌过度生长繁殖也会造成PH值上升)。
PH值偏高,水体中铵氮以氨分子氮形式存在,增加了氨氮的毒性;另外,高PH值水质对鳃部组织有腐蚀作用。
PH值偏低机理及危害:水体缺氧,水体有机质过多,在厌氧菌厌氧发酵的作用下,产生大量有机酸,致使水体PH值偏低。
PH值偏低,致病菌容易大量繁殖,且硫化氢毒性增强。
2、溶解氧养鱼虾水质溶解氧一般为4~6毫克/升,当溶解氧为3毫克/升,则鱼虾就出现浮头、游塘等现象;溶解氧低于2毫克/升,养殖的鱼虾则出现死亡。
溶解氧来源:水生植物(如藻类)光合作用放氧、空气溶氧(如开增氧机)、化学增氧剂增氧等。
水体耗氧因素:氧化还原反应耗氧(如有机质的分解)、生物呼吸作用耗氧等。
3、氨氮养殖水体正常水质氨氮为<0.2毫克/升。
氨氮主要是由于生物呼吸作用和氮源有机质(如残饵、水产动物排泄物、过量施肥、浮游生物尸体等)在微生物作用下,分解的产物。
分子氨毒性较强,离子铵则无毒性,两者的比例取决于水体PH值的大小和温度高低,PH值偏高、温度较高条件下,分子氨比例就较高。
鱼虾类发生氨中毒引起的症状轻重有别,若因急性中毒,可能发生呼吸急促、浮头游塘,会迅速死亡;若因慢性中毒,可能发生下列不正常现象:(1)、可能会干扰鱼虾类的渗透压调节系统。
(2)、易破坏鱼虾鳃的黏膜层。
(3)、会降低血蛋白携氧能力,表现为厌食、靠边、游动缓慢,严重时会出现游塘、浮头等现象。
4、亚硝酸盐养殖水体要求亚硝酸盐<0.01毫克/升。
亚硝酸盐是氨氮向硝酸盐转化过程的中间产物,在缺氧条件下,亚硝酸盐很难向硝酸盐转化。
所以说,亚硝酸盐的累积,多因池塘低溶解氧的结果。
水体中的亚硝酸盐含量高会对养殖动物短时间内生理性缺氧甚至导致死亡。
因此,如何在短时间里快速降低亚硝酸盐是首要问题,就如心脏的速效救心丸一样。
水产养殖池塘pH异常时的危害及处理方法
水产养殖池塘pH异常时的危害及处理方法①pH偏高或过高。
新水中已有一定数量的藻类,但水质还没有稳定,往往会偏髙;蓝绿藻含量丰富的水体由于光合作用很强烈,到下午5:00左右,pH往往会升到9.5以上;受碱性物质污染的水pH也会偏高。
鱼类碱中毒的症状:碱中毒的鱼类表现为狂游、乱窜,体表大量黏液甚至可拉成丝,鳃盖腐蚀损伤,鳃部分泌大量凝结物。
一般pH 大于9,水体存在许多死藻和濒死的藻细胞。
②pH偏低或过低。
养殖时间较长的水,pH会逐渐降低;受酸性物质污染的池水也会造成pH偏低或过低。
杀菌消毒改底调水全能王---弧克弧克是一款含50%过硫酸氢钾的复合盐。
具备杀菌、消毒、改底、调水四大功能,尤其对弧菌有特效。
过硫酸氢钾是一种无机酸性氧化剂,具有非常强大而有效的非氯氧化能力。
鱼类酸中毒的症状:鱼类酸中毒是由于酸的阳离子与蛋白质结合,成为不溶性化合物,蛋白质变性使组织器官失去功能而造成负死,酸中毒的鱼表现为极度不安、狂游、想往池外跳、呼吸急促,随后呼吸减缓、反应迟钝、游泳乏力、窒息死亡,鳃部严重允血,血液呈暗红色淤血,肛门及各鳍部皮下出血,鳍呈白边,体表特别是鳃部黏液增多,黏液pH比水体高 1~2,死鱼眼珠浑浊发白,'角膜损伤,张口,鳃盖张开,体色明显发白。
(3)防治方法①经常检测水体pH的变化,一旦出现异常就要及时找出原因,采取有效的处理措施。
②对新水最好等水质稳定后再放鱼种。
③水体过肥时使用绿生元复合生物净水剂,可保持池塘水质清洁,稳定浮游植物生长,持续降低饵料系数,提高水产养殖产量。
④当pH—直很高,没有其他办法的情况下可考虑用EM菌,其碱性较低,可有效改善不良水质,稳定水色和pH值,利于水质持久稳定。
最好不要使用具有强酸物质特性的水溶性物质,因其会对水体中的动植物产生不必要的危害。
最新养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施
养殖水体中P H值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施酸碱度(即pH值) 对鱼的影响池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。
鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。
但在pH值6~9时,仍属于安全范围。
不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。
鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。
如果pH值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。
同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。
如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。
pH值对鱼类繁殖也有影响。
pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。
若pH值在6.4以下或9.4以上,则不能孵出鱼苗。
若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。
若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。
由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH值正常。
水的硬度对养鱼的影响硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响?水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。
淡水养殖水质相关问题简析
淡水养殖水质相关问题简析引言我国的经济水平在不断提高,渔业经济也取得了迅猛的发展,渔业中集约化淡水养殖所占的比重也在逐年升高,经过不断的发展,我国已经成为世界上唯一一个养殖产量超过捕捞产量的国家,其发展直接和国家的农业经济发展相关联。
一、水质好坏对淡水养殖的影响及措施1、pH值pH值是水质的重要指标,pH决定着水体中的很多化学和生物过程。
pH值过高和过低都会水产养殖动物带来直接伤害,偏酸性水体,pH值低于6.5时会使鱼体血液的pH值下降,减弱载氧能力,出现浮头,pH值低于5时,鳃变红褐色,黏液分泌增多,而呼吸困难窒息死亡。
pH过高时水则腐蚀鳃组织,引起大批死亡,当pH值低于4或高于10.5时,各类鱼虾蟹不能存活。
水质偏酸:当pH值小于7时,可全池泼洒20ppm生石灰提高PH值0.5左右,或者使用小苏打泼洒。
水质偏碱:当pH值在7-8.5之间时,适宜于鱼类生存,当pH值大于9时,可采取措施降碱,最好的办法是换水或注入新水。
2、亚硝酸盐水体中的亚硝酸盐过高也是影响淡水养殖的重要因素,严重时会引起鱼类爆发性疾病的发生,也必须加以重视。
淡水养殖中水体的亚硝酸盐含量通常应在0.1mg/L以下,而有关淡水养殖的规程也规定了淡水养殖中的亚硝酸盐浓度不能超过0.20mg/L。
水体中由于换水不及时、排污不彻底、氧气不足而造成的水体亚硝酸盐含量高,这部分的亚硝酸盐主要来自老化的池底淤泥中的有机物、密度过大的投饵量、水质浑浊的水源、过量使用的消毒药剂等,严重时将引起水产品亚硝酸盐中毒,从而使鱼群虾类出现各种爆发性病变,甚至引起水生物肝脏异化,进而出现大规模死亡的现象。
如何防止亚硝酸盐过高?(1)定期换水,注新水(2)保持水体氧分充足,适时增氧或生物增氧(3)定期使用水质改良剂,如:"EM活菌剂"、"EM原露"、"康洁底净"等。
pH值、氨氮、亚硝酸盐是水产养殖水质管理中最为主要的检测项目,应定期检测,保证水质安全。
氨氮污染对水生生物的威胁及防范措施
氨氮污染对水生生物的威胁及防范措施氨氮污染是水体中较为常见的一种污染物,对水生生物产生严重威胁。
本文将详细介绍氨氮污染对水生生物的威胁,并提出相应的防范措施。
一、氨氮污染对水生生物的威胁1. 对鱼类的危害:当水体中的氨氮浓度超过水生生物耐受范围时,会导致水中氧含量降低,直接影响鱼类的呼吸作用,甚至导致鱼类窒息而死亡。
2. 对浮游生物的影响:氨氮污染会导致浮游生物的繁殖能力下降,进而影响食物链的正常运转。
同时,浮游生物是水生生物的重要食物来源,其受到污染会直接影响上层生物的生存状况,从而破坏了水生生态系统的稳定性。
3. 影响底栖生物:水体中的氨氮污染会使水环境的pH值下降,导致底栖生物栖息地受到破坏,无法维持其正常生活活动,如筑巢、觅食等,从而威胁其生存状况。
二、防范措施1. 加强监测:建立完善的水质监测体系,对水体中的氨氮浓度进行定期检测,以及时发现和及时处理污染源,避免污染进一步扩大。
2. 限制农业用肥:加强对农业用肥的管理,控制农业面源污染的发生。
对于农户使用肥料的种类、数量以及施肥的时间和方式等进行指导,确保合理用肥,避免肥料的过度积累和流失,减少氨氮的排放。
3. 加强城市污水处理:城市污水中的氨氮是重要的污染来源之一,加强城市污水处理厂的建设和运行,确保污水经过合格的处理后排放。
对于一些老旧污水处置设施,应加强改造和升级,以提高处理效果。
4. 鼓励生态修复:通过鼓励生态修复,增加湿地等自然生态系统的面积,提高水体的自净能力,加强氨氮的吸附和降解作用。
同时,进一步完善湿地保护政策,杜绝湿地破坏行为。
5. 加强宣传教育:加强对公众的环保意识教育,提高人们对氨氮污染的认知。
加强对农民、工厂主、居民等不同群体的环保教育,引导他们采用清洁生产方式和绿色生活方式,共同为减少氨氮污染做出努力。
在保护水生生物蓝色家园的过程中,氨氮污染的防范是至关重要的。
通过加强监测、限制农业用肥、加强城市污水处理、鼓励生态修复和加强宣传教育等措施,可以有效减少氨氮污染的发生,保护水生生物的生态环境,实现人与自然和谐相处。
养殖过程中的水质管理与注意事项
养殖过程中的水质管理与注意事项养殖水质管理与注意事项水质是养殖过程中最重要的因素之一,对于鱼类、虾类等水生动物的生长和健康至关重要。
水质好坏直接关系到鱼类虾类的生长发育、耐受性和免疫力,因此在养殖过程中要加强水质管理,保持良好的水质环境,提高养殖效益。
以下是养殖过程中的水质管理与注意事项。
一、定期监测水质养殖过程中应定期检测水质的各项指标,如水温、PH值、溶解氧、氨氮、亚硝酸盐等。
水温是指水中的温度,影响鱼类虾类的代谢率和消化吸收能力,应保持适宜的水温。
PH值是指水中的酸碱度,过高或过低都会对水生动物的健康产生影响,要保持PH值在适宜范围内。
溶解氧是指水中的氧气含量,水生动物需要吸入氧气呼出二氧化碳进行呼吸,溶解氧过低会导致鱼类虾类窒息死亡。
氨氮和亚硝酸盐是水质中的有毒物质,会引起鱼类虾类的中毒甚至死亡,要控制水质中这些有毒物质的浓度。
二、做好水质处理养殖过程中,要采用适当的方法对水质进行处理,保持水质的清洁和稳定。
常见的水质处理方法有过滤、通风、曝气等。
过滤是通过物理或化学方法,将水中的悬浮物、有机物等进行过滤和分离,净化水质。
通风是通过增加氧气供应,提高水中溶解氧的含量,改善水质环境。
曝气是通过气泵将空气注入水中,增加水中氧气含量,促进鱼类虾类的呼吸和新陈代谢。
三、控制养殖密度养殖密度是指在一定面积或容积内养殖的鱼类虾类数量,过高的养殖密度会导致养殖环境恶化,水质污染加剧。
因此,合理控制养殖密度,避免过度密度养殖,保持良好的水质环境,有利于鱼类虾类的生长和健康。
四、科学投喂投喂是养殖过程中的重要环节,合理的投喂可以促进鱼类虾类生长发育,但过度喂养会导致饵料残留,增加水质污染,影响水质环境。
因此,在投喂过程中要根据养殖种类和生长阶段合理投喂,避免过量喂养,减少饵料浪费和水质污染。
五、定期排泄废水定期排泄废水是保持良好水质环境的重要措施,过期的废水积累会导致水质恶化和病虫害的滋生。
定期排泄废水可以去除废物、残饵和代谢产物等,保持水质的清洁和稳定。
水产养殖五项水体理化指标的作用
水产养殖五项水体理化指标的作用俗话说,养鱼先养水,可见水环境在水产养殖中的重要性。
在养殖过程中主要通过检测水体pH值、氨氮、亚硝酸盐、硫化氢、溶解氧等几个指标来判断养殖水质的好坏,因此了解水体中几个理化指标的作用尤为重要。
一、养殖水体pH值的作用及调节酸碱度是反映水质状况的一个综合指标,也是直接影响鱼类健康的关键因素。
实践证明鱼类最适生长水环境pH值是7-8.5之间,pH 值过高或过低均会影响鱼类的生长甚至引起鱼类的死亡。
鱼类在pH值高于9.0的碱性水体,会发生碱中毒,而且会导致鱼体分泌大量粘液,影响呼吸,pH值高于10.5会直接引起鱼类死亡。
pH值异常还会影响水体藻类的生长,如高pH值会影响藻类对铁、碳等的利用,导致水体天然饵料减少,影响花白鲢鱼产量。
鱼类在pH值低于5.0的酸性水体,其血液载氧能力降低,引起缺氧、呼吸困难,摄食量降低,饵料消化率降低,生长缓慢。
pH值低于6.0时,许多有益微生物的代谢受阻,有机质分解速度降低、水体物质循环受阻。
偏酸性的水体会导致原生动物引发的鱼类疾病如孢子虫病、纤毛虫病等的大量发生。
pH值变化还会引起水中一些物质形式的改变特别是有毒物质的转变,如pH值低于6.0时,水中90%的硫化物以H2S的形式存在。
pH值发生异常,一定要根据引发异常的原因有针对性的调节。
水体出现过酸的情况,可引入新水,同时用生石灰调节(约10-15kg/亩)。
同时加快水体藻类的培育,及时使用生物制剂调节水质。
水体pH值过高可选用磷酸二氢钠、二氯化钙等调节,也可以使用腐植酸或醋酸进行调节,定期使用EM菌恢复水体生态平衡。
展开剩余72%二、养殖水体氨氮转化精养池水体氮素主要来源于残饵和养殖对象排泄物,一些固氮藻类及细菌把氮气转变为有机氮,死亡藻类及有机质经微生物分解产生有机氮,人为投入氮肥等几种途径。
氮在自然界存在形式多达9种,有机氮约占60%,氨态氮约占35%,其它以硝态氮的形式存在,其中氨态氮为有害物质。
养殖水体中亚硝酸盐过高的原因及处理办法
养殖水体中亚硝酸盐过高的原因及处理办法养殖水体中亚硝酸盐、氨氮、硫化氢、pH值、化学耗氧量等含量的高低将决定着养殖水质的好坏。
在养殖过程中,养殖水体如果亚硝酸盐、氨氮、硫化氢、pH值等指标过高,将给养殖的水生动物带来很大的危害,现简单地介绍一下它们形成的原因、危害和处理方法。
一、形成原因亚硝酸盐是氨转化为硝酸盐过程中的中间产物,在养殖水体中由于大量的投饵而留下的残饵、水体中水生动物的大量排泄物的累积和定期使用的消毒药剂,把有害的和有益的细菌通通杀灭,氧气的供应不足,造成大量积累的氮素硝化过程受阻,形成养殖时水中氨氮和亚硝酸氮含量高,但由于氨氮的转化速度较快,使得亚硝酸氮的问题最为突出。
硫化氢在缺氧条件下,由残饵或粪便中的含硫有机物经厌氧细菌分解而产生。
硫化氢可与水体底泥中的金属盐结合形成金属硫化物致使池底变黑。
二、造成危害当水中的亚硝酸盐浓度积累到0.1毫克/升后,亚硝酸盐将对水体中养殖的鱼、虾产生危害。
其作用机理主要是通过鱼虾的呼吸作用,由鳃丝进入血液,鱼、虾红细胞数量和血红蛋白数量逐渐减少,血液载氧能力逐渐减低,出现组织缺氧。
此时鱼、虾摄食量降低,鳃组织出现病变,呼吸困难、躁动不安或反应迟钝,从而导致鱼虾缺氧,甚至窒息死亡。
亚硝酸盐还可与仲胺类反应生成致癌性的亚硝酸胺类物质,pH值低时有利于亚硝酸胺形成。
很多池塘出现鱼虾厌食现象,亚硝酸盐过高就是主要原因之一。
当养殖水体中的氨氮含量超过0.2毫克/升时。
氨氮将对鱼、虾造成危害,其危害相似于亚硝酸盐。
氨氮毒性与池水的pH值及水温有密切关系,一般情况,温度和pH值愈高,毒性愈强。
硫化氢有臭鸡蛋味,当养殖水体中硫化氢的浓度在0.l毫克/升以上时,对水体中的鱼、虾产生危害。
硫化氢具强烈刺激、麻醉和影响鱼类呼吸的作用,对鱼、虾具有较强毒性。
水体pH值低可造成养殖鱼、虾血液中的pH值下降,削弱其血液载氧能力,尽管水中的溶解氧较高,还是会造成鱼、虾生理缺氧症,经常浮头,且生长受阻或患病。
养殖鱼的氨氮中毒现象、危害和防治方法
5.使用水质改良剂。精养塘氨氮中毒后风险高、损失大,最好能定期使用水质改良剂,特别是在高温季节。
6.氨氮中毒的救治。先可用盐酸或醋酸调节水体pH值,pH值低于7.0时可解除氨氮毒性,后使用沸石粉、麦饭石、膨润土、活性炭等都具有吸附作用的矿物质、减少或去除水体中的氨氮含量(每亩200~300kg/1.5米水深),进行底层水体置换,抽去底层老水加注新水。
2.遇到阴雨天,上层鱼,如鲢鱼浮头,长时间浮在水面上,底栖鱼,如鲤鱼吃食逐渐减少。
溶氧下降,富营养化,PH值、温度升高,都会引起氨氮增加,加重水体对鱼的毒性。如大量使用高蛋白饲料的精养塘,本来水体中氮含量就很高,受环境因素影响造成浮游植物大面积死亡,水体中的氨氮浓度将会突然升高。
氨氮中毒需要综合防治,主要有:
预防优于救治,养殖人员要加强巡塘,密切观察水质、浮游植物、鱼类活动的变化,发现不良苗头及时处置,就能切实控制和鱼的氮排泄量。
2.严格防控生活、工业下游的“富氮”水体侵入养殖塘,适当种植浮萍,凤眼莲和水葫芦等水生植物,控制和降低富营养化程度。
3.改善水质,增加底层溶氧
合理使用增氧机,加强上下对流;经常清淤、换水、减少水体中浮游生物和有机物数量都增加水体溶氧;使用化学增氧剂,精养塘选用在水中分解缓慢的过氧化钙和过硫酸铵,对改善水质尤其是底层水质效果更加良好。水体溶氧尤其是塘底溶氧充足,可使水体有毒的氨氮被消除,保持水质的pH值稳定。
科技工作者经研究指出,氨氮中毒主要危害主要为:一是氨氮增高抑制鱼类自身氨的排泄,使血液和组织中氨的浓度升高,降低血液载氧能力;二是氨氮具有较高的脂溶性,很容易透过细胞膜直接引起鱼类中毒,使鱼群出现呼吸困难,分泌物增多并发生衰竭死亡;三是引起鳃表皮细胞损伤而使鱼的免疫力降低。
池塘养殖四个水质指标超标的处理(氨氮、亚硝酸盐、PH值、硫化氢)
池塘养殖四个水质指标超标的处理(氨氮、亚硝酸盐、PH值、硫化氢)1.氨氮超标淡水养殖生产中应将氨氮浓度控制在0.2毫克/升为宜。
氨氮超标主要是因高密度放养、投饵施肥量过大、水产动物排泄物积累、底层有机物沉淀和细菌分解等造成。
水体氨氮含量超标会导致水产动物红细胞数量和血红蛋白数量逐渐减少,血液载氧能力降低,鳃组织出现病变,甚至发生暴发性死亡。
氨氮超标处理措施:①放养前清淤、清塘,减少池中氮的库容量。
②清塘后,施入适量有机肥培水,使池水肥度适宜。
③根据水体实际承受能力,制定合理的放养密度,养殖中选择消化率高的饵料投喂,并经常开动增氧机增氧。
④养殖中后期,每立方米水体用沸石粉15~20克或活性炭2~3克全池泼洒,以改善底质,吸附氨氮,降解有机物。
2.亚硝酸盐超标养殖水体亚硝酸盐含量应控制在0.1毫克/升以下。
亚硝酸盐超标是由池底老化、淤泥中有机物含量过多、水源水质不佳等因素所致。
水体中亚硝酸盐是氨转化为硝酸盐过程中的中间产物,其含量超标对水产动物的毒性较强,造成的危害相似于氨氮超标。
亚硝酸盐处理措施:①开动增氧机增氧或全池泼洒化学增氧剂,使池水有充足的溶氧,以促进亚硝酸盐向硝酸盐的转化。
②使用氨离子螯合剂、活性炭、吸附剂、腐植酸聚合物等复配合成的水质吸附剂,如亚硝酸盐降解剂,通过离子交换作用,吸附或降解亚硝酸盐。
③施用芽孢杆菌、硝化细菌、光合细菌、放线菌等微生物制剂,通过微生物分解亚硝酸盐。
注意微生物制剂不能与消毒剂、抗生素等同时使用,其间隔时间为5~7天。
3.pH值超标淡水养殖pH值应保持在6.5~8.5之间,以微碱性为好。
pH值低于6.5是水质变坏、溶氧降低、有毒的硫化氢等有害物质增加的综合体现,会削弱水产动物血液载氧能力,造成生理缺氧而经常浮头,影响生长。
pH值高于9,会腐蚀水产动物鳃组织,导致失去呼吸能力,同时造成水体中氨氮转化为分子氨,毒性成倍增加。
pH值过低的处理措施:①每667立方米水体用生石灰15~20公斤化水全池泼洒,每半月使用1次。
水产养殖中氨氮和亚硝酸盐氮的危害及治理分析
S h u i c h a n y u y e随着经济的发展和人们生活水平的提高,工业污染、非点源污染、畜禽产业的污水排放、生活污水的排放以及氨氮污染和亚硝酸盐污染的其他原因的增加,水体中的藻类和其他微生物的大量繁殖,形成富营养化污染,其可导致水中溶解氧的过渡消耗致使水产生物无法存活,不仅降低了经济效益,还破坏了生态环境。
水体中的氨氮和硝酸盐具毒性,其对水产养殖产品的产量及品质有一定的影响,严重制约水产养殖业的可持续发展。
特别是近几年高密度工业养殖技术的不断普及,对氨氮污染控制的需求越来越突出。
因此,找寻合理的方法将氨氮和亚硝酸盐氮的危害性降到不具备威胁的范围内,实现水生物的健康生长,成为目前人们研究关注的热点。
一、水产养殖中氨氮与亚硝酸盐氮的危害鱼虾蛋白质的代谢就会产生氨,甲壳类动物的排泄物含有超高的氮,所以氨氮的产生是无法避免的,在水产养殖中如果不能有效对水中氨氮含量进行有效降低,会严重危害鱼虾的正常生长,甚至会让鱼虾身体中的酶产生作用,导致其被毒害;亚硝酸盐氮对水产品的危害在于能破坏鱼虾器官,导致鱼虾难以进行氧气的输送,必须对这些危害因素进行有效预防,保障水产养殖户的劳动资本。
以对虾的危害为例,根据相关专家的研究发现,氨氮对虾的幼体具有毒害的作用,虾会随着不断的增长而增强对氨氮的抵抗力,而虾的幼体则难以承受,在虾的幼体培养中,氨氮会基于LC50的安全浓度为0.093mg/L,EC50的安全浓度则为0.025mg/ L;用亚硝酸盐氮对虾幼体进行实验,斑节对虾自无节幼体变态到仔虾的发育过程,虾的幼体随着成长对亚硝酸盐氮的耐受性不断增加,无节幼体的亚硝酸盐氮基于96h LC50的安全浓度为0.11mg/L左右;仔虾的亚硝酸盐氮基于96h LC50的安全浓度为1.36mg/L左右,由此得出,氨氮与亚硝酸盐会让虾体中的PO、溶菌酶与SOD的活性变低,自由基氧化物会变多,导致虾体的抵抗力衰减,正常生理被破坏。
水产养殖中氨氮亚盐的毒害作用及应对措施
水产养殖中氨氮亚盐的毒害作用及应对措施在水产养殖中,我们经常遇到池塘中氨氮和亚硝盐过高的问题。
确实,因为养殖过程中氨氮、亚盐超标的问题,每年都有不少养殖户血本无归。
关于如何处理氨氮、亚盐超标,笔者认为做好几点,这个问题的处理并不难。
氮元素在水体中的存在形式主要有氨氮、硝酸氮(NO3-)、亚硝酸氮(NO2-),硝酸氮对水生生物是无毒的,氨氮、亚硝酸氮是有毒的。
一、氨氮亚盐是如何毒害鱼虾的?氨氮的毒害作用氨氮,一般以分子氨的形式渗入鱼体内,由于分子氨具有较强的氧化性,能将鱼血液中血红蛋白分子的Fe2+氧化成为Fe3+;虾是血蓝蛋白,分子氨会将虾血液中的Cu+氧化成Cu2+,降低血液的载氧能力,使呼吸机能下降,造成生理缺氧。
由此可见,水体溶氧越低,氨毒性也就越强,鱼虾越容易缺氧窒息。
同时,氨也具有较强的腐蚀性,先是侵袭粘膜组织,特别是鳃的表皮和肠粘膜,这些都是比较脆弱的器官;其次是神经系统,使鱼虾等水生动物的肝肾系统遭受破坏,引起体表及内脏充血、肌肉增生及出现肿瘤,严重的发生肝昏迷以致死亡。
所以,即使低浓度的氨,长期存在水体中,也会腐蚀鱼虾的鳃组织器官,出现鳃小片弯曲、粘连或融合等现象。
亚盐的毒害作用亚盐的毒理与氨氮相似,同样也是把鱼正常血红蛋白(虾为血蓝蛋白)下的Fe2+氧化成Fe3+,降低血红蛋白的携带氧气的能力,造成鱼体缺氧甚至窒息死亡。
这种现象与人体一氧化碳中毒原理是一样的。
另外,在pH较低的情况下,亚盐易与仲胺类(以硝基化合物,与醛或酮类化合物为原料生成的一类物质)物质生成亚硝酸胺,加重亚盐的毒性,造成鱼虾厌食烦躁不安的现象。
二、氮的来源1、池塘底质。
池塘底质中的氨氮本质上来源于上一造养殖期间遗留下来的污染,其浓度取决于休耕期间干塘晒塘的处理程度。
如果休耕期间池塘淤泥能够彻底干燥,将氨氮全部氧化为硝酸,则回水后,当底泥中的氧气被消耗完毕,硝酸往往被作为电子受体和氢受体而还原为氮气。
因此,残余的氮不会太多。
PH氨氮亚硝酸盐藻类老化你都知道怎么解决嘛?
PH氨氮亚硝酸盐藻类老化你都知道怎么解决嘛?各个养殖区域的水源水质、气候变化、养殖品种和养殖管理模式等都有一定的区别,防治水产疾病时,就需要根据池塘水体和水产动物的具体情况综合分析,正确判断病因,针对性采取措施。
以下方案仅供参考。
一、pH值异常鱼虾适宜的pH值为6.5~8.5,鱼虾最适宜的pH值为7.5-8.5,一般呈弱碱性,对虾最适宜的pH值为8.2-8.5。
(1)pH值高有条件的池塘可适当排换水。
超过8.5,8.8稍高:解毒后培养超能乳酸菌种;超过9.0高:先泼洒有机酸产品,再培养超能乳酸菌种。
如果藻类实在过多可谨慎考虑杀灭一部分藻类(消杀类产品甲壳类蜕壳期禁用,放苗半月之后才可以考虑杀藻措施,水草池塘适当清理水草),然后及时解毒增氧,选择晴天上午补充超能乳酸菌种。
有机质等悬浮物比较多的水体,可先施用活性炭、沸石粉等吸附产品净水之后,改底增氧,解毒之后再培养超能乳酸菌种。
(2)pH值偏低pH<7.4时,总氨氮低,少量多次使用凉石灰水{5~10斤/亩}缓慢提高pH值,再进行培藻。
7.5<pH<8.2时,藻类偏稀或缺乏时(养殖前期):晴天上午解毒之后使用藻种+肥料等肥水产品,可配合超能EM菌种。
藻类丰富但老化时(养殖后期):先使用有机酸解毒,再改底增氧,然后在晴天上午解毒之后肥水。
二、亚硝酸盐高养殖水体中亚硝酸盐的含量应控制在0.2mg/L以下,鱼塘亚硝酸盐浓度达到0.1mg/L,就可以引发褐血病。
海水养殖中盐度高,亚硝酸盐的毒性会降低,没有淡水养殖的危害大。
适当控料(减料或停料),适当加大排换水量,降低亚硝酸盐的浓度,配合有机酸等抗应激产品提高水产动物活力,使用强氧化性改底产品如过硫酸氢钾降解亚硝酸盐,配合增氧产品,然后晴天上午培养超能EM菌种降解亚硝酸盐,根据情况可配合培藻措施调水,同时拌喂VC还原解除亚硝酸盐对鱼虾血液的毒性。
亚硝酸盐严重超标时,应急措施可使用吸附性产品(沸石粉、活性炭等)暂时性缓解,注意氧化改底,也可全池泼洒粗盐或海水晶(每亩·米用5公斤),氯离子可以与亚硝酸根离子竞争氯细胞上的吸收位点,增加亚硝酸根离子进入机体的难度,从而起到了降低水体中亚硝酸盐对养殖对象的毒害作用。
(完整word)养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施
酸碱度(即pH值) 对鱼的影响池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。
鱼类最适宜在中性或微碱性的水体中生长,其pH值为7。
8~8。
5.但在pH值6~9时,仍属于安全范围.不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。
鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。
如果pH值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。
同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等.如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。
pH值对鱼类繁殖也有影响.pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。
若pH值在6。
4以下或9.4以上,则不能孵出鱼苗.若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。
若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。
由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH值正常。
水的硬度对养鱼的影响硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响?水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。
水产养殖中氨氮、亚硝酸盐产生的原因、危害以及降解的方法
天津农学院研究生课程考试卷姓名、学号:张媛媛********** 年级、专业: 12级水产养殖专业课程名称:研究生班讨论授课学时学分: 40课时2学分考试成绩:授课或主讲教师签字:水产养殖中氨氮、亚硝酸盐产生的原因、危害及降解的方法随着我国经济的发展和人们生活水平的提高,由于工业污染排放、种植业面源污染排放、畜禽业养殖污水排放、水产养殖污水排放、生活污水排放等引起的水体氨氮污染和亚硝酸盐污染有加重的趋势,不仅会引起水体中藻类及其它微生物大量繁殖,形成富营养化污染,严重时会引起水中溶解氧的大量消耗,导致水生动物大量死亡,造成生态破坏和一定程度的经济损失。
水体中存在的氨氮和亚硝酸盐对养殖的水产品具有一定的毒性,影响了水产品的品质,限制了水产养殖的可持续发展,特别是随着高密度工厂化养殖技术的推广,氨氮污染治理的需求日益突出。
因此,氨氮污染对水产品的影响以及相应污染的治理对策的研究,成为目前人们研究关注的热点。
1.氨氮、亚硝酸盐产生的原因(1)不合理投饲。
驯化养鱼时,投喂的颗粒饲料含蛋白较高,有一些蛋白是鱼类无法利用的,这些蛋白要排泄到水中;投喂方法不当,造成鱼类吃得过饱,有一些饲料来不及消化就排泄到水中;饲料直接落入水中,还有一些残饵,在水中分解会产生大量的氨和有毒物质,再经过亚硝化细菌和光合细菌的作用很快转化为亚硝酸,亚硝酸与一些金属离子结合后形成亚硝酸盐。
(2)不合理施肥。
仍然采用投饲和施肥相结合的方法养鱼,大量长期使用N肥。
(3)池底淤泥。
长时间不清除池底淤泥,池底养殖密度过大,易造成水底缺氧,含氮有机物分解,通过各种微生物的作用,分别以铵、亚硝酸盐、硝酸盐的形态存在在水体中,俗称氨态氮、亚硝态氮、硝态氮[1]。
亚硝酸盐是氮素在自然界循环过程中的产物之一。
水体中含氮化合物存在的主要形式有:有机氮和氨态氮(NH3-N)。
氨化作用即由氨化细菌或真菌的作用将有机氮分解成为氨与氨化合物,氨态氮在硝化作用下转化为硝酸盐氮,这是一个耗氧、耗碱度的过程,亚硝态氮是其中不稳定的中间形式,对养殖生物具有很强的毒性。
鱼池PH值过高的危害及其处理方法
鱼池PH值过高的危害及其处理方法
水是鱼类的生存介质,水不仅直接影响鱼类本身,还会影响到饵料生物的组成、数量和分布。
良好的水环境是保证鱼类健康生长的物质基础,因此养鱼用水必须在物理、化学、生物等方面都适合鱼类生长发育的要求,其中PH值起着举足轻重的作用。
一、PH值过高对鱼的危害
1、水体PH值过高时会腐蚀鱼的鳃组织,并使孵化中的鱼卵卵膜早溶,引起胚胎过早出膜而大批死亡。
2、在碱性环境下会使蓝藻、小三毛金藻大量生长繁殖,而小三毛金藻的代谢物中有一种鱼毒素,可使鱼类中毒死亡,因此盐碱地的鱼池要特别注意蓝藻、小三毛金藻的发生。
3、水体PH值过高,会降低鱼类食欲,影响鱼的生长。
二、鱼池pH值偏高处理方法
1、施用EM液和活菌制剂,建立有益水生微生物区系,调节水体pH值;
2、全池施放明矾(硫酸铝钾),每亩每米水深2~3kg;
3、施用二氯化钙,二氯化钙水解后呈酸性,可降低pH值,又能供给钙离子;
4、施用磷酸二氢钾,可调节水体pH值;
5、施用沸石粉、滑石粉(又称光粉、皂石粉,主要成分为硅酸镁调节,每亩每米水深施用1~2千克,可降低pH值0.5~1.0;
6、施用降碱灵、腐植酸;或醋酸直接调节,用量500ml/亩;必要时也可用盐酸调节,用量300~500ml/亩,充分稀释后全池泼洒;
7、用络合铜(如柠檬酸铜)或无机铜(如硫酸铜)控制水色过浓及浮游植物的过量繁殖(注意防水体缺氧),降低pH值。
8、如果是PH急性升高,也可以通过泼洒稀盐酸或醋酸紧急降碱,然后再采取换水或其他可行措施调节水质。
9、如果是水体藻类过多也会引起下午水体PH升高过多,此时只要适当调水,杀灭一些藻类使水保持嫩爽即可。
养殖水体有害指标危害和防治方法
养殖水体有害指标危害和防治方法养殖水体有害的指标的危害及防治方法水是鱼类赖以生存的物质条件之一,水质的好坏直接关系到水产养殖的成败。
良好的水质可有效地减少鱼类疾病的发生,从而减少药物的使用,并能迎合目前无公害水产品的要求。
这就是体现了水质管理在水产养殖中的重要作用,同样在高密度高投入高产出的今天要保持对养殖品种来说最佳的水质也是一比较或最困难的工作。
来源养殖水质的污染来源分为外源性(工业农业生活废物污染自身污染主要指池塘的老化残饵腐烂。
药物污染。
池塘污水的乱放为施入及大量的施肥其对养殖影响化较大的理化指标有 PH、氨氮、亚硝酸盐、HS、PH PH 是水质的重要指标。
淡水鱼类最适 PH 在 7.2~8.0 之间。
超过就会导致就应激反应如 PH 低于 4 高于 11 必然会引起死亡。
PH 值低可使养殖鱼虾血液中的 PH 值下降,削弱其血液载氧能力。
尽管水中的溶解氧较高,也会造成鱼虾生理缺氧症,经常浮头。
且生长受阻、患病。
PH 值过高氨的毒性增强、较高的毒氨则腐蚀鱼虾腮部组织,粘液1/ 6分泌增多,诱发加重发病。
使其失去呼吸能力而大批死亡。
PH 偏低处理方法:1)每次每亩 10~15kg 生石灰兑水后全池泼洒。
2)水深 1.5m 鱼塘每亩施草木灰 110~190kg 即少升高 PH 值,又能促进漂浮生物的繁殖为鱼类生长,提供充足的天然饵料。
3)使用氨基酸肥水膏+ 硅藻旺迅速培育浮游植物,促使藻类繁殖,PH 亦会随之升高至正常。
4)少量多次用氢氧化钠调节,先调配成 1/1000 原液,再用1000 水冲稀全池泼洒 PH 值偏高处理方法:1)注入新水 2)使用降碱药如明矾每亩 051kg/亩加以控制 3)高达 9.5 也可用盐酸调节,一般每亩 300~500ml/亩充分稀释后全池泼洒,注意用药后水质失控,无缓冲能力 4)用食醋每亩不超过 1kg 5)有机酸解毒灵益菌能调水博士、能有效调节水质。
下降并稳定 PH 值氨氮氮是由 NH4+和 NH3 两部分组成的其中NH3 上升有毒性而NH4 对鱼无毒性,所占比例受温度、盐度、酸碱度等因素影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酸碱度(即pH值) 对鱼的影响池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。
鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。
但在pH值6~9时,仍属于安全范围。
不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。
鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。
如果pH值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。
同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。
如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。
pH值对鱼类繁殖也有影响。
pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。
若pH值在6.4以下或9.4以上,则不能孵出鱼苗。
若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。
若pH 值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。
由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH值正常。
水的硬度对养鱼的影响硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响?水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。
例如,在烧开水时易产生锅垢,又如硬水用来洗涤衣服时,消耗肥皂会比较多等。
因此,硬度可以用来描述水的软硬程度,其定义是指能使肥皂沉淀之量。
这是因为肥皂是硬脂酸的钠或钾盐,遇到水中的钙、镁离子,易生成不溶性的硬脂酸钙和硬脂酸镁,使肥皂失去洗涤衣服的作用。
除了钙、镁离子外,肥皂还能被铁、锰、铜…离子所沉淀,所以在化学上定义︰凡是水体存在能被肥皂产生沉淀的矿物质离子,都称为「硬度离子」,这裡指金属阳离子而言,主要包括钙、镁、铁、锰、铜离子等,而象钠、钾离子都不属于。
但在一般的自然水(包括自来水)中,除了钙、镁离子外,其馀硬度离子存量很少,它们的总含量可能不到3%,因此水的硬度可以说主要表现为钙和镁离子,又称为“钙硬度”或“镁硬度”两者之和,称为“总硬度”,简称“硬度”,这其中钙硬度平均约占85%,镁硬度约占15%。
硬水又依加热之后是否可以发生矿物质沉淀,而分为“暂时硬水”和“永久硬水”两种。
其中的部分金属离子可因加热而析出,故称为暂时硬水,主要是指那些含有酸式碳酸盐(例如,碳酸氢钙、碳酸氢镁、碳酸氢锰…等);所谓永久硬水,是指含有硫酸盐、氯化物、硝酸盐(例如硫酸锰、硝酸镁、氯化钙…等)的水,不因加热而析出,故称为永久硬水。
可见永久硬水或暂时硬水主要是针对酸根阴离子而言的。
软水和硬水的判断,通常必须使用化学分析方法才能决定,无法用肉眼直接判断。
由于硬度离子的碳酸盐都是沉淀的,所以在道统化学上的定量分析中,只有使用碳酸盐法才能使所有的硬度离子都被沉淀出来。
硬度也因此通常以碳酸盐表示,又因钙硬度占总硬度中绝大部分,因此在国际上特别以碳酸钙(CaCO3)的量(ppm)来表示硬度。
但使用碳酸钙(CaCO3)的量来表示硬度,在道统化学上的定量分析中,其结果可能会有一些操作上的误差,如果能再经过进一步的焙烧处理,让碳酸钙(CaCO3)变成氧化钙(CaO),就可以更准确获得分析结果,例如,德国就是利用氧化钙(CaO)的量(°dH),来描述硬度GH是指水体中所有硬度离子︰即钙、镁、铁、锰、铜离子等的浓度,主要考量的是金属阳离子;与之对应的考量酸根离子中主要是“暂时硬水”的酸式碳酸根(HCO3-)的浓度值,即称为KH值。
硬度对水草的影响表现下︰GH︰硬度离子中的钙及镁离子是水草的必要养分(次要营养元素),铁、锰、铜等离子也是微量营养元素,由此看来,硬度对水草养分的获得,应该具有正面的助益;但水体中的各种养分如果存在比例不均衡,会发生相互拮抗作用,已知钙有阻止水草对水分之吸收而有利于养分吸收之作用,适与钾之作用相反,故钙与钾必须要有适当比例,否则钙与钾之间必会发生拮抗作用,让水草只能吸收钙或钾,不能吸收钾或钙,对水草的生长一定有极不良的后遗症。
硬度对水草的影响,主要是建立在养分相互之间的拮抗作用,尤其是钙与钾之间的拮抗作用之上。
水草无法生活在GH=0的水中,也不可以生活在硬度极高的水中,所以GH是水草育成的基本条件,一般以GH介于软水(5~8°dH)至适度硬水(9~12°dH)较为适当。
KH︰作为碳酸根或重碳酸根(HCO3-)的浓度值,不是水草育成的条件本身对水草生长无太大关係,但它会影响水体的pH值,以及当水草缺乏CO2来源时,供作光合作用所需要的无机碳源,对水草的育成有密切的关係,因此,水草可以生活在KH=0的水中(但必须输入CO2及预防pH值过低),也可以生活在KH=25°KH以上的水中(但必须预防pH值过高),不过一般以4-10°KH最适当,因为在这范围之内,水体的pH值较为稳定,同时水体也能涵容适当的无机碳源供水草进行光合作用之用综上所述我们可人为地将水的硬度分成︰强软水︰德国硬度0~4°dH之水,相当于碳酸盐硬度约0~89ppm之水;软水︰德国硬度5~8°dH之水,相当于碳酸盐硬度约90~159ppm之水;适度硬水︰德国硬度9~12°dH之水,相当于碳酸盐硬度约160~229ppm之水;中硬水︰德国硬度13~18°dH之水,相当于碳酸盐硬度约230~339ppm之水;硬水︰德国硬度19~30°dH之水,相当于碳酸盐硬度约340~534ppm之水;强硬水(very hard water)︰德国硬度30°dH以上之水,相当于碳酸盐硬度535ppm以上之水。
最适当,因为在这范围之内,水体的pH值较为稳定,同时水体也能涵容适当的无机碳源供水草进行光合作用之用养殖水体中氨氮对鱼的危害和解决技术措施养殖水体中的游离氮和离子铵被合称为氨氮,其来源主要是饲料、肥料、水生物排泄以及注入的其它水体。
氨氮对养殖鱼有明显的中毒致死的危害。
我们大多数养殖鱼类对氨氮都十分敏感,如氨氮浓度为0.099~0.455mg/L就会对草鱼生长产生抑制,而水质国标规定氨氮小于0.5mg/L,氨氮在国标规定水平以下就可能对鱼造成危害了。
科技工作者经研究指出,氨氮中毒主要危害主要为:一是氨氮增高抑制鱼类自身氨的排泄,使血液和组织中氨的浓度升高,降低血液载氧能力;二是氨氮具有较高的脂溶性,很容易透过细胞膜直接引起鱼类中毒,使鱼群出现呼吸困难,分泌物增多并发生衰竭死亡;三是引起鳃表皮细胞损伤而使鱼的免疫力降低。
水体氨氮增高会引发鱼类氨氮急性中毒或氨氮慢性中毒现象。
鱼类氨氮急性中毒的症状:1.鱼群出现挣扎、游窜现象,并时而出现下沉、侧卧、痉挛等症状。
2.呼吸急促,鱼口时而大张不能速度闭合。
3.鳃盖部分张开,鳃丝呈紫黑色,有时出现流血现象。
4.鳍条舒展,基部出血。
5.体色变浅,体表粘液增多。
急性中毒时能能造成鱼类大批死亡。
鱼类氨氮慢性中毒的症状:1.鱼摄食量下降、时间短,或摄食时一会便散开了,在四周漂游喝料沫;2.遇到阴雨天,上层鱼,如鲢鱼浮头,长时间浮在水面上,底栖鱼,如鲤鱼吃食逐渐减少。
溶氧下降,富营养化,PH值、温度升高,都会引起氨氮增加,加重水体对鱼的毒性。
如大量使用高蛋白饲料的精养塘,本来水体中氮含量就很高,受环境因素影响造成浮游植物大面积死亡,水体中的氨氮浓度将会突然升高。
氨氮中毒需要综合防治,主要有:1.提高饲料质量,降低饲料系数、减少残饵量减少养殖鱼的氮排泄量。
2.严格防控生活、工业下游的“富氮”水体侵入养殖塘,适当种植浮萍,凤眼莲和水葫芦等水生植物,控制和降低富营养化程度。
3.改善水质,增加底层溶氧合理使用增氧机,加强上下对流;经常清淤、换水、减少水体中浮游生物和有机物数量都增加水体溶氧;使用化学增氧剂,精养塘选用在水中分解缓慢的过氧化钙和过硫酸铵,对改善水质尤其是底层水质效果更加良好。
水体溶氧尤其是塘底溶氧充足,可使水体有毒的氨氮被消除,保持水质的pH值稳定。
4.合理施肥。
精养塘应少施效果慢、耗氧大的有机肥,高温季节要多施磷肥。
5.使用水质改良剂。
精养塘氨氮中毒后风险高、损失大,最好能定期使用水质改良剂,特别是在高温季节。
6.氨氮中毒的救治。
先可用盐酸或醋酸调节水体pH值,pH值低于7.0时可解除氨氮毒性,后使用沸石粉、麦饭石、膨润土、活性炭等都具有吸附作用的矿物质、减少或去除水体中的氨氮含量(每亩200~300kg/1.5米水深),进行底层水体置换,抽去底层老水加注新水。
预防优于救治,养殖人员要密切观察水质、浮游植物、鱼类活动的变化,发现不良苗头及时处置,就能切实控制和减少氨氮中毒的风险。
在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。
其中游离氨和离子铵被合称为氨氮。
水体中只有以NH4+、NH2-和NO3-形式存在的氮才能被植物所利用。
水体中其它形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。
一、水体氮的来源鱼池中施入大量畜禽粪肥,分解产生无机氮;注入含有大量氮化合物的生活和工业棍合水;水生生物和鱼类的代谢产物中含有氮。
池塘中氮主要来源于肥料和饲料。
进入水体中的氮一般以氨的形式存在。
这些氮来源于鱼鳃排泄物和细菌的分解作用。
据研究,饲料中的氮有60%~70%被排泄到水体中,因此水产养殖生态中总氮浓度与投饲率及饲料蛋白含量有直接关系,在精养池中经常会出现对鱼类有害的“富氮”。
二、氨氮中毒的机理水体氨氮增加会抑制鱼类自身氨的排泄,使血液和组织中氨的浓度升高,降低血液载氧能力,血液C02浓度升高。
NH3不带电,具有较高的脂溶性,很容易透过细胞膜直接引起鱼类中毒,使鱼群出现呼吸困难,分泌物增多并发生衰竭死亡。
NH3会引起鳃表皮细胞损伤而使鱼的免疫力降低。
研究表明:鳜鱼血清碱性磷酸酶(AKP)活性和分子氨浓度呈抛物线变化关系,鲫鱼血清溶菌酶(LSZ).活性随分子氨浓度递增而下降。