独立悬架导向机构
悬架构造实验报告(3篇)
第1篇一、实验目的1. 了解汽车悬架系统的基本组成和结构。
2. 掌握不同类型悬架系统的构造特点。
3. 分析悬架系统在汽车行驶中的作用。
二、实验原理汽车悬架系统是连接车架与车轮的部件,其主要功能是将路面传递给车轮的载荷和反作用力传递到车架上,以保证汽车的平稳行驶。
悬架系统由弹性元件、减振器和导向机构三部分组成。
三、实验内容1. 扭杆梁式悬架系统2. 麦弗逊式独立悬架系统3. 电子控制主动式油气弹簧悬架系统四、实验步骤1. 观察扭杆梁式悬架系统(1)观察悬架系统的整体结构,了解其组成。
(2)观察扭杆梁的形状和材料,了解其作用。
(3)观察减振器和弹簧的安装位置和结构,了解其作用。
2. 观察麦弗逊式独立悬架系统(1)观察悬架系统的整体结构,了解其组成。
(2)观察滑动立柱和横摆臂的形状和材料,了解其作用。
(3)观察减振器和弹簧的安装位置和结构,了解其作用。
3. 观察电子控制主动式油气弹簧悬架系统(1)观察悬架系统的整体结构,了解其组成。
(2)观察油气弹簧的结构和材料,了解其作用。
(3)观察传感器、电控单元和电磁阀的安装位置和作用。
五、实验结果与分析1. 扭杆梁式悬架系统扭杆梁式悬架系统通过扭杆梁来平衡左右车轮的上下跳动,以减小车辆的摇晃,保持车辆的平稳。
在实验中,我们观察到扭杆梁的形状和材料,以及减振器和弹簧的安装位置和结构,从而了解了扭杆梁式悬架系统的构造特点。
2. 麦弗逊式独立悬架系统麦弗逊式独立悬架系统由滑动立柱和横摆臂组成,具有较好的操控性和稳定性。
在实验中,我们观察到滑动立柱和横摆臂的形状和材料,以及减振器和弹簧的安装位置和结构,从而了解了麦弗逊式独立悬架系统的构造特点。
3. 电子控制主动式油气弹簧悬架系统电子控制主动式油气弹簧悬架系统由油气弹簧、传感器、电控单元和电磁阀等组成,可以实现悬架刚度和阻尼的调节。
在实验中,我们观察到油气弹簧的结构和材料,以及传感器、电控单元和电磁阀的安装位置和作用,从而了解了电子控制主动式油气弹簧悬架系统的构造特点。
商用车独立悬架
东南DX3X酷绮版 后多连杆独立悬 架
双横臂式独立悬挂
• 横臂式悬架是指一种车轮在汽车横向平面内摆动的独立悬架,双横臂式悬架
是指有两根横臂的悬架系统。同双叉臂式悬挂一样双横臂式悬挂的横向刚度 也较大,一般也采用上下不等长摇臂设置。
• 优点:结构相对简单,占空间少,对于横置发动机布局的车型因为不占体积
所以最为方便实用。而且由于具有优良的操控性能,因此被广泛使用,而且 经久不衰
• 缺点:稳定性差、抗侧倾和制动点头能力弱,增加稳定杆以后有所缓解但无
法从根本上解决问题,耐用性不高,减震器容易漏油需要定期更换。
• 代表车型:吉利、长城、奇瑞、长安、保时捷的911、福特的Mustang等
双横臂式独立悬挂的应用车辆
一汽奔腾X80
本田雅阁
谢谢观赏
室互不影响。目前主流的独立悬挂有双叉臂式、双横臂式、多连杆式与麦弗 逊式。
• [5]、[6]、[7]、[8]、[9]、[10]
麦弗逊式
• 麦弗逊式悬架是目前很多车做常Biblioteka 的配置,一般是由螺旋弹簧、减震器、A型
下摆臂三部分组成的,某些车型还会在此基础上增加一根仿倾杆。普通轿车 一般前车几乎都是麦弗逊。
多连杆式独立悬架
• 多连杆悬挂顾名思义就是需要通过各种连杆配置(通常有三连杆,四连杆,五连杆),
能实现双叉臂悬挂的所有性能,然后在双叉臂的基础上通过连杆连接轴的约束作用使 得轮胎在上下运动时前束角也能相应改变。
• 优点:弯道适应性更好,如果用在前驱车的前悬挂,可以在一定程度上缓解转向不足,
给人带来精确转向的感觉;如果用在后悬挂上,能在转向侧倾的作用下改变后轮的前 束角,达到舒适操控两不误的目的。
汽车底盘悬架类型与设计的要点
汽车底盘悬架类型与设计的要点摘要:近年来,我国汽车的普及率逐步提高,而且汽车的销量节节攀升,带动我国汽车相关行业发展,同时也促进我国汽车设计显著提升。
汽车作为日常生活中使用的最频繁的代步工具,现在人民们对汽车的舒适性与稳定性提出更高的要求。
通过优化汽车底盘悬架结构设计,能对汽车行驶的舒适性与安全性有很大提高,能让汽车行业发展更好的满足人民对汽车使用的需求。
基于此,本文主要对汽车底盘悬架结构设计要点进行简要介绍,希望对汽车从业人员或者对此方面感兴趣的人员有参考价值。
关键词:汽车底盘;悬架结构;麦弗逊汽车底盘悬架的工作就是让车辆的轮胎与路面的摩擦力最大限度的增加,这样能够提供良好的车辆操纵性与稳定性。
我们平常开车行驶与路面时,路面不是百分百平整的,经常会是去凹凸不平,这种路面作用在车轮上,从而发生车轮的颠簸。
如果此时车轮直接与车身连接一起,车轮的颠簸直接就会传递到车身,造成很糟糕的驾乘体验。
那么我们可以设计一个车轮与车架的中间结构,就是悬架结构,能够起到了吸收竖直方向的车轮加速动能作用。
车轮的垂直加速力先通过悬架结构一部分的吸收与释放,最后一小部分才传到在传到车架上,这样避免车轮在颠簸的路面上出现车轮离开地面的状态。
通常我们常见的悬架系统主要包含减振器、稳定杆、弹簧、导向连接件等零件组成。
一个良好的悬架设计能够很好匹配路面的隔离性能、轮胎的抓地性能、转弯的性能。
一、汽车底盘悬架结构类型我们按照悬架的刚度与阻尼会随着不同的路面情况而改变,悬架系统可以分为被动悬架、半主动悬架和主动悬架三大类。
主动悬架涉及众多的电子感应装置,能够主动地根据路面信息情况自发地调节悬架的刚度与阻尼。
如果悬架系统按照导向机构来分类,可以分成独立悬架系统和非独立悬架系统两大类。
本文主要介绍的是传统车大多数车型采用的被动悬架中的独立悬架和非独立悬架设计。
(一)非独立悬架系统如图1所示,非独立悬架系统简单的理解就是前轮或者后轮的左右两个轮子会相互作用,左边的轮子会受到右边的轮子的影响。
汽车底盘构造与维修-教案 第27、28节 悬架
教学设计
教学过程
教学环节教师讲授、指导(主导)内容
学生学习、
操作(主体)活动
时间
分配
一二三组织教学
复习提问
(四)悬架
1.作用:把车桥和车架弹性地连接起来,并用它来吸收和缓
和行驶中因路面不平引起的车轮跳动而传给车架的冲击和振
动;传递路面作用于车轮的支持力、驱动力、制动力和侧向
力及其产生的力矩。
2.分类
⑴独立悬架
①双叉式独立悬架
②撑杆式独立悬架
⑵非独立悬架
①钢板弹簧非独立悬架
②螺旋弹簧非独立悬架
3.组成
⑴弹性元件
①钢板弹簧
②螺旋弹簧
③扭杆弹簧
④气体弹簧
⑤横向稳定杆
⑵减振器
①工作原理:利用液体流动的阻力来消耗振动的能量,使振动
消失。
可将它的工作原理分为压缩和伸张两个行程加以说明。
②影响阻尼力的因素:活塞移动速度、节流孔大小、油液粘
教师介绍这次教学
任务内容,学生了解
本次课学习内容。
通过图片介绍本节
重点
教师讲授,学生认真
听讲,记好笔记。
记忆背诵
2min
8min
10min
10min。
独立悬架导向机构的设计
汽车悬架--独立悬架导向机构的设计第五节独立悬架导向机构的设计一、设计要求对前轮独立悬架导向机构的要求是:1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。
2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。
3)汽车转弯行驶时,应使车身侧倾角小。
在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。
4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。
对后轮独止:悬架导向机构的要求是:1)悬架上的载荷变化时,轮距无显著变化。
2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。
此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。
目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。
下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。
二、导向机构的布置参数1.侧倾中心双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。
将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。
将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。
当横臂相互平行时(图6—25),P点位于无穷远处。
作出与其平行的通过N点的平行线,同样可获得侧倾中心W。
双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。
从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。
两条线的交点即为P点。
滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。
如加长下横臂,则可改善运动学特性。
八种典型客车空气悬架汇总浅析
独立悬架对于现在主流的大型客车只有前桥才有独立悬架,而且弹性元件都是空气弹簧,最大轴荷一般为7吨。
就导向机构的型式而言,只有双横臂式悬架一种,而且都是不等长的双叉臂,下横臂较长,而且横臂的铰接点跨距很大,以抵抗较大的纵向力。
如果非要对客车用的双横臂悬架分分的话还真能分出三种不同的结构来:带球副的(BALL JOINT)虚拟主销式双横臂悬架这样的双横臂悬架与轿车上用的双横臂悬架一样,上下横臂分别通过两个球副(BALL JOINT)与转向节相连,可以完成车轮转向和悬架跳动两个自由度的运动,没有实体的主销结构,上下球副的连线即为虚拟的主销。
而空气弹簧一般支撑在上横臂上。
这样的结构优点在于结构紧凑,重量轻;而缺点是球头所能承受的力量有限,容易损坏,而且球头的制造成本较高。
VOLVO的双横臂前悬架使用这样的结构。
VOLVO 9800 带球头副的双横臂独立前悬架KING PIN实体主销式双横臂悬架有了实体的主销,车轮的转向自由度就可以由主销来完成,而悬架跳动的自由度由另外两个联接在上下横臂上的转轴来完成。
因此成本降低,承载能力提高,但是连接主销和上下摆臂的这个家伙体积很大,很笨重,会使得非簧载质量增加,所以不利于操控稳定性和平顺性的提升。
目前大多数双横臂悬架都是采用这样的结构。
空气弹簧除了安装在上摆臂上,还可以安装在连接主销和上下摆臂的这个家伙上。
KING PIN实体主销式双横臂悬架转向自由度与悬架跳动自由度完全分开这个也是KING PIN实体主销式双横臂悬架但是其气簧支架过于粗壮,非簧载质量之大可想而知.T型节式(TEE JOINT)虚拟主销式双横臂悬架这个名字听上去有点怪,其本质就是用一个T型节(称为TEE JOINT)代替球头副,其他结构都与带球副的双横臂悬架相同,而TEE JOINT可以在它的两个相互垂直轴上有两个相互垂直旋转自由度,以完成悬架的跳动与车轮的转向两个自由度。
这样的TEE JOINT 可承载的重量比球头副强很多,而且成本比球副的要低。
悬架知识要点归纳
第十八讲悬架一、悬架的作用是把车桥和车架弹性地连接起来,并用它来吸收和缓和行驶中因路面不平引起的车轮跳动而传给车架的冲击和振动;传递路面作用于车轮的支持力、驱动力、制动力和侧向力及其产生的力矩。
二、悬架的组成一般都是由弹性元件、减振器和导向机构三部分,它们分别起着缓冲、减振、导向和传递力及力矩的作用。
三、根据汽车悬架结构的不同,通常将悬架分为独立悬架和非独立悬架两大类。
四、独立悬架结构特点是车架与每一侧车轮之间的悬架连接是独立的,它的车桥为断开式,当一侧车轮上下跳动时,不会影响到另一侧车轮位置的变化。
五、双叉式独立悬架:它一般是上、下两个控制臂支承装有车轴的转向节,在上、下控制臂之间安装减振器。
这种悬架可通过自由设定控制臂长度来使汽车具有良好的转弯性能、直线行驶性能及乘坐舒适性能。
六、撑杆式独立悬架,因为减振器兼作悬架支柱,故将这种方式称为撑杆式悬架。
用于前轮时称为麦弗逊式撑杆式悬架;而用于后轮时被称为查普曼式撑杆式悬架。
其结构是将装有减振器撑杆的上端安装在车身上,下端借助于控制臂与车轴连接。
这种悬架构件数量少,质量轻,节省空间。
七、非独立悬架结构特点是两侧的车轮安装在一根整体式车桥上,若一侧车轮因路面不平跳动时,会影响另一侧车轮位置的变化。
缺点:车身的平稳和高速行驶的稳定性差,优点:结构简单,制造方便,应用范围:载重汽车八、非独立悬架分为钢板弹簧非独立悬架和螺旋弹簧非独立悬架两种。
十、汽车悬架的弹性元件包括钢板弹簧、螺旋弹簧、扭杆弹簧、气体弹簧、横向稳定杆等。
十一、钢板弹簧结构:由若干片等宽不等长、弧度不等、厚度相等或不等的钢板弹簧片组合而成的一根近似等强度的弹性梁。
十二、钢板弹簧组成:卷耳、中心螺栓、钢板夹、钢板弹簧、螺母、螺栓、套管。
十三、卷耳位置结构:钢板弹簧的第一片最长,称为主片,其两端弯成卷耳,内装衬套,用钢板销与车架连接。
十四、中心螺栓作用:中心螺栓用以连接各弹簧片,并保证装配时各片的相对位置,且作为钢板弹簧安装到前轴或后桥壳上的定位销。
轻型汽车麦弗逊独立悬架的导向机构设计
l 一 5 )
5 m m
( 图卜3 )
9。
( 图卜4 )
1 . 5 。
在汽车通 过有凹坑的路面 引起 在车轮接地
点产生 纵向力时 ,此 纵向力绕下控 制臂球销和 前 衬套 的轴线 形成纵 向力矩 ,通过 设 定L 形 下 控 制臂后衬套 的刚度来控制 该力矩,缓和路面 带来 的冲击使 车轮产 生纵 向柔性 。可 见L 型 下 控制臂 的设 计,使汽车在侧 向和纵 向的受力分 别通过前 、后衬套进行控 制,使需要 的侧 向刚 度独立 于纵向柔性 ,使侧 向力和纵 向力同时作 用时相 互间不发生耦合 ,避免 了悬架 臂共振 的 发生 ,从而提 高了汽 车行驶 的平 顺性。另外 , L 形控制 臂的前 后连接 衬套 刚度 一般都 设定为 图6麦弗逊 式独立悬架纵向摆臂斜置 前硬 后软 ,这 有助 于在转 向时受到侧 向力 时前 设 从前轮 接地 点到c 点的直线 与水 平轴线 轮 形成负前束 ,增加不足转 向的趋势 ,有利 于 形成 的角为 ( 图5 ) 。在汽 车制动时 ,分配 在前 提高汽车行驶的稳定性 。 = .ຫໍສະໝຸດ . 丽 d一 南
,
,
=
图2麦弗逊式独立悬架导 向机构 受力简图
四个 前轮 定位 参 数 的初 步 选 取 如表 1 所
示。
表 1前轮定位参数值 主销后倾角 主销 内倾角 前轮外倾角 前轮前束 ( 图
( 图1 - 2 )
5 . 5 。
图3纵向 ‘ ‘ 0 偏 移”L 型下控制臂 1 —下控制臂球铰 2 一下控制臂前连接衬套
图 1麦弗逊悬架 的主销偏移距
… … … … … … … 一 … … … … … …
图解汽车(10) 汽车悬挂系统结构解析
图解汽车(10)汽车悬挂系统结构解析● 悬挂的作用汽车悬挂是连接车轮与车身的机构,对车身起支撑和减振的作用。
主要是传递作用在车轮和车架之间的力,并且缓冲由不平路面传给车架或车身的冲击力,衰减由此引起的震动,以保证汽车能平顺地行驶。
典型的悬挂系统结构主要包括弹性元件、导向机构以及减震器等部分。
弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。
● 独立悬挂和非独立悬挂的区别汽车悬挂可以按多种形式来划分,总体上主要分为两大类,独立悬挂和非独立悬挂。
那怎么来区分独立悬挂和非独立悬挂呢?独立悬挂可以简单理解为,左右两个车轮间没有硬轴进行刚性连接,一侧车轮的悬挂部件全部都只与车身相连。
而非独立悬挂两个车轮间不是相互独立的,之间有硬轴进行刚性连接。
从结构上看,独立悬挂由于两个车轮间没有干涉,可以有更好的舒适性和操控性。
而非独立悬挂两个车轮间有硬性连接物,会发生相互干涉,但其结构简单,有更好的刚性和通过性。
● 麦弗逊式悬挂麦弗逊悬挂是最为常见的一种悬挂,主要有A型叉臂和减振机构组成。
叉臂与车轮相连,主要承受车轮下端的横向力和纵向力。
减振机构的上部与车身相连,下部与叉臂相连,承担减振和支持车身的任务,同时还要承受车轮上端的横向力。
麦弗逊的设计特点是结构简单,悬挂重量轻和占用空间小,响应速度和回弹速度就会越快,所以悬挂的减震能力也相对较强。
然而麦弗逊结构结构简单、质量轻,那么抗侧倾和制动点头能力弱,稳定性较差。
目前麦弗逊悬挂多用于家用轿车的前悬挂。
● 双叉臂式悬挂双叉臂式悬挂(双A臂、双横臂式悬挂),其结构可以理解为在麦弗逊式悬挂基础上多加一支叉臂。
车轮上部叉臂,与车身相连,车轮的横向力和纵向力都是由叉臂承受,而这时的减振机构只负责支撑车体和减振的任务。
由于车轮的横向力和纵向力都由两组叉臂来承受,双叉臂式悬挂的强度和耐冲击力比麦弗逊式悬挂要强很多,而且在车辆转弯时能很好的抑制侧倾和制动点头等问题。
汽车独立悬架设计说明书(毕业设计)
独立悬架设计说明书摘要本设计主要讲述了悬架的定义和重要性,描述了悬架的作用和功能主要阐述了独立悬架的类别和构造尤其是详细的介绍了麦弗逊式独立悬架的设计过程,本着满足车辆行使平顺性的原则,设计了麦弗逊式独立悬架的各个组成部件,并对其进行了校核。
如螺旋弹簧的设计和计算,横向稳定杆的设计,对导向机构进行了平顺性分析,横摆臂的长度计算和减震器的设计计算等。
轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
怎样处理好这些方面的关系就摆在了我们设计人员的面前。
因此要是能够设计出使这些方面都能达到一个和谐的悬架对越来越多的汽车使用人员来说将会带来极大的好处。
他们将会体会到优秀悬架带给他们的良好的舒适性,和安全的平顺性。
希望本人的设计能够满足大家的要求。
本设计的图纸主要由计算机绘制完成,计算机编档、排版,打印出图及论文。
还完成了一定量的英文翻译工作。
关键词:麦弗逊式独立悬架悬架汽车悬架AbstractThe main design on the suspension of the definition and importance of a suspension described the role and functions primarily on the type of independent suspension and tectonic particularly detailed introduced Maifuxun independent suspension design process, in the spirit of the exercise smoothly vehicles meet the principles of the design of the independent suspension Maifuxun various components, and the degree of their. If screw spring-loaded design and calculation, horizontal designed to guide agencies conducted smoothly and analytical, Wang squatting length calculation and shock absorber design.Training is a perfect car for the car more difficult to achieve fuel, because it is necessary to meet the suspension of vehicle comfort, but also meet the requirements of the stability of its manipulation, and these two aspects are mutually antagonistic. For example, in order to achieve good sexual comfort, require a significant buffer car shock, which is designed spring-loaded soft farther, but the spring-loaded soft but easy to vehicle braking occurred "nod" and accelerate the "rise" and so serious adverse trends, to the detriment of the vehicle to easily lead to vehicle instability manipulation. How to handle the relationship between these areas before our designers have to face the problem .So if these meet the mission to design a harmonious suspension of a growing number of vehicles involved will bring great benefits. They will understand theiroutstanding suspension to the comfort of a good, and safe smoothly. I hope the design can satisfy all requirements.The design drawings completed mainly by computer mapping, computer archiving, typesetting, printing out maps and papers. Also completed a number of English translation work.Keyword:Maifusun type of independent suspension suspension Motor Training1概述1.1 悬架的定义及其重要性悬架是保证车轮与汽车承载之间具有弹性联系并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的综总称。
双横臂独立悬架设计
目录中文摘要 ............................................................................. 错误!未定义书签。
英文摘要 ............................................................................. 错误!未定义书签。
前言 (III)1悬架的基本知识 (1)1.1认识悬架 (1)1.2国内外发展状况 (2)1.3悬架对汽车的影响 (3)1.3.1对汽车行使平顺性的影响 (3)1.3.2对汽车操纵稳定性的影响 (3)1.4独立悬架的优点 (4)1.5独立悬架的缺点 (4)1.6悬架的设计要求 (4)1.7独立悬架的分类 (5)1.7.1麦弗逊式独立悬架 (5)1.7.2多连杆式独立悬架 (5)1.8本章小结 (5)2独立悬架的组成及其相关计算 (5)2.1弹性元件的选择 (5)2.1.1螺旋弹簧的分类和选择 (7)2.1.2圆形截面圆柱螺旋压缩弹簧的参数设计 (8)2.2减振器的选择和计算 (10)2.2.1减振器的选择 (10)2.2.2汽车对减振器的要求 (11)2.2.3减振器的工作原理 (11)2.2.4减振器的参数计算 (12)2.3横向稳定杆 (17)2.4悬架的上、下横臂 (18)2.5悬架的导向机构 (19)2.5.1悬架的导向机构的设计要求 (19)2.5.2导向机构的布置参数 (20)2.5..3导向机构的布置方案 (21)2.5..4上下横臂的长度的确定 (22)2.6悬架的连接件轴销的校核 (23)2.7本章小结 (23)3 独立悬架的一些重要参数 (23)3.1簧载质量与非簧载质量 (23)3.2悬架的静挠度和动挠度 (24)3.3悬架的弹性特性 (25)3.3.1悬架的线性弹性特性曲线 (25)3.3.2悬架的非线性弹性特性曲线 (25)3.3.3悬架的刚度计算 (26)3.4悬架的上、下横臂的确定 (26)3.5悬架的其他一些参数的确定 (27)3.6本章小结 (29)4总结 (29)致谢 (30)参考文献 (31)双横臂独立悬架设计摘要汽车悬架是连接车架和车桥的装置,其作用是缓冲地面对于车身的冲击,并衰减由此产生的振动,提高乘客的舒适度。
名词解释独立悬架
独立悬架是一种汽车或其他车辆的悬挂系统,它是指车辆每个车轮都有独立的悬挂装置,能够独立地对路面的不平进行吸收和缓冲,而不会因为其他车轮的运动而产生影响。
独立悬架相对于其他类型的悬架系统(如刚性悬架或半独立悬架)而言,具有更好的路感和操控性能。
它能够单独响应路面不平,减少因一个车轮受到冲击而传导到其他车轮的影响,提供更好的车辆稳定性和舒适性。
不同类型的独立悬架有各自的设计和构造方式,如双叉臂独立悬架、多连杆独立悬架、麦弗逊独立悬架等。
这些设计依靠各种悬挂元件(如弹簧、减震器、横臂等)来实现对车轮的独立悬挂和减震。
独立悬架的优点包括:更好的操控性能、更好的路感和驾驶舒适性、能够快速响应路面变化、保持车轮接触面积的稳定性等。
然而,相较于其他类型的悬架系统,独立悬架通常更加复杂、昂贵,并且对空间有一定要求。
总而言之,独立悬架是一种车辆悬挂系统,通过每个车轮独立地吸收和缓冲路面不平,提供更好的操控性能和乘坐舒适性。
它是现代汽车悬挂系统的常见设计之一,被广泛应用于各种乘用车和赛车等车辆中。
汽车悬架的功用和组成
和阻力可调式减振器。其中,双向作用减振器应用最为广泛。
汽车认识
汽车悬架的功用和组成
2_3_4_4_13悬架组成
2_3_4_4_14悬架组成(2_3_4_4悬 架组成_1动画_2)
汽车认识
任务描述
了解悬架的功用、类型和组成
汽车认识
学习目标
1. 了解悬架的功用和基本组成; 2. 了解悬架各组成的功用和类型; 3. 了解悬架类型和特点。
汽车认识
汽车悬架的功用和组成
悬架是车架(或承载式车身)与车桥(或车轮)之间的所有传力装置的总称。 悬架的功用是: 1. 把路面与车轮之间的摩擦所产生的驱动力和制动力,传递到车架(或承载
2_3_4_4_10悬架组成
汽车认识
汽车悬架的功用和组成
1. 螺旋弹簧:有良好的吸收冲击能力,乘坐舒适性较好,且无须润滑,不怕泥污, 质量小,成本低,因此广泛用于独立悬架。
2. 钢板弹簧:结构简单,使用可靠,维修方便,因而是汽车悬架中应用较为广泛的 一种弹性元件,广泛用于载货汽车。
3. 扭杆弹簧:它与钢板弹簧,具有质量小,不需要润滑的优点。
弹性元件的作用是使车架(或车身)与车桥(或车轮)之间成为弹性联接 和弹性的充气轮胎一起缓和不平路面对车辆的冲击,提高乘员的舒适性,避免货 物损伤,延长汽车使用寿命。
弹性系统受到冲击会产生振动,持续的振动容易使乘员感到不舒适或疲劳, 为了尽快使弹性系统的振动迅速衰减,悬架还安装有减振器,使振动迅速衰减。
2_3_4_4_19悬架组成
独立悬架的结构特点是车桥做成断 开的,每一侧的车轮可以单独地通 过弹性悬架与车架(或车身)连接。 独立悬架主要有:横臂式独立悬架、 纵臂式独立悬架、烛式独立悬架和 麦弗逊式独立悬架、单斜臂式独立 悬架。
汽车设计复习思考题-答案
华南理工大学《汽车设计》作业题第一章汽车总体设计1.货车按发动机位置不同分几种?各有何优缺点?2.货车按驾驶室与发动机相对位置不同分几种?各有何优缺点?3.大客车按发动机位置不同布置形式有几种?各有何优缺点?4.轿车的布置形式有几种?各有何优缺点?5.根据气缸的排列形式不同,发动机有几种?各有何优缺点?6.根据冷却方式不同,发动机有几种?各有何优缺点?7.汽车的质量参数包括哪些参数?各自如何定义的?整车整备质量:载客量和装载质量(载质量);质量系数;总质量;轴荷分配8.汽车轴距的确定原则是什么?影响轴距大小的主要因素有哪些?轴距L的选取原则(a) 轿车级别越高,L越长。
(b) 装载量多的货车L应取长些。
(c) 载客量多的客车L应取长些。
(d) 机动性要求高的汽车L应取短些。
i) 轴距L的变化,影响下列参数随之改变:整备质量;汽车总长;最小转弯直径Dmin;传动轴长度;纵向通过半径;轴荷分配。
以上参数在L小时均减少。
ii) 轴距L过小时有下列不利之处:(a)车箱(厢)长度不足,或后悬过长。
(b)上坡或制动时轴荷转移过大 制动性、操纵稳定性下降。
(c)车身纵向角振动增加,平顺性降低。
(d)传动轴夹角变大。
9.汽车轮距大小不同对什么问题有影响?影响轮距的因素有哪些?(P18)i) B的变化影响下列参数变化:随着B的增加,车箱(驾驶室)内宽也增加;侧倾刚度增大;总宽增大;总质量增大;最小转弯直径Dmin增加;轮距B的确定原则(a) 因为总宽不超过2.5m,所以B不宜取大。
(b) B1的确定要保证布置下发动机、车架、前悬架、前轮和转向轮转动空间及转向杆系与车架车轮之间的间隙。
(c) B2的确定要受后部车架宽度、悬架、轮胎宽度影响,并保证他们之间有足够的间隙。
10.画汽车总布置图用到的基准线(面)有哪些?各基准应如何确定?条件:满载;车头在左侧1 车架上平面线:车架上平面在测试图上的投影线称为车架上平面,该面作为垂直方向尺寸的基准线。
双横臂独立悬架导向机构的运动特性
Ki m a i a a t r s i s o n I e e e s n i n ne tc Ch r c e i tc f a nd p nd ntSu p s o e
Gu d ng M e h nim t i i c a s wih Dou e wih n bl — s bo e
引言
双横 臂独立 悬架 导 向机构 的布置 对前 轮定位 参 数的变 化特性 有重要 影响 。许 多文献进 行 过前 轮定 位 参数变 化 特性 的研 究【 , l 但仅 给 出理论 计 算 值 。 ] 未通 过试 验验证 算法 的正 确性 本文 基 于空间 机构 运 动分 析 方法 , 出双 横臂 独 立 悬 架导 向机 构运 ]给 动 特性的计 算方法
Li ig Ch a g Lu He n n J u Lin a
( i n Un v r i J l ie s y) i t
Ab ta t sr c
To e tb ih t ek n ma i lo i m fa n e e d n u p n in g i ig me h n s wih sa l h i e tcag rt s h o n i d p n e ts s e so ud n c a im t
心
E 主请 、 转向节轴线交点 F: 车轮中心 G, 车轮接 地点
尸: 转向节臂球精中心
维普资讯
第2 期
李静 等 双横臂独 立悬 架导 向机构 的运动特性
一
[ ,B, ] D。 ED,. 。 Yo 一 X c. ] ) , 式中 Q 一
v hce I r e o t si o rc n s ft eag r h ,t ec mp t t n ld t n h etd t e il. n o d rt e tf c re t e so h lo i m y t h o u a i a aaa dt ets a a o
汽车悬架系-各种独立悬架
汽车悬架系统专题:图解各类独立悬架独立悬架的左右车轮不是用整体车桥相连接,而是通过悬架分别与车架(或车身)相连,每侧车轮可独立下下运动。
轿车和载重量1t以下的货车前悬架广为采用,轿车后悬架上采用也在增加。
越野车、矿用车和大客车的前轮也有一些采用独立悬架。
根据导向机构不同的结构特点,独立悬架可分为:双横臂,单横臂,纵臂式,单斜臂,多杆式及滑柱(杆)连杆(摆臂)式等等。
按目前采用较多的有以下三种形式:(1) 双横臂式,(2) 滑柱连杆式,(3)斜置单臂式。
按弹性元件采用不同分为:螺旋弹簧式,钢板弹簧式,扭杆弹簧式,气体弹簧式。
采用更多的是螺旋弹簧。
双横臂式(双叉式)独立悬架如图1所示为双横臂式独立悬架。
上下两摆臂不等长,选择长度比例合适,可使车轮和主销的角度及轮距变化不大。
这种独立悬架被广泛应用在轿车前轮上。
双横臂的臂有做成A字形或V字形,如图2所示。
V形臂的上下2个V形摆臂以一定的距离,分别安装在车轮上,另一端安装在车架上。
图1:双横臂式独立悬架不等臂双横臂上臂比下臂短。
当汽车车轮上下运动时,上臂比下臂运动弧度小。
这将使轮胎上部轻微地内外移动,而底部影响很小。
这种结构有利于减少轮胎磨损,提高汽车行驶平顺性和方向稳定性。
图2滑柱摆臂式独立悬架(麦弗逊式或叫支柱式等)这种悬架目前在轿车中采用很多。
如图3所示。
滑柱摆臂式悬架将减振器作为引导车轮跳动的滑柱,螺旋弹簧与其装于一体。
这种悬架将双横臂上臂去掉并以橡胶做支承,允许滑柱上端作少许角位移。
内侧空间大,有利于发动机布置,并降低车子的重心。
车轮上下运动时,主销轴线的角度会有变化,这是因为减振器下端支点随横摆臂摆动。
以上问题可通过调整杆系设计布置合理得到解决。
图3一汽奥迪100型轿车前悬架。
筒式减振器装在滑柱桶内,滑柱桶与转向节刚性连接,螺旋弹簧安装在滑柱桶及转向节总成上端的支承座内,弹簧上端通过软垫支承在车身连接的前簧上座内,滑柱桶的下端通过球铰链与悬架的横摆臂相连。
汽车悬架设计
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.3 螺旋弹簧的计算
螺旋弹簧常用于独立悬架中,它通
常只能承受垂直载荷。螺旋弹簧的主要
尺寸是平均直径D,钢丝直径d 和工作 圈数 n ,如图所示。
设计时先根据行驶平顺性的要求,
确定悬架的静挠度 fc和动挠度 fd,然后
根据导向机构特点选择杆杠比,从而换
根据气囊结构型式不同,空气弹簧可分为囊式、膜式和复合式三 种。囊式又分为单曲式、双曲式和多曲式;与膜式相比,囊式寿命较 长、制造方便,刚度较大,故常用于商用车。
23
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.4 空气弹簧和油气弹簧的计算
2. 油气弹簧 油气弹簧是空气弹簧的一种特例,它以气体作为弹性元件,在气 体与活塞之间引入油液作为中间介质。油气弹簧的工作缸由气室和浸 在油液中的阻尼阀组成。 油气弹簧有双气室和两级压力式。
5. 钢板弹簧组装后总成弧高
L2
6.
H0
钢板弹簧强度校核
8R0
1) 汽车紧急制动时
15
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.1 钢板弹簧的计算
6. 钢板弹簧强度校核 2) 驱动时
16
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.1 钢板弹簧的计算
6. 钢板弹簧强度校核 3) 钢板弹簧卷耳和弹簧销的强度计算 卷耳应力为
8.5 独立悬架导向机构设计
➢8.5.3 双横臂悬架导向机构设计
1.前轮定位参数的变化 表中列出了几种国外乘用车双横臂式独立悬架的一些参数,供设
计时参考。
车牌名称
上臂长A(mm)
下臂长r(mm)
汽车悬挂系统
什么是悬挂系统舒适性是轿车最重要的使用性能之一。
舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。
所以,汽车悬架是保证乘坐舒适性的重要部件。
同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。
因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。
汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。
汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。
它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。
保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。
悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。
由此可见悬架系统在现代汽车上是重要的总成之一。
一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。
弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。
弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。
减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。
导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。
种类有单杆式或多连杆式的。
钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。
有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。
吉林大学汽车设计答案
汽车设计1-1、在绘总布置图时,首先要确定画图的基准线,问为什么要有五条基准线缺一不可?各基准线是如何确定的?如果设计时没有统一的基准线,结果会怎样?答:在绘制整车总布置图的过程中,要随时配合、调整和确认各总成的外形尺寸、结构、布置形式、连接方式、各总成之间的相互关系、操纵机构的布置要求,悬置的结构与布置要求、管线路的布置与固定、装调的方便性等。
因此要有五条基准线才能绘制总布置图。
如果设计时没有统一的基准线,将无法保证上述所说。
①车架上平面线纵梁上翼面较长的一段平面或承载式车身中部地板或边梁的上缘面在侧(前)视图上的投影线,称为车架上平面线。
它作为标注垂直尺寸的基准载(面),即z 坐标线,向上为“+”、向下为“-”,该线标记为0Z 。
②前轮中心线通过左、右前轮中心,并垂直于车架平面线的平面,在侧视图和俯视图上的投影线,称为前轮中心线。
它作为标注纵向尺寸的基准线(面),即x 坐标线,向前为“-”、向后为“+”,该线标记为0x 。
③汽车中心线汽车纵向垂直对称平面在俯视图和前视图上的投影线,称为汽车中心线。
用它作为标注横向尺寸的基准线(面),即y 坐标线,向左为“+”、向右为“—”,该线标记为0y 。
④地面线地平面在侧视图和前视图上的投影线,称为地面线。
此线是标注汽车高度、接近角、离去角、离地间隙和货台高度等尺寸的基准线。
⑤前轮垂直线通过左、右前轮中心,并垂直于地面的平面,在侧视图和俯视图上的投影线,称为前轮垂直线。
此线用来作为标注汽车轴距和前悬的基准线。
当车架与地面平行时,前轮垂直线与前轮中心线重合(如乘用车)。
1-2、发动机前置前轮驱动的布置形式,如今在乘用车上得到广泛应用,其原因究竟是什么?而发动机后置后驱动的布置形式在客车上得到广泛应用,其原因又是什么?答:前置前驱优点:前桥轴荷大,有明显不足转向性能,越过障碍能力高,乘坐舒适性高,提高机动性,散热好,足够大行李箱空间,供暖效率高,操纵机构简单,整车质量小,低制造难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立悬架导向机构的设计一、设计要求对前轮独立悬架导向机构的要求是:1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。
2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。
3)汽车转弯行驶时,应使车身侧倾角小。
在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。
4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。
对后轮独止:悬架导向机构的要求是:1)悬架上的载荷变化时,轮距无显著变化。
2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。
此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。
目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。
下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。
二、导向机构的布置参数1.侧倾中心双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。
将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。
将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。
当横臂相互平行时(图6—25),P点位于无穷远处。
作出与其平行的通过N点的平行线,同样可获得侧倾中心W。
双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。
从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。
两条线的交点即为P点。
滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。
如加长下横臂,则可改善运动学特性。
麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算式中2.侧倾中心在独立悬架中,前后侧倾中心连线称为侧倾轴线。
侧倾轴线应大致与地面平行,且尽可能离地面高些。
平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中性转向特性;而尽可能高则是为了使车身的侧倾限制在允许范围内。
然而,前悬架侧倾中心高度受到允许轮距变化的限制且几乎不可能超过150mm。
此外,在前轮驱动的车辆中,由于前轿轴荷大,且为驱动桥,故应尽可能使前轮轮荷变化小。
因此,独立悬架(纵臂式悬架除外)的侧倾中心高度为:前悬架0~120mm;后悬架80~150mm。
设计时首先要确定(与轮距变化有关的)前悬架的侧倾中心高度,然后确定后悬架的侧倾中心高度。
当后悬架采用独立悬架时,其侧倾中心高度要稍大些。
如果用钢板弹簧非独立悬架时,后悬架的侧倾中心高度要取得更大些。
3.纵倾中心双横臂式悬架的纵倾中心可用作图法得出,见图6—27。
自铰接点E和G作摆臂转动轴C和D的平行线,两线的交点即为纵倾中心。
滑柱摆臂式悬架的纵倾中心,可由E点作减振器运动方向的垂直线,该垂直线与过G点的摆臂轴平行线的交点即为纵倾中心OV,,如图6—28所示。
4.抗制动纵倾性(抗制动前俯角)抗制动纵倾性使得制动过程中汽车车头的下沉量及车尾的抬高量减小。
只有当前、后悬架的纵倾中心位于两根车桥(轴)之间时,这一性能方可实现,如图6—29所示。
5.抗驱动纵倾性(抗驱动后仰角)抗驱动纵倾性可减小后轮驱动汽车车尾的下沉量或前轮驱动汽车车头的抬高量。
与抗制动纵倾性不同的是,只有当汽车为单桥驱动时,该性能才起作用。
对于独立悬架而言,是纵倾中心位置高于驱动桥车轮中心,这一性能方可实现。
’6.悬架摆臂的定位角独立悬架中的摆臂铰链轴大多为空间倾斜布置。
为了描述方便,将摆臂空间定位角定义为:摆臂的水平斜置角α,悬架抗前俯角β,悬架斜置初始角θ,如图6—30所示。
三、双横臂式独立悬架导向机构设计1.纵向平面内上、下横臂的布置方案上、下横臂轴抗前俯角的匹配对主销后倾角的变化有较大影响。
图6—31给出了六种可能布置方案的主销后倾角λ值随车轮跳动的曲线。
图中横坐标为λ值,纵坐标为车轮接地中心的垂直位移量。
各匹配方案中β1、β2角度的取值见图注,其正负号按右手定则确定。
为了提高汽车的制动稳定性和舒适性,一般希望主销后倾角的变化规律为:在悬架弹簧压缩时后倾角增大;在弹簧拉伸时后倾角减小,用以造成制动时因主销后倾角变大而在控制臂支架上产生防止制动前俯的力矩。
分析图6—31中λ的变化曲线可知,第4、第5方案的λ变化规律为压缩行程λ减小,拉伸行程λ增大,这与所希望的规律正好相反,因此不宜用在汽车前悬架中;第3方案虽然主销后倾角的变化最小,但其抗前俯的作用也小,所以现代汽车中也很少采用;第1、2、6方案的主销后倾角变化规律是比较好的,所以这三种方案在现代汽车中被广泛采用。
2.横向平面内上、下横臂的布置方案比较图6—32a、b、c三图可以清楚地看到,上、下横臂布置不同,所得侧倾中心位置也不同,这样就可根据对侧倾中心位置的要求来设计上、下横臂在横向平面内的布置方案。
3.水平面内上、下横臂动轴线的布置方案上、下横臂轴线在水平面内的布置方案有三种,如图6—33所示。
下横臂轴M—M和上横臂轴N—N与纵轴线的夹角,分别用α1和α2来表示,称为导向机构上、下横臂轴的水平斜置角。
一般规定,轴线前端远离汽车纵轴线的夹角为正,反之为负,与汽车纵轴线平行者,夹角为零。
为了使轮胎在遇到凸起路障时能够使轮胎一面上跳,一面向后退让,以减少传到车身上的冲击力,还为了便于布置发动机,大多数前置发动机汽车的悬架下横臂轴M—M的斜置角。
,为正,而上横臂轴N—N的斜置角α2则有正值、零值和负值三种布置方案,如图6—33中的a、b、c所示。
上、下横臂斜置角不同的组合方案,对车轮跳动时前轮定位参数的变化规律有很大影响。
如车轮上跳、下横臂斜置角αl为正、上横臂斜置角α2为负值或零值时,主销后倾角随车轮的上跳而增大。
如组合方案为上、下横臂斜置角α1、α2都为正值,如图6—33a所示,则主销后倾角随车轮的上跳较少增加甚至减少(当α1<α2时)。
至于采取哪种方案为好,要和上、下横臂在纵向平面内的布置一起考虑。
当车轮上跳、主销后倾角变大时.车身卜的悬架支承处会产生反力矩,有抑制制动时前俯的作用。
但主销后倾角变得太大时,会使支承处反力矩过人,同时使转向系统对侧向力十分敏感,易造成车轮摆振或转向盘上力的变化。
因此,希望轿车的主销后倾角原始值为-1°一+2°。
当车轮上跳时,悬架每压缩lOmm,主销后倾角变化范围为10′一40′。
为了综合1上述要求,选择恰当的抗前俯角,国外已根据设计经验制定出一套列线图,如图6—34所示。
该图由三组线图组成:图6—34a为汽车在不同减速度时(以重力加速度g 的百分数表示),前轮上方车身下沉量f1,与抗前俯率ηd的关系;图6—34b,为下横臂摆动轴线与水平线夹角β1不相同时,主销后倾角λ的变化;率dλ/df1,与抗前俯率的关系;图6—34c为不同球销中心距时,主销后倾角λ的变化率dλ/df1与上、下横臂摆动轴线夹角(β2—β1)的关系。
运用此图的步骤如下:先根据设计的允许前俯角(在0.5g时为1°~3°)确定f1,然后找到相应的ηd,并在图6—34b上初选β1,求出主销后倾角变化率(推荐悬架每压缩lOmm时为10′一40′).如超出范围,即重新选β1,,直至达到要求为止。
接着可用图6—34c,先选定球销中心距,从图6—34b所定的dλ/df1值与初选的球销中心距在图上沿虚线所示的路线找到上、下横臂的夹角(β2—β1),如布置上允许即认为初选成功。
此图适用于轴距2.8~3.2m,质心高为0.5 8~0.6m的轿车。
4.上、下横臂长度的确定双横臂式悬架的上、下臂长度对车轮上、下跳动时前轮的定位参数影响很大。
现代轿车所用的双横臂式前悬架,一般设计成上横臂短、下横臂长。
这一方面是考虑到布置发动机方仙。
另一方面也是为了得到理想的悬架运动特性。
图6—35为下横臂长度l1保持原车值不变,,改变上横臂长度l2,使l2/l1,分别为0.4,0.6,0.8,1.0,1.2时计算得到的悬架运动特性曲线。
其中Z—By(1/2轮距)为车轮接地点在横向平面内随车轮跳动的特性曲线。
由图可以看出,当上、下横臂的长度之比为0.6时,By曲线变化最平缓;l2/l1增大或减小时,By曲线的曲率都增加。
图中的Z—δ和Z—γ分别为车轮外倾角和主销内倾角随车轮跳动的特性曲线。
当l2/l1=1.0时,δ和γ均为直线并与横坐标垂直,这时,δ和γ在悬架运动过程中保持定值。
设计汽车悬架时,希望轮距变化要小,以减少轮胎磨损,提高其使用寿命,因此应选择l2/l1在0.6附近;为保证汽车具有良好的操纵稳定性,希望前轮定位角度的变化要小,这时应选择l2/l1在1.0附近。
综合以上分析,该悬架的l2/l1应在0.6~1.0范围内。
美国克莱斯勒和通用汽车分司分别认为,上、下摆臂长度之比取0.7和0.66为最佳。
根据我国轿车设计的经验,在初选尺寸时, l2/l1l取0.65为宜。
四、麦弗逊式独立悬架导向机构设计1.导向机构受力分析分析如图6—36a所示麦弗逊式悬架受力简图可知,作用在导向套上的横向力F3,可根据图上的布置尺寸求得式中,F1为前轮上的静载荷F1′减去前轴簧下质量的1/2。
力F3越大,则作用在导向套上的摩擦力F3f越大(f为摩擦因数),这对汽车子顺性有不良影响。
为了减小摩擦力,在导向套和活塞表面应用了减磨材料和特殊工艺。
由式(6—28)可知,为了减小力F,,要求尺寸c 十b越大越好,或者减小尺寸a。
增大尺寸c+b使悬架占用空间增加,在布置上有困难。
若采用增加减振器轴线倾斜度的方法,可达到减小尺寸。
的目的,但也存在布置困难的问题。
为此,在保持减振器轴线不变的条件下,常将图中的G点外伸至车轮内部,既可以达到缩短尺寸。
的目的,又可获得较小的甚至是负的主销偏移距,提高制动稳定性。
移动G点后的主销轴线不再与减振器轴线重合。
由图6—36b可知,将弹簧和减振器的轴线相互偏移距离s,再考虑到弹簧轴向力F6的影响,则作用到导向套上的力将减小,可用下式计算由式(6—29)可知,增加距离s,有助于减小作用到导向套上的横向力F3。
有时为了发挥弹簧反力减小横向力F3的作用,还将弹簧下端布置得尽量靠近车轮,从而造成弹簧轴线及减振器轴线成一角度。
这就是麦弗逊式悬架中,主销轴线、滑柱轴线和弹簧轴线不共线的主要原因。
2.摆臂轴线布置方式的选择麦弗逊式悬架的摆臂轴线与主销后倾角的匹配影响汽车的纵倾稳定性,图6—37中,C 点为汽车纵向平面内悬架相对于车身跳动的运动瞬心。