济南大学1516高等数学 二BW参考解答

合集下载

0910高等数学B( 二)试题答案济南大学

0910高等数学B( 二)试题答案济南大学
一、填空题(每小题 2 分,共 10 分) 1.过点 M 0 (3,0, 1)且与平面 3 x 7 y 5 z 12 0 垂直的直线方程为为 ;

所求直线的一个方向向量 n (3, 7,5)
所求直线方程为 x 3 y0 z 1 3 7 5
2.设函数 z f ( x , y )是由方程 x 2 y 2 z 2 4z 给出, 则全微分 dz ;xdx ydy
2 n 1 x n arctan x ( 1) 2n 1 n 0
见教材P282
二、选择题 (每小题2分,共10分) 1、 f ( x, y )在点 ( x0 , y0 ) 可微是两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )
都存在的 [ A. C.
(1)
n 1

n 1
n ; n 1 3
解 (1) 记 un sin
而级数
n 1

3
n
,
vn

3
n
.
因为 limsin
n

3
n

3
n
1

3
n
收敛,故原级数收敛.
n 1
un1 n1 3 1 lim n . ( 2) lim n u n 3 n 3 n
2 z u z v 2x 3x z 2 ln(3 x 2 y ) 2 x u x v x y y (3 x 2 y )
2. 计算

D
yd , 其中D 是抛物线
及直线
y 2 y2 x
所围成的闭区域. 解: 为计算简便, 先对 x 后对 y 积分, 则

15-16-2高数ⅡA卷答案

15-16-2高数ⅡA卷答案

广东海洋大学2015—2016学年第二学期《高等数学Ⅱ》课程试题(答案)课程号: 19221102×2□√ 考试□√ A 卷□√ 闭卷□ 考查 □ B 卷 □ 开卷一、填空题(每小题3分,共30分) 1. 若⎰+=c x dx x f sin )(,则x x f cos )(= ;2. =⎰x tdt e dxd ln 0 1 ; 3. 二元函数229y x z --=的极大值是 3 ;4. 设是连续的奇函数,)(x f 则=⎰-dx x f ll )(arctan 0 ; 5. 二次积分⎰⎰=ππθ201dr rd 1 ;6. 方程02=+'-''y y y 的通解xe x c c y )(21+=;7.若),(y x f z =在点),(000y x P 处y zx z ∂∂∂∂,存在,则下列结论成立的是 (2) ;(1)),(),(lim 000y x f y x f P P =→; (2)),(),(lim 0000y x f y x f xx =→. 8.设xz z xy z x 21,)ln(==且已知,则yz z y 21=;9.已知2)(10=⎰dx x f ,则=-⎰dx x xf 12)1( 1 ; 班级:姓名:学号:试题共 4页加白纸2张密封线GDOU-B-11-30210.如果说导数是商的形式的推广,那么积分是 积 的形式的推广。

二、计算下列积分(每小题6分,共30分)1. dx x x x⎰+ln ln 1 2. dx x ⎰sin 解:原式=)ln (ln 1x x d xx ⎰(3分) 解:设x u =,则 c x x +=ln ln (6分) 原式=du u u ⎰sin 2 (2分)=)(cos 2⎰-u ud=⎰+-udu u u cos 2cos 2 (4分) =c u u u ++-sin 2cos 2=c x x x +-cos 2sin 2(6分) 3.dx x x ⎰--+11211 4. dx x⎰+∞121解:原式=dx x⎰-12112(3分) 解:原式=dx xbb ⎰+∞→121lim(3分) =π=10arcsin 2x (6分) )11(lim )1(lim 1bx b bb -=-=+∞→+∞→ =1 (6分)5. dx x xe x⎰+102)1( 解法一:原式=⎰⎰+-+10210)1(1x dx e x dx e x x (2分) 解法二:原式=)11(10+-⎰x d xe x12)1()1(110210210-=+-+++=⎰⎰ex dx e x dx e x e xx x(6分) =…=12-e三、计算下列各题(每小题6分,共12分). 1.求函数x y e y x f xy ln )1(),(-+=在点(1,1)处的全微分.解:yx e y f e x f ==),1(,)1,( (2分)yy x x ey f e x f ==∴),1(,)1,(e f e f y x ==∴)1,1(,)1,1( (4分))(dy dx e dz +=∴ (6分)2.)ln(xy y xzx+=,求yx z∂∂∂2.解:xyx x z x +'=∂∂)((3分) ))((2xyx y y x z x +'∂∂=∂∂∂∴ x1= (6分)四、计算重积分(每小题7分,共14分).1. ⎰⎰Dxydxdy 4,其中{}x y x x y x D 2,10),(≤≤≤≤=.解:⎰⎰⎰⎰=10244x xDxydy dx xydxdy (3分)⎰=10222dx xy x x⎰=1026dx x2= (6分)2. dxdy y x D)(22⎰⎰+,其中D 是由圆122=+y x 所围成的区域.解:10,20:≤≤≤≤r D πθ (2分)⎰⎰⎰⎰=+132022)(dr r d dxdy y x Dπθ (4分) 24214ππ==r (6分)五、求微分方程xe y dxdy -=+在初始条件10==x y 下的特解.(7分). 解:⎰⎥⎦⎤⎢⎣⎡+⎰=--⎰dx dx x e c dx e e y (2分) x e c x -+=)( (4分)把10==x y代入上式得1=c所求方程的特解为xex y -+=)1( (6分)六、质点以速度)(4)(2s m t t v -=作变速直线运动,用定积分中值定理证明:质点在时刻)(16212s t π-=处达到时间段][2,0上的平均速度。

济南大学1516高等数学 二BW参考解答

济南大学1516高等数学 二BW参考解答

lim
n
un1 ( x) un (x)
lim (n 1) xn1
n nxn
| x |
当 x 1, 当 x 1,
时级数收敛 故收敛半径为 R 1.
时级数发散
目录 上页 下页 返回 结束
5. 级数
的和为____.
教材P182-185
解:
Sn

n (2)k k 1 3
x0
0
y0
得 lim f (x x, y y) f ( x, y )
x0 y0

函数

zz
=
f f(x( ,xy)
在 点x , y(x,
y)y可) 微f
(函x ,数y )在该点连续
下面两个定理给出了可微与偏导数的关系:
d(1z)函d数f 可 微A x B y 偏导数存在 (2z)偏A导 x数连B续 y o ( ) 函数可微
f ( x, y ) 在点( x, y) 可微,A Δx B Δ y 称为函数 f ( x, y )
在点 (x, y) 的全微分, 记作
dz d f Ax By
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
目录 上页 下页 返回 结束
当函数可微时 :
lim z lim ( A x B y ) o ( ) 0
即 8x y 3z 4 0
目录 上页 下页 返回 结束
3. 设 z z(x, y) 是由方程 z3 x y z 0确定的隐函数 求 z , z . x y 知识点:隐函数求导公式, 教材P99-101
解: 令 F z3 x y z.

大学数学第二册详细答案汇总

大学数学第二册详细答案汇总

第一章 矩阵与行列式习题解答练习1.1 矩阵及其运算1. 已知线性变换x y y y x y y y x y y y 1123212331232235323=++=++=++⎧⎨⎪⎩⎪①②③, 求从变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换。

解:由3x (1)–2×(2)得:4y 2–7y 3=3x 1–2x 2 ④ (3)–(2)得:y 2–2y 3=x 3–x 2 ⑤ (4)–4×(5)得:y 3=3x 1+2x 2–4x 3类似运算可得:y 1=–7x 1–4x 2+9x 3, y 2=6x 1+3x 2–7x 3 故由变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换为y x x x y x x x y x x x112321233123749637324=--+=+-=+-⎧⎨⎪⎩⎪ 2. 已知两个线性变换x y y x y y y x y y y11321233123223245=+=-++=++⎧⎨⎪⎩⎪ y z z y z z y z z112213323323=-+=+=-+⎧⎨⎪⎩⎪ 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换。

解:将变换2代入变换1可得:x z z z x z z z x z z z1123212331236312491016=-++=-+=--+⎧⎨⎪⎩⎪3. 设A =111111111--⎛⎝⎫⎭⎪⎪⎪,B =123124051--⎛⎝ ⎫⎭⎪⎪⎪,求3AB –2A 及A T B 解:3AB –2A =3111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪ =3058056290-⎛⎝⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪=----⎛⎝ ⎫⎭⎪⎪⎪21322217204292 A T B =111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪=058056290-⎛⎝ ⎫⎭⎪⎪⎪ 4. 解:(1) (35, 6, 49)T , (2) (10) (3) ---⎛⎝⎫⎭⎪⎪⎪241236 (4) 6782056---⎛⎝ ⎫⎭⎪ (5) a x a x a x a x x a x x a x x 111222223332121213132323222+++++5. 设A =1213⎛⎝⎫⎭⎪,B =1012⎛⎝ ⎫⎭⎪,问 (1) AB =BA 吗? (2) (A +B )2=A 2+2AB +B 2吗? (3) (A +B )(A –B )=A 2–B 2吗? 解:AB =1213⎛⎝⎫⎭⎪1012⎛⎝ ⎫⎭⎪=3446⎛⎝ ⎫⎭⎪, BA =1012⎛⎝ ⎫⎭⎪1213⎛⎝ ⎫⎭⎪=1238⎛⎝ ⎫⎭⎪故 AB ≠BA 。

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

习题2-1 1、解:在任意一个面积微元σd 上的压力微元σρg x d dF =,所以,该平面薄片一侧所受的水压力⎰⎰=Dgxd F σρ2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量⎰⎰=Dd y x Q σμ),(3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得()()⎰⎰⎰⎰≤≤≤≤≤≤≤≤++≤++10101010221ln 1ln y x y x d y x d y x σσ4、解:积分区域D 如图2-1-1所示,所以该物体的质量34)384438()()(1032122222=-+-=+=+=⎰⎰⎰⎰⎰-dy y y y dx y x dy d y x M y yDσ 5、解:(1)积分区域如图2-1-2所示,所以⎰⎰⎰⎰=1101),(),(xy dy y x f dx dx y x f dy(2)积分区域如图2-1-3所示,所以⎰⎰⎰⎰=xx y ydy y x f dx dx y x f dy 2/4022),(),(2(3)积分区域如图2-1-4所示,所以⎰⎰⎰⎰+----=1121222122),(),(y yx x xdx y x f dy dy y x f dx(4)积分区域如图2-1-5所示,所以⎰⎰⎰⎰=eexey dx y x f dy dy y x f dx ),(),(10ln 06、解:(1)积分区域如图2-1-6所示,所以()⎰⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛-=-==101054/1134/3105565111432322x x dx x x x dy y x dx d y xxxDσ (2)积分区域如图2-1-7所示,所以1564)4(2122224022222=-==⎰⎰⎰⎰⎰--dy y y dx xy dy d xy y Dσ (3)积分区域如图2-1-8所示,所以11021011211011111101101)()()()(----+-----+-+-++--+-+-=-+-=-+-=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e e dx e e e dx e ee dxe e e dx e e e dy e dx dy e dx d e x x x x x x x x xxy x x xy x Dyx σ(4)积分区域如图2-1-9所示,所以613832419)()(20232/22222=⎪⎭⎫ ⎝⎛-=-+=-+⎰⎰⎰⎰⎰dy y y dx x y x dy d x y x yy Dσ 7、解:(1)积分区域如图2-1-10所示,令θθsin ,cos r y r x ==,所以ar ≤≤≤≤-0,22πθπ,故()⎰⎰⎰⎰⋅=-aDdr r r f r d d y x f 022sin)cos,(,ππθσ(2)积分区域如图2-1-11所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故⎰⎰⎰⎰⋅=θπθθθσsin 20)sin ,cos (),(dr r r f r d d y x f D8、解:(1)积分区域如图2-1-12所示,令θθsin ,cos r y r x ==,所以θθπθ2cos sin 0,40≤≤≤≤r ,故[]12sec tan sec )(4040cos sin 014021221022-===⋅=+⎰⎰⎰⎰⎰--ππθθπθθθθθd dr r r d dy y x dx xx(2)积分区域如图2-1-13所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故8)(432022022a dr r d dx y x dy ay a aπθπ==+⎰⎰⎰⎰-9、解:(1)积分区域如图2-1-14所示,故49)(12131221222=+-==⎰⎰⎰⎰⎰dx x x dy y dx x d yx x x D σ (2)积分区域如图2-1-15所示,令θθsin ,cos r y r x ==,所以10,20≤≤≤≤r πθ,故()28)1(21a r c2121)1(41121211211************21010444210143410421022202222-=⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫⎝⎛--+-=⎪⎪⎭⎫⎝⎛---=--=⋅+-=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰ππππππθσπr rr r d r dr dr r r dr r rrdr rr rdr r r d d y x y x D(3)积分区域如图2-1-16所示, 故433222232214)32()()(a dy a y a ay dx y x dy d y xaayay a aD=+-=+=+⎰⎰⎰⎰⎰-σ(4)积分区域如图2-1-17所示,令θθsin ,cos r y r x ==,所以b r a ≤≤≤≤,20πθ,故()33220212232)(a b dr r d d y xbaD-==+⎰⎰⎰⎰πθσπ10、解:积分区域如图2-1-18所示,由图形的对称性得:⎰⎰==1441D d S S σ,所以24024022sin 0402cos 2sin 24a a d a rdr d S a =-===⎰⎰⎰ππθπθθθθ图2-1-1 图2-1-2 图2-1-3 图2-1-4图2-1-5 图2-1-6 图2-1-7 图2-1-8图2-1-9 图2-1-10 图2-1-11 图2-1-12图2-1-13 图2-1-14 图2-1-15 图2-1-16图2-1-17 图2-1-18习题2-21、解:⎰⎰⎰Ω=dv z y x Q ),,(μ2、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域x y x D xy -≤≤≤≤10;10:,所以()()⎰⎰⎰⎰⎰⎰-+Ω=101022,,,,xy x dz z y x f dy dx dv z y x f(2)因为积分区域Ω的上曲面为开口向下的抛物柱面22x z -=与下曲面为开口向上的旋转抛物面222y x z +=围成,二曲面的交线在x o y平面上的投影为圆122=+y x ,即⎪⎩⎪⎨⎧-≤≤+-≤≤--≤≤-Ω22222221111:x z y x x y x x ,所以()()⎰⎰⎰⎰⎰⎰-----+Ω=11112222222,,,,x x x y x dz z y x f dy dx dv z y x f(3)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域1;11:2≤≤≤≤-y x x D xy ,所以()()⎰⎰⎰⎰⎰⎰-+Ω=111222,,,,xy x dz z y x f dy dx dv z y x f3、解:积分区域Ω如图2-2-1所示0)1(61211161211111022=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ω-dx x x dy y xdx zdz dy xdx xzdxdydz xxy 另解:因为积分区域Ω关于坐标面yoz 对称,又xz z y x f =),,(关于第一坐标是奇函数,所以0=⎰⎰⎰Ωxzdxdydz 。

2016年文数高考真题全国Ⅱ卷答案

2016年文数高考真题全国Ⅱ卷答案

2016年文数高考真题全国Ⅱ卷答案组题人:李明辉未命名1.已知集合A ={1,2,3}, B ={x|x 2<9},则A ∩B =A .{−2,−1,0,1,2,3}B .{−2,−1,0,1,2}C .{1,2,3}D .{1,2} 【答案】D 【解析】试题分析:由x 2<9得−3<x <3,所以B ={x|−3<x <3},因为A ={1,2,3},所以A ∩B ={1,2},故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.设复数z 满足3z i i +=-,则z =A .12i -+B .12i -C .32i +D .32i - 【答案】C【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C. 【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频3.函数sin()y A x ωϕ=+的部分图像如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【答案】A 【解析】试题分析:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A.【考点】 三角函数的图像与性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数=sin()y A x h ωϕ++图像的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.4.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 A .12π B .323π C .8π D .4π【答案】A 【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为2412ππ⋅=,故选A. 【考点】 正方体的性质,球的表面积【名师点睛】与棱长为a 的正方体相关的球有三个: 外接球、内切球和与各条棱都相切的球,其半径分别为2、2a和2.5.设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =A .12B .1C .32D .2【答案】D 【解析】试题分析:由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 考点:1、直线与抛物线;2、抛物线的几何性质;3、反比例函数.6.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( ) A .43-B .34-CD .2【答案】A 【解析】试题分析:由2228130x y x y +--+=配方得22(1)(4)4x y -+-=,所以圆心为(1,4),因为圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,所以1=,解得43a =-,故选A.【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】C试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.710B.58C.38D.310【答案】B【解析】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40155408-=,故选B.【考点】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.9.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.7 B.12 C.17 D.34第一次循环:a =2,s =2,k =1 ;第二次循环:a =2,s =6,k =2 ;第三次循环:a =5,s =17,k =3>2 ;结束循环,输出s =17 ,选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =x B .y =lg x C .y =2x D .y【答案】D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.11.函数π()cos 26cos()2f x x x =+-的最大值为 A .4 B .5C .6D .7【答案】B 【解析】试题分析:因为22311()12sin 6sin 2(sin )22f x x x x =-+=--+,而sin [1,1]x ∈-,所以当sin 1x =时,()f x 取得最大值5,选B. 【考点】 正弦函数的性质、二次函数的性质 【名师点睛】求解本题易出现的错误是认为当3sin 2x =时,函数23112(sin )22y x =--+取得最大值.12.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.13.已知向量a=(m,4),b=(3,−2),且a ∥b ,则m="___________." 【答案】6- 【解析】试题分析:因为a ∥b ,所以2430m --⨯=,解得6m =-. 【考点】平面向量的坐标运算 ,平行向量【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b≠0),则a ∥b 的充要条件是x 1y 2-x 2y 1=0.14.若x ,y 满足约束条件10,{30,30,x y x y x -+≥+-≥-≤则z=x−2y 的最小值为__________.【答案】5- 【解析】 【详解】 试题分析:由10{30x y x y -+=+-=得12x y =⎧⎨=⎩,记为点()1,2A ;由10{30x y x -+=-=得34x y =⎧⎨=⎩,记为点()3,4Β;由30{30x x y -=+-=得3x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y =-的最小值为5-.【考点】 简单的线性规划 【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =___. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[()]sin()sin cos cos sin 65B AC A C A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________. 【答案】1和3. 【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.17.等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==. 所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=; 当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 【考点】等差数列的通项公式,数列的求和【名师点睛】求解本题时常出现以下错误:对“[]x 表示不超过x 的最大整数”理解出错.18.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值;(Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值. 【答案】(I )1120;(Ⅱ)310;(Ⅲ)1.1925a . 【解析】 【分析】(I )求出A 为事件:“一续保人本年度的保费不高于基本保费”的人数.总事件人数,即可求P (A )的估计值;(Ⅱ)求出B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”的人数.然后求P (B )的估计值;(Ⅲ)利用人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值. 【详解】解:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.事件A 的人数为:60+50=110,该险种的200名续保, P (A )的估计值为:1101120020=; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B 的人数为:30+30=60,P (B )的估计值为:60320010=; (Ⅲ)续保人本年度的平均保费估计值为0.856050 1.2530 1.530 1.7520210200a a a a a a x ⨯+⨯+⨯+⨯+⨯+⨯==1.1925a .【点睛】本题考查样本估计总体的实际应用,考查计算能力.19.如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E,F 分别在AD,CD 上,AE =CF,EF 交BD 于点H ,将ΔDEF 沿EF 折起到ΔD′EF 的位置.(Ⅰ)证明:AC ⊥HD′;(Ⅱ)若AB =5,AC =6,AE =54,OD′=2√2,求五棱锥D′−ABCFE 的体积.【答案】(Ⅰ)详见解析;(Ⅱ)23√22.【解析】试题分析:(1)由已知得,AC ⊥BD,AD =CD ,AE =CF ⇒AE AD=CF CD⇒ AC//EF ⇒EF ⊥HD,EF ⊥HD ′ ⇒ AC ⊥HD ′;(2)由EF//AC ⇒ OHDO =AEAD =14,由AB =5,AC =6 ⇒DO =BO =√AB 2−AO 2=4 ⇒ OH =1,D ′H =DH =3 ⇒ OD ′2+OH =(2√2)2+12=9=D ′H 2 ⇒ OD ′⊥OH ,可证OD ′⊥平面ABC .又由EFAC =DHDO 得EF =92 ⇒五边形ABCFE 的面积S =12×6×8−12×92×3=694⇒以五棱锥D ′−ABCEF 体积V =13×694×2√2=23√22. 试题解析: (1)由已知得,AC ⊥BD,AD =CD , 又由AE =CF 得AE AD=CF CD,故AC//EF ,由此得EF ⊥HD,EF ⊥HD ′,所以AC ⊥HD ′. (2)由EF//AC 得OH DO=AE AD=14,由AB =5,AC =6得DO =BO =√AB 2−AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH =(2√2)2+12=9=D ′H 2,故OD ′⊥OH , 由(1)知AC ⊥HD ′,又AC ⊥BD,BD ∩HD ′=H , 所以AC ⊥平面BHD ′,于是AC ⊥OD ′,又由OD ′⊥OH,AC ∩OH =O ,所以,OD ′⊥平面ABC . 又由EFAC =DHDO 得EF =92.五边形ABCFE 的面积S =12×6×8−12×92×3=694.所以五棱锥D ′−ABCEF 体积V =13×694×2√2=23√22. 考点:1、线线垂直;2、锥体的体积.20.已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.【答案】(1)220.x y +-=(2)(],2.-∞ 【解析】试题分析:(Ⅰ)先求()f x 的定义域,再求()f x ',(1)f ',(1)f ,由直线方程的点斜式可求曲线()y f x =在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1a x g x x x -=-+,对实数a 分类讨论,用导数法求解. 试题解析:(I )()f x 的定义域为(0,)+∞.当4a =时,1()(1)ln 4(1),()ln 3f x x x x f x x x=+--=+-',(1)2,(1)0.f f =-=' 曲线()y f x =在(1,(1))f 处的切线方程为220.x y +-= (II )当(1,)x ∈+∞时,()0f x >等价于(1)ln 0.1a x x x -->+ 设(1)()ln 1a x g x x x -=-+,则 222122(1)1(),(1)0(1)(1)a x a x g x g x x x x +-+=++'=-=, (i )当2a ≤,(1,)x ∈+∞时,222(1)1210x a x x x +-+≥-+>,故()0,()g x g x >'在(1,)+∞上单调递增,因此()0g x >; (ii )当2a >时,令()0g x '=得1211x a x a =-=-+由21x >和121=x x 得11x <,故当2(1,)x x ∈时,()0g x '<,()g x 在2(1,)x 单调递减,因此()0g x <.综上,a 的取值范围是(],2.-∞【考点】 导数的几何意义,利用导数判断函数的单调性 【名师点睛】求函数的单调区间的方法: (1)确定函数y =f (x )的定义域; (2)求导数y′=f′(x );(3)解不等式f′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f′(x )<0,解集在定义域内的部分为单调递减区间.21.已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN V 的面积(Ⅱ) 当2AM AN =2k <<.【答案】(Ⅰ)14449;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示AM ,同理用k 表示AN ,再由2AM AN =求k 的取值范围. 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4. 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故1234AM x k =+=+. 由题设,直线AN 的方程为,故同理可得2121k k AN +=.由2AM AN =得222343+4kk k =+,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t +=-'=-≥,所以()f t 在(0,)+∞单调递增.又260,(2)60f f ==,因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)内,所以32k <<.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE=DG ,过D 点作DF ⊥CE ,垂足为F.(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.【答案】(Ⅰ)详见解析;(Ⅱ)12.【解析】试题分析:(Ⅰ)证,DGF CBF △∽△再证,,,B C G F 四点共圆;(Ⅱ)证明Rt Rt ,BCG BFG △△≌四边形BCGF 的面积S 是GCB △面积GCB S △的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF △△∽则有,,DF DE DGGDF DEF FCB CF CD CB ∠=∠=∠==所以,DGF CBF △△∽由此可得,DGF CBF ∠=∠ 由此180,CGF CBF ∠+∠=︒所以,,,B C G F 四点共圆. (II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC △斜边CD 的中点,知GF GC =,故Rt Rt ,BCG BFG △△≌因此四边形BCGF 的面积S 是GCB △面积GCBS △的2倍,即111221.222GCB S S ==⨯⨯⨯=△【考点】 三角形相似、全等,四点共圆【名师点睛】判定两个三角形相似要注意结合图形性质灵活选择判定定理,特别要注意对应角和对应边.通过相似三角形的性质可用来证明线段成比例、角相等,还可间接证明线段相等.23.在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||10AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)15. 【解析】试题分析:(Ⅰ)利用cos x ρθ=,sin y ρθ=化简即可求解;(Ⅱ)先将直线l 化成极坐标方程,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=,再利用根与系数的关系和弦长公式进行求解.试题解析:(Ⅰ)化圆的一般方程可化为2212110x y x +++=.由cos x ρθ=,sin y ρθ=可得圆C 的极坐标方程212cos 110ρρθ++=.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈. 设A ,B 所对应的极径分别为1ρ,2ρ,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=.于是1212cos ρρα+=-,1211ρρ=.()221212124144cos 44AB ρρρρρρα=-=+-=-由AB =23cos 8α=,tan α=. 所以l或.24.选修4-5:不等式选讲 已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当a ,b M ∈时,1a b ab +<+. 【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】试题分析:(I )先去掉绝对值,再分12x ≤-,1122x -<<和12x ≥三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211(){1,,2212,.2x x f x x x x -≤-=-<<≥当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <;当12x ≥时,由()2f x <得22,x <解得1x <.所以()2f x <的解集{|11}M x x =-<<.(Ⅱ)由(Ⅰ)知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此1.a b ab +<+【考点】绝对值不等式,不等式的证明.【名师点睛】形如x a x b c -+-≥(或c ≤)型的不等式主要有两种解法: (1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞(此处设a b <)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数1y x a x b =-+-和2y c =的图象,结合图象求解.。

高数(二)-习题选解答doc.doc

高数(二)-习题选解答doc.doc

第七章 微分方程的解1 求曲线族122=+Cy x 满足的微分方程,其中C 为任意常数.解 在等式122=+Cy x 两端对x 求导,得.022='+y Cy x再从122=+Cy x 解出,122y x C -=代入上式得 ,012222='⋅-⋅+y y yx x 化简即得到所求的微分方程 .0)1(2='-+y x xy 2验证函数x C x y sin )(2+=(C 为任意常数)是方程 0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 .将函数求一阶导数,得 dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π 即 .42π-=C 从而所求特解为 .sin 422x x y ⎪⎪⎭⎫⎝⎛-=π可分离变量的微分方程 1 求微分方程xy dxdy2=的通解. 解 分离变量得xdx y dy 2=两端积分得⎰⎰=xdx ydy 2 → 12||ln C x y +=从而2112x C C xe e e y ⋅±=±=+,记,1Ce C ±=则得到题设方程的通解 .2x Ce y =2 求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=-两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下, 用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解22)1(1-=-x C y 中. . 齐次方程 1求解微分方程x y x y dx dy tan +=满足初始条件61π==x y 的特解. 解 题设方程为齐次方程,设,x y u =则,dxdux u dx dy += 代入原方程得,tan u u dx du xu +=+分离变量得.1cot dx xudu = 两边积分得||ln ||ln |sin |ln C x u += → ,sin Cx u =将x y u =回代,则得到题设方程的通解为.sin Cx xy= 利用初始条件,6/|1π==x y 得到.21=C 从而所求题设方程的特解为.21sin x x y =2 求解微分方程 .22dxdy xy dx dy xy =+ 解 原方程变形为=-=22x xy y dx dy ,12-⎪⎭⎫⎝⎛xy x y (齐次方程) 令,x y u =则,ux y =,dx dux u dx dy +=故原方程变为,12-=+u u dx du x u 即.1-=u u dx du x 分离变量得⎪⎭⎫⎝⎛-u 11.x dx du =两边积分得||ln ||ln x C u u =+-或.||ln C u xu +=回代,x y u =便得所给方程的通解为 .||ln C xyy += 一阶线性微分方程1 求下列微分方程满足所给初始条件的特解.,0)ln (ln =-+dx x y xdy x .1==ex y解 将方程标准化为,1ln 1x y x x y =+'于是 ⎪⎪⎭⎫ ⎝⎛+=⎰⎰⎰-C dx e x e y x x dxx x dxln ln 1⎪⎭⎫ ⎝⎛+=⎰-C dx e xe x x ln ln ln ln 1.ln 21ln 12⎪⎭⎫ ⎝⎛+=C x x 由初始条件,1==e x y 得,21=C 故所求特解为.ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y *2 求解方程,)(dxd x dx d y dx dy ϕϕϕ=+ )(x ϕ是x 的已知函数.解 原方程实际上是标准的线性方程,其中,)(dx d x P ϕ=,)()(dxd x x Q ϕϕ= 直接代入通解公式,得通解⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 伯努利方程 1 求y x y xdx dy 24=-的通解. 解 两端除以,y 得,412x y xdx dy y =- 令,y z =得,422x z x dx dz =-解得,22⎪⎭⎫ ⎝⎛+=C x x z 故所求通解为.224⎪⎭⎫⎝⎛+=C x x y2(E03)求方程2)ln (y x a xydx dy =+的通解. 解 以2y 除方程的两端,得,ln 112x a y xdx dy y =+--即 ,ln 1)(11x a y x dx y d =+--- 令,1-=y z 则上述方程变为 .ln 1x a z xdx dz -=-解此线性微分方程得 x z =.)(ln 22⎥⎦⎤⎢⎣⎡-x a C以1-y 代,z 得所求通解为 yx ⎥⎦⎤⎢⎣⎡-2)(ln 2x a C .1=全微分方程1 (E01) 求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解,6xQ xy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy xy x u 03023)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 2 求解.0)33()35(222324=+-+-+dy y xy y x dx y xy x 解 这里xQ y xy y P ∂∂=-=∂∂236,所以题设方程是全微分方程. 可取,00=x ,00=y 由全微分求积公式得:⎰⎰+-+=yxdy y dx y xy x y x u 020324)35(),(.312333225y xy y x x +-+=于是,方程的通解为 .312333225C y xy y x x =+-+3(E02)求方程0324223=-+dy yx y dx y x的通解. 解,64x Qyx y P ∂∂=-=∂∂原方程是全微分方程, 将左端重新组合 +dy y21⎪⎪⎭⎫ ⎝⎛-dy y x dx y x 42332d =⎪⎪⎭⎫⎝⎛-y 1d +⎪⎪⎭⎫ ⎝⎛32y x d=,132⎪⎪⎭⎫⎝⎛+-y x y 原方程的通解为.132C yx y =+-)(x f y =''型1 求方程0)3()4(=-y xy 的通解.解 设),(x P y ='''代入题设方程,得),0(0≠=-'P P P x 解线性方程,得x C P 1=1(C 为任意常数),即,1x C y =''' 两端积分,得,21221C x C y +='',63231C x C x C y ++='再积分得到所求题设方程的通解为,224432241C x C x C x C y +++=其中)4,3,2,1(=i C i 为任意常数.进一步通解可改写为.432241d x d x d x d y +++=其中)4,3,2,1(=i d i 为任意常数.),(y x f y '=''型2 (E02) 求方程02)1(222=-+dx dyx dxy d x 的通解. 解 这是一个不显含有未知函数y 的方程.令),(x p dxdy=则,22dx dp dx y d =于是题设方程降阶为,02)1(2=-+px dxdpx 即.122dx x x p dp +=两边积分,得 |,|ln )1ln(||ln 12C x p ++=即)1(21x C p +=或).1(21x C dxdy+= 再积分得原方程的通解 .3231C x x C y +⎪⎪⎭⎫⎝⎛+=3 求微分方程12='+''y y x 满足),1(2)1(y y '= 且当0→x 时,y 有界的特解.解法 1 所给方程不显含,y 属),(y x f y '=''型,令,p y ='则,p y '=''代入方程降阶后求解,此法留给读者练习.解法2 因为,)(2'+'='+''y y x y y x 即,111xC y x y +=+'这是一阶线性微分方程,解得 ,221xC C xy ++=因为0→x 时,y 有界,得,02=C 故,21C x y +=由此得21='y 及,21)1(1C y += 又由已知条件),1(2)1(y y '=得,211=C 从而所求特解为.212+=x y ),(y y f y '=''型4(E03)求方程02='-''y y y 的通解. 解 设),(y p y ='则,dy dp py =''代入原方程得,02=-⋅p dy dp p y 即.0=⎪⎪⎭⎫⎝⎛-⋅p dy dp y p 由,0=-⋅p dy dp y 可得,1y C p =所以,1y C dxdy = 原方程通解为 .12x C e C y = 5已知x x x x x x x e e xe y e xe y e xe y ---+=-=+=23221,,是某二阶非齐次线性微分方程的三个特解:(1)求此方程的通解; (2)写出此微分方程;(3)求此微分方程满足6)0(,7)0(='=y y 的特解.解 (1) 由题设知, ,232y y e x -=21y y e x -=-是相应齐次线方程的两个线性无关的解,且,21x x e xe y +=是非齐次线性方程的一个特解,故所求方程的通解为y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C +=(2) 因y x x x e C e C xe -++=221 ① 所以x x x x e C e C xe e y --++='2212②x x x x e C e C xe e y -+++=''22142从这两个式子中消去,,21C C 即所求方程为;22x x xe e y y y -=-'-'' (3) 在①, ②代入初始条件,6)0(,7)0(='=y y 得 ,721=+C C 61221=+-C C ⇒,41=C ,32=C从而所求特解为 .342x x x xe e e y ++=-二阶常系数齐次线性微分方程及其解法 1求下列微分方程的通解.(1) ()();0235='++y y y (2)().022)4(6=+''--y y y y解 )1( 特征方程为,0235=++r r r 即,0)1(22=+r r 特征根,01=r ,32i r r ==,54i r r -== 通解为.sin )(cos )(54321x x C C x x C C C y ++++= (2)特征方程为,022246=+--r r r 即,0)1)(2(42=--r r特征根,21=r ,22-=r ,13=r ,14-=r ,5i r =,6i r -= 通解为x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++2(E05) 已知一个四阶常系数齐次线性微分方程的四个线性无关的特解为,2sin 3,2cos ,,4321x y x y xe y e y x x ====求这个四阶微分方程及其通解.解 由1y 与2y 可知,它们对应的特征根为二重根21r r =,1= 由3y 与4y 可知,它们对应的特征根为一对共轭复根.24,3i r ±= 所以特征方程为,0)4()1(22=+-r r 即,04852234=+-+-r r r r 它所对应的微分方程为,04852)4(=+'-''+'''-y y y y y 其通解为.2sin 2cos )(4321x C x C e x C C y x +++=x m e x P x f λ)()(=型1 (E02) 求方程1332+=-'-''x y y y 的一个特解.解 题设方程右端的自由项为x m e x P x f λ)()(=型,其中,13)(+=x x P m .0=λ 对应的齐次方程的特征方程为,0322=--r r 特征根为,11-=r .32=r 由于0=λ不是特征方程的根,所以就设特解为.10*b x b y += 把它代入题设方程,得 ,13323100+=---x b b x b 比较系数得,13233100⎩⎨⎧=--=-b b b 解得.31110⎩⎨⎧=-=b b于是,所求特解为.31*+-=x y2 (E03) 求方程x xe y y y 223=+'-''的通解.解 题设方程对应的齐次方程的特征方程为,0232=+-r r 特征根为,11=r ,22=r 于是,该齐次方程的通解为,221x e C x C Y +=因2=λ是特征方程的单根,故可设题设方程的特解:.)(210*x e b x b x y += 代入题设方程,得,22010x b b x b =++比较等式两端同次幂的系数,得,210=b ,11-=b于是,求得题没方程的一个特解*y .)121(2x e x x -=从而,所求题设方程的通解为 .)121(2221x x x e x x e C e C y -++=3 求方程x e y y y y =+'+''+'''33的通解.解 对应的齐次方程的特征方程为,013323=+++r r r 特征根1r 2r =3r =.1-= 所求齐次方程的通解 .)(2321x e x C x C x C Y -++=由于1=λ不是特征方程的根,因此方程的特解形式可设为,0*x e b y =代入题设方程易解得 ,810=b 故所求方程的通解为 y *y Y +=.81)(2321x x e e x C x C C +++=-x e x P x f x m ωλcos )()(=或x e x P x m ωλsin )(型 4 求方程x y y sin 4=+''的通解.解 对应齐次方程的特征方程的特征根为,2,1i r ±=故对应齐次方程的通解.sin cos 21x C x C Y +=作辅助方程.4ix e y y =+''i =λ 是单根,故设.*ix Axe y =代入上式得42=Ai ⇒,2i A -=∴*y ix ixe 2-=),cos 2(sin 2x x i x x -=取虚部得所求非齐次方程特解为.cos 2*x x y -=从而题设方程的通解为 .cos 2sin cos 21x x x C x C y -+= 5 (E04) 求方程x x y y 2cos =+''的通解.解 对应齐次方程的特征方程的特征根为,2,1i r ±=故对应齐次方程的通解x C x C Y sin cos 21+=作辅助方程.2ix xe y y =+''i 2=λ 不是特征方程的根,故设,)(2*ix e B Ax y +=代入辅助方程得,034=-B Ai 13=-A ⇒,31-=A i B 94-=∴*y =⎪⎭⎫ ⎝⎛--i x 9431ix e 2=⎪⎭⎫ ⎝⎛--i x 9431)2sin 2(cos x i x +ix x x -+-=2sin 942cos 31⎪⎭⎫⎝⎛+x x x 2sin 312cos 94取实部得到所求非齐次方程的一个特解: .2sin 942cos 31x x x y +-=所求非齐次方程的通解为 .2sin 942cos 31sin cos 21x x x x C x C y +-+=6(E01) 求欧拉方程xx y x y x 1ln 62-='+''的通解.解 作变量替换t e x =或,ln x t =则题设方程化为,6)1(te t Dy y D D --=+-即.622t e t dtyd --=两次积分,可求得其通解为y .321t e t t C C --++=代回原来变量,得原方程的通解y .1)(ln ln 321xx x C C -++=7 (E02) 求欧拉方程22334x y x y x y x ='-''+'''的通解.解 作变量变换t e x =或,ln x t =原方程化为,34)1()2)(1(2t e Dy y D D y D D D =--+--即te Dy y D y D 223332=-- 或.33222233t e dt dydty d dt y d =-- (1)方程(1)所对应的齐次方程的特征方程 ,03223=--r r r 求得特征根,01=r ,12-=r ,33=r 故所以齐次方程的通解Y t t e C e C C 3321++=-.3321x C xC C ++= 设特解*y tbe2=,2bx =代入原方程得,21-=b 即,2*2x y -=故所求欧拉方程的通解为y .2123321x x C x C C -++=第8章 向量及其线性运算1 (E04) 已知两点)5,0,4(A 和)3,1,7(B ,求与向量B A 平行的向量的单位向量c.解 所求向量有两个,一个与B A 同向,一个与B A 反向.因为B A ,}2,1,3{}53,01,47{-=---= 所以B A,14)2(13222=-++=故所求向量为}.2,1,3{141-±=±=BA B A c2(E05)已知两点)2,2,2(1M 和)0,3,1(2M , 计算向量21M M 的模、方向余弦和方向角. 解 21M M };2,1,1{}20,23,21{--=---=222)2(1)1(-++-=;24211==++=,21cos -=α,21cos =β;22cos -=γ,32πα=,3πβ=.43πγ= 3 设有向量21P P , 已知,2||21=P P 它与x 轴和y 轴的夹角分别为3π和4π, 如果1P 的坐标为(1, 0, 3), 求2P 的坐标.解 设向量21P P 的方向角为,、、γβα,3πα=,21cos =α,4πβ=,22cos =β ,1cos cos cos 222=++γβα 21cos ±=∴γ⇒3πγ=或.32πγ=设2P 的坐标为,),,(z y x 211cos P P -=x α⇒2121=-x ⇒,2=x 210cos P P -=y β⇒2220=-y ⇒,2=y 213cos P P -=z γ⇒2123±=-z ⇒,24==z z 或 2P 的坐标为.)2,2,2(,)4,2,2(4点A 位于第I 卦限, 向径OA 与x 轴、y 轴的夹角依次为3π和4π,,6= 求A 的坐标.解 ,3πα=.4πβ=由关系式,1cos cos cos 222=++γβα得,41)22()21(1cos 222=--=γ因为A 在第I 卦限,知,0cos >γ故.21cos =γ于是A O A O =,}3,23,3{21,22,216=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=−→−=OAe 点A 的坐标为.)3,23,3(两向量的数量积1试用向量方法证明三角形的余弦定理. 证 (作简图).设在ABC ∆中, ,θ=∠BCA ,||a CB =,||b CA =,||c AB =现要证.cos 2222θab b a c -+=记,a B C =,c B A =,b A C =则有,b a c-=从而c c c ⋅=2||)()(b a b a -⋅-=b a b b a a⋅-⋅+⋅=2.cos ||||2||||22θb a b a ⋅-+= 由,||a a = ,||b b = ,||c c =即得.cos 2222θab b a c -+=同理…… 2 (E04) 求与k j i b k j i a2,423-+=+-=都垂直的单位向量.解 b a c+=z y x z y xb b b a a a k j i=211423--=kj i ,510k j+= ||c 22510+=,55= ∴||c c c±=.5152⎪⎪⎭⎫ ⎝⎛+±=k j 3在顶点为)2,6,5(),2,1,1(--B A 和)1,3,1(-C 的三角形中, 求AC 边上的高BD .解 {},3,4,0-=C A {},0,5,4-=B A三角形ABC 的面积为 ||21B A C A S ⨯=22216121521++=,225=又|,|||21BD C A S ⋅= ,5)3(4||22=-+=C A所以|,|521225BD ⋅⋅=从而.5||=BD 4 利用向量积证明三角形正弦定理.证 设ABC ∆的三个内角为,,,γβα三边长为c b a ,,, (作简图).因为B C C A B A+=,所以B A B C C A AB B A ⨯+=⨯)(,B A B C B A C A ⨯+⨯=故,0=⨯+⨯B A B C B A C A 即.B A B C B A C A⨯-=⨯ 两边取模,B A B C B A C A⨯=⨯即,sin sin βαac bc =故.sin sin βαba = 同理可证 .sin sin γβcb = 因此,sin sin sin γβαcb a ==三角形正弦定理得证. 平面的截距式方程1 求平行于平面0566=+++z y x 而与三个坐标面所围成的四面体体积为一个单位的平面方程.解 设平面方程为,1=++c z b y a x ,1=V .12131=⋅∴abc 由所求平面与已知平面平行得,611161c b a ==(向量平行的充要条件) 令t c b a ===61161⇒.61,1,61t c t b t a === 由tt t 61161611⋅⋅⋅=⇒.61=t∴.1,6,1===c b a所求平面方程为,1161=++zy x 即.666=++z y x 2 求平面II, 使其满足:(1) 过z 轴;(2) II 与平面052=-+z y x 夹角为3π.解 因为平面∏过z 轴,可设其方程为.0=+By Ax 又因为∏与已知平面夹角为.3π故3cosπ222222)5(120|0)5(2|-++++⋅-++=B A B A 21=⇒A B 3=或A B 31-= ⇒03:=+∏y x 或.03:=-∏y x3求经过两点)9,2,3(1-M 和)4,0,6(2--M 且与平面0842=-+-z y x 垂直的平面的方程. 解 设所求的平面方程为.0=+++D Cz By Ax 由于点1M 和2M 在平面上,故 ,0923=++-D C B A .046=+--D C A又由于所求平面与平面0842=-+-z y x 垂直,由两平面垂直条件有.042=+-C B A从上面三个方程中解出,C B A 、、得 ,2/D A =,D B -=,2/D C -= 代入所设方程,并约去因子,2/D 得所求的平面方程.022=+--z y x 点到平面的距离4(E06) 求两平行平面1∏:052210=--+z y x 和2∏:x 5 01=--+z y 之间的距离d . 解 可在平面2∏上任取一点,该点到平面1∏的距离即为这两平行平面间的距离.为此,在平面2∏上取点),0,1,0(则 d 222)2(210|50)2(12010|-++-⨯-+⨯+⨯=1083=.63= 5求平行于平面0432:0=+++∏z y x , 且与球面9:222=++∑z y x相切的平面∏方程.解 可利用条件,//0∏∏写出平面∏的一般式方程,再利用球心到平面的距离3=d 来确定一般式方程中的特定系数.由,//0∏∏可设平面∏的方程为.032=+++D z y x因为平面∏与球面∑相切,故球心)0,0,0(到平面∏的距离d )0,0,0(),,(22321|22|=+++++=z y x D z y x ,3= 得,143||=D故所求平面∏的方程为014332=+++z y x 或.014332=-++z y x 空间直线的对称式方程与参数方程1 求过点)5,2,3(-且与两个平面152=--z y x 和34=-z x 的交线平行的直线的方程. 解 先求过点)5,2,3(-且与已知平面平行的平面,0)5(5)2()3(21=----+∏z y x : ,0)5(4)3(2=--+∏z x :即 ,033521=+--∏z y x : .:02342=+-∏z x 所求直线的一般方程为:.⎩⎨⎧=+-=+--023403352z x z y x 2 (E01) 一直线过点),4,3,2(-A 且与y 轴垂直相交, 求其方程.解 因为直线和y 轴垂直相交,所以交点为),0,3,0(-B ,}4,0,2{==A B s所求直线方程.440322-=+=-z y x 3 用对称式方程及参数方程表示直线 .043201⎩⎨⎧=++-=+++z y x z y x 解 在直线上任取一点),,,(000z y x 例如,取10=x ⇒⎩⎨⎧=--=++063020000z y z y ⇒,00=y ,20-=z得点坐标),2,0,1(-因所求直线与两平面的法向量都垂直,可取21n n s⨯=},3,1,4{312111--=-=kj i对称式方程 ,321041-+=--=-z y x 参数方程 .⎪⎩⎪⎨⎧--=-=+=tz ty tx 3241 4求过点M (2, 1, 3)且与直线12131-=-=+zy x 垂直相交的直线方程. 解 先作一过点M 且与已知直线垂直的平面,∏,0)3()1(2)2(3=---+-z y x再求已知直线与该平面的交点,N令t z y x =-=-=+12131 → .1213⎪⎩⎪⎨⎧-=+=-=tz t y t x 代入平面方程得,73=t 交点,73,713,72⎪⎭⎫⎝⎛-N 取所求直线得方向向量为,MN ,724767123731713272⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧=,-,-,--,-MN所求直线方程为.431122---z y x =-= 5 (E04) 过直线⎩⎨⎧=+-=--+02062:z y x z y x L 作平面∏, 使它垂直于平面.02:1=++∏z y x解 设过直线L 的平面束)(λ∏的方程为,0)2()62(=+-+--+z y x z y x λ即.06)1()1(2)1(=--+-++z y x λλλ现要在上述平面束中找出一个平面图,∏使它垂直于题设平面,1∏因平面垂直于平面,1∏故平面∏的法向量)(λn垂直于平面1∏的法向量}.1,2,1{1=n 于是,0)(1=⋅n nλ即.0)1()1(4)1(1=-+-++⋅λλλx解得,2=λ故所求平面方程为.:0623=-+-z y x π容易验证,平面02=+-z y x 不是所求平面.6在一切过直线L : ⎩⎨⎧=++=+++0204z y x z y x 的平面中找出平面∏, 使原点到它的距离最长.解 设通过直线L 的平面束方程为,0)2()4(=++++++z y x z y x λ即.04)1()21()1(=++++++z y x λλλ要使2222)1()21()1(16)(λλλλ+++++=d 为最大,即使31)32(6)1()21()1(2222++=+++++λλλλ为最小,得,32-=λ故所求平面∏的方程为.012=++-z y x易知,原点到平面02=++z y x 的距离为.0故平面02=++z y x 非所求平面.第9章 多元函数微分法及其应用1 (E01) 求二元函数222)3arcsin(),(yx y x y x f ---=的定义域.解 ⎪⎩⎪⎨⎧>-≤--013222y x y x 即⎩⎨⎧>≤+≤22242y x y x 所求定义域为 }.,42|),{(222y x y x y x D >≤+≤=2求极限 2222001sin)(lim yx y x y x ++→→. 解 令,22y x u +=则 u u y x y x u y x 1sin lim 1sin)(lim 0222200→→→=++=0. 3证明 220limyx xyy x +→→ 不存在. 证 取k kx y (=为常数),则 ,1lim lim222202200k kx k x kx x y x xy kxy x y x +=+⋅=+=→→→易见题设极限的值随k 的变化而变化,故题设极限不存在.4讨论二元函数 ⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,),(2233y x y x y x y x y x f 在)0,0(处的连续性.解 由),(y x f 表达式的特征,利用极坐标变换:令,sin ,cos θρθρ==y x 则)cos (sin lim ),(lim330)0,0(),(θθρρ+=→→y x f y x ),0,0(0f ==所以函数在)0,0(点处连续.5 试证函数 ⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 的偏导数)0,0(),0,0(y x f f 存在,但),(y x f 在)0,0(点不连续.证 )0,0(x f xf x f x ∆-∆+=→∆)0,0()0,0(lim0x x ∆-=→∆00lim0,1= yf y f f y y ∆-∆+=→∆)0,0()0,0(lim )0,0(0y y ∆-=→∆00lim 0.0=即偏导数),0,0(x f )0,0(y f 存在.但由上节的例 8知道,极限2200lim y x xyy x +→→不存在,故),(y x f 在)0,0(点不连续.6设 ,cos by e u ax = 求二阶偏导数. 解xu∂∂,cos by ae ax =y u ∂∂;sin by be ax -=22x u ∂∂,cos 2by e a ax =22yu ∂∂;cos 2by e b ax -= y x u ∂∂∂2,sin by abe ax-=x y u ∂∂∂2.sin by abe ax -= 7 验证函数 22ln ),(y x y x u +=满足方程 02222=∂∂+∂∂y ux u .证 22ln y x +),ln(2122y x +=∴x u ∂∂,22y x x +=y u ∂∂,22yx y += ∴22x u ∂∂22222)(2)(y x x x y x +⋅-+=,)(22222y x x y +-=22y u ∂∂22222)(2)(y x y y y x +⋅-+=.)(22222y x y x +-= ∴2222y ux u ∂∂+∂∂2222222222)()(y x y x y x x y +-++-=.0= 8证明函数r u 1=满足拉普拉斯方程 0222222=∂∂+∂∂+∂∂zu y u x u ,其中 222z y x r ++=. 证 x u ∂∂x r r ∂∂-=21r x r ⋅-=21,3r x-= 22x u ∂∂xr r x r ∂∂⋅+-=4331.31523r x r +-= 由函数关于自变量的对称性,得22y u∂∂,31523r y r +-=22z u ∂∂.52331r z r +-=222222zuy u x u ∂∂+∂∂+∂∂52223)(33r z y x r +++-=52333r r r +-=.0= 9设 ()()⎪⎩⎪⎨⎧=≠+-=0,0),(,00,0),(,),(2222y x y x y x y x xy y x f , 试求 ()0,0xy f 及().0,0xy f 解 因)0,0(x f x f x f x )0,0()0,(lim-=→xx 00lim0-=→.0= 当0≠y 时,),0(y f x xy f y x f x ),0(),(lim 0-=→22220)(lim y x y x y x +-=→,y -= 所以 )0,0(xy f y f y f x x y )0,0(),0(lim-=→y y y 0lim0--=→,1-= 同理 )0,0(y f yf y f y )0,0(),0(lim-=→,0=当0≠x 时,)0,(x f y yx f y x f y )0,(),(lim 0-=→22220)(lim y x y x x y +-=→,x =所以 )0,0(yx f xf x f y y x )0,0()0,(lim-=→xx x 0lim0-=→.1=10求 y x y x z 2422)3(++=的偏导数. 解 设,322y x u +=,24y x v +=则.v u z = 可得 ,1-⋅=∂∂v u v u z ,ln u u v z v ⋅=∂∂ ,6x x u =∂∂,2y y u =∂∂,4=∂∂xv2=∂∂y v 则x z ∂∂xvv z x u u z ∂∂∂∂+∂∂∂∂=4ln 61⋅⋅+⋅⋅=-u u x u v v v 12422)3)(24(6-+++=y x y x y x x )3ln()3(4222422y x y x y x ++++ y z ∂∂yv v z y u u z ∂∂∂∂+∂∂∂∂=2ln 21⋅⋅+⋅⋅=-u u y u v v v 11 设函数),(y x u u =可微,在极坐标变换,cos θr x = θsin r y =下,证明.122222⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂θu r r u y u x u 证 为方便起见,我们从欲证等式的右端出发来证明.把函数u 视为θ,r 的复合函数,即),sin ,cos (θθr r u u = 则r u ∂∂ry y u r x x u ∂∂∂∂+∂∂∂∂=,sin cos θθy u x u∂∂+∂∂=θ∂∂u θθ∂∂∂∂+∂∂∂∂=y y u x x u ,cos )sin (θθr y u r x u∂∂+-∂∂=所以2221⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂θu r r u 2sin cos ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=θθy u x u 22cos )sin (1⎪⎪⎭⎫ ⎝⎛∂∂+-∂∂+θθr y u r x u r .22⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=y u x u *12 求由a a xyz z (333=-是常数)所确定的隐函数),(y x f z =的偏导数xz∂∂和.y z ∂∂ 解 令,3),,(33a xyz z z y x F --=则x F ',3yz -=y F ',3xz -=z F '.332xy z -=显然都是连续.所以,当z F 'xy z 332-=0≠时,由隐函数存在定理得x z ∂∂z x F F ''=xy z yz 3332---=,2xy z yz -= y z ∂∂z y F F ''=xy z xz 3332---=.2xyz xz -=12求出曲线32,x z x y =-=上的点,使在该点的切线平行于已知平面.42=++z y x解 设所求切点为),,,(000z y x 则曲线在该点的切线向量为},3,2,1{200x x s -= 由于切线平行于已知平面,42=++z y z 因而s垂直于已知平面的法线向量},1,2,1{=n 故有n s ⋅132)2(11200⋅+⋅-+⋅=x x ,0=即10=x 或,31将它代入曲线方程,求得切点为)1,1,1(1-M 和.271,91,312⎪⎭⎫⎝⎛-M13求曲面 32=+-xy e z z 在点)0,2,1(处的切平面及法线方程.解 令),,(z y x F ,32-+-=xy e z z ,2y F x =',2x F y='z z e F -='1 → )0,2,1(n)0,2,1(}1,2,2{z e x y -=},0,2,4{=切平面方程为 ,0)0(0)2(2)1(4=-⋅+-+-z y x 即,042=-+y x 法线方程为.01221-=-=-z y x 14 求曲面 2132222=++z y x 平行于平面064=++z y x 的各切平面方程.解 设),,(000z y x 为曲面上的切点,则切平面方程为,0)(6)(4)(2000000=-+-+-z z z y y y x x x依题意,切平面方程平行于已知平面,得664412000z y x == → .2000z y x == ),,(000z y x 是曲面上的切点,满足曲面方程,代入得,10±=x故所求切点为),2,2,1(),2,2,1(---切平面方程(1),0)2(12)2(8)1(2=-+-+-z y x 即;2164=++z y x 切平面方程(2),0)2(12)2(8)1(2=+-+-+-z y x 即.2164-=++z y x15(E02)求函数y xy x y x f 22),(2+-=在矩形域 |),{(y x D =}20,30≤≤≤≤y x 上的最大值和最小值.解 先求函数),(y x f 在D 内驻点.由,022=-=y x f x 022=+-=x f y 求得f 在D 内部的唯一驻点 (1, 1),且.1)1,1(=f 其次求函数),(y x f 在D 的边界上的最大值和最小值. 如图所示.区域D 的边界包含四条直线段.,,,4321L L L L在1L 上,0=y ,)0,(2x x f =.30≤≤x 这是x 的单调增加函数,故在1L 上f 的最大值为,9)0,3(=f 最小值为.0)0,0(=f同样在2L 和4L 上f 也是单调的一元函数,易得最大值、最小值分别为,9)0,3(=f 1)2,3(=f (在2L 上), ,4)2,0(=f 0)0,0(=f (在4L 上),而在3L 上,2=y ,44)2,(2+-=x x x f ,30≤≤x 易求出f 在3L 上的最大值,4)2,0(=f 最小值.0)2,2(=f将f 在驻点上的值)1,1(f 与4321,,,L L L L 上的最大值和最小值比较,最后得到f 在D 上的最大值,9)0,3(=f 最小值.0)2,2()0,0(==f f16求函数 32233),(x y x y x f -+=在区域16:22≤+y x D 上的最小值.解 先求),(y x f 在D 内的极值.由,36),(2x x y x f x -=',6),(y y x f y=' 解方程组⎩⎨⎧==-060362y x x 得驻点(0, 0), (2, 0).由于,6)0,0(=''xxf ,0)0,0(=''xy f ,6)0,0(=''yy f ,6)0,2(-=''xxf ,0)0,2(=''xy f .6)0,2(=''yy f 所以,在点 (0, 0) 处,0362<-=-AC B ,06>=A 故在 (0, 0) 处有极小值.0)0,0(=f在点 (2, 0) 处,0362>=-AC B 故函数在点 (2, 0)处无极值.再求),(y x f 在边界1622=+y x 上的最小值.由于点),(y x 在圆周1622=+y x 上变化,故可解出),44(1622≤≤--=x x y 代入),(y x f 中,有z ),(y x f =32233x y x -+=348x -=),44(≤≤-x这时z 是x 的一元函数,求得在]4,4[-上的最小值.164-==x z最后比较可得,函数32233),(x y x y x f -+=在闭区间D 上的最小值.16)0,4(-=f17(E03)某厂要用铁板做成一个体积为32m 的有盖长方体水箱. 问当长、宽、高各取怎样的尺寸时, 才能使用料最省.解 设水箱的长为,xm 宽为,ym 则其高应为./2xym 此水箱所用材料的面积A ⎪⎪⎭⎫⎝⎛⋅+⋅+=xy x xy y xy 222⎪⎪⎭⎫⎝⎛++=y x xy 222).0,0(>>y x 此为目标函数.下面求使这函数取得最小值的点).,(y x令,0222=⎪⎭⎫ ⎝⎛-=x y A x .0222=⎪⎪⎭⎫ ⎝⎛-=y x A y 解这方程组,得唯一的驻点,23=x .23=y根据题意可断定,该驻点即为所求最小值点. 因此当水箱的长为m 32、宽为m 32、高为=⋅33222m 32时,水箱所用的材料最省.注: 体积一定的长方体中,以立方体的表面积为最小 18(E04)求表面积为2a 而体积为最大的长方体的体积. 解 设长方体的三棱长为,,,z y x 则问题就是在条件),,(z y x ϕ2222a xz yz xy -++=0=(1)下,求函数)0,0,0(>>>=z y x xyz V 的最大值.作拉格朗日函数),,,(λz y x L ),222(2a xz yz xy xyz -+++=λ由..,0)(20)(20)(2z y x z x yx z y z y z x y x x y xy L z x xz L z y yz L zy x ==⇒++=++=⇒⎪⎩⎪⎨⎧=++==++==++=λλλ 代入 (1) 式,得唯一可能的极值点:,6/6a z y x ===由问题本身意义知,此点就是所求最大值点.即,表面积为2a 的长方体中,以棱长为6/6a 的正方体的体积为最大,最大体积.3663a V =第10章 重积分1 不作计算,估计σd eI Dy x ⎰⎰+=)(22的值,其中D 是椭圆闭区域:12222≤+b y a x )0(a b <<. 解 区域D 的面积,πσab =在D 上,0222a y x ≤+≤∴,12220a y xe e e ≤≤=+由性质 6 知,222)(a Dy xe d e ⋅≤≤⎰⎰+σσσ.222)(a Dy xe ab d e ab πσπ≤≤⎰⎰+2 判断⎰⎰≤+≤+122)ln(y x r dxdy y x)1(<r 的符号.解 当1||||≤+≤y x r 时,,1|)||(|0222≤+≤+<y x y x 故 ;0)ln(22≤+y x 又当1||||<+y x 时,,0)ln(22<+y x 于是 .0)ln(1||||22<+⎰⎰≤+≤y x r dxdy y x3(E01)计算,⎰⎰Dxyd σ其中D 是由直线2,1==x y 及x y =所围成的闭区域.解一 如图,将积分区域视为—X 型,dx xydy xyd x D⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡=211σdx y x x12122⎰⎥⎦⎤⎢⎣⎡⋅=.81148222124213=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎰x x dx x x解二 将积分区域视为—Y 型, ⎰⎰Dxyd σdy x y dy xydx y y22122122⎰⎰⎰⎥⎦⎤⎢⎣⎡⋅=⎥⎦⎤⎢⎣⎡=2142213822⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎰y y dy y y .811=4计算σd y x y D⎰⎰-+221, 其中D 是由直线1-==x x y 、和1=y 所围成的闭区域.解 如图,D 既是—X 型,又是—Y 型.若视为—X 型,则 原积分dx dy y x y x ⎰⎰-⎥⎦⎤⎢⎣⎡-+=111221[]dx y xx1112/322)1(31⎰--+-=.21)1(32)1|(|31103113=--=--=⎰⎰-dx x dx x若视为—Y 型,则,111221122dy dx y x y d y x y yD⎥⎦⎤⎢⎣⎡-+=-+⎰⎰⎰⎰--σ其中关于x 的积分计算比较麻烦,故合理选择积分次序对重积分的计算非常重要. 5 计算,||2⎰⎰-Ddxdy x y 其中D 为10,11≤≤≤≤-y x . 解⎰⎰⎰⎰⎰⎰-+-=-21222()(||D D Ddxdy x y dxdy y x dxdy xy )⎰⎰⎰⎰-+-=--1211021122)()(xx dy x y dx dy y x dx.15112121211142114-=⎪⎭⎫ ⎝⎛+-+=⎰⎰--dx x x dx x 6 计算,dxdy eDyx ⎰⎰+ 其中区域D 是由0,1,0===y x x , 1=y 所围成的矩形.解 如图,因为D 是矩形区域,且,y x y x e e e ⋅=+所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎰⎰⎰⎰+1010dy e dx e dxdy e y Dx y x .)1())((21010-==e e e y x7 交换二次积分⎰⎰-xdy y x f dx 1010),(的积分次序.解 题设二次积分的积分限:,10,10x y x -≤≤≤≤ 可改写为:,10,10y x y -≤≤≤≤ 所以⎰⎰⎰⎰--=yxdx y x f dydy y x f dx 101110.),(),(8(E06)证明 ⎰⎰⎰---=aa xb ya xb adx x f e x a dx x f edy 0)(0)(0)()()(其中a 、b 均为常数, 且0>a .证 等式左端二次积分的积分限:y x a y ≤≤≤≤0,0可改写为a y x a x ≤≤≤≤,0所以dx x f e dyaya xb ⎰⎰-0)()(dx dy x f e dy x f e dxa a x a xb aaxa xb ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡==--0)(0)()()(.)()(0)(dx x f ex a aa xb ⎰--=9(E08)计算,22⎰⎰Ddxdy y x其中区域:D .1||||≤+y x解 因为D 关于x 轴和y 轴对称,且,),(22y x y x f =关于x 或关于y 为偶函数→dxdy y x I D ⎰⎰=1224⎰⎰-=1010224xdy y x dx .451)1(34132=-=⎰dx x x 10 证明不等式 ,2)sin (cos 122⎰⎰≤+≤Ddxdy x y其中.10,10:≤≤≤≤y x D证 因为D 关于y x =对称,所以dxdy y dxdy x DD ⎰⎰⎰⎰=22cos cos ,故dxdy x x dxdy x y DD⎰⎰⎰⎰+=+)sin (cos )sin (cos 2222又由于)4sin(2sin cos 222π+=+x x x 及102≤≤x 而D 的面积为 1. 由二重积分性质,有.2)sin (cos 122≤+≤⎰⎰dxdy x y D11求⎰⎰⎰Ω,xdxdydz 其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域.解 如图9-4-3,将区域Ω向xOy 面投影得投影区域D 为三角形闭区域.10,10:x y x OAB -≤≤≤≤ 在D 内任取一点),,(y x 过此点作平行于z 轴的直线,该直线由平面0=z 穿入,由平面y x z --=1穿出,即有.10y x z --≤≤ 所以⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------Ω--===xyx xyx Ddy y x xdx xdz dy dx xdz dxdy xdxdydz 101010101010)1(.241)2(21)1(211032102⎰⎰=+-=-=dx x x x dx x x 12 求⎰⎰⎰Ω,zdxdydz 其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域.解 (1)⎰⎰⎰Ωzdxdydz ⎰⎰⎰=zD dxdy zdz,1截面:z D ,10z y x -≤+≤故⎰⎰zD dxdy ),1)(1(21z z --=∴原式dz z z 210)1(21-⋅=⎰.241=(2) 根据例1所确定的积分限,有⎰⎰⎰Ωzdxdydz ⎰⎰⎰---=zy z dx dyzdz 101010⎰⎰---=zdy z y zdz 1010)1(dz z z 210)1(21-⋅=⎰.241=第12章 无穷级数第一节 常数项级数的概念和性质1(E04)求级数∑∞=⎪⎪⎭⎫⎝⎛++1)1(321n n n n 的和. 解 根据等比级数的结论,知∑∞=121n n 21121-=.1= 而由前例,知∑∞=+1)1(1n n n ,1=所以∑∞=⎪⎪⎭⎫++ ⎝⎛1)1(121n n n n ∑∑∞=∞=++=11)1(321n n n n n .4=2 判别级数++++⨯+++n n 10121102121101212是否收敛. 解 将所给级数每相邻两项加括号得到新级数.)10121(1∑∞=+n nn因为∑∞=121n n 收敛,而级数∑∞=1101n n ∑∞==11101n n 发散,所以级数∑∞=+1)10121(n nn 发散,根据性质3的推论1,去括号后的级数 (101)21...102121101212++++⨯+++n n 也发散. 3(E06)利用柯西审敛原理判定级数∑∞=121n n的收敛性. 解 因为对任何自然数,p22221)(1)2(1)1(1||p n n n u u u p n n n ++++++=++++++ ))(1(1)2)(1(1)1(1p n p n n n n n +-+++++++<⎪⎪⎭⎫ ⎝⎛+--+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=p n p n n n n n 1112111111,111np n n <+-=故对任意给定的正数,ε取自然数],1[ε≥N 则当N n >时,对任何自然数,p 恒有.||21ε<++++++p n n n u u u根据柯西审敛原理,所证级数收敛.第二节 正项级数的判别法1(E02)证明级数∑∞=+1)1(1n n n 是发散的.证)1(1+n n ,11+>n 而级数∑∞-+111n n 发散,∴∑∞-+1)1(1n n n 发散.2(E03)判别级数∑∞=+++122)2()1(12n n n n 的收敛性. 解 运用比较判别法.因22)2()1(12+++n n n 22)2()1(22+++<n n n 3)1(2+<n ,23n <而∑∞=131n n是收敛的,所以原级数收敛.。

2016年山东省济南市高考数学二模试卷与解析word(文科)

2016年山东省济南市高考数学二模试卷与解析word(文科)

2016年山东省济南市高考数学二模试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设复数z=(i为虚数单位),则z=()A.i B.﹣i C.2i D.﹣2i2.(5分)设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2 B.3 C.4 D.53.(5分)如果log5a+log5b=2,则a+b的最小值是()A.25 B.10 C.5 D.24.(5分)“a>2且b>2”是“ab>4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)执行如图的程序框图,则输出的S等于()A.0 B.﹣3 C.﹣10 D.﹣256.(5分)已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6 B.﹣4 C.0 D.47.(5分)在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.8.(5分)已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC的面积S=.9.(5分)已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣a B.3+a C.﹣2 D.210.(5分)设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为件.12.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是cm213.(5分)过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B 两点,当弦AB的长取最小值时,直线l的倾斜角等于.14.(5分)已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是.15.(5分)若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f (﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.16.(12分)2016年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?17.(12分)已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.18.(12分)如图,四棱锥P﹣ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.(Ⅰ)求证:AB∥EF;(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A﹣PBD的体积.19.(12分)已知在等比数列{a n}中,a n+1>a n对n∈N*恒成立,且a1a4=8,a2+a3=6.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,,求数列{b n}的前n项和S n.20.(13分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为.(1)求椭圆C的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.21.(14分)已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.2016年山东省济南市高考数学二模试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设复数z=(i为虚数单位),则z=()A.i B.﹣i C.2i D.﹣2i【解答】解:复数z=(i为虚数单位),则z===﹣i.故选:B.2.(5分)设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2 B.3 C.4 D.5【解答】解:由P中y=,得到3x﹣x2≥0,整理得:x(x﹣3)≤0,解得:0≤x≤3,即P=[0,3],∵N为自然数集,∴P∩N={0,1,2,3},则集合P∩N中元素个数是4,故选:C.3.(5分)如果log5a+log5b=2,则a+b的最小值是()A.25 B.10 C.5 D.2【解答】解:∵a,b>0,log5a+log5b=2=log5(ab),∴ab=52=25≤,解得a+b≥10,当且仅当a=b=5时取等号.则a+b的最小值是10.故选:B.4.(5分)“a>2且b>2”是“ab>4”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若a>2且b>2,则ab>4成立,故充分性易证若ab>4,如a=8,b=1,此时ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“ab>4”的充分不必要条件,故选:A.5.(5分)执行如图的程序框图,则输出的S等于()A.0 B.﹣3 C.﹣10 D.﹣25【解答】解:模拟执行程序,可得k=1,s=1满足条件k<5,执行循环体,s=1,k=2满足条件k<5,执行循环体,s=0,k=3满足条件k<5,执行循环体,s=﹣3,k=4满足条件k<5,执行循环体,s=﹣10,k=5不满足条件k<5,退出循环,输出s的值为﹣10.故选:C.6.(5分)已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6 B.﹣4 C.0 D.4【解答】解:由题意作平面区域如下,结合图象可知,﹣3≤y≤5,0≤|x|≤3;∵y=|x|+m,∴m=y﹣|x|,故当y=﹣3,|x|=3,即过点A(﹣3,﹣3)时,m有最小值为﹣6;故选:A.7.(5分)在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.【解答】解:由sinx+cosx≥1得sin(x+)≥1,即sin(x+)≥,∴2kπ+≤x+≤2kπ+,k∈Z即2kπ≤x≤2kπ+,k∈Z∵0≤x≤π,∴当k=0时,x的取值范围是0≤x≤,则“sinx+cosx≥1”发生的概率P==,故选:D.8.(5分)已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC的面积S=.【解答】解:△ABC中,∵a=,c=,C=,∴由正弦定理可得:sinA===,又∵a<c,A为锐角.∴A=,B=π﹣A﹣C=,=acsinB==.∴S△ABC故答案为:.9.(5分)已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣a B.3+a C.﹣2 D.2【解答】解:∵函数f(x)为奇函数,∴f(0)=a=0,f(﹣8)=﹣f(8)=﹣log3(8+1)=﹣2.故选:C.10.(5分)设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1【解答】解:∵双曲线右支上存在一点P,使•=0,∴⊥,∵|PF1|=|PF2|,∴|F1F2|=2|PF2|=4c,即|PF2|=2c∴|PF1|﹣|PF2|=|PF2|﹣|PF2|=(﹣1)|PF2|=2a,∵|PF2|=2c∴2(﹣1)c=2a,e==,故选:C.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为10件.【解答】解:∵=(17+13+8+2)=10,=(24+33+40+55)=38,a=58∴=﹣2x+58,∴=﹣2×24+58=10,故答案为:10.12.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是12+4cm2【解答】解:由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,∴该几何体的表面积=22×2++2×2=12+4cm2.故答案为:12+4.13.(5分)过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B 两点,当弦AB的长取最小值时,直线l的倾斜角等于45°.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°14.(5分)已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是[,] .【解答】解:△ABC中,AB=AC=1,|+|=|﹣|,∴•=0,∴⊥;以AC,AB为坐标轴建立平面直角坐标系,如图所示:则A(0,0),C(1,0),B(0,1),∵=3,∴E(,);直线BC方程为x+y=1,即x+y﹣1=0;设P(x,y),则0≤x≤1,则=(x,y),=(,),∴•=x+y=x+(1﹣x)=x+;∵0≤x≤1,∴≤x+≤;即•的取值范围是[,].故答案为:[,].15.(5分)若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f (﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是<a<.【解答】解:由“n度局部偶函数”的定义可知,函数存在关于y对称的点有n个,当x<0时,函数g(x)=sin(x)﹣1,关于y轴对称的函数为y=sin(﹣x)﹣1=﹣sin(x)﹣1,x>0,作出函数g(x)和函数y=h(x)=﹣sin(x)﹣1,x>0的图象如图:若g(x)是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则等价为函数g(x)和函数y=﹣sin(x)﹣1,x>0的图象有且只有3个交点,若a>1,则两个函数只有一个交点,不满足条件;当0<a<1时,则满足,即,则,即<a<,故答案为:<a<三、解答题:解答应写出文字说明、证明过程或演算步骤.16.(12分)2016年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?【解答】解:(Ⅰ)因为各组的频率和等于1,m=0.1﹣(0.015+0.035+0.015+0.01)=0.025,(Ⅱ)依题意,各小组的人数为比0.015:0.035:0.025:0.015:0.010=3:7:5:3:2,(i)年龄在35~55岁之间的人数20×=12人,(ii)年龄在55~65岁之间的人数为20×=3人,记为A,B,C,年龄在65~75岁之间的人数为20×=2人,记为D,E,从55~75岁之间任意找两个人发言,有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中少一人再65~75岁之间的有AD,AE,BD,BE,CD,CE,DE共7种,所以至少一人再65~75岁之间的概率为.17.(12分)已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.【解答】解:f(x)=sin2x+2sin2x==.(Ⅰ)由,解得.∴函数f(x)的单调增区间为[],k∈Z;(Ⅱ)将函数f(x)的图象向左平移个单位,得y=2sin[2(x)﹣]+1=2sin2x+1.再向下平移1个单位后得到函数g(x)=2sin2x.由x∈[﹣,],得2x∈[],∴sin2x∈[﹣],则函数g(x)的值域为[﹣].18.(12分)如图,四棱锥P﹣ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.(Ⅰ)求证:AB∥EF;(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A﹣PBD的体积.【解答】证明:(1)∵四边形ABCD是菱形∴AB∥CD,又AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD,又AB⊂平面ABEF,平面ABEF∩平面PCD=EF,∴AB∥EF.(2)过P作PG⊥AD于G,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PG⊥AD,PG⊂平面PAD,∴PG⊥平面ABCD.∵△PAD为正三角形,四边形ABCD是边长为2的菱形,∠DAB=60°,==.∴PG=,S△ABD=V P﹣ABD===1.∴V A﹣PBD19.(12分)已知在等比数列{a n}中,a n+1>a n对n∈N*恒成立,且a1a4=8,a2+a3=6.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,,求数列{b n}的前n项和S n.【解答】解:(1)设等比数列{a n}的公比为q,∵a1a4=8,a2+a3=6.∴=8,a1(q+q2)=6,且a n+1>a n对n∈N*恒成立,解得q=2,a1=1.∴a n=2n﹣1.(2)∵,∴++…+=n﹣1,相减可得:=1,可得b n=(2n﹣1)•2n﹣1.n=1时,=1,解得b1=1.上式对于n=1时也成立.∴b n=(2n﹣1)•2n﹣1.∴数列{b n}的前n项和S n=1+3×2+5×22+…+(2n﹣1)•2n﹣1.∴2S n=2+3×22+…+(2n﹣3)•2n﹣1+(2n﹣1)•2n,∴﹣S n=1+2×(2+22+…+2n﹣1)﹣(2n﹣1)•2n=1+2×﹣(2n﹣1)•2n,∴S n=(2n﹣3)•2n+3.20.(13分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为.(1)求椭圆C的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【解答】解:(1)∵椭圆C:+=1(a>b>0)的离心率为,∴=,∴a=2b,直线y=x代入椭圆C,可得+=1,∴x=b,∵直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为,∴(b)2=,∴b=1,∴a=2,∴椭圆C的方程为=1;(2)设P(x1,y1),Q(x2,y2),直线斜率为k,则直线l1的方程为y=k(x+2)把它代入椭圆的方程,消去y,整理得:(1+4k2)x2+16k2x+(16k2﹣4)=0由韦达定理得﹣2+x1=﹣,∴x1=,∴y 1=k(x1+2)=,∴P(,),以﹣代入,可得Q(,﹣),则k PQ=﹣∴PQ的直线方程为y﹣=﹣(x﹣),令y=0,则x=+=﹣.∴直线PQ过x轴上的一定点(﹣,0).21.(14分)已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.【解答】解:(Ⅰ)当m=1时,函数f(x)=lnx﹣e x+x的导数为f′(x)=﹣e x+1,可得函数f(x)在x=1处的切线斜率为2﹣e,切点为(1,1﹣e),即有函数f(x)在x=1处的切线方程为y﹣(1﹣e)=(2﹣e)(x﹣1),即为y=(2﹣e)x﹣1;(Ⅱ)(i)当m=﹣e时,g(x)=f(x)+e x+1=lnx﹣ex+1,g′(x)=﹣e,当x>时,g′(x)<0,g(x)递减;当0<x<时,g′(x)<0,g(x)递增.可得g(x)在x=处取得极大值,且为最大值﹣1;(ii)证明:函数φ(x)=|g(x)|﹣﹣=|lnx﹣ex+1|﹣(+),令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+的导数为h′(x)=,当x>e时,h′(x)<0,函数y递减;当0<x<e时,h′(x)>0,函数h(x)递增.即有函数h(x)=+的最大值为h(e)=+<1;由(i)可得g(x)≤﹣1,即有|g(x)|≥1,则方程(*)无解.即有函数φ(x)没有零点.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

大专高等数学第二版教材答案

大专高等数学第二版教材答案

大专高等数学第二版教材答案第一章: 函数及其图形1.根据题意可得到函数 f(x) 的表达式为:f(x) = 2x^3 - 3x^2 + 4x - 52.函数 f(x) = |2x - 1| 在区间 [-1, 2] 上的图像如下:图像描述:在 x = 1/2 处有唯一一个极小值点,其函数值为 0。

在x < 1/2 和 x > 3/2 的区间上,函数值为正;在 1/2 < x < 3/2 的区间上,函数值为负。

(插入函数图像)第二章: 一元函数求导1. 求以下函数的导数:a. f(x) = 3x^2 - 2x + 1(简述求导过程)b. f(x) = sin(x) + cos(x)(简述求导过程)c. f(x) = ln(x^2 + 1)(简述求导过程)第三章: 函数的极限和连续性1. 计算以下极限:a. lim(x->3) (2x + 1)(简述计算过程)b. lim(x->0) (sinx / x)(简述计算过程)c. lim(x->∞) (e^x / x)(简述计算过程)第四章: 函数的导数与微分1. 计算下列函数的微分:a. f(x) = 2x^3 - 3x^2 + 4x - 5 (简述计算过程)b. f(x) = e^(-2x)(简述计算过程)c. f(x) = ln(3x^2 + 2)(简述计算过程)第五章: 不定积分1. 求以下函数的不定积分:a. ∫(x^3 - 2x^2 + 3x - 4)dx (简述求积分过程)b. ∫(sin^3(x) + cos^2(x))dx (简述求积分过程)c. ∫(ln(2x + 1))dx(简述求积分过程)第六章: 定积分1. 计算以下定积分值:a. ∫(0 to π/2) sin(x)dx(简述计算过程)b. ∫(1 to 2) x^2dx(简述计算过程)c. ∫(0 to 1) e^x dx(简述计算过程)第七章: 微分方程1. 解以下微分方程:a. y' + y = 2x(简述求解过程)b. y' = 3y^2(简述求解过程)c. y' + 2xy = x^2(简述求解过程)以上是《大专高等数学第二版教材》中的部分题目答案,希望对你的学习有所帮助。

高等数学2课后习题答案

高等数学2课后习题答案

高等数学2课后习题答案高等数学2课后习题答案高等数学2作为大学数学课程的一部分,是一门相对较难的课程。

在学习过程中,课后习题是巩固和深化知识的重要手段。

然而,对于许多学生来说,课后习题往往是一个难以逾越的障碍。

因此,为了帮助大家更好地学习和掌握高等数学2,本文将提供一些常见习题的答案及解析。

一、极限与连续1. 计算极限这类题目主要考察对极限的计算能力。

在计算过程中,我们需要运用一些基本的极限性质和运算法则。

例如,当求解形如lim(x→a) (f(x) + g(x))时,我们可以利用极限的加法法则,将其拆分为lim(x→a) f(x) + lim(x→a) g(x)。

2. 判断函数的连续性对于连续性的判断,我们需要掌握连续函数的定义和连续函数的性质。

例如,根据连续函数的定义,如果一个函数在某个点a处连续,那么lim(x→a) f(x) = f(a),这是判断函数连续性的一个重要条件。

二、导数与微分1. 求导函数求导函数是导数与微分章节的重点内容之一。

在求导函数时,我们需要掌握导数的基本定义和运算法则。

例如,当求解f(x) = x^n的导数时,我们可以利用幂函数的导数公式,即f'(x) = n*x^(n-1)。

2. 利用导数求解问题在实际问题中,我们常常需要利用导数来求解一些相关的问题。

例如,求解函数的极值点、判断函数的单调性等。

在这类题目中,我们需要将问题转化为数学模型,然后利用导数的性质来求解。

三、定积分1. 计算定积分计算定积分是定积分章节的核心内容之一。

在计算过程中,我们需要掌握定积分的基本定义和运算法则。

例如,当计算∫[a,b] f(x)dx时,我们可以利用定积分的性质,将其转化为求解不定积分的问题。

2. 利用定积分解决几何问题定积分在解决几何问题中有着广泛的应用。

例如,我们可以利用定积分来计算曲线与坐标轴所围成的面积、计算曲线的弧长等。

在这类题目中,我们需要将几何问题转化为数学模型,然后利用定积分的性质来求解。

1011高等数学B(二)试题答案 济南大学

1011高等数学B(二)试题答案 济南大学

O
平面 x x1 上的截痕为 双曲线
平面 z z1 ( z1 c)上的截痕为 椭圆
注意单叶双曲面与双叶双曲面的区别:
y
x
x2 a2

y2 b2

z2 c2

1 单叶双曲面 1 双叶双曲面
P18
图形
2 2 f ( x y )dy 化为极坐标形式的 4. 0 x 1011B 二次积分_____________. y 3x 2 y 0r cos 解: 积分域如图. D : y x
济南大学1011高等数学B(二)参考解答
一、填空题(每小题3分,共15分)
1. z xe 解:
x y
( x 1)ln(1 y),
d e xe ln(1 y ), x (1,0) x
x 1 z x y , xe 1 y y
z e 2, y (1,0)
2.
求旋转抛物面 z x y 1 在点 (2,1, 4)
2 2
处的法线方程________.
解:
: z f ( x, y) x y 1
2 2
n (2,1,4) (2 x, 2 y, 1) (2,1,4) (4, 2, 1),
1、求过点M1 (1,2,1), M 2 (2,3,1)且和平面x y z 1 0垂直 的平面方程
2、一般式: 解:设所求平面方程为 Ax By Cz D 0
A 2B C D 0 则 2 A 3B C D 0 ( A, B , C ) (1,1,1) 0
2
3
三、求偏导数(每小题10分,共20分)
1 1 2 x ( f11 x f12 ) x ( f 2 1 x f 22 ) x x 5 3 xf 22 x f11 2x f12

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富_钮海习题解答

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富_钮海习题解答

习题1—1解答 1. 设y x xy y x f +=),(,求),(1),,(),1,1(),,(y x f y x xy f y x f y x f -- 解yxxy y x f +=--),(;x xy y y x f y x y x xy f x y xy y x f +=+=+=222),(1;),(;1)1,1(2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++=),(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=⋅+⋅+⋅+⋅=++=⋅=3. 求下列函数的定义域,并画出定义域的图形: (1);11),(22-+-=y x y x f(2);)1ln(4),(222y x y x y x f ---=(3);1),(222222cz b y a x y x f ---=(4).1),,(222zy x z y x z y x f ---++=解(1)}1,1),{(≥≤=y x y x D(2){y y x y x D ,10),(22<+<=(3)⎫⎩⎨⎧++=),(22222b y a x yx D(4){}1,0,0,0),,(222<++≥≥≥=z y x z y x z y x D4.求下列各极限: (1)22101limy x xy y x +-→→=11001=+- (2)2ln 01)1ln(ln(lim022)01=++=++→→e yx e x y y x(3)41)42()42)(42(lim 42lim000-=+++++-=+-→→→→xy xy xy xy xy xy y x y x(4)2)sin(lim )sin(lim202=⋅=→→→→x xy xy y xy y x y x5.证明下列极限不存在:(1);lim 00yx y x y x -+→→ (2)2222200)(lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim0020-=-+=-+→→=→x x xx y x y x x x y x ;如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim0020==-+→→=→y yy x y x y y x yx所以极限不存在。

2022-2023学年山东省济南市成考专升本高等数学二自考预测试题(含答案带解析)

2022-2023学年山东省济南市成考专升本高等数学二自考预测试题(含答案带解析)

2022-2023学年山东省济南市成考专升本高等数学二自考预测试题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.A.-2ycos(x+y2)B.-2ysin(x+y2)C.2ycos(x+y2)D.2ysin(x+y2)2.A.-2B.-1/2C.1/2D.23.4.当x→2时,下列函数中不是无穷小量的是()。

A.B.C.D.5.积分等于【】A.-1B.0C.1D.26.A.-1B.-1/2C.0D.17.设函数f(x-1)=x2+e-x,则fˊ(x)等于().A.A.2x-exB.C.D.8.9.()。

A.B.C.D.10.11.12.13.14.设函数f(x)在点x0处连续,则下列结论肯定正确的是().A.A.B.C.当x→x0时, f(x)- f(x0)不是无穷小量D.当x→x0时, f(x)- f(X0)必为无穷小量15.曲线:y=ex和直线y=1,x=1围成的图形面积等于【】A.2-eB.e-2C.e-1D.e+116.()。

A.B.C.D.17.18.19.已知f'(x+1)=xe x+1,则f'(x)=A.A.xe xB.(x-1)e xC.(x+1)e xD.(x+1)e x+4120.21.已知函数y=f(x)在点处可导,且,则f’(x0)等于【】A.-4B.-2C.2D.422.A.A.-1B.-2C.1D.223.24.25.26.27.事件满足AB=A,则A与B的关系为【】28.()。

A.0B.1C.nD.n!29.设事件A,B的P(B)=0.5,P(AB)=0.4,则在事件B发生的条件下,事件A发生的条件概率P(A|B)=().A.A.0.1B.0.2C.0.8D.0.930.二、填空题(30题)31.32.33.34.35.36.37.38.39.40.41.曲线的铅直渐近线方程是________.42.43.44.45.46.47.48.49.________.50.51.52.53.54..55.56.57.58.59.60. 函数曲线y=xe-x的凸区间是_________。

济南大学高等数学下历年考题答案共111页文档

济南大学高等数学下历年考题答案共111页文档
济南大学高等数学下历年考题答案
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

济南市2015-2016学年高二下期末数学试卷(理)(有答案)Awwqqw

济南市2015-2016学年高二下期末数学试卷(理)(有答案)Awwqqw

2015-2016学年山东省济南市高二(下)期末数学试卷(理科)一、选择题1.已知复数z满足(3+i)z=4﹣2i,则复数z=()A.1﹣i B.1+i C.2+i D.2﹣i2.一个物体的运动方程为s=(2t+3)2,其中s的单位是米,t的单位是秒,那么物体在第2秒末的瞬时速度是()A.20米/秒B.28米/秒C.14米/秒D.16米/秒3.下面是一个2×2列联表y1y2总计x1 a 22 71x2 4 25 29总计 b 47 100则a﹣b的值为()A.﹣4 B.4 C.﹣3 D.34.若(3x2﹣2mx)dx=34,则m等于()A.2 B.﹣2 C.3 D.﹣35.在用数学归纳法证明等式1+2+3+…+2n=2n2+n(n∈N*)的第(ii)步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为()A.1+2+3+…+2k+2(k+1)=2k2+k+2(k+1)2+(k+1)B.1+2+3+…+2k+2(k+1)=2(k+1)2+(k+1)C.1+2+3+…+2k+2k+1+2(k+1)=2k2+k+2(k+1)2+(k+1)D.1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1)6.已知随机变量X服从正态分布N(2,σ2),若P(﹣1<X≤2)=0.35,则P(X≥5)等于()A.0.65 B.0.5 C.0.15 D.0.17.已知离散型随机变量X的分布列如表:若E(X)=0,D(X)=1,则P(X<1)等于()X ﹣1 0 1 2P a b cA.B.C.D.8.已知函数f(x)=x3lnx+m有2个零点,则m的取值范围是()A.(﹣∞,) B.(,+∞)C.(﹣∞,)D.(,+∞)9.在某公司中秋联欢晚会上设计了一个抽奖游戏,在一个口袋中装有5个红球和10个白球,这些球除颜色外完全相同,一次从中抽出3个球,至少抽到2个红球就中奖,则中奖的概率为()A.B.C.D.10.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为()A.[,1] B.[﹣,1]C.[1,3]D.(﹣∞1]二、填空题11.设i是虚数单位,若复数a+(a∈R)是纯虚数,则a的值为.12.(1+x)8的展开式中x6的系数是.13.观察下面一组等式:S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S 5=11+12+13+14+15=65,…根据上面等式猜测S 2n ﹣1=(2n ﹣1)(an 2+bn +c ),则a •b •c= . 14.将两名男生、两名女生分到三个不同的班去做经验交流,每个班至少分到一名学生,且两名女生不能分到同一个班,则不同分法的种数为 .15.已知数列{a n }的前n 项和为S n ,a 4=7且4S n =n (a n +a n+1),则S n ﹣8a n 的最小值为 .三、解答题16.(1)用分析法证明: +;(2)用反证法证明:,,不可能成等差数列.17.设函数f (x )=x 2﹣8lnx +3.(1)求曲线y=f (x )在点(1,4)处的切线方程;(2)求f (x )的单调区间.18.5位大学生站在一排照相.(1)若其中的甲乙两位同学必须相等,问有多少种不同的排法?(2)若上述5位大学生中有3位女大学生和2位男大学生,则这两位男大学生不相邻的排法有多少种? 19.某地区2009年至2015年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份2009 2010 2011 2012 2013 2014 2015 年份代号t1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入.20.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:年龄 [5,15) [15,25) [25,35) [35,45) [45,55) [55,65)频数5 10 15 10 5 5 支持“生育二胎” 45 12 8 2 1 (1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;年龄不低于45岁的人数 年龄低于45岁的人数 合计支持a= c= 不支持 b=d= 合计参考数据:P (K 2≥k ) 0.050 0.010 0.001k 3.841 6.635 10.828K 2=.21.已知f (x )=e x lnx .(1)求y=f (x )﹣f ′(x )的单调区间与极值;(2)证明:f ′(x )>1.2015-2016学年山东省济南市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题1.已知复数z满足(3+i)z=4﹣2i,则复数z=()A.1﹣i B.1+i C.2+i D.2﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的运算性质即可得出.【解答】解:∵(3+i)z=4﹣2i,∴z====1﹣i,故选:A.2.一个物体的运动方程为s=(2t+3)2,其中s的单位是米,t的单位是秒,那么物体在第2秒末的瞬时速度是()A.20米/秒B.28米/秒C.14米/秒D.16米/秒【考点】导数的几何意义.【分析】求函数的导数,利用导数的物理意义即可得到结论.【解答】解:∵s=s(t)=(2t+3)2,∴s′(t)=4(2t+3),则物体在2秒末的瞬时速度s′(2)=28米/秒,故选:B.3.下面是一个2×2列联表y1y2总计x1 a 22 71x2 4 25 29总计 b 47 100则a﹣b的值为()A.﹣4 B.4 C.﹣3 D.3【考点】独立性检验的应用.【分析】由列联表中数据的关系,直接求得答案.【解答】解:由列联表中数据的关系,可知:a+22=71,a+4=b解得:a=49,b=53,∴a﹣b=﹣4.故选:A.4.若(3x2﹣2mx)dx=34,则m等于()A.2 B.﹣2 C.3 D.﹣3【考点】定积分.【分析】根据定积分的计算法则计算即可.【解答】解:(3x2﹣2mx)dx=(x3﹣mx2)|=19﹣5m=34,∴m=﹣3,故选:D.5.在用数学归纳法证明等式1+2+3+…+2n=2n2+n(n∈N*)的第(ii)步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为()A.1+2+3+…+2k+2(k+1)=2k2+k+2(k+1)2+(k+1)B.1+2+3+…+2k+2(k+1)=2(k+1)2+(k+1)C.1+2+3+…+2k+2k+1+2(k+1)=2k2+k+2(k+1)2+(k+1)D.1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1)【考点】数学归纳法.【分析】由数学归纳法可知n=k时,1+2+3+…+2k=2k2+k,到n=k+1时,左端为1+2+3+…+2k+2k+1+2(k+1),从而可得答案.【解答】解:∵用数学归纳法证明等式1+2+3+…+2n=2n2+n时,当n=1左边所得的项是1+2;假设n=k时,命题成立,1+2+3+…+2k=2k2+k,则当n=k+1时,左端为1+2+3+…+2k+2k+1+2(k+1),∴从“k→k+1”需增添的项是2k+1+2(k+1),∴1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1).故选:D.6.已知随机变量X服从正态分布N(2,σ2),若P(﹣1<X≤2)=0.35,则P(X≥5)等于()A.0.65 B.0.5 C.0.15 D.0.1【考点】正态分布曲线的特点及曲线所表示的意义.【分析】随机变量X服从正态分布N(2,σ2),得到曲线关于x=2对称,根据曲线的对称性得到结论.【解答】解:∵随机变量X服从正态分布N(2,σ2),∴曲线关于x=2对称,∵P(﹣1<X≤2)=0.35,∴P(2<X≤5)=0.35,∴P(X≥5)=0.5﹣0.35=0.15.故选:C.7.已知离散型随机变量X的分布列如表:若E(X)=0,D(X)=1,则P(X<1)等于()X ﹣1 0 1 2P a b cA.B.C.D.【考点】离散型随机变量的期望与方差.【分析】由E(X)=0,D(X)=1,结合离散型随机变量X的分布列性质列出方程组,求出a,b,c,由此能求出P(X<1)的值.【解答】解:∵E(X)=0,D(X)=1,∴由离散型随机变量X的分布列,得:,且a≥0,b≥0,c≥0,解得a=,b=,c=,∴P(X<1)=P(X=﹣1)+P(X=0)=+=.故选:D.8.已知函数f(x)=x3lnx+m有2个零点,则m的取值范围是()A.(﹣∞,) B.(,+∞)C.(﹣∞,)D.(,+∞)【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】根据函数与方程的关系转化为两个函数的交点个数问题,构造函数,求函数的导数,利用导数研究函数的单调性和最值即可.【解答】解:由f(x)=x3lnx+m=0得x3lnx=﹣m,设g(x)=x3lnx,函数的定义域为(0,+∞),则g′(x)=x2(3lnx+1),由g′(x)>0得x>,由g′(x)<0得0<x<,即当x=时,函数g(x)取得极小值同时也是最小值g()=﹣,要使函数f(x)=x3lnx+m有2个零点,等价为方程x3lnx=﹣m有两个根,则﹣m>﹣,即m<,故实数m的取值范围是(﹣∞,),故选:C9.在某公司中秋联欢晚会上设计了一个抽奖游戏,在一个口袋中装有5个红球和10个白球,这些球除颜色外完全相同,一次从中抽出3个球,至少抽到2个红球就中奖,则中奖的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】设抽到红球的个数为X,则X服从超几何分布,中奖的概率为P(X≥2)=P(X=2)+P(X=3),由此能求出结果.【解答】解:设抽到红球的个数为X,则X服从超几何分布,∴中奖的概率为P(X≥2)=P(X=2)+P(X=3)=+=.故选:B.10.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为()A.[,1] B.[﹣,1]C.[1,3]D.(﹣∞1]【考点】函数恒成立问题;奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性的关系将不等式进行转化,利用参数分类法以及导数研究函数的最值即可.【解答】解:∵定义在R上的偶函数f(x)在[0,+∞)上递减,∴不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)等价为2f(x3﹣x2+a)≥2f(1)即f(x3﹣x2+a)≥f(1)对x∈[0,1]恒成立,即﹣1≤x3﹣x2+a≤1对x∈[0,1]恒成立,即﹣1﹣a≤x3﹣x2≤1﹣a对x∈[0,1]恒成立,设g(x)=x3﹣x2,则g′(x)=3x2﹣2x=x(3x﹣2),则g(x)在[0,)上递减,在(,1]上递增,∵g(0)=g(1)=0,g()=﹣,∴g(x)∈[﹣,0],即即,得﹣≤a≤1,故选:B.二、填空题11.设i是虚数单位,若复数a+(a∈R)是纯虚数,则a的值为.【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数a+,又已知复数a+(a∈R)是纯虚数,得实部等于0,虚部不等于0,求解即可得答案.【解答】解:复数a+=,由复数a+(a∈R)是纯虚数,得,即a=.故答案为:.12.(1+x)8的展开式中x6的系数是28.【考点】二项式系数的性质.【分析】根据二项式展开式的通项公式,令展开式中x的指数为6,求出对应的系数即可.【解答】解:(1+x)8的展开式的通项公式为T r+1=•x r,令r=6,得展开式中x6的系数是==28.故答案为:28.13.观察下面一组等式:S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,…=(2n﹣1)(an2+bn+c),则a•b•c=﹣160.根据上面等式猜测S2n﹣1【考点】归纳推理.=(2n﹣1)(an2+bn+c),进行赋值,即可得到结论.【分析】利用所给等式,对猜测S2n﹣1【解答】解:由题意,,∴a=4,b=﹣8,c=5,∴abc=﹣160故答案为:﹣160.14.将两名男生、两名女生分到三个不同的班去做经验交流,每个班至少分到一名学生,且两名女生不能分到同一个班,则不同分法的种数为30.【考点】排列、组合及简单计数问题.【分析】由题意可以分两类,两名男生一组,两名女生各一组,或1名男生和一名女生一组,另外的一男一女各一组,根据分类计数原理可得.【解答】解:由题意可知,4人只能分为;两名男生一组,两名女生各一组,或1名男生和一名女生一组,另外的一男一女各一组,故有A33(1+C21C21)=30种,故答案为:3015.已知数列{a n}的前n项和为S n,a4=7且4S n=n(a n+a n+1),则S n﹣8a n的最小值为﹣56.【考点】数列的求和.【分析】4S3=3(a3+a4)=3(a3+7),4S2=2(a2+a3),4S1=4a1=a1+a2,解得:a1=1,a2=3,a3=5,a4=7,…,可得a n=2n﹣1,S n.代入4S n=n(a n+a n+1)验证成立,利用二次函数的单调性即可得出.【解答】解:∵4S3=3(a3+a4)=3(a3+7),4S2=2(a2+a3),4S1=4a1=a1+a2,解得:a1=1,a2=3,a3=5,a4=7,…,∴a n=2n﹣1.可得S n==n2.代入4S n=n(a n+a n+1)验证成立,∴S n﹣8a n=n2﹣8(2n﹣1)=(n﹣8)2﹣56,∴当n=8时,S n﹣8a n取得最小值﹣56.故答案为:﹣56.三、解答题16.(1)用分析法证明: +;(2)用反证法证明:,,不可能成等差数列.【考点】反证法与放缩法;综合法与分析法(选修).【分析】(1)寻找使不等式成立的充分条件,要是不等式成立,只要11+2•>11+2,只要证>,即证30>24;(2)假设,,这三个数成等差数列,则由等差数列的性质可得2=+,能推出6=12(矛盾).【解答】证明:(1)要证+,只要证11+2•>11+2,只要证>,即证30>24.而30>24显然成立,故原不等式成立.(2)假设:,,这三个数成等差数列,则由等差数列的性质可得2=+,∴20=2+6+2,∴12=2,∴6=12(矛盾),故假设不成立,∴,,这三个数不可能成等差数列.17.设函数f(x)=x2﹣8lnx+3.(1)求曲线y=f(x)在点(1,4)处的切线方程;(2)求f(x)的单调区间.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)依题意,可求得f′(1),从而由直线的点斜式可得函数所对应曲线在点(1,4)处的切线方程;(2)通过f′(x)>0可求其递增区间,通过f′(x)<0可求其单调减区间.【解答】解:(1)∵f(x)=x2﹣8lnx+3,∴f′(x)=(x>0),∴f′(1)=﹣6,∴曲线y=f(x)在点(1,4)处的切线方程为y﹣4=﹣6(x﹣1),即6x+y﹣10=0;(2)令f′(x)>0,可得x>2,f′(x)<0,可得0<x<2,∴函数的单调递增区间是(2,+∞),单调递减区间是(0,2).18.5位大学生站在一排照相.(1)若其中的甲乙两位同学必须相等,问有多少种不同的排法?(2)若上述5位大学生中有3位女大学生和2位男大学生,则这两位男大学生不相邻的排法有多少种?【考点】排列、组合及简单计数问题.【分析】(1)5名同学排成一排,其中甲、乙两人必须排在一起,对于相邻的问题,一般用捆绑法,首先把甲和乙看做一个元素,使得它与另外3个元素排列,再者甲和乙之间还有一个排列,根据分步计数原理得到结果.(2)先排3位女大学生,然后把2位男大学生插空,由分步计数原理可得.【解答】解:(1)∵5名同学排成一排,其中甲、乙两人必须排在一起,∴首先把甲和乙看做一个元素,使得它与另外3个元素排列,再者甲和乙之间还有一个排列,共有A44A22=48;(2)先排3位女大学生的排法有A33=6种,然后把2位男大学生插空,有A42=12种,由分步计数原理可得,共有6×12=72种方法.19.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2009 2010 2011 2012 2013 2014 2015年份代号t 1 2 3 4 5 6 7人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入.【考点】线性回归方程.【分析】(1)根据数据求出样本平均数以及对应的系数即可求y关于t的线性回归方程;(2)根据条件进行估计预测即可得到结论.【解答】解:(1)由题意得=4,==4.3,b==0.5.a=4.3﹣0.5×4=2.3即y关于t的线性回归方程为y=0.5t+2.3;(2)∵线性回归方程为y=0.5t+2.3;斜率k=0.5>0,可知2009年至2015年该地区农村居民家庭人均纯收入逐渐增加,平均增加0.5千元,当t=8时,y=0.5×8+2.3=6.3;预测该地区2016年农村家庭人均纯收入为6.3千元.20.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)频数 5 10 15 10 5 5支持“生育二胎” 4 5 12 8 2 1(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;年龄不低于45岁的人数年龄低于45岁的人数合计支持a= c=不支持b= d=合计参考数据:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828K2=.【考点】独立性检验的应用.【分析】(Ⅰ)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;(Ⅱ)ξ的可能取值有0,1,2,3,求出相应的概率,可得ξ的分布列及数学期望.【解答】解:(Ⅰ)2×2列联表年龄不低于45岁的人数年龄低于45岁的人数合计支持a=3 c=29 32不支持b=7 d=11 18合计10 40 50…<6.635…所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.…(Ⅱ)ξ所有可能取值有0,1,2,3,…,,,,…所以ξ的分布列是ξ0 1 2 3P所以ξ的期望值是.…21.已知f(x)=e x lnx.(1)求y=f(x)﹣f′(x)的单调区间与极值;(2)证明:f′(x)>1.【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(1)先求出f(x)的导数,代入y=f(x)﹣f′(x)得出函数表达式,再去研究单调性与极值,(2)f′(x)=e x lnx+,从而f′(x)>1等价于xlnx+1>,构造函数,求最值,即可证明结论.【解答】解:(1)函数f(x)=e x(lnx+1)的定义域为(0,+∞),f′(x)=e x lnx+,则y=f(x)﹣f′(x)=﹣,∴y′=,由y′=0可得x=1.当x>1时,y′<0;当x<1时,y′>0;∴y=f(x)﹣f′(x)的单调递增区间为(0,1),单调递减区间为(1,+∞),∴当x=1时,y取极大值﹣e,函数无极小值;(2)证明:f′(x)=e x lnx+,从而f′(x)>1等价于xlnx+1>,设h(x)=xlnx+1,则h′(x)=1+lnx,∴x∈(0,),h′(x)<0,x∈(,+∞),h′(x)>0,∴h(x)在(0,)上单调递减,在(,+∞)上单调递增,∴h(x)≥h()=﹣+1.设F(x)=,则F′(x)=x∈(0,1),F′(x)>0,x∈(1,+∞),F′(x)<0∴F(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴函数F(x)的最大值为F(1)=,∴F(x)≤,∵﹣+1﹣=1﹣>0,∴h(x)>F(x),∴f′(x)>1.2016年8月21日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos
n1 n2 n1 n2
特别有下列结论:
n2
(1) 1 2
n1 n2
1
A1 A2 B1 B2 C1 C2 0
n1
2
(2) 1 // 2
n1 // n2 A1 B1 C1 A2 B2 C2
n2 n1
2
1
目录 上页 下页 返回 结束
济南大学1415高等数学 (二)BW参考解答
不存在 . 讨论函数
f
(x,
y)

xy x2 y2
在点
(0,
0)
的极限.
解: 设 P(x , y) 沿直线 y = k x 趋于点 (0, 0) , 则有
lim
x0
f
(
x,
y)

lim
x0
x
2
kx2 k2x2

1
k k
2
y kx
k 值不同极限不同 !
故 f ( x, y )在 (0,0) 点极限不存在 .
平面∏2的法向量为 n2 ( A2 , B2 , C2 )
则两平面夹角 的余弦为
2
cos n1 n2
n1 n2


cos
A1A2 B1B2 C1C2
A12 B12 C12 A22 B22 C22
n1

n2
1
目录 上页 下页 返回 结束
1 : n1 ( A1, B1, C1) 2 : n2 ( A2 , B2 , C2 )
目录 上页 下页 返回 结束
3. 二元函数 f (x, y) 在点( x0, y0 ) 处的全微分存在
A 是f (x , y)在该点连续的(
)
(A) 充分条件. (C) 充分必要条件.
(B) 必要条件. (D) 既非充分也非必要条件.
分析:教材P86-P87 内容
小结 极限,连续,可导,可微的关系图
济南大学1516高等数学 (二)BW参考解答
一.选择题(每小题2分,共10分)
2015.7.7
B 1. 两平面x y z 1和x 2 y z 2的位置关系是 ( )
(A) 相交但不垂直.
(B) 垂直.
(C) 平行但不重合.
(D) 重合.
教材P39-
uur
uur
3解4: 两平面的法向量 n1 (1,1,1), n2 (1, 2,1)
)

A.
n ; B. 1 ;
C. 1 ; D.
sin 1.
n1 n 1
n1 n
n2
n1
n1
n
分析:重要参考级数: 几何级数, p -级数, 调和级数.
A的一般项不趋于零,级数发散(教材P186)
B,C是条件级数 (教材P196-200) ,D 绝对收敛
(教材P198-199)
于是所求平uur面的uur夹角为
cos

n1 n2 uur uur

121
0
n1 n2 1 1 1
综上,两平面的夹角为
1

4
.

1
2
目录 上页 下页 返回 结束
三、两平面的夹角
两平面法向量的夹角(常指锐角)称为两平面的夹角.
设平面∏1的法向量为 n1 ( A1 , B1 ,C1)
目录 上页 下页 返回 结束
多元函数连续、可导、可微的关系
函数连续
偏导数存在
函数可微
偏导数连续
小结 极限,连续,可导,可微的关系图
极限存在
连续
偏导数存在
可微分
偏导数连续
目录 上页 下页 返回 结束
C 4. 点(0,0)是二元函数 f (x, y) x2 y2 的 (
)
(A) 极大值点;
(B) 极小值点;
f ( x, y ) 在点( x, y) 可微,A Δx B Δ y 称为函数 f ( x, y )
在点 (x, y) 的全微分, 记作
dz d f Ax By
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
目录 上页 下页 返回 结束
当函数可微时 :
lim z lim ( A x B y ) o ( ) 0
x0
0
y0
得 lim f (x x, y y) f ( x, y )
x0 y0

函数

zz
=
f f(x( ,xy)
在 点x , y(x,
y)y可) 微f
(函x ,数y )在该点连续
下面两个定理给出了可微与偏导数的关系:
d(1z)函d数f 可 微A x B y 偏导数存在 (2z)偏A导 x数连B续 y o ( ) 函数可微
极限存在
连续
偏导数存在
可微分
偏导数连续
目录 上页 下页 返回 结束
全微分的定义
定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y )
处全增量
可表示成
z A x B y o( ) ,
其中 A , B 不依赖于 x , y , 仅与 x , y 有关,则称函数
lim
x0
f
(
x,
y)

lim
x0
x
2
kx2 k2x2

1
k k
2
y kx
k 值不同极限不同 !
பைடு நூலகம்
故 f ( x, y )在 (0,0) 点极限不存在 .
目录 上页 下页 返回 结束
• 若当点 P ( x, y ) 以不同方式趋于 P0 ( x0 , y0 ) 时, 函数
趋于不同值或有的极限不存在,则可以断定函数极限
aqn
n0
当 当
q q

1时 ,收 敛 1时 ,发 散
1 当p 1时,收敛 n0 n p 当p 1时,发散
1 发散, (1)n1 收敛,
n1 n
n1 n
目录 上页 下页 返回 结束
二、填空题(每小题2分,共10分) 1.求过点( -3 , 2 , 5 ) 且与直线 平行的直线方程_____. 教材P29-35
一.选择题(每小题2分,共10分)
2. 极限
lim
( x, y)(0,0)
xy x2 y2

( D)
2015.7.7
(A) 0, (B) 1, (C) 2, (D) 不存在.
教材P70- 知道极限不存在的说明方法
7解2: 设 P(x , y) 沿直线 y = k x 趋于点 (0, 0) , 则有
(C) 驻点但不是极值点. (D) 不是驻点 P111-P113
分析:


fx fy

2x 0, 2 y 0
得驻点
(0,0).
fxx 2, f yy 2, fxy 0
在点(0,0) 处
AC B2 4 0,
不是极值.
目录 上页 下页 返回 结束
C 5. 下列级数中, 收敛的是(
相关文档
最新文档