控制阀在液压传动系统之的分类及作用

合集下载

液压阀的几类机能

液压阀的几类机能

液压阀的几类机能
液压阀是液压系统中的关键元件,用于控制流体的流动、压力和方向。

不同类型的液压阀具有不同的功能,以下是液压阀的一些主要机能:
1.方向控制:液压阀可以用于控制液体流向,使液压系统中的液体在不同的管道和执行元件之间流动。

方向控制阀通常是液压系统中最基本的类型。

2.压力控制:压力控制阀用于调节液体的压力。

它们可以维持系统内的压力在特定的范围内,防止过载和保护系统组件。

3.流量控制:流量控制阀用于调节通过阀的液体流量。

通过调整阀门的开度,可以控制系统中的液体流速,从而实现对液压执行元件的平稳控制。

4.比例控制:比例控制阀允许根据输入信号的比例来控制液体的流向、压力或流量。

这种类型的阀通常用于需要精确控制的应用,如液压伺服系统。

5.序列控制:序列控制阀用于按照特定顺序控制多个执行元件的动作。

它们允许在一个执行元件完成动作之后,自动地控制下一个执行元件的动作。

6.阻尼控制:阻尼控制阀用于调整执行元件的运动速度,以防止由于液压压力的突变导致的冲击和振动。

7.安全控制:安全控制阀用于保护系统和设备,当系统出现异常条件时,可以通过安全阀来释放多余的液体或停止系统的运行。

液压控制阀的分类及要求

液压控制阀的分类及要求

液压控制阀的分类及要求摘要:液压系统中的液压控制阀是通过控制阀口大小的改变或控制阀口的通断来控制液流的压力、流量和方向等参数,来保证执行元件按照要求进行工作的。

液压阀的基本结构主要包括阀心、阀体和驱动阀心在阀体内作相对运动的装置。

阀心的主要形式有滑阀、锥阀和球阀;阀体上除有与阀心配合的阀体孔或阀座孔外,还有外接油管的进出油口;驱动装置可以是手调机构,也可以是弹簧或电磁铁,有时还作用有液压力。

关键词:方向控制阀压力控制阀顺序阀用途分类液压控制阀按用途分类有方向控制阀、压力控制阀、流量控制阀1方向控制阀用来控制液压系统中液流的方向,以实现机构变换运动方向的要求,如单向阀、换向阀。

普通单向阀饿作用是使油液只能向一个方向流动,不许倒流。

因此,对单向阀的要求是,通油方向(正向)要求液阻尽量小,保证阀的动作灵敏,因此弹簧刚度适当小些,保证反向不漏油。

换向阀是液压系统中用途较广的一种阀,主要作用是利用阀芯在阀体中的移动,来控制阀口的通断,从而改变油液流动的方向,控制执行机构开启、停止或改变运动方向。

其基本要求:油液流经阀口的压力损失要小;互不相通的油口间的泄露量要小;换向要可靠,换向时要平稳迅速。

2压力控制阀用来控制液压系统中油液的压力以满足执行机构对力的要求,如溢流阀、减压阀、顺序阀等。

溢流阀是通过阀口的溢流,使被控制系统或回路的压力维持恒定,实现稳压、调压或限压的作用。

其要求为:调压范围要大,且当流过溢流阀的流量变化时,系统中的压力变化要小,启闭特性要好;灵敏度要高;工作平稳,没有振动和噪声;当阀关闭时,泄漏量要小。

减压阀是利用液流流过缝隙产生压力损失,使其出口压力低于进口压力的压力控制阀。

顺序阀是一种利用压力控制阀口通断的压力阀。

3流量控制阀用来控制液压系统中油液的流量,以实现机构所要求的运动速度,如节流阀、调速阀等。

液压阀正是利用阀芯在阀体内的相对运动来控制阀口的通断及开口大小,来实现压力、流量和方向控制的。

液压传动与控制之液压控制阀

液压传动与控制之液压控制阀

▪ 根据控制方式不同分类
▪ 定值或开关控制阀 被控制量为定值的阀类,包
括普通控制阀、插装阀、叠加阀
▪ 比例控制阀 被控制量与输入信号成比例连续变
化的阀类,包括普通比例阀和带内反馈的电液比
例阀
▪ 伺服控制阀 被控制量与(输出与输入之间的)
偏差信号成比例连续变化的阀类,包括机液伺服
阀和电液伺服阀
▪ 数字控制阀 用数字信息直接控制阀口的启闭,
(5)液压缸“浮动”和在任意位置上的停止 阀 在中位,当A、B两口互通时,卧式液压缸呈“浮 动”状态,可利用其他机构移动工作台,调整其 位置。当A、B两口封闭或与P口连接(在非差动情 况下),可使液压缸在任意位置处停止
4. 多路换向阀 多路换向阀是集中布置的组合式手动换向阀,常 用于工程机械等要求集中操纵多个执行元件的液压 设备中
操纵方式: 手动、液压、电液、电磁和机械换向
液压阀的阀口数量因阀而异,一般分5种,用字母 表示阀口功能
压力油口(P):进入压力油的油口
减压阀、顺序阀的出油口也是压力油口
回油口(O或T):低压油口,阀内低压油由此流出, 流向下一个元件或油箱
泄油口(L):低压油口,阀体中漏到空腔中的低压 油经它回到油箱
工作油口:指方向阀的 A、B油口,连接执行元件 控制油口(K):使控制阀动作的外接控制压力油由 此进入
对液压阀要求:
(1)动作灵敏,使用可靠,工作时冲击和振动小 (2)油液流过时压力损失小 (3)密封性能好 (4)结构紧凑,安装、调整、使用、维护方便, 通用性好
6.2 方向控制阀
作用:用来控制液压系统中工作液体的流向和通断 用途: (1)控制一条管路内工作液体的流动:使其通过、关 断和阻止反向流通; (2)联接多条管路时选择液流的方向; (3)控制执行元件的起动、停止以及前进、后退

第五章 控制阀

第五章 控制阀
处于差动状态,系统不能卸荷。
Y
A 、 B 两个油口与 T 口相通, P 口封闭,执
行元件处于浮动状态,系统不能卸荷。
四个油口互相连通,执行元件处于浮动状 态,系统卸荷。
H
工程机械液压与液力传动
工程机械液压与液力传动
1.系统卸荷。 当阀处于中间位置时,P口能够通畅地与T口连通,使系统处 于卸荷状态,既节约能量,又防止油液发热,如M和H型; 2.执行机构浮动。 当阀处于中间位置时,如果A、B两油口互通,执行机构处于浮 动状态,可通过其他机构移动调整其位置,如Y和H型; 3.执行机构在任意位置停止。 当阀处于中间位置时,如果A、B两油口封闭,则可使执行机构 在任意位置停止,如O和M型; 4.系统保压。 当P口被封闭时,系统保压,液压泵能够用于多缸系统,如O和 Y型; 5.制动和锁紧要求。 执行元件采用了液压锁、制动器等时,要求中位时两腔与油 箱相通,保证锁紧和制动的可靠性,如O和M型。
换向阀
两位四通 换向阀 控制执 行元件 不能使执行元件在 任意位置停止运动 执行元件 正反向运
三位四通
换向阀
换向
能使执行元件在任
意位置停止运动
动时回油
方表示一个工作位置(若由虚线构成的方框则表示过 渡位置),有几个方框表示几位。 •一个方框中的箭头↑↓↗↙或堵塞符号⊥和┬与方框上边和下边 的交点数为油口通路数,有几个交点表示几通。箭头表示两油口连 通,但不表示流动方向,┬表示该油口堵死。 •将阀与系统供油路连通的油口用字母P表示,将阀与系统回油路连 通的油口用字母O或T表示,将阀与执行元件连通的油口用字母A和B 表示。 •换向阀都有两个以上的工作位置,其中一个是常位(即在不对换 向阀施加外力的情况下阀芯所处的位置),绘制液压系统图时,油 路一般应该连接在常位上。

华中科技大学网络教育液压与气压传动作业答案

华中科技大学网络教育液压与气压传动作业答案

1.什么是液压传动?工作介质液体--液压传动,2.液压传动系统由哪几部分组成?组成部分:动力源(泵)、执行元件(缸、马达)、控制元件(阀)、辅助元件、工作介质3.在液压传动中有哪两个基本参数?压力传动中两个最重要的概念:负载决定压力和流量决定速度1、液压系统的压力和执行元件的运动速度分别取决于什么?系统的压力决定于(负载),而执行元件的运动速度决定于(流量)2、按照我过标准:牌号为N32的液压油,32是什么?数字表示该液压油在40摄氏度时的运动粘度,32就表示40摄氏度时该液压油运动粘度为323、液体在管道内流动时,存在哪两种流动状态?层流和湍流1. 液压泵主要有哪几种?按其结构形式分为齿轮泵、叶片泵、柱塞泵和螺杆泵;按泵的流量能否调节,分为定量泵和变量泵;按泵的输油方向能否改变,分为单向泵和双向泵。

2. 液压系统的工作温度升高后,对液压泵的工作性能有什么影响?1.液压油的标号是在40℃下定义的温度越高,其运动粘度越高粘度越高,泵的内泄越大3. 如何消除齿轮泵的困油现象?解决办法通常是在浮动侧板上开卸荷槽,卸荷槽开法是在高压啮合区开槽,使得啮入时形成的高压油流入压油区,也就是压油口,而低压区开槽使得啮出时形成的真空区与吸油口相通,这样就解决困油现象4. 常见的变量泵有哪些?叶片泵、径向柱塞泵或轴向柱塞泵1、斜盘式轴向柱塞泵的三对运动摩擦副是什么?柱塞与缸体,滑靴与斜盘,缸体与配流盘2、轴向柱塞泵如何实现变量?这样的容积泵,只能靠调转速来控制流量,但柱塞泵还可以通过控制柱塞的行程来控制流量,比如变普通的计量泵。

3、液压泵的排量V=50,转速n=1500容积效率0.98,求泵的输出流量?实际输出流量Q0=(50*1500*0.98)/60=1225 cm3/s1.液压装置的执行机构通常有哪些?液压马达的起动性能用什么来描述?答案:液压执行装置是液压系统五个基本组成系统之一液压执行装置(液压执行元件)是指将液压能能转换成机械能,从而实现执行机构的往复直线运动或摆动,输出力或力矩的装置。

第五章 液压控制阀

第五章  液压控制阀

第五章 液压控制阀
(3)启闭特性:
开闭启合比比pp--KB
:开始溢流的开启压力pK与ps的百分比。 :停止溢流的闭合压力pB与ps的百分比。
由于摩擦的作用,开启压力大于闭合压力。
pK
=
pK ps
×- 100 %
-
pB
= pB ×100 % ps
显然上述两个百分比越大,则两者越接近,溢流阀的启闭特性 就越好。一般开启比大于90%,闭合比大于85%。
Δp越小,刚度越低,所以节流阀只能在大于某一最低压
差的条件下才能工作,但提高Δp将引起压力损失。
第五章 液压控制阀
(2)温度对流量稳定性的影响
T变,μ变,q变。 薄壁孔(紊流状态)不受温度变化影响。
(3) 节流口的阻塞
阻塞现象: 当Δ p一定,A 较小时流量时大时小甚至断流
措施:加大水利半径、选择稳定性好的油液、精心过滤。 薄壁孔不易附着、阻塞。
m — 压差指数 K — 节流系数
动画演示
q∝ A ,Δp=c,A ↑ ,q↑。
第五章 液压控制阀
4. 刚度
刚度 外负载波动引起阀前后压力差Δ p 变化,即使阀 的开口面积A 不变,也会导致流经阀的流量q 不稳定。
定义:阀的开口面积A 一定
q
T = dΔ p/dq
T = Δ p1-m/ (KAm )
第五章 液压控制阀
第五章 液压控制阀
第五章 液压控制阀
§5.1 阀的作用和分类
一、作用 控制液流的方向、压力和流量。
二、分类 按用途:压力阀、流量阀、方向阀
按操纵方式:手动、机动、电动、液动和电液动 按连接方式:管式、 板式、法兰式、叠加式等
第五章 液压控制阀

液压传动与气动技术课程教案液压控制阀

液压传动与气动技术课程教案液压控制阀

一、教学目标1. 了解液压控制阀的定义、分类和作用。

2. 掌握液压控制阀的主要性能参数及其影响因素。

3. 熟悉常见液压控制阀的结构原理及应用。

4. 能够分析液压系统中的阀控问题,并选择合适的液压控制阀。

二、教学内容1. 液压控制阀的定义与分类1.1 液压控制阀的概念1.2 液压控制阀的分类1.3 液压控制阀的符号及表示方法2. 液压控制阀的作用及性能参数2.1 液压控制阀的作用2.2 液压控制阀的主要性能参数2.3 性能参数的影响因素3. 常见液压控制阀的结构原理及应用3.1 方向控制阀3.2 压力控制阀3.3 流量控制阀3.4 比例控制阀3.5 方向控制阀的应用实例4. 液压控制阀的选用与维护4.1 液压控制阀的选择依据4.2 液压控制阀的安装与调试4.3 液压控制阀的维护与保养5. 液压系统中的阀控问题分析5.1 阀芯、阀体和阀座的关系5.2 阀芯与阀杆的连接方式5.3 阀芯的移动方式5.4 阀内泄漏的原因及解决方法三、教学方法1. 采用讲授与实践相结合的教学方式,使学生能够系统地掌握液压控制阀的相关知识。

2. 通过案例分析,使学生了解液压控制阀在实际应用中的作用和选择依据。

3. 利用实验设备,让学生亲自动手操作,加深对液压控制阀的理解。

四、教学条件1. 教室环境舒适,教学设备齐全,包括投影仪、计算机等。

2. 实验设备:液压控制阀实验台、液压泵、液压缸等。

五、教学评价1. 课堂提问:检查学生对液压控制阀基本概念的理解。

2. 课后作业:巩固学生对液压控制阀性能参数和选用维护方法的掌握。

3. 实验报告:评估学生在实际操作中对液压控制阀的应用能力。

4. 期末考试:全面测试学生对液压控制阀知识的掌握程度。

六、教学内容6.1 液压控制阀的控制方式6.1.1 开关控制6.1.2 比例控制6.1.3 计算机控制6.2 液压控制阀的动态特性和静态特性6.2.1 动态特性6.2.2 静态特性6.3 液压控制阀的性能测试与评价6.3.1 性能测试的目的和意义6.3.2 性能测试的方法6.3.3 性能评价指标七、教学方法7.1 采用案例分析,使学生了解不同控制方式下液压控制阀的应用特点。

液压与气压传动技术第4章 液压控制阀

液压与气压传动技术第4章 液压控制阀


按安装连接形式分为: 管式连接 板式连接
叠加式连接
插装式连接
集成式连接
3、液压控制阀的性能参数
对于不同类型的各种液压控制阀,还可以用不同的参数表征其不同 的工作性能,一般有压力、流量的限制值,以及压力损失、开启压 力、允许背压、最小稳定流量等。同时,给出若干条特性曲线,供 使用者确定不同状态下的性能参数值。
图4-2 液控单向阀的工作原理图 a)内泄式液控单向阀 b)外泄式液控单向阀
液控单向阀的工作原理
双向液控单向阀:
常用于系统停止供油时而要求执行元件仍然保持锁紧的场合,通常 称为液压锁。
1-阀体
图4-3 双向液控单向阀 a)结构原理图 b)图形符号 2-控制活塞 3-卸压阀芯 4-锥阀芯
图4-4 液压锁(飞机襟翼收放系统) 1、4-阀芯 2、3、5、8-弹簧 6、7-活塞
二、方向控制阀
方向控制阀主要用来接通、关断或改变液压油的流动方向,从而控 制执行元件的起动、停止或改变其运动方向。它主要分为单向阀和 换向阀,单向阀有普通单向阀和液控单向阀两种,而换向阀的种类 很多、应用广泛。
1、单向阀
功用:控制油液单方向流动,又称为逆止阀或止回阀。。 结构组成: 阀体 阀芯 弹簧等
单向阀的应用:
用于泵的出口,防止系统中的压力冲击对泵造成影响; 隔开油路间不必要的联系,防止油路相互干扰;
作背压阀用(回油路上加背压阀),但背压不可调;
作旁路阀用; 桥式回路。
液控单向阀:是一种通入控制压力油后,便允许油液双向流动的单 向阀。它由单向阀和液控装置两部分组成。 油液反向流动时(由油口进油),进油压力通常很高,解决这个问 题的方法:①B油口压力很高,采用先导阀预先卸压,见图4-2a,这 种阀称内泄式液控单向阀。②A油口压力较高造成控制活塞背压较大, 采用外泄口回油降低背压,见图4-2b,这种阀称外泄式液控单向阀。

液压传动与气动技术课程教案-液压控制阀

液压传动与气动技术课程教案-液压控制阀

液压传动与气动技术课程教案-液压控制阀第一章:液压控制阀概述1.1 教学目标1. 了解液压控制阀的基本概念和作用2. 掌握液压控制阀的分类和基本结构3. 理解液压控制阀的工作原理1.2 教学内容1. 液压控制阀的定义和作用2. 液压控制阀的分类2.1 方向控制阀2.2 压力控制阀2.3 流量控制阀3. 液压控制阀的基本结构3.1 滑阀3.2 球阀3.3 锥阀4. 液压控制阀的工作原理1.3 教学方法1. 采用PPT讲解液压控制阀的基本概念、分类和结构2. 通过实物展示和示意图解释液压控制阀的工作原理3. 进行课堂讨论,解答学生疑问1.4 教学评估1. 课堂问答2. 课后作业第二章:液压控制阀的性能参数2.1 教学目标1. 掌握液压控制阀的主要性能参数2. 理解液压控制阀的选型依据2.2 教学内容1. 液压控制阀的主要性能参数1.1 流量1.2 压力1.3 方向2. 液压控制阀的选型依据2.1 系统压力2.2 系统流量2.3 控制精度2.3 教学方法1. 采用PPT讲解液压控制阀的性能参数和选型依据2. 分析实际案例,解释选型过程2.4 教学评估1. 课堂问答2. 课后作业第三章:液压控制阀的设计与计算1. 掌握液压控制阀的设计原则2. 学会液压控制阀的计算方法3.2 教学内容1. 液压控制阀的设计原则1.1 结构设计1.2 材料选择1.3 制造工艺2. 液压控制阀的计算方法2.1 流量计算2.2 压力计算2.3 功率计算3.3 教学方法1. 采用PPT讲解液压控制阀的设计原则和计算方法2. 分析实际案例,演示计算过程3.4 教学评估1. 课堂问答2. 课后作业第四章:液压控制阀的应用与维护4.1 教学目标1. 学会液压控制阀的应用方法2. 了解液压控制阀的维护保养知识1. 液压控制阀的应用方法1.1 安装与调试2.1 使用与维护2. 液压控制阀的维护保养知识2.1 清洁2.2 检查2.3 更换密封件4.3 教学方法1. 采用PPT讲解液压控制阀的应用方法和维护保养知识2. 观看实际操作视频,了解操作细节4.4 教学评估1. 课堂问答2. 课后作业第五章:液压控制阀的故障诊断与维修5.1 教学目标1. 学会液压控制阀的故障诊断方法2. 掌握液压控制阀的维修技巧5.2 教学内容1. 液压控制阀的故障诊断方法1.1 外观检查1.2 性能测试2. 液压控制阀的维修技巧2.1 维修工具与设备2.2 维修步骤与注意事项5.3 教学方法1. 采用PPT讲解液压控制阀的故障诊断方法和维修技巧2. 分析实际案例,演示维修过程5.4 教学评估1. 课堂问答2. 课后作业第六章:典型液压控制阀的分析与应用6.1 教学目标1. 熟悉典型液压控制阀的结构与工作原理2. 掌握典型液压控制阀的应用案例6.2 教学内容1. 方向控制阀的分析与应用1.1 单向阀1.2 换向阀2. 压力控制阀的分析与应用2.1 溢流阀2.2 减压阀3. 流量控制阀的分析与应用3.1 节流阀3.2 调速阀6.3 教学方法1. 采用PPT讲解典型液压控制阀的结构、工作原理和应用案例2. 分析实际案例,解释应用过程6.4 教学评估1. 课堂问答2. 课后作业第七章:液压控制阀的现代设计方法7.1 教学目标1. 了解液压控制阀的现代设计方法2. 学会运用计算机辅助设计(CAD)进行液压控制阀设计7.2 教学内容1. 液压控制阀的现代设计方法1.1 有限元分析1.2 计算机辅助设计(CAD)2. 运用CAD进行液压控制阀设计的过程2.1 建立三维模型2.2 进行强度与稳定性分析3. 确定设计参数与优化方案7.3 教学方法1. 采用PPT讲解液压控制阀的现代设计方法和CAD应用过程2. 实际操作演示,让学生了解设计过程7.4 教学评估1. 课堂问答2. 课后作业第八章:液压控制阀的仿真与实验8.1 教学目标1. 学会使用液压控制阀仿真软件2. 了解液压控制阀的实验方法8.2 教学内容1. 液压控制阀仿真软件的使用1.1 软件介绍与操作界面1.2 建立仿真模型2. 液压控制阀的实验方法2.1 实验设备与仪器2.2 实验步骤与数据处理8.3 教学方法1. 采用PPT讲解液压控制阀仿真软件的使用和实验方法2. 实际操作演示,让学生熟悉实验过程8.4 教学评估1. 课堂问答2. 课后作业第九章:液压控制阀在工程应用中的案例分析9.1 教学目标1. 熟悉液压控制阀在工程应用中的实际案例2. 学会分析液压控制阀在工程应用中的优缺点9.2 教学内容1. 液压控制阀在工程机械中的应用案例1.1 挖掘机2.1 装载机2. 液压控制阀在航空航天中的应用案例2.1 飞行器控制系统3. 液压控制阀在工业自动化中的应用案例3.19.3 教学方法1. 采用PPT讲解液压控制阀在工程应用中的实际案例2. 分析案例中液压控制阀的优缺点,进行讨论9.4 教学评估1. 课堂问答2. 课后作业第十章:液压控制阀的发展趋势与展望10.1 教学目标1. 了解液压控制阀的发展趋势2. 展望液压控制阀的未来发展前景10.2 教学内容1. 液压控制阀的发展趋势1.1 微型化2.1 智能化3. 环保型2. 液压控制阀的未来发展前景2.1 新材料的应用2.2 新型控制技术的融合10.3 教学方法1. 采用PPT讲解液压控制阀的发展趋势和未来发展前景2. 进行课堂讨论,激发学生的创新思维10.4 教学评估1. 课堂问答2. 课后作业重点和难点解析一、教案结构的完整性确保教案包含课程概述、教学目标、教学内容、教学方法、教学评估等基本部分,以保证教学的系统性和连贯性。

各种液压阀在液压系统中的作用

各种液压阀在液压系统中的作用

各种液压阀在液压系统中的作⽤1.液压阀——⽅向控制阀按⽤途分为单向阀和换向阀。

单向阀:只允许流体在管道中单向接通,反向即切断。

换向阀:改变不同管路间的通﹑断关系﹑根据阀芯在阀体中的⼯作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动⽅式分⼿动﹑机动﹑电动﹑液动等。

图2为三位四通换向阀的⼯作原理。

P 为供油⼝,O 为回油⼝,A ﹑B 是通向执⾏元件的输出⼝。

当阀芯处於中位时,全部油⼝切断,执⾏元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A与O 通。

这样,执⾏元件就能作正﹑反向运动。

60年代后期,在上述⼏种液压控制阀的基础上⼜研制出电液⽐例控制阀。

它的输出量(压⼒﹑流量)能随输⼊的电信号连续变化。

电液⽐例控制阀按作⽤不同,相应地分为电液⽐例压⼒控制阀﹑电液⽐例流量控制阀和电液⽐例⽅向控制阀等。

2.液压阀——流量控制阀利⽤调节阀芯和阀体间的节流⼝⾯积和它所产⽣的局部阻⼒对流量进⾏调节,从⽽控制执⾏元件的运动速度。

流量控制阀按⽤途分为 5种。

(1)节流阀:在调定节流⼝⾯积后,能使载荷压⼒变化不⼤和运动均匀性要求不⾼的执⾏元件的运动速度基本上保持稳定。

(2)调速阀:在载荷压⼒变化时能保持节流阀的进出⼝压差为定值。

这样,在节流⼝⾯积调定以后,不论载荷压⼒如何变化,调速阀都能保持通过节流阀的流量不变,从⽽使执⾏元件的运动速度稳定。

(3)分流阀:不论载荷⼤⼩,能使同⼀油源的两个执⾏元件得到相等流量的为等量分流阀或同步阀;得到按⽐例分配流量的为⽐例分流阀。

(4)集流阀:作⽤与分流阀相反,使流⼊集流阀的流量按⽐例分配。

(5)分流集流阀:兼具分流阀和集流阀两种功能3.液压阀——压⼒控制阀按⽤途分为溢流阀﹑减压阀和顺序阀。

(1)溢流阀:能控制液压系统在达到调定压⼒时保持恒定状态。

⽤於过载保护的溢流阀称为安全阀。

当系统发⽣故障,压⼒升⾼到可能造成破坏的限定值时,阀⼝会打开⽽溢流,以保证系统的安全。

液压控制阀工作原理

液压控制阀工作原理

2、类型
按阀芯的形状分类
滑阀【包括控制部分、主体部分(位、通)】
转阀
位:为改变液流方向,阀芯相对于阀体不同的工作位置数 (二位、三位),一个“□”表示一个位。
通:换向阀与液压系统油路相连的主油口数(二通、三通、 四通、五通),在一个“□”内,“↑” 或“⊥”与方框的交 点数。
按阀的安装方式分类 : 管式、板式、法兰式。
(3)电磁铁通断电需电信号控制:如设备中的按 钮开关、限位开关、行程开关等;
(4)换向快,易产生液压冲击。
④液动换向阀 工作原理: 利用控制油路的油液压力来改变阀芯位置的换向阀。 结构:
特点: (1)换向速度易于控制,结构简单、动作平稳可靠; (2)由于液压驱动力大,适用于大流量的场合; (3)其控制油路必须有开关或换向装置。
按操纵方式分类: 手动、机动、电动、弹簧控制、液动、液压先导控 制、电液动等。

3、



A
P





工 作 原 理 动 画 演 示
3、几种典型换向阀的结构 ①手动换向阀
②机动换向阀
又称行程阀。
它是借助于安装在工作台上的挡铁或凸轮来迫使阀芯移动。 通常是二位的,有二通、三通、四通和五通几种,其中二位 二通机动阀又分常闭和常开两种。
本章难点:
1、溢流阀、减压阀的工作原理; 2、调速阀的结构及工作原理。
第一节 概 述
一、液压阀的作用 液压阀是用来控制液压系统中油液的压
力、流量和液体流动方向。
二、液压阀的分类
方向控制阀(单向阀、换向阀)
按功能分:
压力控制阀(溢流阀、减压阀、顺序阀、 压力继电器)
流量控制阀(节流阀、调速阀)

液压传动液压控制阀

液压传动液压控制阀

三位五通换向滑阀 :位数、通路数、中位机能
(a)
(b)
(c)
图(c)是对应图(a)、(b)换向阀的图形符号,从左至右的三个方 框分别代表换向阀阀芯所处的左位、中位和右位三个工作位置。方框内的 引线表示通路状态,其中“┷”或“┰”表示阀口关闭,箭头连线表示所连 接的口相通。图形符号中,外引线在常态(不通电)位置画出,图(c)中 的常态位置是中位,有五条外引线,表示阀的五个油口。因该阀有三个工 作位置,五个油口,称为“三位五通换向阀”。
以液压力与弹簧力相平衡而进行压力控制的元件称压力控制 阀,简称压力阀。压力阀在油路的主要作用是用控制液流压力高 低的。
1、溢流阀
以液压力与弹簧力相平衡而维持进口压力近于恒定,系统 中多余流体通过该阀回油箱的压力控制阀,称溢流阀。
根据结构不同,溢流阀主要有直动式和先导式两种。
溢流阀在液压系统中主要起稳定压力或安全保护的作用。 它是液压系统中最重要的元件之一,几乎所有的系统都要用 到溢流阀,其性能的好坏对液压系统的正常工作有重大影响。 溢流阀在油路中的使用比较灵活,可以有不同的用途。
切换二个出油 口的流向,有 二种回油方式。
左、右位与二位 五通阀作用相同。 中位时关断所有 通油口
表6.2-3 换向阀操纵方式图形符号
➢手柄式
➢液压式
➢机动滚轮式
➢弹簧
➢机动顶杆式 ➢电磁式
➢液压先导控制 ➢电磁-液压先导控制
表6.2-2 三位换向滑阀的中位机能
转阀
(a)
(b)
(c)
1 – 手柄 2 – 阀体 3 – 阀芯
电液动换向阀结构(弹簧对中型)
电液动换向阀由 主阀和先导控制阀 组成。主阀是液动 换向阀,允许通过 较大流量的液流。

5.《液压传动》液压控制阀

5.《液压传动》液压控制阀

结构简图
1—液动阀阀芯 2、8—单向阀 3、7—节流阀 4、6—电磁铁 5—电磁阀阀芯
图形符号
液动换向阀的换向速度可由两端节流阀 调整,因而可使换向平稳,无冲击。
图5-8 电液换向阀
5.2.2 换向阀
(5) 手动换向阀
利用手动杠杆改变阀芯和阀体的相对位置,实现换向。阀芯靠 钢球、弹簧定位。 自动复位式换向阀,可用手操作使换向阀 左位或右位工作,当操纵力取消后,阀芯 便在弹簧力作用下自动恢复至中位,停 止工作。适用于换向动作频繁,工作持续 时间短的场合。 钢球定位式换向阀,其阀芯端部的钢球定 位装置可使阀芯分别停止在左、中、右 三个位置上,当松开手柄后,阀仍保持 在所需的工作位置上, 可用于工作持续 时间较长的场合。
5.2.2 换向阀
3.滑阀机能
滑阀式换向阀处于中位或原始位置时,各油口的连通方式称为滑阀机 能(也称中位机能)。不同的滑阀机能可满足系统的不同要求。
表5-2 三位换向阀的滑阀机能 滑阀 中位符号
机能
中位时的滑阀状态 三位四通 三位五通
中位时的性能特点
O H
各油口全部关闭,系统 保持压力,执行元件各 油口封闭 各油口P、T、A、B全部 连通,泵卸荷,执行元 件两腔与回油连通 A、B、T口连通,P口保 持压力,执行元件两腔 与回油连通
5.2.1 单向阀
2. 液控单向阀
1-控制活塞 2-顶杆 3-阀体
结构图
图形符号
原理:当控制油口Κ不通压力油时,油液只可以从P1进、P2出,此 时阀的作用与单向阀相同;当控制口Κ通压力油时,阀芯3 右移,阀保持开启状态,液流双向流动。一般控制油的压力 不应低于油路压力的30%~50%。
液控单向阀具有良好的单向密封性,常用于执行元件需要长时间保压、锁紧 的情况下。这种阀也称为液压锁。

第5章 液压控制阀

第5章 液压控制阀

泄油口L(在侧面,图中看不见)
进油口P1
进油口P1
出油口P2
出油口P2
泄油口L
◆减压阀的主要特点:
1)常态下阀口打开
2)从出口引压力油控制阀口开度 3)进口压力小于调定值时,不起减压作用
4)当进口压力高于调定值时,保持出口稳定低压
5)泄油口单独接油箱
◆减压阀和溢流的区别: 1、减压阀是出口压力控制,保证出口压力为定值; 溢流阀是进口压力控制,保证进口压力为定值 2、减压阀阀口常开;溢流阀阀口常闭
◆静态特性
(4)溢流阀的压力调节范围: 溢流阀的能够保证性能的压力使用范围。调节压力
时进口压力能保持平稳变化,无突变、迟滞等现象
更换不同刚度的弹簧可改变压力调节范围 (5)溢流阀许用流量范围: 许用流量范围是额定流量的15%—100%
动态特性
溢流阀的动态特性是指流量阶跃时的压力响应特性, 如图。其衡量指标主要有压力超调量、响应时间等。
此力指向阀口开启方向 作用在锥阀上的稳态液动力 (a)外流式; (b)内流式
(3)液压卡紧现象 卡紧现象 在中高压系统中,当阀芯停止运动一段时间后, 移动阀芯十分费力,这就是卡紧现象。 引起的原因 主要是滑阀付几何形状误差和同心度变化引起的 径向不平衡力。有的是赃物进入缝隙或油温升高阀芯
膨胀卡紧
(3)液压卡紧现象 卡紧力 •径向不平衡力分析: 1、无几何误差,但轴心线平行不重合:不出现径向不 平衡力。
◆静态特性 (2)溢流阀的启闭特性: 开启比:Pc与 Pn 之比越大、调压偏差越小阀的压力稳定 性越好; 闭合比:Pc· 与 Pn率越大阀的性能越好 一般开启压力比率> 90% ;闭合压力比率> 85% (3)溢流阀的卸荷压力: 溢流阀的遥控口与油箱连通后泵处于卸荷状态时,溢流阀 进出油口压力之差称之为卸荷压力。一般卸荷压力不大于 0.2MPa,最大不应超过0.4MPa。

第五章 液压控制阀

第五章 液压控制阀
我国的液动阀控制压力不小于0.35MPa,(使用条件)即(3.5kgf/㎝2), 由于此阀换向时间可调,换向冲击小,一般用于较大流量(>63L/min)的
场合。
(5)电液动换向阀 电液动换向阀又称电液换向阀,它由电磁换向阀与换向 时间可调的液动阀组成。其中电磁换向阀称先导阀,改变 液动阀的控制油路的方向(虚线位控制油路),而液动阀实 现主油路的换向,称为主阀。换向的速度由控制油路中的 单向节流阀调节。
/min左右),而且当阀芯被卡住或由于电压低等原因吸合不上时,电磁
铁线圈易烧坏(起动电流大)、工作可靠性差;
直流电磁铁在工作或过载情况下,其电流基本不变,因此不会因阀 芯被卡住而烧坏电磁铁线圈,工作可靠,换向冲击、噪声小,换向时间
长(约0.1~0.15s),换向频率允许较高(120次/min,最高可达240次/ min),但需要直流电源或整流装置,并且起动力小,反应速度较慢。
液动换向阀有换向时间可调和换向时间不可调两种。
换向时间不可调液动阀
液动换向阀 换向时间可调液动阀
A、换向时间不可调的液动换向阀
如图所示三位四通液动换向阀结构原理图,当控制油口K1和
K2均不通控制压力油时,阀芯在复位弹簧的作用下处于中位,当
K1通压力油,K2通油箱时,阀芯右移,使P与A通,B与T通;反
一、单向阀
单向阀包括普通的单向阀和液控单向阀两种。
单向阀 普通的单向阀 液控单向阀 1、普通单向阀(单向阀) 它只允许油液沿一个方向通过,而反向液流被截止, 亦称逆止阀、止回阀,要求其正向液流通过时压力 损失较小,反向截止时密封性能好。
图形符号
按进出油液流向的不同分直通式和直角式两种结构, 都由阀芯、阀体和弹簧等组成。(小规格直通式阀有用钢球作 阀芯的),当液流从进油口A 流入时,油液压力克服弹簧阻力 和阀体1与阀芯2间的摩擦力,顶开带有锥端的阀芯(或钢球), 从出油口B 流出。当油液反向从B流入时,油液压力使阀芯 紧密地压在阀座上,故不能逆流。由于弹簧仅起复位作用, 因而弹簧力很小。所以正向开启压力只需0.03~0.05MPa ; 反向截止时,因阀芯与阀座孔为线密封,且密封力随压力增 高而增大,故密封性能良好。

简述液压传动系统的组成及各组成部分的作用

简述液压传动系统的组成及各组成部分的作用

简述液压传动系统的组成及各组成部分的作

液压传动系统是利用液压力和液压膜片作为传动介质,通过活塞杆、液压缸、液压泵、柱塞、液压阀、油箱及液压控制元件等部件组成的传动系统。

它们各自起到组成液压传动系统的不同作用,我们可以将它们分为四类:
1. 传动部分:活塞杆、液压缸、液压阀和液压膜片,它们共同起到液压传动的作用,其中活塞杆将液压能量转换为机械能,引起液压缸的往复运动;液压阀则控制液压缸的往复运动;液压膜片作为液压传动介质,将液压力传递给液压缸;
2. 动力部分:液压泵,它负责将机械能转换为液压能,并通过进出口节流管将液压能传输到传动系统中;
3. 控制部件:柱塞和液压控制元件,柱塞负责调节液压泵的输出液压能量,而液压控制元件则控制活塞杆的往复;
4. 油箱:用于收集、存储和供给液压泵所需的液压油。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制阀在液压传动系统之的分类及作用
在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。

液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。

1、液压传动的优点
(1)体积小、重量轻,因此惯性力较小,当突然过载或停车时,不会发生大的冲击;
(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速;
(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;
(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;
(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;
(6)操纵控制简便,自动化程度高;
(7)容易实现过载保护。

2、液压传动的缺点
(1)使用液压传动对维护的要求高,工作油要始终保持清洁;
(2)对液压元件制造精度要求高,工艺复杂,成本较高;
(3)液压元件维修较复杂,且需有较高的技术水平;
(4)用油做工作介质,在工作面存在火灾隐患;
(5)传动效率低。

【此文档部分内容来源于网络,如有侵权请告知删除,本文档可自行编辑和修改内容,感谢您的支持!】。

相关文档
最新文档