力系的平衡静定与超静定的概念
《工程力学Ⅰ》课程教学大纲
《工程力学Ⅰ》课程教学大纲课程编号:125111 学分: 4 (4学时/周) 总学时:68大纲执笔人:陈洁大纲审核人:王斌耀一、课程性质与目的工程力学(Ⅰ)(包括静力学、材料力学两部分)是土木工程专业的一门重要的技术基础课,它是各门后续课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的目的是使学生掌握静力学中一般力系的简化与平衡问题的分析介绍方法;掌握材料力学中构件在拉、压、剪切、扭转和弯曲时的强度与刚度问题的分析计算方法,构件在组合变形时的强度与刚度问题的分析计算方法,以及构件在受压时稳定性问题的分析计算方法等;掌握材料的基本力学性能和基本的材料力学实验方法;初步学会应用基本概念、基本理论和基本分析方法去分析问题和解决问题,为学习一系列后继课程打好必要的基础。
同时结合本课程的特点培养学生分析、解决工程实际问题的能力,提高学生的综合素质。
二、课程基本要求1、掌握力的概念、力的投影和力矩的计算;2、掌握力系简化的方法和一般的简化结果;3、掌握刚体静力学的平衡条件和平衡方程;4、对材料力学的基本概念和基本的分析方法有明确的认识。
5、具有将简单受力杆件简化为力学简图的初步能力,具有力学建模的初步概念与能力。
6、能熟练地做出杆件在基本变形下的内力图、计算其应力和位移、并进行强度和刚度计算。
7、对应力状态理论和强度理论有明确的认识,并能将其应用于组合变形下杆件的强度计算。
8、理解掌握简单超静定问题的求解方法。
9、对能量法的有关基本原理有明确认识,并熟练地掌握一种计算位移的能量方法。
10、对压杆的稳定性概念有明确的认识,能熟练计算轴向受压杆的临界载荷与临界应力,并进行稳定性校核等计算。
11、掌握质点系的质心、刚体的转动惯量、惯性积、惯性主轴和惯性积的平行移轴公式;掌握截面的静矩,形心的位置,惯性矩和惯性积及它们的平行移轴公式,转轴公式。
组合截面的惯性矩、惯性积计算,截面的形心主惯性轴和形心主惯性矩的计算11、对于常用材料在常温下的基本力学性能及其测试方法有初步认识。
第三章力系的平衡介绍
工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
理论力学-3-力系的平衡
z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0
工程力学名词解释
工程力学名词解释1.静力学中研究的两个问题:(1力系的简化;2.物体在力系作用下的平衡条件。
2.刚体:任何状态下都不变形的物体3.多余约束:如果的体系中增加一个约束,体系的独立运动参数并不减少,此类约束为多余约束4.摩擦角;当摩擦力达到最大值时,全反力与法线间的夹角5.材料的塑性:材料能产生塑性变形的性质6.中性轴:在平面弯曲和斜弯曲情况下,横截面与应力平面的交线上各点的正压力值均为零,这条交线叫中性轴7.超静定:如果所研究的问题中,未知量的数目大于对应的独立平衡方程的数目时,仅仅用平衡方程不能求出全部未知量8.低碳钢的冷作硬化;若材料曾一度受力到达强化阶段,然后卸载,则再重新加载时,比例极限和屈服点将提高,而断裂后的塑性变形将减小9.材料力学中的内力:物体内部某一部分与另一部分的相互作用的力10.应力集中:局部区域应力突然增大的现象11.自锁现象;与力的大小无关而与摩擦角有关的平衡条件称为自锁条件,物体在这种条件下的平衡现象称为自锁现象12应力:分布在单位面积上的内力。
13低碳钢的拉伸曲线四个阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部变形14.横力弯曲:剪切面上同时存在弯矩M和剪力Fs。
这种弯曲称为和横力弯曲。
Fs为零而弯矩M为常量,这种弯曲称为纯弯曲15剪切:两力间的横截面发生相对错动的形式。
16挤压应力:由于挤压力而引起的应力。
17单元体:如果以横截面和纵向截面自筒壁上取出一个微小的正六面体。
18纯剪切:在单元体上将只有切应力而无正应力的作用。
19中性轴:中性层与横截面的交线。
20提高梁抗弯强度的措施(1)选用合理的截面(2)采用变截面梁(3)适度布置载荷和支座位置21挠曲线:梁弯曲后的轴线。
22.提高梁刚度和强度的主要措施有:1.合理安排梁的支承2.合理的布置载荷3.选择梁的合理截面23.挠度:梁轴线上的一点在垂直于梁变形前轴方向的线位移24.转角:梁任一截面绕其中性轴转动的角度。
工程力学力系平衡
D
FC
l
A B
l
FP
D
第 三 种 情 形
l
C FA A l FCy l B l FP D
FCx
C
FA A
l
B
l
FP
D
第 三 种 情 形
FCy
FCx C
E
MA ( F ) = 0 : FCx l -FP 2l = 0 MC ( F ) = 0 : -FA l - FP 2l = 0 ME ( F ) = 0 : -FCy 2l -FA l = 0
A
F =0
x
l -FQ -FW x FTB lsin=0 2 l FP x+FQ 2 = 2 FW x F FTB= Q lsin l
F =0
y
FAx FTB cos=0 FQ 2 FW x FQl FW FAx= x cos30 = 3 l 2 l FAy-FQ-FP+FTB sin=0
例题
均质方板由六根杆支 撑于水平位臵,直杆 两端各用球铰链与扳 和地面连接。板重为 P,在A 处作用一水 平 力 F , 且 F=2P , 不计杆重。求各杆的 内力。
简单的刚体系统平衡问题
前面实际上已经遇到过一些简单刚体系统 的问题,只不过由于其约束与受力都比较简单, 比较容易分析和处理。 分析刚体系统平衡问题的基本原则与处理 单个刚体的平衡问题是一致的,但有其特点, 其中很重要的是要正确判断刚体系统的静定性 质,并选择合适的研究对象
平衡方程
根据平衡的充要条件
F1 M1 O
z
F2
M2
y Mn
FR =0 , MO=0
超静定结构的概念及超静定次数的确定(PPT)
04 超静定结构的实际应用
桥梁工程
桥梁工程中,超静定结构的应用可以增加结构的稳定性和安全性,提高桥梁的承 载能力。例如,连续梁桥采用超静定结构形式,可以减小梁体的振动和变形,提 高行车舒适性和安全性。
此外,超静定结构在桥梁工程中还可以用于抵抗风、地震等自然灾害的影响,提 高桥梁的抗震性能和抗风能力。
ቤተ መጻሕፍቲ ባይዱ
渐进法
总结词
通过逐步逼近的方法求解超静定结构的位移和内力的方法。
详细描述
渐进法是一种基于迭代思想的求解方法,通过逐步逼近的方法求解超静定结构的位移和内力。该方法首先假设一 组初始解,然后逐步修正解的近似值,直到满足精度要求或达到预设的迭代次数为止。渐进法可以处理复杂的超 静定结构问题,具有较高的计算效率和精度。
建筑工程
在建筑工程中,超静定结构的应用可以提高结构的稳定性和 刚度,增强建筑物的承载能力和抗震性能。例如,高层建筑 采用超静定结构形式,可以减小风力、地震等外部荷载对建 筑物的影响,保证建筑物的安全性和稳定性。
此外,超静定结构在建筑工程中还可以用于优化建筑物的空 间布局和结构形式,提高建筑物的美观性和实用性。
超静定结构
在任何一组确定的平衡力系作用 下,需要用多余的约束条件才能 确定结构的平衡状态的体系。
超静定结构的特性
具有多余的约束
超静定结构有多余的约束,这些 多余的约束可以提供额外的稳定 性,使结构在受到外力作用时具
有更好的抵抗变形的能力。
存在内力
由于超静定结构的约束多余,当 受到外力作用时,会在结构内部 产生内力,这些内力有助于抵抗
判别准则二
如果一个结构的支座反力数目小于其约束数目, 则该结构为超静定结构。
判别准则三
如果一个结构的受力状态不能由静力平衡方程完 全确定,则该结构为超静定结构。
工程力学第3章
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
静力学各知识点归纳
力的作用点。
(在力的作用下,任意两静力学各知识点总结1. 静力学是研究物体在力系作用下的平衡规律的科学。
2. 力的三要素:(1)力的大小;(2)力的方向;(3)3. 力的效应:(1)外效应——改变物体运动状态的效应4.刚体:在外界任何作用下形状和大小都始终保持不变的物体。
点间的距离保持不变的物体)5.一个物体能否视为刚体,不仅取决于变形的大小,而且和问题本身的要求有关。
6.力:物体间相互的机械作用,这种作用使物体的机械运动状态发生变化。
7.力系:作用在物体上的一群力。
(同一物体)8.如果一个力系作用于物体的效果与另一个力系作用于该物体的效果相同,这两个力系 互为等效力系。
9.不受外力作用的物体可称其为受零力系作用。
一个力系如果与零力系作用等效,则该力系称为平衡力系。
10. 力应以矢量表示。
用 F 表示力矢量,用 F 表示力的大小。
在国际单位制中,力的单位是N 或Kn 。
(2)内效应一一引起物体形变的效应第一章•静力学公理F R = F I +F 2公理1:力的平行四边形法则作用在物体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。
公理2 :二力平衡条件作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相 等,方向相反,且作用在同一直线上。
公理3 :加减平衡力系原则在已知力系上加上或减去任意的平衡力系,与原力系对刚体的作用等效。
推理1 :作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该推理2 :三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。
4.线,5. 柔索类约束:绳索对物体的约束力,作用在接触点, ,沿着同一直线,公理4 :作用力与反作用力总是同时存在,两力的大小相等、方向相反、分别作用在两个相互作用的物体上。
静定和超静定
FDy 2F
对ADB杆受力图
MA 0
FBx 2a FDx a 0
得
FBx F
解:先整后零
F 0 F 0
y x
M
A
0
再研究DC杆 可将 FDy 求解出来 最后研究BC杆 可将 F 求解出来
Dx
§3-4
平面简单桁架的内力计算
桁架:一种由杆件彼此在两端用铰链连接而成的结构, 它在受力后几何形状不变。 节点:桁架中杆件的铰链接头。
解: 取大轮,塔轮及重物C,画受力图.
M
由
B
0
Pr F R 0
Pr F 10 P t 1 R
Fr tan 200 Ft
Fr Ft tan 200 3.64 P 1
F
x
yLeabharlann 0 FBx Fr 0
0 FBy P P2 F 0
FBx 3.64P 1
M
C
0
FDB cos 45 2l FK l FEx 2l 0
0
FDB
3 2 P 8
(拉)
习题
已知: P2=2P1, P=20P1 ,r, R=2r, 20 ;
求:物C 匀速上升时,作用于小轮上的力偶矩M; 轴承A,B处的约束力.
齿轮传动机构,大轮上固定一塔轮,大轮和塔轮共重P2,压力 角又叫啮合角,啮合力与节圆切线的夹角
静定物系的平衡问题解题步骤:
1.分析系统由几个物体组成; 2.按照便于求解的原则,适当选取整个或者 个体为研究对象进行受力分析并画出受力 图,一般先取整体,整体行不通再拆; 3.列出平衡方程并解出未知量。
选取研究对象和列平衡方程时,尽量使方 程中只含一个未知量,避免求解联立方程。
理论力学课件 6.1 物体系的平衡,静定和超静定的概念
各种平面力系的平衡方程。 投影式、取矩式。
平衡力系对任意一点的力的投影之和等于零,力矩之和等于零。
可以列出无数个平衡方程。 可以求解无数个未知数? • 平面任意力系,3 个; • 平面汇交力系,2 个; • 平面平行力系, 2 个; • 平面力偶系, 1 个。 实际工程中,大多都是物体系的平衡。有的时候未知量的数目等 于独立平衡方程的数目;但有的时候,为了使结构更加稳固,需 要增加多余的约束使得未知量数目多于独立平衡方程数。
物体系的平衡·静定和超静定
例2 图示结构中,已知重物重力为P,DC=CE=AC=CB=2l,定滑轮半径为 R,动滑轮半径为r,且R=2r=l, θ=45º。试求A、E支座的约束力以及BD杆
所受到的力。
D
解:解这类题时,应根据已知条件与待求未知量,选
FA K
取适当的系统为研究对象,并列适当的平衡方程,尽 量能使一个方程解出一个未知量。一般先分析整体。 (1) 取整体为研究对象,画出其受力图。
物体系的平衡·静定和超静定
物体系的平衡·静定和超静定问题
物体系的平衡·静定和超静定
本讲主要内容
1、物体系的平衡,静定和超静定的概念 2、物体系的平衡问题练习 3、平面简单桁架的内力计算
物体系的平衡·静定和超静定
1、物体系的平衡,静定和超 静定的概念
物体系的平衡·静定和超静定
(1) 问题的引出
1、物体系的平衡,静定和超静 定的概念
åMC = 0
FB
sin
60o
×
l
-
ql
×
l 2
-
F
cos
30o
×
2l
=
0
FB=45.77kN
先局部后整体的方法
结构力学静定结构与超静定结构(建筑类)
1、静定与超静定结构的概念:无多余约束的几何不变体系是静定结构静定结构:由静力平衡方程可求出所有内力和约束力的体系有多余约束的几何不变体系是超静定结构超静定结构:由静力平衡方程不能求出所有内力和约束力的体系.瞬变体系不能作为结构:瞬变体系的主要特性为:1.可发生微量位移,但不能继续运动2.在变形位置上会产生很大内力3.在原位置上,一般外力不能平衡4.在特定荷载下,可以平衡,会产生静不定力5.可产生初内力.常变体系是一种机构而不是结构2、静定结构的内力分析方法几何特性:无多余联系的几何不变体系静力特征:仅由静力平衡条件可求全部反力内力求解一般原则:从几何组成入手,选择合适的隔离体,使得一个隔离体上未知力的个数不超过三个,如果力系为平面汇交力系,则不应超过两个。
一般按照几何组成的相反顺序分析。
一、单跨梁的内力分析弯矩、剪力、荷载集度之间的微分关系1.无荷载分布段(q=0),Q图为水平线,M图为斜直线。
2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线,且凸向与荷载指向相同。
3.集中力作用处,Q图有突变,且突变量等于力值; M图有尖点,且指向与荷载相同。
4.集中力偶作用处,M图有突变,且突变量等于力偶值; Q图无变化。
内力计算的关键在于:正确区分基本部分和附属部分. 熟练掌握单跨梁的计算.单体刚架(联合结构)的支座反力(约束力)计算方法:切断约束,取一个刚片为隔离体,假定约束力的方向,由隔离体的平衡建立三个平衡方程。
四.刚架弯矩图的绘制做法:拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图. 分段定点连线六.由做出的剪力图作轴力图做法: 逐个杆作轴力图,利用结点的平衡条件,由已知的杆端剪力和求杆端轴力,再由杆端轴力画轴力图.注意:轴力图画在杆件那一侧均可,必须注明符号和控制点竖标.。
工程力学 同济 2版 第三章静力学专题
[例7] 由不计自重的三根直杆组成的A字形支架置于光滑地面 上,如图 a) 所示,杆长AC=BC=L=3 m,AD=BE=L/5,支架 上有作用力F1=0.8 kN,F2=0.4 kN,求横杆DE的拉力及铰C和A 、B处的反力。
(a)
(b)
(c)
23
解 A字形支架由三根直杆组成,要求横杆DE的拉力和铰C的 反力,必须分开研究,又DE为二力杆,所以可分别研究AC和BC 两部分,但这两部分上A、B、C、D、E处都有约束反力,且未 知量的数目都多于3个。用各自的平衡方程都不能直接求得未知 量。如果选整个系统为研究对象,则可一次求出系统的外约束 反力。 (1) 先取整体为研究对象,在其上作用有主动力Fl和F2,A、 B处均为光滑面约束,而A处是两个方向上受到约束,因而约束 反力有FAx,FAy和FB,并选取坐标轴如图 b) 所示。列出平衡方 程
目
录
§3-1 物体系统的平衡问题
§3-2 特殊构架—平面桁架
2
§3-1 物体系统的平衡问题
一、静定与超静定的概念 我们学过: ∑X = 0
平面汇交力系
力偶系 平面 任意力系
Y ∑ =0
两个独立方程,只能求两个独立未知数。
一个独立方程,只能求一个独立未知数。 三个独立方程,只能求三个独立未知数。
m ∑
i
=0
X ∑ =0 Y ∑ =0
m ∑
O
( Fi ) = 0
当:独立方程数目≥未知数数目时,是静定问题(可求解) 独立方程数目<未知数数目时,是静不定问题(超静定问题)
3
[例 ]
静定(未知数三个)
静不定(未知数四个)
静不定问题在强度力学(材力,结力,弹力)中用位移协 调条件来求解。
工程力学理论力学第4章
Fi xi F
平衡的充要条件为 主矢 R =0
主矩MO =0
所以 平面平行力系的平衡方程为:
Y 0
mO (Fi )0
一矩式
实质上是各力在x 轴上的投影 恒等于零,即 X 0 恒成立 ,所以只有两个 独立方程,只能求解两个独立 的未知数。
mA (Fi ) 0 二矩式
RB
qa 2
m a
2P
200.8 2
16 0.8
22012(
kN)
YA PqaRB 20200.81224(kN)
§4-4 物体系统的平衡、静定与超静定问题的概念
一、静定与超静定问题的概念
我们学过:
平面汇交力系 X 0 Y 0
两个独立方程,只能求两个独立 未知数。
例3. 塔式起重机翻转问题
如图所示塔式起重机的简图。已知机身重W,重 心在C处;最大的起吊重量为P。各部分的尺寸如图。 求能保证起重机不致翻转的平衡锤重Q大小。
b
Q
C e
W
a
P
A
B
dd
★ 物体系统的平衡问题
例5. 如图所示,水平梁由AB和BC两部分组成,它们
在B处用铰链相连。梁的A端固定在墙上,在C处受滚 动支座支持,该支座放在倾角为α =30°的光滑斜面 上。已知P=4KN,均布载荷q=2KN/m,尺寸如图。试求 A、B、C处约束反力。
解物系问题的一般方法:
由整体
局部(常用),由局部
整体(用较少)
[例1] 已知:OA=R, AB= l , 当OA水平时,冲压力为P 时,
求:①M=?②O点的约束反力?③AB杆内力? ④冲头给导轨的侧压力?
静定结构和超静定结构的优缺点及工程应用
静定结构和超静定结构优缺点及工程应用一、静定结构和超静定结构概念静定结构与超静定结构都是几何不变体系。
在几何结构方面, 二者不一样在于: 静定结构无多出联络, 而超静定结构则含有多出联络。
有多出约束( n > 0)几何不变体系——超静定结构;无多出约束( n = 0)几何不变体系——静定结构。
静定结构──几何特征为无多出约束几何不变, 是实际结构基础。
因为静定结构撤销约束或不合适更改约束配置能够使其变成可变体系, 而增加约束又能够使其成为有多出约束不变体系(即超静定结构)。
静定结构约束反力或内力均能经过静力平衡方程求解, 也就是说, 其未知约束反力或内力数目等于独立静力平衡方程数目。
静定结构在工程中被广泛应用, 同时是超静定结构分析基础。
超静定结构——几何特征为几何不变但存在多出约束结构体系, 是实际工程常常采取结构体系。
因为多出约束存在, 使得该类结构在部分约束或连接失效后仍能够负担外荷载, 但需要注意是, 此时超静定结构受力状态与以前是大不一样, 假如需要话, 要重新核实。
因为其结构中有不需要多出联络, 所以所受约束反力或内力仅凭静力平衡方程不能全部求解, 也就是未知力数目多于独立静力平衡方程个数。
二、静定结构基础特征及优缺点1、静定结构是几何不变体系, 无多出约束, 全部支座反力和内力只要用静力平衡条件就能确定, 而且解答是唯一。
2、静定结构支座反力和内力与结构所用材料性质、截面大小和形状都没相关系。
3、静定结构在温度改变、支座移动、材料伸缩和制造误差等原因影响下, 都不产温度变化(自由地产生弯曲变形,不产生内力)支座移动(刚体位移,不产生内力)制造误差生制作反力和内力。
即没有荷载作用在静定结构上时, 支座反力均为零, 所以内力也均为零。
4、静定结构局部平衡特征在一组平衡力系作用下, 假如静定结构中某一几何不变部分能够与荷载平衡, 则只会是该部分产生内力, 其它部分支座反力和内力均为零。
力系的平衡
•画支座反力NA与NB。令NA=50 kN。列平衡方程:
ΣmB (F) = 0
G×0.5+W ×8− NA ×4 − P×10 = 0
P=200 kN
•如为空载,仍应处 于平衡状态,故
ΣmA(F) = 0, NB ×4 +W ×4 −G×3.5 = 0
符合题意要求。
例3-7 图示为可沿铁路行驶的 起重机,本身自重G=250 kN, 其重心在 E 点。最大载荷P=200 kN,在 C 点起吊。为防止机身 向右翻倒,在左端D有一平衡重 W,W的重心距支点A的水平距 离为 x。W 与 x 必须计划适当, 使得既能在C点满载时防止机身 向右翻倒,又能在空载时机身 不致向左翻倒。为保证安全, 必须使任一侧轮( A 或 B)的向 上反力,不得小于50 kN。设 b=1.5 m,e=0.5 m,l=3 m,求 W与x的适当值。
例3-4 一容器如图示,连同盛装物共重W=10 kN, 作用在容器上的风荷载q=1 kN/m,在容器的受力 平面内有三根杆件支承。求各杆所受的力。 解:
杆件AD、AC和BC都 是二力杆,其约束反 力SAD、SAC和SBC沿各 杆的中心线,因指向 未定,故暂都假设各 杆受拉力 研究容器受力图如图
ΣmA(F) = 0
解: 列力矩方程,矩心应 选在两个未知力的交 点,如图中 A 点或 B 点。 在单个物体上遇有分 布载荷时,可先将分 布 载 荷 简 化 为 合 力 Q=Σq 来 计 算 , 本 题 Q=q×4=40 kN,作用线在AB的中点。
投影方程中,不用考虑任何力偶的投影; 在力矩方程中,不问矩心何在,只要将所 有力偶矩的代数值统统列入即可 。
第三章 力系的平衡
第一节 平面力系的平衡 第二节 静定问题与超静定问题 第三节 物系平衡问题的应用 第四节 空间力系的平衡
工程力学第四章2
FAy
A
P
P
B 6m 6m
6m
FBx
FBy
CF Cx
取[左]受力分析
∑MC=0
FAx·6–FAy·6+3P=0
P
FAx
FAy
A
F Cy
F Ax
P = 2
FBx
P = 2
[左] 左
上固定销子C,可在杆 的光滑直槽中滑动, 例:图示杆BE上固定销子 可在杆 的光滑直槽中滑动,已知: 图示杆 上固定销子 可在杆AD的光滑直槽中滑动 已知: L=0.2m,M1=200N·m,α = 300,求:结构平衡时 2。 结构平衡时M , ,
iy
ix iy
=0 =0
平面平行力系的平衡方程 (设各力线都 // y轴): 轴
∑F = 0 ∑ m (F ) = 0
o i
5
例:图示导轨式汽车提升机构,已知提升的汽车重P=20kN, 图示导轨式汽车提升机构,已知提升的汽车重 , 求:导轨对A、B轮的约束反力(不计摩擦)。 导轨对 轮的约束反力(不计摩擦)。 轮的约束反力
∑MC=0, –F·a–3a · FD=0 ∑Fiy=0, –F+ FD+FC=0 FD=F/3, FC=2F/3, 3a C FC 3a A E D FD B FEX FAY FEY D [AD] FD FC [CB] E
FEY’ FCX
B
取[AD]
3 ∑ M A = 0, 3aFD − a ⋅ 2 FEx = 0 2 2 FEx = F, A 3
F
60cm
F FA P P
A
400cm
FB B
力偶仅 能被力 偶平衡
i FA·400–P·60=0; 解: ∑Mi=0: ; 得:FA=3kN FB=FA ∑Fx=0; F= P ∑Fy=0;
TM.3-3物体系的平衡.静定和超静定问题
理论力学 3-3 物体系的平衡. 静定和超静定问题
例3-5 图3-13a所示为曲轴冲床简图,
由轮Ⅰ、连杆AB和冲头B 组成。 OA=R,AB=l。 忽略摩擦和自重, 当 OA 在水平位置、冲压力为 F 时系统处于平衡状态。
理论力学 3-3 物体系的平衡. 静定和超静定问题
求: (1)作用在轮Ⅰ上的力偶之矩 M的大小; (2)轴承O处的约束力; (3)连杆AB受的力; (4)冲头给导轨的侧压力。
,
(c)
,
(d)
,
(e)
M 理F 论R力学 3-3 物体系的平衡. 静定和超静定问题
(3)由式(c)得 由式(d)得
理论力学 3-3 物体系的平衡. 静定和超静定问题
由式(e)得
负号说明,力FOx,Foy 的方向与图示 假设的方向相反。此题也可先取整个 系统为研究对象,再取冲头或轮Ⅰ为 研究对象,列平衡方程求解。
如图3-14b所示,有
理论力学 3-3 物体系的平衡. 静定和超静定问题 图3-14 b
理论力学 3-3 物体系的平衡. 静定和超静定问题
(d)
理论力学 3-3 物体系的平衡. 静定和超静定问题
由式 (d) 得 代入式 (a),(b),(c) 得
理论力学 3-3 物体系的平衡. 静定和超静定问题
理论力学 3-3 物体系的平衡. 静定和超静定问题
1.物体系的平衡
工程中,如组合构架、三铰拱等结构, 都是由几个物体组成的系统。当物体系平 衡时,组成该系统的每一个物体都处于平 衡状态,因此对于每一个受平面任意力系 作用的物体,可写出三个平衡方程。如物 体系由 n 个物体组成,则共有3n个独立方 程。
轮Ⅰ上力偶的矩 M ; (2)光滑轴承 A,B 的约束力。
力系的平衡条件与平衡方程资料
X 0
可否求出T、YA、XA;
T
XA A YA
D 300
B
E
PQ
思考题2
C
(2)由下图所示的受力图,试按
mA(F) 0 mB (F) 0 mc (F ) 0
可否求出T、YA、XA。
T
XA A YA
D 300
B
E
PQ
由下图所示的受力图,可否列出下列四 思考题3 个独立的平衡方程?
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
P 1m
q
C
XA
2m
2m
A
YA
Fy = 0 YA - 20 + 19.5 = 0
XB B YB
YA = 0.5 kN
( 2 ) 取 BC 为研究对象画受力图
P 1m
XC
C
YC
XB B
YB
MC ( F ) = 0
Fy 0
FN P cos j 0 FN P cos j
考虑极限平衡状态有: F Fmax fs FN
从而得到: FT P ( fs cos j sin j). 当 FT P ( fs cos j sin j) 时, 物块才能下滑。
(3) 画受力图如右 列平衡方程
P
(c) j
解: 取起重机,画受力图.
Fx 0 FAx FB 0
F y
0
FAy P1 P2 0
M A 0 FB 5 1.5 P1 3.5 P2 0
FAy 50kN FB 31kN FAx 31kN
•利用“力偶只能由力偶来平衡”的概念解题有时较方 便:
应用静力学之力系的平衡detq
静力学
实例1
第2章 力系的平衡
静力学
实例2
第2章 力系的平衡
本章内容:
静力学
1. 平衡的概念及平衡方程; 2. 平面力系的平衡; 3. 静定与超静定的概念; 4. 物体系统的平衡; 5. 空间力系的平衡。
第2章 力系的平衡
本章内容:
静力学
1. 平衡的概念及平衡方程; 2. 平面力系的平衡; 3. 静定与超静定的概念; 4. 物体系统的平衡; 5. 空间力系的平衡。
F1
F2
C
A
B
叠加原理
第2章 力系的平衡
静力学
思考题 3
若匀质杆AB长为2R,AB的平衡位置是否唯一? 平衡位置在何处?
(α=32.5°)
第2章 力系的平衡
静力学
解题步骤: 1. 选取研究对象;
2. 作受力图;
3. 作力多边形,利用几何方法计算未知力,
或选取适当的坐标系,利用解析方法求解。
解题方法
G 5.5 m G2 2.5 m G1 2 m FA 3.8 m 0
第2章 力系的平衡
静力学
例题5
G3
G2
G
A
G1 B
3.联立求解。
1.8 m 2.0 m 2.5 m 3.0 m
FA
FB
FA
1 3.8
2G1
2.5G2
5.5G
4.不翻倒的条件是:FA≥0
G
1 5.5
2G1
2.5G2
平衡的解析表达式(平衡方程):
Fy 0
MO 0
限制条件? y轴与力的作用线不垂直。
第2章 力系的平衡
静力学
例题5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
FBx =0
F
FAy P
B
ix
0, FAx FBx F cos sin 0
A FAx
D x
F
C
FBx y
FAz
3 F 86.6 N 4
从而得到以下规律: (1)可以用力矩形式的平衡方程投影式来替代力形式的平 衡方程的投影式,即有3-6个力矩投影式,也就是说力矩投 影形式的平衡方程不得少于三个,至多可以有六个。 (2)力的投影轴与矩轴不一定重合,但投影轴及矩轴必须 受到如下限制:①不全相平行;②不全在同一平面内。
第三章 力系的平衡 静定与超静定的概念
第一节 平衡方程的解析形式
一、空间任意力系的平衡方程 FR 0 MO 0 平衡的必要、充分条件。
FR Fixi Fiy j Fiz k
F 0 F 0 Fiz 0
ix
iy
M O M ixi M iy j M iz k
合力偶矩恒为零,即
M
ix
0
M
iy
0
M F F F
iz
0 0 0 0
ix
空间汇交力系平衡方程
iy iz
例3-3:结构如图所示,杆重不计,已知
力P,试求两杆的内力和绳BD的拉力。 解:研究铰链B D
z
F3
z
D
C
C
y
B
A
F2
y
F1
B
A
x
P
0
x
F
z
0
P
F
x
F3 sin P 0
4M F5 ; 3a
F6
F3
MFB =0, F6cos300a· cos300+M=0; `
4M F6 ; 3a
F1 F4
F5 F2
MEC =0, F4cos300a· cos300+M=0;
F4 4M ; 3a 2M F3 ; 3a 2M F1 ; 3a 2M F2 ; 3a
l M ( F ) 0 , F l F sin l P 0 x i Bz 2
FBz=P/2-F/2=0
C
z
F
B A D x z
FAz
FBz
iz
0, FAz FBz F sin P 0
FAz=P -F/2=100N
y
M z (Fi ) 0, FBxl 0
Fix 0; FDB
BE CE FDC 0 DB DC
FDB
FDC
BE=CE,DB=DC,则:FDB=FDC
Fiy 0; FDB
DO DO DO FDC FDA 0 DB DC DA
FDA
P
DB 20 3 , DA 20 5;
EO AO Fiz 0; FDB 2 FDA P0 DB DA 3 FDA P 745N, FDB=FDC=289N 3
M
AA
(Fi ) 0, F5 cos l 0
F5 0
ห้องสมุดไป่ตู้
B’ F
A’
BD M ( F ) 0 , ( F F sin ) 0 AC i 6 5 l D’ M ( F ) 0, ( F F sin )l 2 P 0 AD i 4 3 2
C
FAz
FBz
设AD=CB=b,则 b M y ( Fi ) 0, F sin b P 2 0 y 得: F =P = 200N 由: 得:
F
iy
0, FAy F cos cos 0
FAy=(3/4)F=150N
A
FAx
FAy
P
F
B
FBxy
D x
MAB =0, –F3 a· sin600– F6 sin300a· sin600=0; MBC =0, –F1 a· sin600– F4 sin300a· sin600=0; MCA =0, –F2 a· sin600– F5 sin300a· sin600=0;
特例2. 空间平行力系
若各力平行轴z,则
F
ix
0
F
iy
0
M
iz
0
F
空间平行力系平衡方程
iz
0
0
0
M
M
ix
iy
例3-6:三轮平板车放光滑地面上,自重为:W,货重为F, 已知:F=10kN,W=8kN,试求各轮约束力的值。
解:这是空间平行力系。
Mix =0, (200–80)W–200· FA =0; FA=4.8kN, Miy =0, 60W+(60–20)F–60· FA–2· 60· FB =0; Fiz=0 , FA +FB+FC–W–F=0; FC=8.27kN
(3)六力矩形式的矩轴不交于同一点。 据此,我们可以选择合适的力投影轴和矩轴,使每个方程所 包含的未知量为最少,从而简化计算。
A
例3-2:重力为P的匀质正方形平台,由六根不计自重的直杆支撑, 在水平力F的作用下保持静止。杆与水平面的夹角均为 =45º , 试求各杆的力。 F P B C解 设板边长为l ,用多力矩形式求解。 F3 0 Fiy 0, F3 cos 0 D
FA
x
z
y
FC FB
FB=4.93kN
特例3. 空间力偶系
合力恒为零,即
F
ix
0
F
iy
0
F
iz
0
空间力偶力系平衡方程
M M
ix
0
0
iy
M
iz
0
例3-7:边长为a 的等边三角形水平板上作用着力偶M,並用六 根二力杆支撑,板自重不计,试求各杆的力。
MAD =0, F5cos300a· cos300+M=0;
C ’Fix 0, F2 cos F 0
F
F2 2F
F6 0
P F4 (压) 2
P F3
F2
F6
iz
0
P F 2
F4 F1 F2 sin F3 sin F4 F5 sin F6 P 0
F1
F5
F1
(压)
特例1. 空间汇交力系
P F3 sin
F3 cos sin F2 0 F2 F3 cos sin
F
iy
0
F1 F3 cos cos
例3-4:重力P=1kN,A是球铰支座、A、B、C点是固定 在同一墙上,试求:杆AD、绳DB,DC的约束力。
解:这是空间汇交力系,取D点为汇交点,
M
M
ix
0
M
iy
0
0
iz
空间任意物体有六个平衡方程;可解六个未知量。
例3-1:有一匀质矩形等厚的板,重力P =200N,角A为球铰,另一 端B用铰链(沿轴y向无约束力)与墙壁相连,再用一索EC使板维 持于水平位置。若θ= =30º,试求索内的拉力及A,B两处的约束 力。z 解
B
A D x z